系统误差的来源与影响

系统误差的来源与影响
系统误差的来源与影响

系统误差的来源与影响

完成日期:2016年10月12日吴佳乐,陈峻松,蔡子鋆,刘一禾,陈祁艳

生命科学学院

指导老师:杨子江

一.摘要:

实验中,由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。误差是不可避免的,只能减小。

根据误差产生的原因及性质,可分为系统误差与偶然误差两类。其中,系统误差是可以通过改善实验方式减小,本文重点讨论测量醋酸电离常数的各步骤的系统误差产生来源及影响的大小,以及实验的最终系统误差取决于哪一步测量。我小组同学分析了实验中系统误差的来源及其影响,得出结论,实验测量中用pH计测量溶液pH的影响最大。

二.前言

系统误差,具体指在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。因为理论上,偶然误差在无限次测量中,误差将正负相抵消。而系统误差是由于分析过程中某些固定的原因引起的一类误差,它具有重复性、单向性、可测性。即在相同的条件下,重复测定时会重复出现,使测定结果固定地系统偏高或系统偏低,其数值大小具有一定的规律。由于系统误差具有单向性,重复性,求平均值并不能消除或者减小误差。所以,多次测量结果最终得到的平均值与真实值的差值为系统误差。

同时,因为系统误差具有可测性,所以它往往可辨识,并且可以通过一定的方法减小误差。

本实验中我们首先通过酸碱滴定的方法标定醋酸的浓度,然后再用pH计测量醋酸的pH,最终算出了醋酸的电离常数。我小组同学重点就实验二中各个测量步骤可能产生的系统误差,以及教学网最终提供的数据进行分析,得出实验二中系统误差的来源及其影响,并针对其产生根源,提出减小误差的建议。

三.内容

实验二中使用的计量仪器有:碱式滴定管,移液管,吸量管,容量瓶及pH计。主要操作步骤有:使用移液管、吸量管移取一定量溶液;使用碱式滴定管进行滴定并读数;使用容量瓶配制一定量溶液;使用pH计测量溶液的pH值。

可能产生系统误差的原因:

1.各种仪器自身均有容量允差,即一定规格的该种仪器允许的误差范围,本

实验中使用的ORION STAR A211型精密pH计,其准确度为0.02,也就意味着其示数的最后一位是估读,并不一定为准确值;类似的,实验室使用的移液管最小分度值为0.05,有正负0.025或者0.050的允差。这类误差对实验往往造成显著影响。由于实验仪器自身的不够精密,实验所得数据必定带有一定的误差,而且此类误差受制于实验条件,难以减小。

2.实验使用的试剂浓度可能与给出的数据有较大差距。注意到醋酸的浓度是用实验一中自行配制的草酸溶液标定的氢氧化钠溶液滴定计算得到。那么,在之前的诸多步骤,如配制草酸溶液的称量,溶解,转移过程;到滴定时的读数,滴定时间的控制以及是否恰好达到滴定终点,醋酸在中途的挥发等,均会影响最后计算

出的醋酸浓度。显然,醋酸浓度测定的误差,对实验的影响也很显著。

3.计算公式及小数保留:因为醋酸是弱电解质,电离度很小,所以在计算电离常数时,我们会将计算公式简化。本来的计算公式为K=[H+][AC-]/[HAC],这里的[H+]指的是醋酸电离出的氢离子浓度,而[HAC]指的是电离后溶液中剩余的醋酸浓度。但是由于忽略水的电离及醋酸自身电离对浓度造成的影响。我们直接使用溶液中总的氢离子浓度及醋酸的原始浓度进行计算,理论上这会对造成系统误差。同时由于有效数字的限制,我们必须对结果进行修约,这也会影响最终的结果,并可能造成误差。

4.由于实验者本身的操作可能存在失误:如滴定及转移溶液过程中用去离子水洗涤不彻底,导致溶质残留;移液管,吸量管未使用重铬酸钾洗液润洗,导致管壁挂水,影响取液的实际体积。但是此部分误差无法测量,无法计算,但直观上可知这些对实验的影响应该较小,故不是造成最终误差的主要原因。

计算误差的大小:

1.(1)实验室使用的pH计允差为0.01,以我小组测定初始醋酸的pH为

2.89,醋酸浓度为0.09987mol/L为例,分别以pH为2.89与2.90进行计算,得出其电离常数计算误差约为4.7%;

(2)移液管和吸量管的误差

(3)滴定管的误差

(4)容量瓶的误差

(5)计算时的取舍误差

2.经过比较,由于pH测量引起的误差最大,可达到4.7%,这是非常大的影响。同时结合其它影响的大小比较可知,由于pH测量引起的误差对最终误差影响超过95%。

四.结论:

根据我们的分析,结合数据进行计算,我们得出结论,本次实验的最终误差取决于pH计的测量值误差。

零极点对系统的影响

MATLAB各种图形 结论 1对稳定性影响 ○1增加零点不改变系统的稳定性; ○2增加极点改变系统的稳定性,不同的阻尼比下即使增加的是平面左侧的零点系统也有可能不稳定。 2对暂态性能的影响 ○A增加的零点离虚轴越近,对系统暂态性影响越大,零点离虚轴越远,对系统的影响越小。 分析表1可以发现,增加零点会对系统的超调量、调节时间、谐振峰值和带宽产生影响,且增加的零点越大,对系统的暂态性能影响越小。当a增加到100时,系统的各项暂态参数均接近于原系统的参数。增加的极点越靠近虚轴,其对应系统的带宽越小。同时还可以发现,时域中的超调量和频域中的谐振峰值在数值上亦存在一定的关系。具体表现为超调量减小时,谐振峰值也随之减小。 ○B增加的极点离虚轴越近,对系统暂态性影响越大,极点离虚轴越远,对系统的影响越小。 ①增加零点,会使系统的超调量增大,谐振峰值增大,带宽增加。 ②增加极点,会使系统的超调量减小,谐振峰值减小,带宽减小。 ③增加的零极点离虚轴越近,对系统暂态性影响越大;零极点离虚 轴越远,对系统的暂态性影响越小。 3 对稳态性能的影响 ①当增加的零极点在s的左半平面时,不改变系统的类型,使系统 能跟踪的信号类别不变,但跟踪精度会有差别。 ②当增加的零点在s的虚轴上时,系统的型别降低,跟踪不同输入 信号的能力下降。 ③当增加的极点在s的虚轴上时,系统的型别升高,跟踪不同输入 信号的能力增强。

1、绘制G1(s)的根轨迹曲线(M2_1.m) %画G1(s)的根轨迹曲线 n=[1,0]; %分子 d=[1,1,2]; %分母 figure1 = figure('Color',[1 1 1]); %将图形背景改为白色rlocus(n,d); %画G1(s)根轨迹曲线title('G1(s)的根轨迹'); %标题说明 2、绘制G1(s)的奈奎斯特曲线(M2_2.m) %画G1(s)的奈奎斯特曲线 figure1 = figure('Color',[1 1 1]); %将图形背景改为白色for a=1:10 %a取1,2,3……10,时,画出对应的奈奎斯特曲线G=tf([1/a,1],[1,1,1]); nyquist(G); hold on end title('G1(s)的奈奎斯特曲线'); %标题说明

抽样论文

抽样调查中非抽样误差的研究 摘要:在统计实践中,由于调查经费和时间的限制,往往不可能采取全面调查,而只能采取抽样调查的方法,抽样调查过程中由于抽样总体的代表性及人为的因素的影响,必不可少地会产生误差。因此从理论上讲非抽样误差应该使是可以避免的,但在实际工作中是很难做到的,本文主要分析了非抽样误差产生的原因和应对的方法。 关键词:抽样调查;分类;原因;对策 一、引言 抽样调查时目前我国搜集统计资料的一种主要方法,但是抽样调查的结果始终要受到抽样误差和非抽样误差的影响。抽样误差是由于样本随机性引起的,根据样本数据计算的对总体目标量的估计是随样本而异的。由此产生的误差即是抽样误差。抽样误差是不可避免的,其大小可以通过调查样本容量,改变抽样方式等加以控制。非抽样误差是指除抽样误差以外,由于各种原因引起的。非抽样误差由于其产生的原因及其复杂且具有不易观测和非随机性等特点而难以控制。两种误差构成了总方差,两者之间呈此消彼长的关系,一般情况下同时减少两类误差是很困难的。非抽样误差占据了很大的一部分,怎样通过降低非抽样误差。从而降低总方差,有着非常重要的现实意义。 二、非抽样误差的分类 非抽样误差可归为三类:抽样框误差.无回答误差和计量误差。以下就这三类误差分别进行讨论: 1.抽样框误差:理想的抽样框是使目标总体和被抽样总体一致,但在实践中,难免存在目标单位和样本单位不完全对应的情况。从而使得目标总体与被抽样总体不一致,产生误差。这种误差不是来自于抽样的随机性,而是产生于不完善的抽样框。称之为抽样框误差。抽样框误差主要来源于以下几个方面:丢失目标总体单位、包含非目标总体单位、复合联接、不正确的辅助信息以及抽样框老化等。 当某些目标单位没有在抽样框中出现时,这些目标单位就构成丢失单位,对于这种情况,我们可通过其他途径将其纳入到抽样框中,或对抽样框的数据进行

谈谈系统误差的产生原因及其消除或减少的方法

谈谈系统误差的产生原因及其消除或减少的方法 在讨论随机误差时,总是有意忽略系统误差,认为它等于零。若系统误差不存在,期望值就是真值。但是,在实际工作中系统误差是不能忽略的。所以要研究系统误差,发现和消除系统误差。 一、系统误差产生的原因 在长期的测量实践中人们发现,系统误差的产生一般的与测量仪器或装置本身的准确程度有关;与测量者本身的状况及测量时的外界条件有关。 1、在检定或测试中,标准仪器或设备的本身存在一定的误差。在进行计量检定,向下一级标准量值传递时,标准值的误差是固定不变的,属于系统误差。又称为工具误差或仪器误差。如:标称值为100g的砝码,经检定实际值为99.997g,即误差为+0.003g。用此砝码去秤量其他物体的质量,按标称值使用,则始终把被测量秤大,产生+0.003g的恒定系统误差。 某些仪器或设备,在测量前须先进行调零位,若因测量前未调零位或存在调零偏差,使得标准仪器在测量前即具有某一初始值,该初始值必然直接影响测量结果,给测量结果带来误差。这种误差,一般称零位误差,或简称零差。 某些仪器或设备,如未按要求放置,特别是某些电磁测量和无线电测量仪器或设备,未正确接地或屏蔽,或未用专用连接导线,也会给测量结果带来误差。这种误差称为装置误差。 2、测量时的客观环境条件(如温度、湿度、恒定磁场等),也会给测量结果带来误差。如,重力加速度因地点不同而异,若与重力加速度有关的某些测量,未按测量地点的不同加以适当的修正,也会给测量结果带来误差。因这种误差是由客观环境因素引起的,一般把它称为环境误差。 3、由于某些测量方法的不完善,特别是检定与测试中所使用的某些仪器或设备,在设计制造时受某些条件的限制(如元器件,制造工艺等),不得不降低某些指标,采用一些近似公式,这也会给测量结果带来误差。这种误差称方法误差或称理论误差。 4、在测量中,测量者本身生理上的某些缺陷,如听觉、视力等缺陷,也会给测量结果带来误差。此项误差又称为人员误差。 二、消除或减少系统误差的方法 mad消除或减少系统误差有两个基本方法。一是事先研究系统误差的性质和大小,以修正量的方式,从测量结果中予以修正;二是根据系统误差的性质,在测量时选择适当的测量方法,使系统误差相互抵消而不带入测量结果。

PID控制参数对系统性能影响的分析报告

《计算机控制技术》课程三级项目某二阶系统的PID控制器设计及参数整定 报告人:刘宝

指导教师:刘思远 燕山大学机械工程学院机电控制系 2012年9月23日 目录 《计算机控制技术》课程三级项目 (1) 1.1 PID控制的应用现状 (3) 1.2 PID控制器各个参数对系统系能的影响 (3) K对系统性能的影响 (3) 1.2.1 比例系数P 1.2.2 积分系数K1对系统性能的影响 (4) 1.2.3 微分系数K2对系统性能的影响 (6) 1.3 对给定的系统进行PID控制调节 (7) 1.4 收获与感想 (11)

1.1 PID控制的应用现状 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。 从理论角度而言,PID控制是20世纪40年代开始的调节原理的一种典型代表。PID控制再世纪控制工程中应用最广,据不完全统计,在工业过程控制、航空航天控制等领域中,PID孔的应用占80%以上。尽管PID控制已经写入经典教科书,然而由于PID控制的简单与良好的应用效果,人们仍在不断研究PID控制器各种设计方法(包括各种自适应调节、最优化方法)和未来潜力。 由于液压控制系统大功率、高控制精度、技术成熟等特点,在要求精度高的重型机械机构中得到了广泛应用。在现实工业中比例伺服阀与PID控制器的结合,使得液压控制对于位移、速度、压力等的控制获得更加良好的效果。 1.2 PID控制器各个参数对系统系能的影响 1.2.1 比例系数 K对系统性能的影响 P

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

案例分析:绩效考核误差产生的原因及对策

情景案例 绩效考核误差 老王是一家IT公司的项目经理,多半年以来一直带着团队在 客户的公司工作现场中做软件系统的测试和维护工作,一天到晚忙 得不亦乐乎。正在这时,到了公司的绩效考核时间,人力资源部催 促老王按期完成考核工作的电话让他感到心烦意乱。虽然当时论证 绩效考核制度的会议自己也参加了,可事到临头,看到绩效考核表 格上的那一个个的指标,老王心里还是觉得没底。 老王心想,我这一落笔,不但关系到面子,而且关系到票子, 大伙出差这么久,功劳苦劳都得记上。新婚的小李,为了赶项目进度,蜜月刚刚过了两天就跑回来工作了,多容易啊。想到这里,老 王顺手就给小李在各项评价指标上填了一串的满分5分。 秘书小孙是新招来的毕业生,她比刚辞职的小安机灵多了,什 么事情一教就会,不像小安,连用传真机都让自己手把手教了半天,所以小孙也应该给高分。 至于小赵,老王皱了皱眉头,小赵通常都是留守在公司里,很 少跟自己一起出差,也不是很清楚他在公司里都干了些什么,干得 怎么样。那就凭感觉随便填填好了。“测试报告完整准确”……,在 自己的印象中,小赵的测试报告倒是没出过大的岔子,给4分吧,“责任感强”……,老王想了想,既然没出过岔子,应该还是有责任 感的,4分?不对,记得小赵刚来的时候,有一回在客户的机房值 班时玩电脑游戏,被领导逮住了,弄得自己也没面子,想到这里, 老王又把小赵在“责任感”这一栏的得分改成了3分。 至于小朱吧,得好好考虑考虑,这小子工作不怎么样,还好高 骛远,总觉得在这个部门淹没了他的能耐,老跑到老刘那个部门去 转悠,搞的老刘还以为他很能干,前两天还透露出想调他过去的想

法,要不就给小朱打个高分算了,让老刘真以为自己捡了个宝贝, 赶紧把小朱调过去那该多好…… 绩效考核误差的危害及其解决难度上述案例中的场景是很多企业的管理者在进行绩效考核工作的过程中都有可能会遇到的现象。 事实上,如何克服绩效考核过程中存在的各种误差,是很多组织的 领导者、人力资源管理人员以及员工都非常关心的问题。这里的所 谓绩效考核误差,是指考核者在进行绩效考核的过程中,对员工的 真实绩效表现所做出的不真实甚至是歪曲性的反映。由于任何一种 涉及到人对人进行评价的“考评”和“测量”都不可避免会地存在一定的误差,所以作为人力资源管理中重要一环的绩效考核也不例外。 绩效考核中潜藏的各种误差看似是小问题,实质上却会成为一种对企业管理、组织文化以及员工关系产生腐蚀作用的“病毒”,会 在不知不觉中给组织带来很多损害。 首先,如果组织的高层管理人员基于这些存在较大误差的信息 来制定各种政策或采取相应的措施,那么,这些政策措施的效果难 免会大打折扣甚至会适得其反; 其次,绩效考核误差的存在很可能会对员工的工作积极性、工 作满意度以及敬业度,甚至整个组织的运营产生不良的影响; 再次,低效度的绩效考核结果会使得绩效改进失去正确的方向,员工会变得不知所措,甚至由于感到没有得到公平的对待而选择离职; 最后,如果考核者在对员工进行绩效考核时,本来应该拉开的 合理差距不拉开,组织采取的与绩效挂钩的薪酬政策所能够产生的 效果也会受到很大影响,这对于那些绩效优秀的员工尤其显得不公平。

ADC中的ABC:理解ADC误差对系统性能的影.

ADC中的ABC:理解ADC误差对系统性能的影响 摘要:许多工程师会在设计中遇到一些很微妙的问题:ADC的规格常常低于系统要求的指标。本文介绍了如何根据系统需求合理选择ADC,列举了ADC测量中可能遇到的各种误差源。 采用12位分辨率的模数转换器(ADC)未必意味着你的系统将具有12位的精度。很多时候,令工程师们吃惊和不解的是:数据采集系统所表现出的性能往往远低于期望值。如果这个问题直到样机运行时才被发现,只好慌慌张张地改用更高性能的ADC,大量的时间被花费在重新更改设计上,同时,试投产的日程在迅速临近。问题出在哪里? 最初的分析中有那些因素发生了改变? 对于ADC的性能指标有一个深入的了解,将有助于发现一些经常导致性能指标不尽人意的细节所在。对于ADC指标的理解还有助于为你的设计选择正确的ADC。 我们从建立整个系统的性能需求入手,系统中的每个元器件都有相应的误差,我们的目标是将整体误差限定在一定的范围内。ADC是信号通道的关键部件,必须谨慎选择适当的器件。在我们开始评估整体性能之前,假设ADC的转换效率、接口、供电电源、功耗、输入范围以及通道数均满足系统要求。ADC的精度与几项关键规格有关,其中包括:积分非线性(INL)、失调和增益误差、电压基准的精度、温度效应、交流特性等。最好从直流特性入手评估ADC的性能,因为ADC 的交流参数测试存在多种非标准方法,基于直流特性比较容易对两个IC进行比较。直流特性通常比交流特性更能反映器件的问题。 系统要求 确定系统整体误差的常见方法有两种:均方根和(RSS)、最差工作条件下的测试。采用RSS时,对每项误差取平均,然后求和并计算开方值。RSS误差由下式计算: 其中EN代表某个特定电路元件或参数的误差项。当所有误差不相干时这种方法最准确(实际情况可能如此,也可能不同)。利用最差条件分析法,所有误差项相加。这种方法能够确保误差植不会超出规定范围,它给出了最差条件下的误差限制,实际误差始终小于该值(通常会低出若干倍)。 多数情况下,测量误差介于两种方法测试数值之间,更接近于RSS法提供的数值。可以根据误差预算选择使用典型误差和最差工作条件下的误差。具体选择时取决于许多因素,包括:测量值的标准方差、特定参数的重要性、误差之间的相互影响程度等。由此可见,很难找到简捷的、必需遵循的规则。在我们的分析中,我们选择最差条件测试法。

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

社会经济平时作业3

《统计学原理》作业三 (第五~第七章) 一、判断题 1、在总体方差一定的条件下,样本单位数越多,则抽样平均误差越大。(×) 2、抽样估计的置信度就是表明抽样指标和总体指标的误差不超过一定范围的概率保证程度。(√) 3、在其它条件不变的情况下,提高抽样估计的可靠程度,可以提高抽样估计的精确度。(×) 4、抽样误差是由于抽样的偶然因素而产生的误差,这种误差既可以避免,也可以控制其大小。(×) 5、抽样推断的目的是,通过对部分单位的调查,来取得样本的各项指标。( ×) 6、抽样推断是利用样本资料对总体的数量特征进行估计的一种统计分析方法,因此不可避免的会产生误差,这种误差的大小是不能进行控制的。(×) 7、抽样成数的特点是,样本成数越大,则成数方差越大。(×) 8、从全部总体单位中按照随机原则抽取部分单位组成样本,只可能组成一个样本。(×) 二、单项选择题 1、在一定的抽样平均误差条件下(A )。 A、扩大极限误差范围,可以提高推断的可靠程度 B、扩大极限误差范围,会降低推断的可靠程度 C、缩小极限误差范围,可以提高推断的可靠程度 D、缩小极限误差范围,不改变推断的可靠程度 2、反映样本指标与总体指标之间的平均误差程度的指标是(C )。 A、抽样误差系数 B、概率度 C、抽样平均误差 D、抽样极限误差 3、抽样平均误差是( D )。 A、全及总体的标准差 B、样本的标准差 C、抽样指标的标准差 D、抽样误差的平均差 4、当成数等于(C )时,成数的方差最大。 A、1 B、0 C、0.5 D、-1 5、对某行业职工收入情况进行抽样调查,得知其中80%的职工收入在800元以下,抽样平均误差为2%,当 概率为95.45%时,该行业职工收入在800元以下所占比重是(C )。 A、等于78% B、大于84% C、在此76%与84%之间 D、小于76% 6、对甲乙两个工厂工人平均工资进行纯随机不重复抽样调查,调查的工人数一样,两工厂工资方差相同, 但甲厂工人总数比乙厂工人总数多一倍,则抽样平均误差(B )。 A、甲厂比乙厂大 B、乙厂比甲厂大 C、两个工厂一样大 D、无法确定 7、反映抽样指标与总体指标之间抽样误差可能范围的指标是(A)。 A、抽样极限误差 B、抽样平均误差 C、抽样误差系数 D、概率度 8、如果变量x 和变量y 之间的相关系数为 1,说明两变量之间( D )。 A、不存在相关关系 B、相关程度很低 C、相关程度显著 D、完全相关 9、相关关系中,两个变量的关系是对等的,从而变量x 对变量y 的相关,同变量y 对变量x 的相关( C )。 A、完全不同 B、有联系但不一样 C、是同一问题 D、不一定相同 10、一般说,当居民的收入减少时,居民的储蓄款也会相应减少,二者之间的关系是( C )。 A、直线相关 B、完全相关 C、非线性相关 D、复相关 11、当所有的观察值y都落在直线y=a+bx上时,则x与y之间的相关系数为(B)。

测量误差产生的原因

测量误差产生的原因 测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:误读、误算、视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝(Abbe) 误差、热变形误差等。系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少。这些因素归纳成五大类,详细内容叙述如下: 1. 人为因素 由于人为因素所造成的误差,包括误读、误算和视差等。而误读常发生在游标尺、分厘卡等量具。游标尺刻度易造成误读一个最小读数,如在10.00 mm处常误读成10.02 mm或9.98 mm。分厘卡刻度易造成误读一个螺距的大小,如在10.20 mm常误读成10.70 mm或9.70 mm。误算常在计算错误或输入错误数据时所发生。视差常在读取测量值的方向不同或刻度面不在同一平面时所发生,两刻度面相差约在0.3~0.4 mm之间,若读取尺寸在非垂直于刻度面时,即会产生的误差量。为了消除此误差,制造量具的厂商将游尺的刻划设计成与本尺的刻划等高或接近等高,(游尺刻划有圆弧形形成与本尺刻划几近等高,游尺为凹V 形且本尺为凸V形,因此形成两刻划等高。 2. 量具因素 由于量具因素所造成的误差,包括刻度误差、磨耗误差及使用前未经校正等因素。刻度分划是否准确,必须经由较精密的仪器来校正与追溯。量具使用一段时间后会产生相当程度磨耗,因此必须经校正或送修方能再使用。 3. 力量因素 由于测量时所使用接触力或接触所造成挠曲的误差。依据虎克定律,测量尺寸时,如果以一定测量力使测轴与机件接触,则测轴与机件皆会局部或全面产生弹性变形,为防止此种弹性变形,测轴与机件应采相同材料制成。其次,依据赫兹(Hertz) 定律,若测轴与机件均采用钢时,其弹性变形所引起的误差量 应用量表测量工件时,量表固定于支持上,支架因被测量力会造成弹性变形,如图2-4-3所示,在长度的断面二次矩为,长的支柱为,纵弹性系数分别为、,因此测量力为P 时,挠曲量为。为了防止此种误差,可将支柱增大并尽量缩短测量轴线伸出的长度。除此之外,较大型量具如分厘卡、游标尺、直规和长量块等,因本身重量与负载所造成的弯曲。通常,端点标准器在两端面与垂直线平行的支点位置为0.577全长时,其两端面可保持平行,此支点称之为爱里点(Airey Points) 。线刻度标准器支点在其全长之0.5594位置,其全长弯曲误差量为最小,此处称之为贝塞尔点(Bessel Points) 4. 测量因素 测量时,因仪器设计或摆置不良等所造成的误差,包括余弦误差、阿贝误差等。余弦误差是发生在测量轴与待测表面成一定倾斜角度,如图2-4-5所示其误差量为,为实际测量长度。通常,余弦误差会发生在两个测量方向,必须特别小心。例如测量内孔时,径向测量尺寸需取最大尺寸,轴向测量需取最小尺寸。同理,测量外侧时,也需注意取其正确位置。测砧与待测工件表面必须小心选用,如待测工件表面为平面时需选用球状之测砧、工件为圆

PID 控制器参数对控制性能的影响

1、比例系数K p对系统性能的影响 (1)对系统的动态性能影响:K p加大,将使系统响应速度加快,K p偏大时,系统振荡次数增多,调节时间加长;;K p太小又会使系统的响应速度缓慢。K p的选择以输出响应产生4:1衰减过程为宜。 (2)对系统的稳态性能影响:在系统稳定的前提下,加大K p可以减少稳态误差,但不能消除稳态误差。因此K p的整定主要依据系统的动态性能。 2、积分时间T I对系统性能的影响 积分控制通常和比例控制或比例微分控制联合作用,构成PI控制或PID控制。 (1)对系统的动态性能影响:积分控制通常影响系统的稳定性。T I太小,系统可能不稳定,且振荡次数较多;T I太大,对系统的影响将削弱;当T I较适合时,系统的过渡过程特性比较理想。 (2)对系统的稳态性能影响:积分控制有助于消除系统稳态误差,提高系统的控制精度,但若T I太大,积分作用太弱,则不能减少余差。 3、微分时间T D对系统性能的影响 积分控制通常和比例控制或比例积分控制联合作用,构成PD控制或PID控制。 (1)对系统的动态性能影响:微分时间T D的增加即微分作用的增加可以改善系统的动态特性,如减少超调量,缩短调节时间等。适当加大比例控制,可以减少稳态误差,提高控制精度。但T D值偏大或偏小都会适得其反。另外微分作用有可能放大系统的噪声,降低系统的抗干扰能力。 (2)对系统的稳态性能影响:微分环节的加入,可以在误差出现或变化瞬间,按偏差变化的趋向进行控制。它引进一个早期的修正作用,有助于增加系统的稳定性。 PID控制器的参数必须根据工程问题的具体要求来考虑。在工业过程控制中,通常要保证闭环系统稳定,对给定量的变化能迅速跟踪,超调量小。在不同干扰下输出应能保持在给定值附近,控制量尽可能地小,在系统和环境参数发生变化时控制应保持稳定。一般来说,要同时满足这些要求是很难做到的,必须根据系统的具体情况,满足主要的性能指标,同时兼顾其它方面的要求。 在选择采样周期T时,通常都选择T远远小于系统的时间常数。因此,PID参数的整定可以按模拟控制器的方法来进行。 (1) 比例系数Kc对系统性能的影响 : 比例系数加大,使系统的动作灵敏,速度加快,稳态误差减小。Kc偏大,振荡次数加多,调节时间加长。Kc太大时,系统会趋于不稳定。Kc太小,又会使系统的动作缓慢。Kc可以选负数,这主要是由执行机构、传感器以控制对象的特性决定的。如果Kc的符号选择不当对象状态(pv值)就会离控制目标的状态(sv值)越来越远,如果出现这样的情况Kc的符号就一定要取反。

霍尔效应的应用实验报告

一、 目的: 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H —Is ,V H —I M 曲线,了解霍尔电势差V H 与霍尔元件工作电流Is ,磁场应强度B 及励磁电流IM 之间的关系。 3.学习利用霍尔效应测量磁感应强度B 及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 二、 器材: 1、实验仪: (1)电磁铁。 (2)样品和样品架。 (3)Is 和I M 换向开关及V H 、V ó 切换开关。 2、测试仪: (1)两组恒流源。 (2)直流数字电压表。 三、 原理: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图15-1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样 A-A / 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)() (N 0)(型型?>?

试验检测误差产生原因及改善措施

试验检测误差产生原因及改善措施 1.概述 工程质量的评价是以各种试验检测数据为依据的,而大量实践表明:一切试验测量结果均具有误差。因此作为从事试验检测工作的专业技术人员和管理人员有必要了解误差的种类,分析这些误差产生的原因及影响因素,以便在工作过程中采取针对性的措施最大限度的加以减少和消除误差。同时应具备科学地解析检测数据的能力,确保检测结果能最大限度地反应真值,及时、准确、可靠地测定检测对象,为管理部门提供真实可靠的工程质量状况及其变化规律。 2.试验检测的误差分类及成因 根据误差产生的原因及产生性质,可以把测量误差分为系统误差、随机误差和过失误差三大类。 2.1系统误差原因分析 系统误差是由人机系统产生的误差,是由一定原因引起的在相同条件下多次重复测量同一物理量时产生的。它具有测量结果总是朝一个方向偏离,其绝对值大小和符号保持恒定,或按照一定规律变化的特点。因此系统误差有时称之为恒定误差。系统误差主要由些列原因引起: (1)仪器误差 由于测量工具、设备、仪器结构上的不完善,电路的安装、布置、调整不得当,仪器刻度不准确或刻度的零点发生变动,样品不符合要求等原因引起的误差。 (2)人为误差 指试验检测操作人员感官的最小分辨力和某些固有习惯引起的误差。例如,由于观察者的最小分辨力不同,在测量数值的估读或与界面的接触程度上,不同

观测者就有不同的判断误差。有的试验检测人员的固有习惯,如在读取仪表读数时总是把头偏向一边,也可能会引起误差。 (3)外界误差 外界误差也称环境误差,是由于测试环境,如温度、湿度等的影响而造成的误差。 (4)方法误差 由于测试者未按规定的方法进行试验检测,或测量方法的理论依据有缺点,或引用了近似的公式,或试验条件达不到理论公式所规定的要求等造成的误差。 (5)试剂误差 在材料的成分分析及某些性质的测定中,有时要用一些试剂,当试剂中含有被测成分或含有干扰杂质时,也会引起测试误差,这种误差称为试剂误差。 一般来说,系统误差的出现是有规律的,其产生原因往往是可知或可掌握的,只要仔细观察和研究各种系统误差的具体来源,就可设法消除或降低其影响。 2.2随机误差原因分析 随机误差往往是由不能预料、不能控制的原因造成的。例如试验检测人员对仪器最小分度值的估读很难每次严格相同;测量仪器的某些活动部件所指示的测量结果在重复测量时很难每次完全相同,尤其是使用年久或质量较差的仪器设备时更为明显。 无机非金属材料的许多物化性能都与温度有关。在试验检测过程中,温度应控制恒定,但温度恒定有一定的限制,在此限度内总有不规则的变动,导致测量结果发生不规则的变动。此外,测量结果与室温、气压和湿度也有一定的关系。由于上述因素的影响,在完全相同的条件下进行重复测量时,测量值或大或小,

(完整版)第五章抽样调查习题答案

《统计学》习题五参考答案 一、单项选择题: 1、抽样误差是指()。C A在调查过程中由于观察、测量等差错所引起的误差 B人为原因所造成的误差C随机抽样而产生的代表性误差 D在调查中违反随机原则出现的系统误差 2、抽样平均误差就是()。D A样本的标准差 B总体的标准差 C随机误差 D样本指标的标准差 3、抽样估计的可靠性和精确度()。B A是一致的 B是矛盾的 C成正比 D无关系 4、在简单随机重复抽样下,欲使抽样平均误差缩小为原来的三分之一,则样本容量应()。A A增加8倍 B增加9倍 C增加1.25倍 D增加2.25倍 5、当有多个参数需要估计时,可以计算出多个样品容量n,为满足共同的要求,必要的样本容量一般应是()。B A最小的n值 B最大的n值 C中间的n值 D第一个计算出来的n值 6、抽样时需要遵循随机原则的原因是()。C A可以防止一些工作中的失误 B能使样本与总体有相同的分布 C能使样本与总体有相似或相同的分布 D可使单位调查费用降低 二、多项选择题: 1、抽样推断中哪些误差是可以避免的()。A B D A工作条件造成的误差 B系统性偏差 C抽样随机误差 D人为因素形成偏差 E抽样实际误差 2、区间估计的要素是()。A C D A点估计值 B样本的分布 C估计的可靠度 D抽样极限误差 E总体的分布形式 3、影响必要样本容量的因素主要有()。A B C E A总体的标志变异程度 B允许误差的大小 C重复抽样和不重复抽样 D样本的差异程度 E估计的可靠度 三、填空题: 1、抽样推断就是根据()的信息去研究总体的特征。样本 2、样本单位选取方法可分为()和()。重复抽样不重复抽样 3、实施概率抽样的前提条件是要具备()。抽样框 4、对总体参数进行区间估计时,既要考虑极限误差的大小,即估计的()问题,又要考虑估计的()问题。准确性可靠性 四、简答题:

理解ADC误差对系统性能的影响

理解ADC误差对系统性能的影响 摘要:许多工程师会在设计中遇到一些很微妙的问题:ADC的规格常常低于系统要求的指标。本文介绍了如何根据系统需求合理选择ADC,列举了ADC测量中可能遇到的各种误差源。 采用12位分辨率的模数转换器(ADC)未必意味着你的系统将具有12位的精度。很多时候,令工程师们吃惊和不解的是:数据采集系统所表现出的性能往往远低于期望值。如果这个问题直到样机运行时才被发现,只好慌慌张张地改用更高性能的ADC,大量的时间被花费在重新更改设计上,同时,试投产的日程在迅速临近。问题出在哪里? 最初的分析中有那些因素发生了改变? 对于ADC的性能指标有一个深入的了解,将有助于发现一些经常导致性能指标不尽人意的细节所在。对于ADC指标的理解还有助于为你的设计选择正确的ADC。 我们从建立整个系统的性能需求入手,系统中的每个元器件都有相应的误差,我们的目标是将整体误差限定在一定的范围内。ADC是信号通道的关键部件,必须谨慎选择适当的器件。在我们开始评估整体性能之前,假设ADC的转换效率、接口、供电电源、功耗、输入范围以及通道数均满足系统要求。ADC的精度与几项关键规格有关,其中包括:积分非线性(INL)、失调和增益误差、电压基准的精度、温度效应、交流特性等。最好从直流特性入手评估ADC的性能,因为ADC的交流参数测试存在多种非标准方法,基于直流特性比较容易对两个IC进行比较。直流特性通常比交流特性更能反映器件的问题。 系统要求 确定系统整体误差的常见方法有两种:均方根和(RSS)、最差工作条件下的测试。采用RSS时,对每项误差取平均,然后求和并计算开方值。RSS误差由下式计算: 其中EN代表某个特定电路元件或参数的误差项。当所有误差不相干时这种方法最准确(实际情况可能如此,也可能不同)。利用最差条件分析法,所有误差项相加。这种方法能够确保误差植不会超出规定范围,它给出了最差条件下的误差限制,实际误差始终小于该值(通常会低出若干倍)。 多数情况下,测量误差介于两种方法测试数值之间,更接近于RSS法提供的数值。可以根据误差预算选择使用典型误差和最差工作条件下的误差。具体选择时取决于许多因素,包括:测量值的标准方差、特定参数的重要性、误差之间的相互影响程度等。由此可见,很难找到简捷的、必需遵循的规则。在我们的分析中,我们选择最差条件测试法。 在本例中,假定我们需要0.1%或者说10位的精度(1/210),这样,只有选择一个具有更高分辨率的转换器才有意义。如果是一个12位的转换器,我们可能会想当然地以为精度已足够高;但是在没有仔细检查其规格书之前,我们并没有把握得到12位的性能(实际情况可能更好或更糟)。举例来说,一个具有4LSB积分非线性误差的12位ADC,最多只能提供

霍尔效应实验报告模板

Screen and evaluate the results within a certain period, analyze the deficiencies, learn from them and form Countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ 霍尔效应实验报告

编号:FS-DY-24467 霍尔效应实验报告 一、实验名称: 霍尔效应原理及其应用 二、实验目的: 1、了解霍尔效应产生原理; 2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系; 3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布; 4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号) 四、实验原理: 1、霍尔效应现象及物理解释 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束

在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。 半导体样品,若在x方向通以电流,在z方向加磁场,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) 。 设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有: (1-1) 因为,,又根据,则 (1-2) 其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算: (1-3) (1-4)

相关文档
最新文档