飞机机翼图设计
飞机结构与系统(第三章飞机翼面结构)

一些力学基本概念
按外力是否随时间变化分为:静载荷和动载荷。
静载荷:载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,称为静载荷。 动载荷:载荷随时间变化,可分为交变载荷和冲击载荷。
一些力学基本概念
内力、截面法和应力的概念 内力: 由于变形引起的物体内部的附加力。 物体受外力作用后,由于变形,其内部各点均会发生相对位移,因而产生相互作用力。
一些力学基本概念
材料力学中对变形固体的三个基本假设:
1.连续性假设:
2.均匀性假设:
3.小变形假设:
一些力学基本概念
外力及其分类:
外力是外部物体对构件的作用力,包括外加载荷和约束反力。 按外力的作用方式分为:表面力和体积力。 表面力:作用于物体表面的力,又可分为分 布力和集中力 体积力:连续分布于物体内部各点上的力。如物体的重力和惯性力。
机翼、尾翼功用、设计要求及外载特点
机翼、尾翼功用、设计要求及外载特点
3)机翼总体内力:
剪力 Q:Qn, Qh; 弯矩 M:Mn, Mh; 扭矩 Mt ;
机翼的外载特点
机翼、尾翼功用、设计要求及外载特点
机翼的外载特点
3)机翼总体内力:
由于阻力相对升力很小,其引起的剪力、弯矩常常可以忽略。
机翼、尾翼功用、设计要求及外载特点
翼面结构典型构件及受力特点
翼面结构的典型构件
机翼结构: 蒙皮 纵向骨架: 翼梁(缘条、腹板) 纵墙 桁条 横向骨架: 翼肋(普通肋、加强肋)
翼面结构典型构件及受力特点
机翼结构: 蒙皮 纵向骨架: 翼梁(缘条、腹板) 纵墙 桁条 横向骨架: 翼肋(普通肋、加强肋)
翼面结构的典型构件 机翼典型结构构件剖面
三、机翼的外载特点
机翼结构设计方案及强度计算

机翼结构设计方案及强度计算模型一设计思路:根据设计要求,机翼全长4m,翼弦长1m,前后两根梁。
于是利用abaqus软件的壳单元建立了一个基本的机翼模型。
图1 单只机翼模型然后参考《实用飞机复合材料结构设计与制造》、《复合材料设计手册》、《复合材料力学》等资料,初步设计机翼采用蒙皮夹心结构,上下表面分别铺3层复合材料,考虑到机翼的工况采用[45/0/-45]铺层方式,每层厚度为0.125mm,具体如图2所示。
中间夹心材料采用PMI泡沫,该材料具有突出的比强度和良好的耐蠕变性,可以很好的克服屈曲。
夹心材料厚度初步拟定为5mm,进行计算模拟,如果屈曲明显则可加厚。
表1 机翼的材料参数图2 机翼的蒙皮夹心铺层结构考虑到梁是主要的承力部件,采用[-45/0/45/90]s铺层方式,每层厚度为0.125mm,具体如图3所示。
图3 梁的铺层结构利用abaqus模拟计算时将工况环境简化,采用一端固定,在机翼下表面加载Y方向的升力,分布如图5所示。
图4 机翼的固定端约束图5 机翼的载荷分布模型一的计算结果:梁每层复合材料的应力云图图6 梁每层复合材料的应力云图梁的计算结果分析:从计算结果中不难发现,机翼前缘的梁承受的力要比尾部的梁大很多,可以考虑适当加厚。
对比各层复合材料的受力情况,0°的复合材料层受力明显,可以适当增加0°的复合材料层数。
靠机身段的梁应力集中明显,可以在该部位适当增加梁的厚度,也可考虑用工字梁强化该部位。
机翼每层复合材料的应力云图:图7 机翼每层复合材料的应力云图(1-5层)图7 机翼每层复合材料的应力云图(6-7层)图8 机翼的变形云图计算结果总体分析:表2 模型一的计算结果部件材料最大应力最大剪应力梁、肋单向带复材454.8MPa9.872Mpa蒙皮单向带复材315.4MPa15.1 Mpa蒙皮PMI泡沫0.278MPa0.0175 MPa 单向带复材的拉伸强度为1541MPa,PMI泡沫的拉伸强度为1.6MPa单向带复材的剪切强度为60MPa,PMI泡沫的剪切强度为0.8MPa从表中可以得出,模型的强度在材料的许用强度范围内,该设计符合强度要求。
机翼的类型及作用

机翼的形状和位置
飞机的飞行速度与机翼产生的升力成正 比,同时阻力也产生变化。
人们在探索中发现,如果使机翼与机身在 水平方向上形成一定的角度,就能有效减 少飞机所受的阻力。这个角度被称为后掠 角,这种机翼叫后掠翼。后掠翼不适用于 低速度的飞机。
波音747
“
在此输入标题
“谢谢观赏输!入文字 在此录入上述图表的综合分析结论 在此录入上述图表的综合分析结论 在此录入上述图表的综合分析结论 在此录入上述图表的综合分析结论
机翼的位置和分类
根据机翼在机身上安装的部位和形式, 飞机可以分为
➢ 上单翼飞机(安装在机身上部) ➢ 中单翼飞机(安装在机身中部) ➢ 下单翼飞机(安装在机身下方) 目前的民航运输机大部分为下单翼飞机。 因为起落架容易安排,发动机维修方便。
下单翼
中单翼飞机(多用于军用目的)
上单翼
机翼上的襟翼、副翼和扰流板
改进使飞机的飞行速度提高,从而获得 不同用途的飞机其机翼形状、大小也各不相同。
中单翼飞机(安装在机身中部)
了更多的升力,飞机就不再依靠增加机 人们在探索中发现,如果使机翼与机身在水平方向上形成一定的角度,就能有效减少飞机所受的阻力。
不同用途的飞机其机翼形状、大小也各不相同。
翼面积来提高升力了。 目前的民航运输机大部分为下单翼飞机。
人们在探索中发现,如果使机翼与机身在水平方向上形成一定的角度,就能有效减少飞机所受的阻力。
机翼上还3可、安装由发于动机油、起料落的架和重油箱量等与。 飞机升力方向相反,有助于减轻机翼结构的受力;
为了增大机翼的面积,早期的飞机设计师们就造出了多层机翼的飞机。
机翼上的4襟、翼、置副于翼和机扰流翼板的油箱距地面较远,在飞机强迫着陆等特殊情况下比较安全。
机身结构

Pz与座舱地面 剪流 qPz 平衡;
力矩Mx通过轴 承上的集中力 Pzh/b 与剪流qMt 平衡。
前起落架载荷作用下机身结构受力分析
纵向力Px的传递
Px由轴承上的力Rdx和挡块上的力 Rex 平衡
挡块中力的平衡
轴承加强件中力的平衡
可见,起落架上的力Px、Py 、Pz通过加强框以剪流形式作用 到与加强框相连的H型开剖面薄壁结构上,然后传到中机身。
➢ 前机身的结构 ➢ 前起落架的布置
设备舱
驾驶舱
起落架舱
挡块
电瓶舱
前起落架载荷作用下机身结构受力分析
前起落架的 约束条件 1)轴承能够 提供除 Mz 以外的所有 约束;
2)挡块只能 提供x方向向 后的约束。
前起落架所 受的载荷
集中力 Py、 Pz、Px
Py的传递与平衡
前起落架载荷作用下机身结构受力分析
❖ 机身为圆截面时,增压舱的受力情况最好; ❖ 为椭圆形截面时,框内会产生弯曲内力; ❖ 如果是双圆截面机身,则在两圆弧交汇处会产生分力Fn。
结构特点:
可以在机的一边与蒙皮铆在一起。
四、战斗机增压舱的设计特点 战斗机驾驶员增压舱一般空间小、形状复杂。
水平加强板
弯矩Mx的平衡 剪力P的平衡
加强框上中 的剪流平衡
当平尾置于垂直尾翼上时
当平尾置于垂直尾翼上时
垂直尾翼的垂直载荷传递到加 强框,由加强框将载荷传给机 身蒙皮
垂直尾翼上载荷通过各种 途径传到机身壳体蒙皮中,以 蒙皮中剪流形式向机身中部传 递,达到全机受力平衡。
三、前起落架载荷作用下机身结构受力分析
第十六讲结束
谢谢
V-22飞机
机翼与机身的连接配置
平直翼飞机的机翼,为什么要设计成上翘的?

平直翼飞机的机翼,为什么要设计成上翘的?⽇常⽣活中,飞机是最常见的交通⼯具之⼀。
如果仔细留意,就会发现我们乘坐的飞机,⼀般有两种外观。
⼀种是后掠翼飞机,即机翼前、后缘向后伸展(后掠)的飞机,其机翼有上翘的,也有下垂的。
后掠翼可提⾼飞机的飞⾏速度并能突破⾳障,它主要⽤⼀种是后掠翼飞机,于超声速飞机设计。
ARJ21型⽀线客机、C919⼤型客机都属于后掠翼飞机。
ARJ21型⽀线客机C919⼤型客机另⼀种是平直翼飞机,即机翼1/4弦线和机⾝对称⾯垂直的飞机。
平直翼主要⽤于低速或亚声速飞机设计。
英国的S.E.5、美国的P-51“野马”、我国的初教另⼀种是平直翼飞机六和运五都属于平直翼飞机。
英国:S.E.5a战⽃机美国:P-51A野马中国:初教六中国:运五不过,仔细观察这些平直翼布局的飞机就会发现,它们的机翼都是向上翘的。
明明后掠翼飞机的机翼可上翘可下垂,为什么平直翼布局飞机的机翼⾮要上翘?要明⽩这个问题,就得知道什么是飞机的横向稳定性,以及影响飞机横向稳定性的因素。
沿飞机机体坐标系的纵轴的稳定性称为飞机的横向稳定性(侧滚稳定性、上反效应)。
当⼀边的机翼⽐另⼀边机翼低时,可以帮助稳定侧⾯倾斜或者侧滚上反⾓、后掠⾓和龙⾻效应。
效果。
有三个主要因素影响飞机的横向稳定,即上反⾓、后掠⾓和龙⾻效应。
1. 上反⾓产⽣飞机横向稳定性的最通常做法是构造机翼上反⾓,即飞机每⼀边的机翼和机⾝形成⼀个窄的“V”字型,机翼相对于机⾝上翘。
上反⾓⽤机翼平⾯与横轴之间的⾓度来度量,通常⼤⼩为1~3度。
当然,横向稳定性的基础是机翼产⽣⼒的横向平衡。
升⼒的任何不平衡都会导致飞机产⽣绕纵轴侧滚的趋势。
如果短暂的阵风使得飞机的⼀侧机翼上升,另⼀侧机翼降低,飞机就会倾斜。
当飞机不是转弯的倾斜时,它会侧滑或者朝机翼较低的侧⾯下滑,如下图所⽰。
上反⾓对横向稳定性的作⽤因为有上反⾓,空⽓冲击较低⼀侧的机翼的迎⾓⽐较⾼⼀侧的机翼⼤得多。
如下图所⽰。
这样,较低⼀侧的机翼的升⼒就增加,较⾼⼀侧的机翼升⼒就降低,飞机趋于恢复到最初的横向平衡状态(机翼⽔平)——即两个机翼的迎⾓和升⼒⼜⼀次相等。
机翼结构

七、三角机翼的传力分析
04/26/05
20
04/26/05
21
五、单块式机翼的传力分析
结构特点: 梁较弱或只有墙;蒙皮较厚(t>3); 长桁多且强。
受力特点: 由梁缘条、长桁和蒙皮组成的壁板承弯, 其它传力路线同梁式。
气动载荷传给蒙皮,蒙皮传给桁条和翼肋,翼肋传给蒙 皮和腹板。
单块式机翼的气动载荷是如何在翼肋上传递的?
请观看动画
单块式机翼的载荷是如何传递的?
蒙皮
接头
典型元件总结
• (1) 纵: 翼梁、 长桁 、墙(腹板) • (2) 横: 翼肋(如加强肋 普通肋) • (3) 蒙皮
它们的作用?
典型元件的作用:
蒙皮:承受局部空气动力,形成和维持机翼外形,并承受 扭矩,有些机翼蒙皮还承受弯矩。
长桁:其主要功用是:第一是支持蒙皮,防止蒙皮因受局 部空气动力而产生变形过大;第二是把蒙皮传来的气 动力传给翼肋:第三是同蒙皮一起承受由弯矩而产生 的拉、压力。
翼肋:翼肋,分为普通翼肋和加强翼肋。普通翼肋用来维 持翼剖面形状,将蒙皮上的空气动力传到其它承力构 件上去,并支持桁条和蒙皮。加强翼肋除具有普通翼 肋的功用外,还作为机翼结构的局部加强件,承受较 大的集中载荷或悬挂部件。
翼梁:翼梁,一般由缘条和腹板等组成。主要功用是承 受弯矩和剪力。梁的上下缘条承受由弯矩引起的轴向 力N拉、N压。剪力则主要由腹板承受。
各基本元件(指受总体力) 可能发生什么破坏形式
1.梁缘条
拉坏
压 压坏 失稳 局部: 主要与各板的支持情况及 b/t 有关 总体: 主要与杆长L与J有关, 支持情况 ( 两个平面支持, 一般不易总体失稳)
飞机基本构造

硬壳式机身结构是由蒙皮与少数隔框组成。其特点是没有纵向构件,蒙皮厚。由厚蒙皮承受机身总体弯、剪、扭引起的全部轴力和剪力。隔框用于维持机身截面形状,支持蒙皮和承受、扩散框平面内的集中力。这种型式的机身实际上用得很少,其根本原因是因为机身的相对载荷较小.而且机身不可避免要大开口,会使蒙皮材料的利用率不高,开口补强增重较大。所以只在机身结构中某些气动载荷较大、要求蒙皮局部刚度较大的部位,如头部、机头罩、尾锥等处有采用。具体构造也有用夹层结构或整体旋压件等形式。
桁梁式
桁梁式机身结构特点是有几根(如四根)桁梁,桁梁的截面面积很大。在这类机身结构上长桁的数量较少而且较弱,甚至长桁可以不连续。蒙皮较薄。这种结构的机身,由弯曲引起的轴向力主要由桁梁承受,蒙皮和长桁只承受很小部分的轴力。剪力则全部由蒙皮承受。
桁条式
这种型式机身的特点是长桁较密、较强;蒙皮较厚。此时弯曲引起的轴向力将由许多桁条与较厚的蒙皮组成的壁板来承受;剪力仍全部由蒙皮承受。
(a)桁条式;(b)桁梁式;(c)硬壳式
1--长桁;2--桁梁;3--蒙皮;4--隔框
隔框
隔框分为普通框与加强框两大类。
普通框用来维持机身的截面形状。一般沿机身周边空气压力为对称分布,此时空气动力在框上自身平衡,不再传到机身别的结构去。
加强框,其主要功用是将装载的质量力和其他部件上的载荷经接头传到机身结构上的集中力加以扩散,然后以剪流的形式条弱得多,一般与长桁相近,纵墙与机身的连接为铰接,腹板即没有缘条。墙和腹板一般都不能承受弯矩,但与蒙皮组成封闭盒段以承受机翼的扭矩,后墙则还有封闭机翼内部容积的作用。
机身
机身的主要功用是装载乘员、旅客、武器、货物和各种设备;还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。
机翼及翼型的基本知识翼型绕流图画ppt课件

中弧线上最高点的y向坐标f来表示,通常取相对值,其弦
向位置用xf来表示 ff c
xf xf c
翼型的弯度反映了上下翼面外凸程度差别的大。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
引言
按其几何形状,翼型分为两大类:一类是圆头尖 尾的,用于低速、亚音速和跨音速飞行的飞机机 翼,以及低超音速飞行的超音速飞机机翼;另一 类是尖头尖尾的,用于较高超音速飞行的超音速 飞机机翼和导弹的弹翼。
本章中,围绕低速翼型 的气动特性,主要介绍, 翼型的几何参数和翼型 的绕流图画和实用翼型 的一般气动特性等内容。
前缘
最大厚度
最大中弧高 上表面
中弧线
后缘
前缘半 径
Байду номын сангаас
翼弦
下表面 弦长
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
翼面的无量纲坐标
➢ 坐标原点位于前缘,x轴沿弦线向后,y轴向上,翼型上下
引言
机翼一般都有对称面。平行于机翼的对称面截得 的机翼截面,称为翼剖面,通常也称为翼型。
翼型的几何形状是机翼的基本几何特性之一。翼 型的气动特性,直接影响到机翼及整个飞行器的 气动特性,在空气 动力学理论和飞行 器中具有重要的地位。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第一位数字2—— f 2%
飞机机翼翼型解析

飞机机翼翼型解析近日,网上有传我国J-20战斗机改装前掠翼版,并且配有想象图,象机翼“前掠”、“后掠”等名词,如果不配图,很多菜鸟级军迷可能还不知道是什么个翼型。
现在,我想从固定翼飞机和直升机两个方面来对各种机翼进行简单剖析。
一、固定翼飞机翼型。
1、固定翼飞机机翼大布局分为:常规布局、大三角翼布局、鸭翼布局。
常规布局就是我们常见的飞机,是目前世界上应用最广泛的一种翼型。
常规布局飞机的特点是前翼大、后翼小,机尾有尾垂,这些都是最基本的。
常规布局仍存在一些看起来不一样的地方飞是尾垂仍有几个式样,如:大型客机和运输机尾垂顶部有小翼,现代三代、四代战斗机多采用双尾垂,而二代以前的战斗机几乎都是单尾垂的。
很多大型飞机主翼稍部都有一个小的上翘,称为翼稍小翼;之所以做这个小翼是因为设计师们发现,飞机尖细的翼稍高速划过空气时会剧烈撕裂空气并形成紊流,而紊流对飞机的升力和高速性都造成了明显的不利影响,如果消除这样的紊流将对减小飞机的燃料消耗起到很大作用,所以现有多大型飞机都设有小翼,而战斗机之所以很少有翼稍小翼是因为小翼对飞机来说本身是一个增重,大型飞机由于自身重量大对这样小的增重不太敏感,而战斗机起飞垂量低,对超重非常敏感,设计翼稍小翼给战斗机带来的好处和飞机增重带来的小利影响基本持平或者大于收益,所以战斗机飞不再设翼稍小翼了。
现代很多战斗机翼尖可挂格斗导弹,如SU-27、J-15、F-16等等,当这些飞机翼尖不挂导弹时从减轻飞机重量来考虑应该拆掉翼稍挂架,但很多飞行中的战斗机并不拆除这一对挂架,主要原因就是这对挂架虽然会增加飞机自重,但在飞行时却起到翼稍小翼的作用,两相抵消后虽然没有多大增益但增重后对飞行的影响也不大,不拆除挂架还减少了一些维护费,所以很多战斗机平时也保留了这对挂架。
部分中型运输机改装的特种机尾翼两侧加了两到四块垂直方向安装的小板称为“端板”,端板的作用主要是增强飞机飞行的气动性,如美军E-2预警机为了方便地放进机库而降低了垂尾高度,而垂尾的一个重要作用就是平飞是改变飞行方向,垂尾降低后飞行转向性能变差了,为了弥补这个据点,增加垂尾是很普遍的方法,E-2预警机在增加垂尾后可以在降低垂尾高度的同时维持了飞机转向性能。
B737飞机结构及起落架概述ppt课件

电子科技大学成都学院
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
飞行操纵面(P20)
电子科技大学成都学院
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
舱门介绍
舱门类型: - 前后登机门 - 前后厨房勤务门 - 紧急出口门(驾驶员滑动窗) - 货舱门 - 机内门(机组门和厕所门) - 各种接近门。
电子科技大学成都学院
控制台
控制台
电子科技大学成都学院
P8后电子面板
电子科技大学成都学院
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
驾驶舱仪表板
P5后顶板
电子科技大学成都学院
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
课程介绍
课程任务
1)系统介绍B737-NG飞机结构、系统特点和起落架构造; 2)培养理论与实践并重的航空机务维护类技能型人才;
预期目标
冀望同学们通过本课程的学习,能更多地了解B737系列飞 机的构造,累积一定的机务维护、系统调试和结构修理等方面 的实用技术。
空气动力学ppt

采用后尾式和无尾式气动布局的普通高速飞机,由于种 种原因,其低速性能往往不佳。而鸭式布局则可以满足战斗 机对高、低速性能的要求。因为这种布局能很好地兼顾高速 飞机所需的细长体外形和飞机实现短距起落所需的高配平升 力系数。这是因为:一方面,细长鸭式布局在由亚声速过渡 到超声速时,其焦点移动而引起的安定度增量比后尾式要小, 这对高速机动飞行是有利的。另一方面,在大迎角进场或飞 行时,它又能产生比后尾式和无尾式飞机高得多的配平升力。 这说明它亦适合低速飞行。
莱特兄弟的世界上第一架飞机的气动布局——鸭式布局
随着计算机技术的发展,飞控系统的控制精度 越来越高,鸭式布局逐渐成熟起来,产生了一 批鸭翼飞机。。。。。。
前苏联 米格1.44
以色列幼狮战斗机
欧洲台风战斗机
简介 歼十猛龙的精彩镜头 图片·Picture
东 方
龙 腾
歼-10战斗机采用了鸭式气动布局,这在我国研制成功的战斗 机中还是首次。 那么,鸭式布局战斗机有些什么特点,其气动特性又如何呢?
图144超音速客机
远距鸭式布局的点主要集中在如下几点: 1.在远距耦合鸭式布局中,由于前翼离机翼的距离较远,相互的干扰要简单得多, 各翼面参数的匹配也要相对容易一些,所以目前许多其他鸭式布局的战斗机都采 用了远距耦合鸭式布局,其中最典型的就是欧洲战斗机"台风"。 2.在远距耦合布局中,前翼不但本身产生升力,而且前翼的翼尖涡与机翼气流也 会产生一定有利的气动干扰,在机翼上表面的一定区域内形成吸力,使飞机的总 升力大于单独机翼和单独前翼升力之和,而且使机翼的气动载荷向内侧移动,减 小机翼弯矩,从而可以减轻飞机的重量。 3.由于前翼使飞机的升力作用点在重心之前,飞机有一个抬头趋势,所以通过机 翼后缘操纵面的向上偏转,可以形成有利机翼弯度,从而减小配平阻力,提高了 飞机的机动性能,前翼还增加了飞机纵向操纵的灵敏度,从而提高了飞机的敏捷 性。 4.在超声速飞行时,远距耦合鸭式布局比常规布局的飞机有更小的配平阻力,从 而提高了飞机的超声速稳定盘旋能力。 远距耦合布局的主要缺点是飞机长度可能会加大,因而使飞机的重心和气动中心 的位置变化相对较为敏感,增加了对飞机操纵性的难度。
飞机构造概要

升降舵
水平安定面
§4.4(2)
§4.4(3)
尾翼的构造基本上与机翼的构造 相似,也由纵、横向骨架和蒙皮、接头 组成。小型飞机的安定面多采用梁式构 造,大型飞机的安定面一般都采用多纵 墙的单块式构造。
§4.5 操纵面
4.5.1 主操纵面
4.5.2 辅助操纵面
大型民用飞机的操纵面
很弱的缘条
腹板
桁条
Hale Waihona Puke 桁条用铝合金型材或板弯件制成, 铆接在蒙皮内表面,支持和加强蒙皮。
翼肋
翼肋形成并维持翼剖面之形状;并 将纵向骨架与蒙皮连成一体;把由蒙皮 和桁条传来的空气动力载荷传递给翼梁。 如果是加强翼肋,则还要承受和传 递集中载荷。
弯边 腹板
翼肋后段 翼肋中段
翼肋前段
蒙皮
蒙皮通常用硬铝板材制成,用铆 钉或粘接剂固定于纵横向骨架上,形 成光滑的表面。空气动力直接作用在 蒙皮上。
飞机构造概要
§4.0 §4.1 §4.2 §4.3 §4.4 §4.5 §4.6 §4.7 飞机结构图例 飞机研制和设计过程 机翼 机身 尾翼 操纵面 起落架 直升机
退出
飞机结构 飞机的基本部分可以分为机身、机翼、尾翼、 起落架、动力装置和仪表设备等几个大部分 。
尾翼
操纵面
机身
机翼
起落架
下面看几例飞机的主要组成部分:
机身后段
机身后段一般不增压,主要安装 尾翼、辅助动力装置(APU)及部分 设备。
尾锥
尾锥部分主要是辅助动力装置 (APU)的排气管。
§4.4 尾翼
尾翼的主要功用是保证飞机的 纵向和方向的平衡,并使飞机在纵 向和方向上具有必要的稳定性和操 纵性。
手把手教你用CAD画飞机

用Auto CAD绘制模型飞机加工图(上)橙子喜欢自己设计制作模型飞机的模友,大都离不开一些电脑辅助设计软件,如AutoCAD、Profili、Design foil、CATIA、AAA(Advanced.Aircraft.Analysis)等。
它们可用于绘制平面图、构建三维模型、提供翼型数据以及进行模型飞机的总体设计分析等。
掌握好其中的AutoCAD、Profili和AAA三种软件,即可完成大多数模型飞机的设计制作。
如今数控激光雕刻机应用广泛,详细的加工图纸会给模型飞机的制作带来很大方便,并能保证制作精度和美观程度。
不过很多模友仅能根据设计自己画出模型飞机三面图(图1),而不知如何将其转化为详细的加工制作图。
下面笔者以一架双尾撑布局的固定翼模型飞机(采用倒V形尾翼、上单翼、发动机推进式设计)为例,介绍自己依据三面图用AutoCAD绘制加工图的心得和体会。
图1 模型飞机的三面图首先要保证三面图准确、清晰;然后根据经验和简单计算,确定每个部位的材料和尺寸;之后便可开始绘制加工图了,主要分为机翼、机身和尾翼三个部分。
机翼图2 选择翼型对于常规的固定翼模型飞机,机翼通常由翼肋、主梁、后梁(又称后墙)和前缘定位条构成。
翼肋图纸可通过一些专门的翼型软件得到,如用Profili软件产生一个翼型文件,再导入AutoCAD中。
具体步骤如下:打开Profili软件,如图2所示,点击键1,从出现的对话框中选择所需翼型(这里选NACA4412);点击键2,在弹出的对话框中输入图3所示的各选项,按OK键确定;待翼型图纸弹出后(图4),点键3“保存为DXF格式”(默认格式)到自建的文件夹内,即可得到所需翼型的CAD文件。
该翼型的弦长为100mm,可按实际需要缩放。
图3 设置翼型参数图4 保存为DXF格式用AutoCAD打开已有模型飞机的三面图,把翼型图纸复制上去(图1),准备绘制翼肋加工图。
绘制前先要了解CAD中的几个常用工具(见图5注释)。
机翼

机翼科技名词定义中文名称:机翼英文名称:wing定义:飞机上用来产生升力的主铱件。
所属学科:航空科技(一级学科);航空器(二级学科)本内容由全国科学技术名词审定委员会审定公布机翼是飞机的重要部件之一,安装在机身上。
其最主要作用是产生升力,同时也可以在机翼内布置弹药仓和油箱,在飞行中可以收藏起落架。
另外,在机翼上还安装有改善起飞和着陆性能的襟翼和用于飞机横向操纵的副翼,有的还在机翼前缘装有缝翼等增加升力的装置。
目录编辑本段机翼弦后掠角等)、上反角、翼剖面形状(翼型)等(图2a)。
常用基本翼型有低速翼型、尖峰翼型、超临界翼型和前缘较尖锐的超音速翼型。
此外还有以下一些重要的相对参数:①展弦比:机翼翼展与平均弦长(机翼面积被翼展除)之比;②梢根比:机翼翼梢弦长与翼根弦长之比;③翼型相对厚度:翼型最大厚度与弦长之比。
这些参数对机翼的空气动力特性、机翼受载和结构重量都有重要影响。
飞机的机翼按照俯视平面形状的不同,可划分为三种基本机翼。
平直翼机翼的1/4弦线后掠角大约在20°以下。
平直翼多用在亚音速飞机和部分超音速歼击机上。
在亚音速飞机上,展弦比为8~12左右,相对厚度为0.15~0.18。
在超音速飞机上,展弦比为3~4,相对厚度为0.03~0.04左右。
后掠翼机翼1/4弦线后掠角多在25°以上。
用于高亚音速飞机和超音速飞机。
高亚音速飞机后掠翼的常用参数范围是:后掠角30°~35°,展弦比6~8,相对厚度约 0.10,梢根比0.25~0.3。
对于超音速飞机,后掠角超过35°,展弦比3~4,相对厚度0.06~0.08,梢根比小于0.3。
三角翼机翼前缘后掠角约60°,后缘基本无后掠,俯视投影呈三角形状。
展弦比约为 2,相对厚度0.03~0.05。
多用于超音速飞机,尤以无尾飞机采用最多。
改善机翼气动特性的措施超音速飞机常用的后掠和三角形薄机翼存在低速大迎角特性不好的缺点。
飞机机翼各部分图解及专业术语

机翼各翼面的位置图图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。
机翼上各操纵面是左右对称分布,部分由于图片受限未标出机翼的基本概念机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。
是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。
另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。
相关名词解释:1 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型2 前缘:翼型最前面的一点。
3 后缘:翼型最后面的一点。
4 翼弦:前缘与后缘的连线。
5 弦长:前后缘的距离称为弦长。
如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长6 迎角(Angle of attack) :机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。
7 翼展:飞机机翼左右翼尖间的直线距离。
8 展弦比:机翼的翼展与弦长之比值。
用以表现机翼相对的展张程度。
9上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。
从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。
同理,向下垂时的角度就叫下反角。
10 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。
11 机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。
上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。
中单翼因翼梁与机身难以协调,几乎只存在理论上;下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。
翼型设计

典型的翼型形状
不同类型飞机的典型翼型
翼型的选择主要取决于飞机的飞行速度。 飞机类型 轻型飞机 涡桨支线客机 高亚声速公务机 高亚声速喷气运输机 超声速战斗机 典型翼型 NACA四位数或NACA五位数翼型 NACA五位数 超临界翼型 超临界翼型 NACA六位数翼型
普通翼型与超临界翼型的外形及跨音速压力分布的比较
普通翼型
普通
超临界翼型
超临界
超声速翼型
• 在超声速飞行时,为减小波阻,翼型应具有尖前缘,使 产生的斜激波以代替离体的正激波。如双弧形翼型。 • 例如,F104采用了双弧形翼型。 • 由于尖前缘易引起气流分离,亚声速性能很差,为了兼 顾各个速度范围的性能,目前大多数超声速飞机仍采用 小钝头亚声速翼型。
– 具有大的上表面前缘半径,以减小大迎角下负压峰值,推迟翼型 失速; – 上表面比较平坦,使升力系数为0.4时,上表面有均匀的载荷分 布; – 下表面后缘有较大的弯度;
尖峰翼型(Peaky Airfoil)
• 最早(上世纪60年代)由美国和英国开发的一种翼型。 • 阻力发散马赫数高于NACA六位系列翼型。 • 曾应用于DC-10、C-5A、VC-10和运10喷气运输机。
• 翼型的选择与设计 • 机翼平面形状设计 • 机翼安装角和上反角的确定 • 边条翼、翼尖形状 • 增升装置的设计 • 副翼和扰流板的设计
翼型的选择与设计
翼型的选择与设计(提要)
• 描述翼型的几何参数 • 翼型的气动特性 • 翼型的几何参数与气动特性之间的关系 • 翼型特性与飞机性能的关系 • 翼型的几何参数对结构设计的影响 • 翼型的种类与特征 • NACA翼型 • 选择翼型时考虑的因素 • 翼型的设计方法
CAD绘制飞机机翼图的实用技巧与案例

CAD绘制飞机机翼图的实用技巧与案例机翼是飞机的重要部件,直接影响飞行性能和稳定性。
在CAD软件中绘制机翼图,可以提高设计效率和准确度。
本文将介绍一些CAD 绘制飞机机翼图的实用技巧,并通过实际案例来加深理解。
一、绘制基本外形首先,我们需要根据设计要求绘制机翼的基本外形。
在CAD软件中,可以使用线段、圆弧等基本绘图工具来完成。
以一架常见的民用客机机翼为例,首先绘制机翼前缘,使用一条直线连接机翼前缘起始点和结束点;然后,绘制机翼后缘,可选择使用一个或多个圆弧来逼近机翼的曲线形状。
通过绘制机翼前缘和后缘,可以得到整个机翼的基本外形。
二、绘制斜裁剪面斜裁剪面是机翼的一个重要特征,也是飞机设计中的常用设计要求之一。
根据设计要求,我们可以通过绘制与机翼外形平行的线段来确定斜裁剪面。
在CAD软件中,可以使用直线工具绘制与机翼外形平行的线段,并将其延伸至机翼端部。
在绘制的过程中,可以通过CAD软件的对齐功能来确保线段与机翼外形平行。
三、绘制翼梢翼梢是机翼端部的特征,决定着机翼的扩展性能和流场特性。
在绘制翼梢时,可以使用CAD软件提供的圆弧工具或特殊曲线工具,根据设计要求来绘制合适形状的翼梢。
对于民用客机机翼,常采用缓和变化的曲线形状来绘制翼梢。
四、绘制机翼内部结构机翼内部结构是机翼的重要组成部分,影响机翼的强度和刚度。
在CAD软件中,可以使用绘制多边形工具或多段线工具来绘制机翼内部结构的各个组成部分。
例如,可以使用多边形工具绘制类似蜂窝状的材料填充结构,或者使用多段线工具绘制类似肋骨状的支撑结构。
通过绘制机翼内部结构,可以更好地展示机翼的细节和复杂性。
五、平面投影与三维效果展示在CAD软件中,可以通过不同的视角和投影方式来展示机翼的平面图和三维效果图。
例如,可以使用侧视图和鸟瞰视图来展示机翼的平面图,以展示机翼的外形。
同时,可以使用透视视图和渲染效果来展示机翼的三维效果,以展示机翼的立体感和材质表现。
实际案例:现有一架客机的机翼设计任务,根据设计要求和CAD绘图技巧,我们将用CAD软件来完成这一任务。
3机翼的几何外形和气动力和气动力矩

1.3 翼型的几何参数及其发展
通常飞机设计要求,机翼和尾翼的尽可能升力大、阻力 小。
对于不同的飞行速度,机翼的翼型形状是不同的。如 对于低亚声速飞机,为了提高升力系数,翼型形状为圆头 尖尾形;而对于高亚声速飞机,为了提高阻力发散Ma数, 采用超临界翼型,其特点是前缘丰满、上翼面平坦、后缘 向下凹;对于超声速飞机,为了减小激波阻力,采用尖头 、尖尾形翼型。
1. 机翼翼型的几何参数 厚度 中弧线
前缘
后缘
弯度
弦线
后缘角
弦长 连接翼型前缘(翼型最弦长前c面的点)和后缘(翼型最后面 的点)的直线段称为翼弦(也称为弦线),其长度称为弦长, 用c表示。
相对厚度 翼型的厚度是垂直于翼弦的翼型上下表面之间的 直线段长度。翼型最大厚度tmax与弦长c之比,称为翼型的 相对厚度t/c或,并常用百分数表示,即
1.3 翼型的几何参数及其发展
1884年,H.F.菲利普使用早期的风洞测试了一系列翼型, 后来他为这些翼型申请了专利。
早期的风洞
1.3 翼型的几何参数及其发展
与此同时,德国人奥托·利林塔尔设计并测试了许多曲 线翼的滑翔机,他仔细测量了鸟翼的外形,认为试飞成功的 关键是机翼的曲率或者说是弯度,他还试验了不同的翼尖半 径和厚度分布。
Clw=0 的迎角(用α0表示)一般 为负值(0º~4º);
Clw-α 曲线在一个较大的范围 内是直线段;
Clw有一个最大值Clw max,而在 接近最大值Clwmax前曲线上升
的趋势就已减缓。
1.5 低速翼型的低速气动特性概述
对于有弯度的翼型升力系数曲线是不通过原点的,通常把 升力系数为零的迎角定义为零升迎角0 ,而过后缘点与几 何弦线成0 的直线称为零升力线。一般弯度越大, 0越大 。
机翼的类型及作用

运7飞机(上单翼)
中单翼
空客A380飞机(下 单翼)
请思考:看图片中的机翼,哪个部分是襟翼?
解决问题:红色箭头所指的地方是襟翼,你答对了吗?
为什么要设置襟翼呢?
我们知道飞机在起飞和降落的时候飞行速度都不能太大,否 则很容易冲出跑道,造成事故。科飞机起飞时如果速度上不去, 升力不足,就不能飞离地面,这是一对矛盾。为解决这对矛盾, 设计师在襟翼的后部内侧紧邻副翼的位置上添置了一对或几对可 以活动的翼面——襟翼。
同在机翼后缘的副翼和襟翼
扰流板
除了副翼、襟翼外,在机翼的上表面还有很多活动 的小翼面,这些小翼面被称为扰流板。
扰流板的作用
飞机降落时它们被翻起以增加阻力,并且把机翼压向地面增加 机轮与地面的摩擦力。
机翼上的襟翼、副翼和扰流板
微课学习:机翼内的油箱
思考 1.油箱安装在飞机 的哪个部位?这样 设计的好处在哪里?
襟翼的介绍
襟翼是飞机的一种增升装置,被对称地安装在两侧机翼上。襟 翼装在机翼后缘(有的也在前缘),可向下偏转、向后(前)滑动, 其基本作用是在飞行中增加升力。
襟翼打开向下弯曲后,改变了机翼下表面的弯曲程度,使机翼 下方的空气流动受阻,流速变慢,同时,襟翼打开也使机翼面积变 大,这两种因素同时作用的结果使升力增大。当然,襟翼打开时阻 力也会增大。
归纳规律 简述副翼的作用
知识迁移 简述襟翼的作用和扰流板的作用
襟翼的作用
当飞机起飞时,襟翼伸出的角度较小,主要起到增加升力的作 用,缩短飞机在地面滑跑的距离;飞机起飞后及时收好襟翼,飞机 阻力减小,速度提高,就能自由地在空中翱翔了。
飞机就降落时,襟翼伸出的角度较大,可以使飞机的升力和阻 力同时增大,以利于降低着陆速度,缩短陆地滑跑的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伯恩思坦多项式与Bezier曲线
一、引言
1971年法国雷诺汽车公司的工程师Bezier提出了一种新的参数曲线表示法。
这种方法能方便地控制输入参数(控制点)以改变曲线的形状。
被称为Bezier曲线,数学原理使用了伯恩思坦多项式。
设f(x)是定义在[0,1]上的连续函数,称表达式
∑=
--
≈
n
k
k
n
k
k
n
t
t
C
n
k
f
x
f
)
1(
)
/
(
)
(
右端为函数的伯恩思坦逼近多项式。
下面是函数)
sin(
)
(x
x
fπ
=的伯恩思坦多项式逼近实验程序
n=input('input n=');
x=[0:n]/n; f=sin(x*pi);
for i=1:n+1
y=f;t=x(i);
for k=n:-1:1
for j=1:k
y(j)=t*y(j)+(1-t)*y(j+1);
end
end
p(i)=y(1);
end
max(abs(f-p))
plot(x,f,'b',x,p,'o',x,p,'r')
下面两图分别是取不同点数的伯恩思坦多项式逼近。
n=10逼近n=20逼近
二、Bezier曲线
Bezier曲线的形状是通过一组多边折线(控制多边形)的各顶点P0,P1,…,P m所定义出来的。
在多边折线的各顶点中,只有第一点P0和最后一点P m在曲线上,其余的点则用以定义曲线的阶次。
给定控制多边形顶点P0,P1,…,P m的坐标
(x0,y0),(x1,y1),……,(x m,y m)
曲线参数方程为
∑=
--
=
m
k
k
k
m
k
k
m
x
t
t
C
t
x
) 1(
)
(,∑
=
--
=
m
k
k
k
m
k
k
m
y
t
t
C
t
y
) 1(
) (
其中,k
m C 为组合数,其计算公式为
!
)(!!k m k m C k
m -=
在工程实际中,人们常用矢量函数的形式来表示平面曲线,若记
⎥⎦⎤
⎢⎣⎡=)()()(t y t x t P , ⎥⎦
⎤⎢⎣⎡=k k k
y x P (k = 0,1,…,m )
则有数学表达式
∑=--=
m
k k k
m k k m
P t t C
t P 0
)
1()(
作为特殊情形,下面分别给出 m = 1,2,3时的Bezier 曲线数学表达式。
1、一次Bezier 曲线是通过平面上两点P x y P x y 000111(,),(,)的直线段,其数学表达式为
10)1()(P t P t t P +-=,(10≤≤t )
2、 二次Bezier 曲线是由平面上三个点P x y P x y P x y 000111222(,),(,),(,)组成控制多边形,并由此确定的抛物线。
数学表达式为 P t t P t t P t P t ()()()=-+-+≤≤121012
012
2
3、三次Bezier 曲线是由平面上四个点P x y P x y P x y P x y 000111222333(,),(,),(,),(,)组成控制多边形,并由此所确定的三次曲线。
数学表达式为 P t t P t t P t t P t P t ()()()()=-+-+-+≤≤13131013
02
12
23
3
绘制曲线的算法常用加权平均法。
这一算法的根据是组合数计算中常用的递推公式
1
11---+=k m k
m k
m C C C
以二次Bezier 曲线为例说明原理,由于
])1[(])1)[(1()1(2)1()(211022
102
tP P t t tP P t t P t P t t P t t P +-++--=+-+-= 由于 (1-t ) 和 t 都是介于 0 和 1 之间的数,所以认为是加权平均的权值。
给定三个
点P 0(x 0,y 0)、P 1(x 1,y 1)、P 2(x 2,y 2)作为控制多边形顶点后,二次Bezier 曲线上对应于参数 t 的点P (t )的坐标可用如下方法计算 (1)取P P 01,点坐标的加权平均得P 01的坐标 1001)1(tx x t x +-=
1001)1(ty y t y +-=
(2)取P P 12,点的坐标的加权平均计算P 12的坐标 2112)1(tx x t x +-= 2112)1(ty y t y +-=
(3)取P P 0112,点的坐标的加权平均计算P (t )的坐标 1201)1()(tx x t t x +-= 1201)1()(ty y t t y +-=
曲线的矩阵表示算法
由于控制多边形各顶点的坐标可表示为矩阵形式的数据结构,借用矩阵的表示也可以实现算法。
仍以计算二次Bezier 曲线上对应于t t t 01100011===,.,, 的11个点的坐标数据为例说明算法原理。
由于二次Bezier 曲线的数学表达式可以写作矩阵形式
⎥⎥⎥⎦
⎤
⎢⎢⎢
⎣⎡--=21022
])1(2)1[()(P P P t t
t t t P 我们希望最后所得的曲线上11个点的坐标数据以11×2的矩阵形式给出,以第一列表
示X 坐标,以第二列表示Y 的坐标。
由上式
⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡22
1100210y x y x y x P P P 是一个3×2矩阵(它是算法的初始输入数据),而])1(2)1[(2
2
t t t t --应该是11×3矩阵。
三、应用
例1、飞机机翼图设计。
利用贝塞尔曲线设计机翼剖面图,提取曲线数据,绘制机翼柱面图
MATLAB 程序:
p=[0 0;0.01 0.5;0.5 1;2 0]; %输入控制多边形顶点
图4-5
n=10;
t=(0:n)'/n;t1=1-t;
z=[t1.^3 3*t.*t1.^2 3*t1.*t.^2 t.^3]*p; %矩阵法计算曲线坐标数据px=p(:,1);py=p(:,2); %提取控制多边形顶点坐标x=z(:,1);y=z(:,2); %提取曲线坐标
figure(1),plot(px,py,px,py,'o',x,y) %绘机翼剖面图
x=[x(n+1:-1:2);x]; %利用对称性扩充曲线坐标y=[y(n+1:-1:2);-y];
E=ones(1,11);X=x*E;Y=y*E; %制做柱面坐标数据
Z=ones(2*n+1,1)*[0:10];
figure(2),mesh(Z,X,Y),hold on %绘柱面
colormap([0 0 1])
axis off
fill3(zeros(21,1),x,y,'c') %填充机翼剖面
view(-50,46)。