几何概型典型题型--约会问题

几何概型典型题型--约会问题
几何概型典型题型--约会问题

抽样

一、选择题

1 .(2013年高考湖南(文3))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为

120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了

一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___()

A.9 B.10 C.12 D.13

本题考查分层抽样方法的应用。因为从丙车间的产品中抽取了3件,所以抽查比例为=,所以甲车间抽取6件,乙车间抽取4件,所以共抽取36413

++=件,60:320:1

选D.

2.(2013年高考江西卷(文5))总体编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右

依次选取两个数字,则选出来的第5个个体的编号为

()A.08 B.07 C.02 D.01

本题考查随机数的使用和求值。从随机数表第1行的第5列和第6列数字开始由左到右

依次选取两个数字中小于20的编号依次为08,02,14,07,02,01,。其中第二个和第四个都

是02,重复。所以第5个个体的编号为01。故选D。

3.(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问

卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]

的人数为()A.11 B.12 C.13 D.14

使用系统抽样方法,从840人中抽取42人,即从20人抽取1人。,所以从编号1~480

的人中,恰好抽取24人,接着从编号481~720共240人中抽取12人。故选B

4 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有50名学

生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验

中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为

88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样

C.这五名男生成绩的方差大于这五名女生成绩的方差

D.该班级男生成绩的平均数小于该班女生成绩的平均数

对A选项,分层抽样要求男女生总人数之比=男女生抽样人数之比,所以A选项错。

对B选项,系统抽样要求先对个体进行编号再抽样,所以B选项错。

对C选项,男生方差为8,女生方差为6。所以C选项正确。

对D选项,男生平均成绩为90,女生平均成绩为91。所以D选项错。所以选C 5.(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用

的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法

本题考查抽样方法的判断。由于男生和女生存在性别差异,所以宜采用的抽样方法是分

层抽样法,选D.

7.(2013年高考新课标1(理))为了解某地区的中小学生视力情况,拟从该地区的中小学生

中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情

况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样

我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,

而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男

女生视力情况差异不大.

了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故

选C.

三、解答题

8.(2013年高考陕西卷(文))

有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次,

(Ⅰ) 为了调查评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B组中抽取了6人. 请将其余各组抽取的人数填入下表.

解: (Ⅰ) 按相同的比例从不同的组中抽取人数.

从B组100人中抽取6人,即从50人中抽取3人,

从100人中抽取6人,从150人中抽取9人.

高二数学几何概型知识与常见题型梳理

几何概型知识与常见题型梳理 几何概型和古典概型是随机概率中两类主要模型,是概率考查中的重点,下面就几何概型的知识与常见题型做一梳理,以期能使读者对于这一知识点做到脉络清晰,条理分明。 一 基本知识剖析 1.几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。 2.几何概型的概率公式: P (A )= 积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A ; 3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等. 4.几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。 通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。 二 常见题型梳理 1.长度之比类型 例1. 小赵欲在国庆六十周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率. 例2 在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方形的面 积介于36cm 2 与81cm 2 之间的概率. 2.面积、体积之比类型 例3. (08江苏高考6).在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

几何概型的常见题型

几 何 概 型 的 常 见 题 型 李凌奇2017-06-26 1.与长度有关的几何概型 例1.在区间]1,1[-上随机取一个数x ,2 cos x π的值介于0到 2 1 之间的概率为( ). A.31 B.π2 C.21 D.3 2 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2 x π的值介于0到 2 1 之间, 需使2 23x π ππ - ≤ ≤- 或 322x π ππ ≤ ≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2 , 由几何概型知使cos 2x π的值介于0到2 1 之间的概率为 3 1232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 2.与面积有关的几何概型 例2.ABCD 为长方形,1,2==BC AB ,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A . 4 π B.14 π - C. 8 π D.18π - 分析:由于是随机的取点,点落在长方形内每一个点的机会是等可能的,基本事件是无限多个,所以符合几何概型. 解:长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为 2 π 因此取到的点到O 的距离大于1的面积为2 2π -, 则取到的点到O 的距离大于1的概率为 A O D C B 1 图

几何概型的常见题型及典例分析

几何概型的常见题型及典例分析 一.几何概型的定义 1.定义:如果每个事件发生的概率只与构成该事件区域 的长度(面积或体积)成比例,则称这样的概率模型为几 何概率模型,简称几何概型. 2.特点: (1)无限性,即一次试验中,所有可能出现的结果(基 本事件)有无限多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3 .计算公式:.)(积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P 说明:用几何概率公式计算概率时,关键是构造出随 机事件所对应的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的. (2)区别:①古典概型的基本事件是有限的,几何概型 的基本事件是无限的; ②两种概型的概率计算公式的含义不同. 二.常见题型

(一)、与长度有关的几何概型 例1、在区间]1,1[-上随机取一个数x ,2cos x π的值介于0到21之间的概率为( ). A.31 B.π2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件. 所取的数是区间]1,1[-的任意一个数,基本事件是无限多 个,而且每一个基本事件的发生都是等可能的,因此事件 的发生的概率只与自变量x 的取值范围的区间长度有关, 符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2x π的值介于0到21之间,需使223x πππ-≤≤-或322 x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2, 由几何概型知使cos 2x π的值介于0到2 1之间的概率为 31232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 例2、 如图两盏路灯之间长度是30米,由于光线较暗, 想在其间再随意安装两盏路灯,问A 与与D 之间的距离都 不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基

几何概型的五类重要题型

剖析几何概型的五类重要题型 解决几何概型问题首先要明确几何概型的定义,掌握几何概型中事件A 的概率计算公 式:积等) 的区域长度(面积或体试验的全部结果所构成积等)的区域长度(面积或体构成事件)(A A P = .其次要学会构造随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 1.几何概型的两个特征: (1)试验结果有无限多; (2)每个结果的出现是等可能的. 事件A 可以理解为区域Ω的某一子区域,事件A 的概率只与区域A 的度量(长度、面积或体积)成正比,而与A 的位置和形状无关. 2..解决几何概型的求概率问题 关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 3.用几何概型解简单试验问题的方法 (1)适当选择观察角度,把问题转化为几何概型求解. (2)把基本事件转化为与之对应的总体区域D. (3)把随机事件A 转化为与之对应的子区域d. (4)利用几何概型概率公式计算. 4.均匀随机数 在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率.一般地.利用计算机或计算器的rand ()函数可以产生0~1之间的均匀随机数.a ~b 之间的均匀随机数的产生:利用计算机或计算器产生0~1之间的均匀随机数x= rand( ),然后利用伸缩和平移变换x= rand( )*(b-a)+a,就可以产生[a ,b]上的均匀随机数,试验的结果是产生a ~b 之间的任何一个实数,每一个实数都是等可能的. 5.均匀随机数的应用 (1)用随机模拟法估计几何概率; (2)用随机模拟法计算不规则图形的面积. 下面举几个常见的几何概型问题. 一.与长度有关的几何概型 例1 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30× 31=10米, ∴3 13010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 二.与面积有关的几何概型 例2 如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少? 思路点拨 此为几何概型,只与面积有关.

高考数学复习点拨:约会型几何概型问题

高考数学复习总结归纳点拨 1 谈“约会型”概率问题的求解 由两个量决定的概率问题,求解时通过坐标系,借助于纵、横两轴产生公共区域的面积,结合面积产生问题的结论,我们称此类问题为“约会型”概率问题;“约会型”概率问题的求解,关键在于合理、恰当引入变量,再将具体问题“数学化”,透过数学模型,产生结论。请看以下几例: 例1、甲、乙两人约定在晚上7时到8时之间在公园门口会面,并约定先到者应等候另一个人一刻钟,这时即可离去,那么两人见面的概率是多少? 解:以x 轴和y 轴分别表示甲、乙两人到达约会地点的时间,那么两人能见面的充要条件是15||≤-y x ,如图 由于),(y x 的所有可能结果是边长为60的正方形,可能会 面的时间由图中阴影部分所表示,记“两人能见面”为事件A 因此,两人见面的概率167604560)(2 22=-=A P 点评:显然,“以x 轴和y 轴分别表示甲、乙两人到达约会地点的时间”很关键,由这一句,将一个实际问题引入了数学之门,进一步分析会发现:要见面y x ,必须满足15||≤-y x ,于是,结论也就顺其自然的产生了。 例2、A 、B 两列火车都要在同一车站的同一停车位停车10分钟,假设它们在下午一时与下午二时随机到达,求这两列火车必须等待的概率; 解:以x 轴和y 轴分别表示A 、B 两列火车到达的时间 两列火车必须等待,则10||≤-y x ,如图 由于),(y x 的所有可能结果是边长为60的正方形,可能 等待的时间由图中阴影部分所表示,记“两列火车必须等待” 为事件A 因此,这两列火车必须等待的概率是361160 5060)(222=-=A P 点评:本题与例1相同,“火车必须等待”,那么它们的到达时间差必须不大于10分钟,于是,将A 、B 两列火车到达车站的时间分别用y x ,表示,结论很快产生。 例3、小明每天早上在六点半至七点半之间离开家去学校上学,小强每天早上六点到七点之间到达小明家,约小明一同前往学校,问小强能见到小明的概率是多少? 解:如图,方形区域内任何一点的横坐标表示小强的到达时间,纵坐标表示小明离开家的时间,由于区域内任意一点的出现是等可能的,因此,符合几何概型的条件;由题意,只要点落在阴影部分内,就表示小强能见到小明,即事件A 发生,

几何概型的经典题型及标准答案

几何概型的经典题型及答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 几何概型的常见题型及典例分析 一.几何概型的定义 1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.特点: (1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A A P = 说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的. (2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的; ②两种概型的概率计算公式的含义不同. 二.常见题型 (一)、与长度有关的几何概型 例1、在区间]1,1[-上随机取一个数x ,2 cos x π的值介于0到 2 1 之间的概率为( ). A.31 B.π 2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的

4 区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2 x π的值介于 0到21之间,需使 223x πππ-≤≤-或322 x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2 , 由几何概型知使cos 2x π的值介于0到2 1 之间的概率为 3 1232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 例2、 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三 等分,由于中间长度为30×3 1 =10米, ∴3 1 3010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以,题中的等可能参数是平行弦的中点,它等可能地分布在于平行弦垂直的直径上(如图1-1)。也就是说,样本空间所对应的区域G 是一维空 间(即直线)上的线段MN ,而有利场合所对 应的区域G A 是长度不小于R 的平行弦的中点K 所在的区间。 [解法1].设EF 与E 1F 1是长度等于R 的两条弦, K K K1图1-2图1-1 O O M N E F M N E F E1F1

公开课几何概型教案

几何概型 一、教学目标: 1、知识与技能: (1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型; 2、过程与方法: (1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力; ' (2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。 3、情感态度与价值观: 本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。 二、重点与难点: 1、几何概型的概念、公式及应用; 2、几何概率模型中基本事件的确定,几何“度量”的选择;将实际问题转化为几何概型. 三、教学过程 复习回顾 、 同学们,咱们前面学习了古典概型,现在回顾一下古典概型的特点及求概率的公式 特点:(1)试验中所有可能出现的基本事件只有有限个(有限性); (2)每个基本事件出现的可能性相等(等可能性). (一)问题引入 (1)若x的取值是区间[1,4]中的整数,任取一个x的值,求“取得值不小于2”的概率。 (古典概型) ~ (2)若x的取值是区间[1,4]中的实数,任取一个x的值,求“取得值不小于2”的概率。 (几何概型) 自主探究 试验1、取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1米的概率有多大 试验2、取一个长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,那么豆子落入圆内的概率有多大 试验3、一只蜜蜂在一个棱长为60cm的正方体笼子里飞,那么蜜蜂距笼边大

于10cm的概率有多大 . 试验1试验2试验3提炼概括 一个基本 事件… 取到线段AB上 某一点 豆子落在正方形(2a ×2a)内某一点 取正方体笼子内某 一点 在对应的整个图形上取一点 (随机地) 所有基本 事件形成的集合线段AB(除两端 外) 正方形(2 4a)面 正方体笼子(棱长 60)体积 《 对应的所有点形成一个可度 量的区域D 随机事件 A对应的集合线段CD内切圆(2a π)面 正方体笼子内小正 方体(棱长40)体 积 区域D内的某个指定区域d 随机事件A发生的 概率?() P A= 圆的面积 正方形的面积 2 2 44 a a ππ == 3 3 408 () 6027 P A()A P A 构成事件的区域 全部结果构成的区域 1、几何概型的概念: ] 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. 古典概型几何概型 所有的试验结果有限个(n个)无限个 ` 每个试验结果的发生 等可能等可能 概率的计算P(A)=m/n 3、几何概型的概率计算公式:

高三数学专题复习-约会问题

数学专题复习 几何概型—“约会问题” 案例:圣诞节,小花、小楠两人约定明天7时到8时之间在城北中山公园门口会面,她们约定无论谁先到达,先到者应等候另一个人一刻钟,如果15分钟之后,另一人还未到达,这时先到者即可离去,那么,请思考后回答两人见面的概率是多少? 思考: 1、 能直接得出两人碰面的概率吗?说说你的想法。 2、 两人碰面的可能结果是怎样的?与古典概型相比较谈谈你的看法。 3、 若两人碰面这个事件不是古典概型,那么如何计算两人碰面的概率。 案例分析与讨论:首先,让学生分析互相讨论,得出两人碰面这个事件的结果是无限的,而且碰面的结果只是7时到8时之间的任何一个时刻,且任一时刻的可能性是相同的。在此基础上教师要引导学生与古典概型的特点互相比较,从而教师给出几何概型的定义。其次,让学生思考,想法计算几何概型的概率,在这个阶段,教师可以让学生自由发挥,结合他们的知识水平,教师再加以适当的引导指正,最后得出几何概型的概率计算公式。最后,让学生自己解决碰面的概率计算,教师再进行详细的解析,学生方可学懂学透。下面是上述案例的概率分析: 问题的解决要以x 轴和y 轴分别表示两人到达约会地点的时间,那么两人能见面的充要条件是15||≤-y x ,(如图1)由于),(y x 的所有可能结果是边长为60的正方形,可能会面的时间由图中阴影部分所表示,记“两人能见面”为事件A ,因此,两人见面的概率: 16760 4560)(222=-=A P 。

图1 课堂反馈: 思考下面的问题:某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待的时间不多于10分钟的概率。 分析:某人醒来在整点间即60分钟是随机的,等待的时间不多于10分钟可以看作构成事件的区域,整点即60分钟可以看作所有结果构成的区域,因此本题的变量可以看作是时间的长度,于是可以通过长度比公式计算其概率。 可设“等待的时间不多于10分钟”这一事件记作事件A ,则 6 160106010)(===分钟里醒来的时间长度所有在分钟时间长度等待的时间不多于A P ; 显然这是一个与长度有关的几何概型问题,问题比较简单,学生也易于理解。 问题拓展:某人午觉醒来,发现表停了,则表停的分钟数和实际分钟数差异不超过5分钟的概率为多少? 分析:本题的特点在于学生易犯固定思维的错误,习惯性的用上题中的时间长度之比来解决,得到错误的答案12 1605=。学生错误的原因在于没有科学的认识题中的变量。本题中包含了两个变量,一个是手表停的分钟数,可以在[0,60]内的任意时刻,另一个变量是实际分钟数,也可以在[0,60]内的任意时刻。所以本题的解决应以x 轴和y 轴分别表示手表停的分钟数和实际分钟数,那么差异不超过5分钟的充要条件是5||≤-y x ,从而可以绘制坐标轴,数形结合,得到结果。由于),(y x 的所有可能结果是边长为60的正方形,差异不超过5分钟由图中阴影部分所表示,记“差异不超过5分钟”为事件A 因此,差异不超过5分钟的概率14414360 560)(222=-=A P 。

概率论例题

概率论例题 例1.设某班车起点站上车人数X 服从参数为λ(λ>0)的泊松分布,并且中途不再有人上车。而车上每位乘客在中途下车的概率为p )1p 0(<<,且中途下车与否相互独立,以Y 表示在中途下车的人数。试求(1)(X,Y )的联合概率分布律;(2)求Y 的分布律(列)。 解:X 可能的取值是0,1,2,…..,k ,…,n ,... P{X =k }= ! k e k λ λ- Y 可能的取值是0,1,2,…,r ,…,k P{x =k, y =r }=P{x=k}P{y=r/x=k}= ! k e k λ λ-r k r r k q p C - r=0,1,2,…,k 当r>k 时,P{x=k, y=r}=0, Y 的边缘分布 P{Y = r }=∑+∞ ===0 },{k r y k x P =∑+∞ ====0 }/{}{k k x r y P k x P =∑ +∞ =--r k r k r r k k q p C e k λλ! =∑+∞ =--+--r k r k r q r r k k k k p e )(!) 1()1(! 1) (λλλ =∑+∞=---r k r k r rq r k r p e )()! (1!1)(λλ =rq r e r p e --!1)(λλ=rp r e r p -!)(λ r = 0, 1, 2, … , 验证Y 的分布律 ∑+∞ ==0 }{r r y P = 1 ? 例2. 解 因为η只取非负值,所以当0y ≤时, 2()() () F y P y P y ηηξ=<=< = 当 0y >时

2()()()) F y P y P y y y ηηξξ=<=<=< 2 2 2 2 12()t t t dt dt dt ξ--=== 2 20 u u y y e - -= =? ? 所以 20 ,0()0,0u y y F y y η-?>?=??≤?? 1 y --?

古典概型与几何概型

古典概型与几何概型 古典概型与几何概型 【知识网络】 1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基 本事件数及事件发生的概率。 2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、 特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。 【典型例题】 [例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( ) A . 4 9 B .2 9 C .23 D .13 (2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6), 骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( ) A . 6 1 B . 36 5 C . 12 1 D . 2 1 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形 的面积介于36cm 2与81cm 2之间的概率为 ( ) A . 56 B . 12 C .13 D . 16 (4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3 S ”的概率为 . (5)任意投掷两枚骰子,出现点数相同的概率为 . [例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。 [例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟, 过时即可离去.求两人能会面的概率.

几何概型约会问题.c

几何概型中的“约会问题”总结 几何概型是每个事件发生的概率只与构成该事件区域的长度、面积和体积有关,它与古典概型最本质的区别就是基本事件的个数是无限的,学生对于有限的情况比较容易接受,但是对于无限的情形就觉得有点抽象,所以我们用长度、面积、体积这三个“几何测度”来刻画几何概型,将代数上的无限转化为几何上的有限,在这三种测度里面关于长度的问题学生一般觉得较简单,关于体积的问题考的不是很多,最主要还是关于面积测度的问题,由于出现的情况比较多,学生容易犯错,下面将以不同“约会问题”来讲解几何概型中的面积问题,“约会问题”的模型基本涵盖了几何概型中关于相遇类型的面积测度的情形。 (1) 小明和小雪约了星期天下午在月牙塘公园见面,由于龙泉路最近在修路,可能会堵车,小 明说他大概4:00—5:00会到,小雪说她可能5:30—6:30到,他们约定先到的等二十分钟如果另一个还没来就可以先走了,假设他们在自己估计时间内到达的可能性相等,问他们两个能相遇的概率有多大 解:设小明和小雪相遇为事件A 从右侧图形中我们可以知道他们相遇的概率P(A)=0 (2)第二次约会:小明说他大概4:00—5:00会到,小雪说这次她大概5:00—6:00就会到了,这次他们约定先到的等半个小时另一个还没来就可以先走,假设他们在自己估计时间内到达的可能性相等,问他们两个能相遇的概率有多大 分析:如果在一维坐标轴中表示他们相遇的可能性则种类太多,表达不清,又因为小明到达的时间在4点至5点间,小雪到达的时间在5点到6点间,属于两个变量的情形,所以我们采用二维的坐标系来构建这个题的数学模型。设小明到达的时间为x ,小雪到达时间为y ,那么45x ≤≤ 56y ≤≤ 约定先到的等半个小时另一个还没来就可以先走则他们两个要相遇需要满足 0.5y x ≤+ 解:设小明到达的时间为x ,小雪到达时间为y ,小明和小雪相遇为事件A 则 4556 0.5x y y x ≤≤??≤≤??≤+? 试验的全部结果所构成的区域为 } {(,)/45,56x y x y Ω=≤≤≤≤ 事件A 构成的区域为 } {(,)/0.5,45,56A x y y x x y =≤+≤≤≤≤ 由图可知11112228A S =??=,则 1()8A S P A S Ω==所以小明和小雪相遇的概率为1/8 第一种约会情况也可以画二维坐标,由图可知,事 件A 与试验

概率论习题及答案

概率论习题 一、填空题 1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 . 2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率 . 3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 . 4、已知()0.7,()0.3,P A P A B =-= 则().P AB = 5、已知()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ?= 6、掷两枚硬币,至少出现一个正面的概率为 .. 7、设()0.4,()0.7,P A P A B =?= 若,A B 独立,则().P B = 8、设,A B 为两事件,11 ()(),(|),36P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2 (),1,2,3,3 i P A i == 则123,,A A A 最多出现一个的概 率是. 10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 . 11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。那么(|)P C AB = 。 12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相 表示为互不相容事件的和是 。15、,,A B C 中不多于两个发生可表示为 。 二、选择题 1、下面四个结论成立的是( ) .()().,.().()A A B C A B C B AB C A BC C A B B A D A B B A --=-?=??=? ?-=-?=若且则

人教版高中数学必修三 第三章 概率几何概型知识与常见题型梳理

几何概型知识与常见题型梳理 基本知识 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的概率公式 P(A)=积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 3.几何概型的特点 (1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等. 4.几何概型与古典概型的比较 一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的.这是两者的不同之处.另一方面,古典概型与几何概型的试验结果都具有等可能性,这是两者的共性. 通过以上对几何概型的基本知识点的梳理,我们不难看出其要点是:要抓住几何概型具有无限性和等可能性这两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提.因此,用几何概型求解的概率问题跟古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示. 常见题型 1.长度之比类型 例1 小赵欲在国庆60周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率. 分析 因为客车每小时一班,而小赵在0~60分钟之间任何一个时刻到车站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,且属于几何概型中的长度类型. 解 设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,而事件的总体是整个一小时,即60分钟.因此,由几何概型的概率公式,得P(A)= 605060-=61,即小赵等车时间不多于10分钟的概率为6 1. 例2 在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方 形的面积介于36 cm 2 与81 cm 2之间的概率. 分析 正方形的面积只与边长有关,因此,此题可以转化为在12 cm 长的线段AB 上任取一点M ,求使得AM 的长度介于6 cm 与9 cm 之间的概率. 解 记“面积介于36 cm 2 与81 cm 2之间”为事件A ,事件A 的概率等价于“长度介于 6cm 与9 cm 之间”的概率,所以有P(A)= 9612-=14. 小结 本题的难点不在于几何概型与古典概型的区别,而是将正方形的面积关系转化为边长的关系,从而将问题归为几何概型中的长度类型,这是本题的关键所在.同时,本题也体现了数学上的化归思想的作用. 2.面积、体积之比类型 例3 在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成

几何概型例题分析及习题(含答案)

几何概型例题分析及练习题 (含答案) [例1] 甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等 另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。 解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图15||≤-y x 时可相见,即阴 影部分167 6045602 22=-=P [例2] 设A 为圆周上一定点,在圆周上等可能任取一点与A 连接,求弦长超过半径2倍的概 率。 解:R AC AB 2||||= =. ∴ 2 1 2== = ? R R BCD P ππ圆周 [例3] 将长为1的棒任意地折成三段,求三段的长度都不超过 2 1 的概率。 解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为y x --1,则基本事件 组所对应的几何区域可表示为 }10,10,10|),{(<+<<<<<=Ωy x y x y x ,即图中黄色区域,此区域面积为 2 1。 事件“三段的长度都不超过 21 ”所对应的几何区域可表示为 Ω∈=),(|),{(y x y x A ,}2 1 1,21,21<--<

下午3:00张三在基地正东30km 内部处,向基地行驶,李四在基地正北40km 内部处,向基地行驶,试问下午3:00,他们可以交谈的概率。 解:设y x ,为张三、李四与基地的距离]30,0[∈x ,]40,0[∈y ,以基地为原点建立坐标系.他们构成实数对),(y x ,表示区域总面积为1200,可以交谈即2522≤+y x 故192 251200 25 41 2 π π= =P [例5] 在区间]1,1[-上任取两数b a ,,运用随机模拟方法求二次方程02 =++b ax x 两根均 为正数的概率。 ??? ??>=?>-=+≥-=?000 42 1212b x x a x x b a 解:(1)利用计算器产生 0至1区间两组随机数11,b a (2)变换 121-*=a a ,121-*=b b (3)从中数出满足条件 2 4 1a b ≤且0b 的数m (4)n m P = (n 为总组数) [例6] 在单位圆的圆周上随机取三点A 、B 、C ,求?ABC 是锐角三角形的概率。 解法1:记?ABC 的三内角分别为αβ,,παβ--,事件A 表示“?ABC 是锐角三角形”,则试验的全部结果组成集合 Ω=<<<+<{(,)|,,}αβαβπαβπ00。 因为?ABC 是锐角三角形的条件是 02 << αβπ ,且αβπ +> 2 所以事件A 构成集合 A =+> << {(,)|,,}αβαβπ αβπ 2 02 由图2可知,所求概率为 P A A ()=的面积的面积 Ω==12212 1 422() ππ。 解法2:如图3所示建立平面直角坐标系,A 、B 、C 1、C 2为单位圆与坐标轴的交点,当?ABC 为锐角三角形,记为事件A 。则当C 点在劣弧C C 12上运动时,?ABC 即为锐角三

几何概型题型讲解【典例及难题 精选】

几何概型 课题1:题型讲解 几何概型中事件A 的概率计算公式: 积等) 的区域长度(面积或体试验的全部结果所构成积等) 的区域长度(面积或体构成事件)(A A P = .其次 要学会构造随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 1.几何概型的两个特征: (1)试验结果有无限多; (2)每个结果的出现是等可能的. 事件A 可以理解为区域Ω的某一子区域,事件A 的概率只与区域A 的度量(长度、面积或体积)成正比,而与A 的位置和形状无关. 2..解决几何概型的求概率问题 关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 3.用几何概型解简单试验问题的方法 (1)适当选择观察角度,把问题转化为几何概型求解. (2)把基本事件转化为与之对应的总体区域D. (3)把随机事件A 转化为与之对应的子区域d. (4)利用几何概型概率公式计算. 4.均匀随机数 在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率.一般地.利用计算机或计算器的rand ()函数可以产生0~1之间的均匀随机数.a ~b 之间的均匀随机数的产生:利用计算机或计算器产生0~1之间的均匀随机数x= rand( ),然后利用伸缩和平移变换x= rand( )*(b-a)+a,就可以产生[a ,b]上的均匀随机数,试验的结果是产生a ~b 之间的任何一个实数,每一个实数都是等可能的. 5.均匀随机数的应用 (1)用随机模拟法估计几何概率; (2)用随机模拟法计算不规则图形的面积. 6.几何概型与古典概型的比较: 一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关,即试验结果具有无限性,另一方面,二者的试验结果都具有等可能性。

几何概型习题

E D O B A C 3.3 几何概型 重难点:掌握几何概型中概率的计算公式并能将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题. 考纲要求:①了解几何概型的意义,并能正确应用几何概型的概率计算公式解决问题. ②了解随机数的意义,能运用模拟方法估计概率. 经典例题:如图,60AOB ∠= ,2OA =,5OB =,在线段OB 上任取一点C , 试求:(1)AOC ?为钝角三角形的概率; (2)AOC ?为锐角三角形的概率. 当堂练习: 1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( ) A .0.62 B .0.38 C .0.02 D .0.68 2.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2 与49 cm 2 之间的概率为( ) A . 310 B . 15 C . 25 D . 45 3.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( ) A .1 B . 216 C . 3 D . 14 4.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( ) A . 34 B . 38 C . 14 D . 18 5.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的概率为( ) A .13 B . 49 C . 59 D . 710 6如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( ) A .2 π B . 1 π C . 23 D . 13

高三数学专题复习-几何概型-“约会问题”

数学专题复习 几何概型中的“约会问题”总结 几何概型是每个事件发生的概率只与构成该事件区域的长度、面积和体积有关,它与古典概型最本质的区别就是基本事件的个数是无限的,学生对于有限的情况比较容易接受,但是对于无限的情形就觉得有点抽象,所以我们用长度、面积、体积这三个“几何测度”来刻画几何概型,将代数上的无限转化为几何上的有限,在这三种测度里面关于长度的问题学生一般觉得较简单,关于体积的问题考的不是很多,最主要还是关于面积测度的问题,由于出现的情况比较多,学生容易犯错,下面将以不同“约会问题”来讲解几何概型中的面积问题,“约会问题”的模型基本涵盖了几何概型中关于相遇类型的面积测度的情形。 (1)小明和小雪约了星期天下午在月牙塘公园见面,由于龙泉路最近在修路,可能会 堵车,小明说他大概4:00—5:00会到,小雪说她可能5:30—6:30到,他们约定先到的等二十分钟如果另一个还没来就可以先走了,假设他们在自己估计时间内到达的可能性相等,问他们两个能相遇的概率有多大? 解:设小明和小雪相遇为事件A 从右侧图形中我们可以知道他们相遇的概率P(A)=0 (2)第二次约会:小明说他大概4:00—5:00会到,小雪说这次她大概5:00—6:00就会到了,这次他们约定先到的等半个小时另一个还没来就可以先走,假设他们在自己估计时间内到达的可能性相等,问他们两个能相遇的概率有多大? 分析:如果在一维坐标轴中表示他们相遇的可能性则种类太多,表达不清,又因为小明到达的时间在4点至5点间,小雪到达的时间在5点到6点间,属于两个变量的情形,所以我们采用二维的坐标系来构建这个题的数学模型。设小明到达的时间为x ,小雪到达时间为y ,那么45x ≤≤ 56y ≤≤ 约定先到的等半个小时另一个还没来就可以先走则他们两个要相遇需要满足0.5y x ≤+ 解:设小明到达的时间为x ,小雪到达时间为y ,小明和小雪相遇为事件A 则 45560.5x y y x ≤≤?? ≤≤??≤+? 试验的全部结果所构成的区域为 } {(,)/45,56x y x y Ω=≤≤≤≤ 事件A 构成的区域为 } {(,)/0.5,45,56A x y y x x y =≤+≤≤≤≤ 由图可知1111 2228 A S =??= ,则

相关文档
最新文档