天然药物化学史话天然产物研究与诺贝尔奖

天然药物化学史话天然产物研究与诺贝尔奖
天然药物化学史话天然产物研究与诺贝尔奖

天然药物化学史话天然产物研究与诺贝尔奖

引人注目的2016年度诺贝尔奖又公布了获奖名单,法

国的Jean-Pierre Sauvage、美国的James Fraser Stoddart、荷兰的Bernard Lucas Feringa,3位科学家因为在分子机器的设计和合成领域取得的成就而荣获本年度诺贝尔化学奖,日本科学家大隅良典(Yoshinori Ohsumi)因在发现细胞自噬机制领域取得的成就获得诺贝尔生理学或医学奖,在此表示衷心祝贺。诺贝尔奖(NobelPrize,官方网站:

https://www.360docs.net/doc/5210787453.html,)是世界公认的在各专业领域中声誉最高的奖项,于1901年根据瑞典著名化学家阿尔弗雷德·贝恩哈德·诺贝尔(Alfred Bernhard Nobel,1833—1896)的遗嘱将其部分遗产作为基金而创立,其中与天然产物研究有关的奖项主要是诺贝尔化学奖(Nobel Prize in Chemistry),以及个别诺贝尔生理与医学奖(NobelPrize in Physiology or Medicine)。就诺贝尔化学奖来说,自1901年诺贝尔奖设立至2015年,诺贝尔化学奖历经115载,除1916、1917、1919、1924、1933、1940—1942年这8年没有颁发奖项以外,每年1次,总共进行了107次颁奖,共有172人荣获诺贝尔化学奖。早在1902年,德国化学家Hermann Emil Fischer就因其在天然产物糖类研究的成就而获此殊荣。天

然产物化学研究者在化学奖获得者中始终占有相当比例,其

中以与天然产物研究有着密切关系的有机化学作为研究领

域的科学家有54位,直接在天然产物化学方面做出过杰出贡献的化学家超过20位,仅在近10年中就有9人获奖。至今天然产物化学仍是相当活跃的研究领域,这还不包括如生物化学、天然有机化学以及生理与医学等与有机化学相关的拓展领域。1806年23岁的德国药剂师Sertürner从罂粟中首次分离出单体吗啡(morphine),意味着现代天然药物化学开始形成,1828年德国化学家Friedrich Wǒhler (1800—1882)成功实现尿素(urea)的人工合成则标志着有机化学学科的诞生,正是人类对天然产物的研究促成了有机化学学科的建立。从那以后,人们对天然产物的研究从单体化合物性质到某一类具有相似骨架结构的化合物,从结构鉴定到全合成研究,在不断深入的研究中创建了许多重要的化学理论,就是这样一步步推动着整个有机化学学科发展至今,而历届诺贝尔奖获得者的相关成就,正是这条发展道路上一部分意义重大的里程碑。本文以诺贝尔化学奖获得者为主,简要介绍在天然产物研究领域做出重要贡献的获奖科学家,重温他们的伟大功绩,共同回顾天然产物化学百余年发展历程,并借此启迪激励有志于科学研究的年轻工作者。1 第1届至20世纪30年代第1届诺贝尔化学奖颁发于1901年,荷兰化学家JacobusHendricus van’t Hoff(1852—1911)因在化学动力学以及电解质理论研究的杰出贡献获此殊荣。

其后,在1902年,第2届诺贝尔化学奖颁发给了德国化学家Hermann Emil Fischer(1852—1919,图1),他获奖的主要原因是由于其在天然产物糖类的结构、合成研究以及嘌呤合成等方面做出的杰出贡献[1]。Fischer在对糖类的研究领域贡献颇丰,他发现了糖的异构现象(isomerism)、差向异构化(epimerism),潜心研究出著名的Fischer投影式(Fischer’s project)对糖的立体结构进行详细描述。Fischer 还合成了葡萄糖(glucose)、果糖(fructose)等单糖,被誉为“糖化学之父”。此外,Fischer的成就还有对嘌呤类化合物结构与合成的研究,命名了嘌呤类化合物并合成了包括巴比妥(barbital)在内的一系列嘌呤衍生物与核苷;对蛋白质、酶等的研究,合成多肽并建立了多肽理论,提出酶化学中的“锁钥学说”;以及在化工生产和化学教育上的贡献。还有人认为是Fischer开创了生物化学(biochemistry)学科。1910年,德国化学家Otto Wallach(1847—1931,图2)因在天然脂环族化合物领域的研究成就荣获诺贝尔化学奖。Wallach在研究从天然植物中提取的挥发油过程中,发现其中主要成分是低相对分子质量、不饱和的有机分子,这些分子与以前认识的低相对分子质量有机烃类化合物的性质大不相同,最后他终于发现挥发油中主要含有的小分子有机化合物中都是由2个或2个以上异戊二烯(isoprene)单位构成的含氧聚合物,其分子中大多具有六元环碳原子骨架,结

构中含有不饱和化学键,并将这类化合物命名为萜烯(terpenes)。Wallach教授曾运用最简单的化学试剂如HCl、HBr等解析了许多天然精油中的C10H16组分萜烯结构,并在1909年发表了达600余页的学术著作“萜类与樟脑”(Terpene und Campher),他被誉为脂环族有机化合物研

究的奠基人。Wallach首先提出了“异戊二烯规则(isoprenerule)”:天然萜类化合物都是异戊二烯的聚合体,或者说自然界存在的萜类化合物都是由异戊二烯头尾相连

聚合并衍变的。这是判断某物质是否为萜类的一个重要原则,当然,随着研究逐渐深入,人们意识到将萜类化合物碳骨架划分为若干个异戊二烯结构的方法,只能作为对萜类结构和化学分类的一种认识方法,并不能代表萜类的生源途径。1915年,德国化学家Richard MartinWillst tter(1872—1942,图3)因对植物中色素特别是叶绿素(chlorophyll)的研究成就荣获诺贝尔化学奖。1927年,德国化学家Heinrich Otto Wieland(1877—1957,图3)因研究从动物肝脏中提取的甾体化合物胆酸(cholic acid)及其相关化合物结构所取得

的成就荣获诺贝尔化学奖,我国著名有机化学家汪猷(1910—1997)于20世纪30年代曾经在Wieland教授指导下从事胆酸和甾醇的合成研究。1923年奥地利著名分析

化学家FritzPregl(1869—1930,图4)因创立有机物微量分析法而荣获诺贝尔化学奖。作为有机化合物微量分析法创

始人,Pregl教授是第1位获得诺贝尔奖的分析化学家,也是历史上为数不多的以分析化学为研究领域的诺贝尔奖获

得者之一,他的成就为以后无数的有机化学和天然有机化学的研究提供了必不可少的实验技术支持。1928年,德国化学家Adolf OttoReinhold Windaus(1876—1959,图5)因为研究甾体化合物中甾醇类(sterols)与维生素(vitamins)的结构以及它们之间的关系取得的成就而荣获诺贝尔化学奖。Windaus通过对胆固醇的研究,最终确定出其结构,在1903年发表了研究论文“Cholesterol”[2],后来又发现其他一些胆固醇的类似物,最终为甾体化学的建立奠定了基础。Windaus在进一步对胆固醇的研究中,发现了另一个甾体化合物麦角甾醇(ergosterol),研究发现麦角甾醇经过光照会转化为维生素D2(vitamin D2)。由于这一系列特殊贡献,Windaus教授被认为是甾体化学(Chemistry of steroids)的开创者之一。1930年,德国化学家Hans Fischer (1881—1945,图5)因致力于血红素(haemin)和叶绿素的性质、结构研究,特别是血红素合成方面的研究并取得了特殊成就而荣获诺贝尔化学奖。Hans Fischer教授继1915年诺贝尔化学奖获得者Richard Martin Willst tter教授之后,进一步对叶绿素的结构进行研究。HansFischer发现不仅是叶绿素,血红素分子中也含有卟啉结构单元,卟啉如果与金属镁离子络合即呈绿色,与金属铁离子络合即呈红色,经过

研究最终确定了这2种结构非常复杂且具有重要生理活性的复杂天然产物。Hans Fischer是1902年第2届诺贝尔化学奖获得者Hermann Emil Fischer的学生,也有报道称Hans Fischer还是Hermann Emil Fischer的侄子。为了寻找用于微量物质定量分析的有效方法,在仪器制造工程师W. H. F. Kuhlmann设计的毫克级微量天平的启发下,Pregl于1912年设计出一整套有机物碳、氢、氮、卤素、硫、羰基等有机微量分析实验装置和处理程序,经过不断改进,这种方法仅用3~5 mg起始物料就能够得到准确的定量测定结果。Pregl 教授还著有《微量定量分析》(Die Quantitative Microanalyse,1917)一书。我国著名有机化学家朱子清教授(1900—1989),师从德国化学家Heinrich Otto Wieland后,又跟随Fritz Pregl教授学习,并把微量分析引进中国。2 20世纪30~60年代1937年,英国化学家Walter NormanHaworth (1883—1950,图6)与瑞士化学家Paul Karrer (1889—1971,图6)共同荣获这一年的诺贝尔化学奖。Haworth教授的主要成就是碳水化合物(carbohydrates)和维生素C(vitamin C)的结构研究,Karrer教授的主要成就是类胡萝卜素(carotenoids)、核黄素(flavins)以及维生

素A和B2(vitamins A and B2)的研究。Haworth教授通过对单糖的研究,发明了著名的“哈沃斯结构表达式(Haworth projection)”,这种独创的结构表达式恰好形象

地表示了糖的真实结构。他还发现了单糖不但能以六元环形式存在,也能以五元环形式存在,多糖如淀粉、纤维素可以在酸性等条件下水解成单糖,以及单糖的氧化还原等性质。1929年,Haworth教授出版了《糖类的构成》(The Constitution of Sugars)这部专论,对糖类的结构、性质等做了全面的总结。Haworth教授还确证了维生素C(vitamin C)的结构,并于1933年完成了维生素C的全合成。瑞士化学家Karrer成功地从胡萝卜中提取分离得到胡萝卜素(carotene)、维生素A(vitamin A),并确定了结构,进一步研究发现β-胡萝卜素(β-carotene)可以在生物体内降解为维生素A,为其生理研究与应用奠定了化学基础。Karrer 还完成了维生素B2的全合成以及确定了一些类胡萝卜素、维生素E、维生素A2的结构。Karrer教授为维生素化学的创立和发展做出了杰出贡献。在随后的1938年,德国科学家Richard Kuhn(1900—1967,图6)又因在天然类胡萝卜素(carotenoids)及维生素类(vitamins)的研究中取得的成就荣获当年诺贝尔化学奖。Kuhn教授应用柱色谱方法成功地分离得到了同分异构体α-和β-胡萝卜素以及其他结构相似的类胡萝卜素成分,使得人们对二萜类胡萝卜素家族有了更多的认识。Kuhn教授还完成了对维生素A、B2、B6等结构测定与全合成工作。1939年,德国化学家AdolfFriedrich Johann Butenandt(1903—1995,图7)与

瑞士化学家Leopold Stephen Ruzicka(1887—1976,图7)共同分享当年诺贝尔化学奖。Butenandt教授是由于他对性激素(sex hormones)的研究成就,Ruzicka教授则是因为在聚甲烯类化合物(polymethylenes)以及天然萜类化合物(terpenes)研究中取得的成就而获奖。20世纪30年代左右,许多化学家开始对性激素进行研究,Butenandt首先从孕妇的尿液中提取分离得到了雌酚酮(estrone)、雌三醇(estriol)、黄体酮(progestin)的纯品并确定它们属于甾体类物质。此后,他又从男性尿液中分离得到了雄甾酮(androsterone)和睾丸酮(testosterone),并完成了孕甾酮(黄体酮,progesterone)、睾丸酮的合成[3-4]。Butenandt 对这些性激素对生理的影响以及相互转化关系进行了较深

入的研究[5],其研究成果为后来甾体避孕药的研究开发打下了基础。1910年诺贝尔化学奖获得者德国化学家Wallach 曾经对天然萜类化合物的研究得出化学上亦称经验的异戊

二烯规则,但是随着研究逐渐深入,瑞士科学家Ruzicka发现经验的异戊二烯规则存在一定问题:若异戊二烯为萜类的前体化合物,则应该在自然界中大量存在,但事实上异戊二烯单体在自然界中分布甚少,某些天然萜类化合物也不能分解成异戊二烯碳骨架[6]。Ruzicka在Wallach的研究基础上,进一步对萜类化合物研究,最终提出了新的异戊二烯规则,也就是“生源的异戊二烯规则(biogenetic isoprene rule)”:

所有天然萜类化合物都是经甲戊二羟酸(mevalonicacid,MVA)途径衍生出来的化合物,或者说萜类化合物都有一个活性的异戊二烯前体化合物[7]。Ruzicka成功地确定了一些倍半萜、二萜和三萜的化学结构,对性激素也做过一些研究工作,如进行过睾丸酮晶体的研究[8]。此外,Ruzicka还完成了橙花叔醇(nerolidol)和金合欢醇(farnesol)的全合成,分析鉴定了灵猫酮(civetone)与麝香酮(muscone)的化学结构,从茉莉花中分离得到茉莉酮(jasmone),并对其化学结构进行了解析。1945年,英国科学家AlexanderFleming(1881—1955,图8)、Ernst Boris Chain (1906—1979,图8)和Howard Walter Florey (1898—1968,图8)因为发现了著名的抗生素药物青霉素(盘尼西林,penicillin,图9)而共同荣获当年的诺贝尔生理和医学奖。青霉素发现于二战时期,它的应用拯救了千百万人的生命。因此,这一发现很快就轰动了世界,堪称二战期间最重要、最伟大的科技成就之一。青霉素的发现和应用给医学以及抗生素的研究带来了一次革命。Fleming偶然发现了青霉素,他获得诺贝尔奖确是实至名归,而与之同时获奖的另外2位科学家却较少有人提及。在青霉素发现之前,医学上曾有全盘否定细菌病的化学疗法的观点,即使1929年Fleming发表了关于发现青霉素的论文,并预言青霉素很可能会有非常重要的作用,当时也没有得到医学界的足够重

视,而Fleming自己没有获得青霉素的纯品,也影响了研究的进一步深入。1939年,在英国工作的德裔化学家Chain

和在英国工作的澳大利亚药理学家Florey重复了Fleming的实验,得到青霉素纯品,并通过动物、人体等药理实验,证实了青霉素的特殊功效,最终在1944年将其应用于临床。1947年,英国化学家Robert Robinson(1886—1975,图10)因从事天然植物化学特别是对生物碱(alkaloid)的研究成就荣获诺贝尔化学奖。Robinson教授是这一时期诺贝尔奖获

得者中具有代表意义的一位天然产物化学大师,被誉为“生物碱之父”。生物碱指来源于生物界且具有一定碱性的含氮有机物,是最重要的天然产物之一,其大多数以含氮杂环形式存在(少数例外),多数有旋光性以及明显的生理活性。当时

由于提取分离技术以及结构鉴定技术的限制,对于生物碱的研究具有相当大的难度。Robinson教授运用有机化学知识

以及高超的实验技巧,分离并确定了罂粟碱(narceine)、尼古丁(nicotine)、吗啡(morphine,图11)、紫堇碱(corydaline)、毒扁豆碱(eserine)、黄连素(berberine)、马钱子碱(士的宁,strychnine,图11)、长春碱(vinblastine)、秋水仙碱(colchicine)等几十种复杂天然生物碱结构[9-11]。1925年,时任牛津大学教授的Robinson采用降解法确定吗啡具有一个核心为五元氮环与苄基异喹啉的环状化学结构,此时距1806年单体吗啡首次被分离出来已经过去了一个多

世纪,在推断吗啡结构的过程中,Robinson发表相关论文约50篇,其复杂程度不亚于一部侦探小说。1955年,吗啡的结构经X射线衍射法得到了证实。1952年,美国罗切斯特大学的化学教授Marshall D. Gates首先报道完成了吗啡的全合成[12]。Robinson经过对天然产物生物合成途径的深入研究,首先提出了仿生合成(biomimetic synthesis)的概念,通过对生物碱的结构推断和生物合成途径的进一步探索,于1917年首次利用仿生合成方法合成了托品酮(tropinone,图12)[13],开创了仿生合成的先河,促成了有机合成化学的分支仿生合成学科的诞生[14]。Robinson教授还在有机合成反应上发现了著名的罗宾逊环化反应(Robinson annulation reaction,图13)[15]。这是一种重要的构建六元环的反应,在萜类化合物的人工合成中具有重要意义,其最有代表性的应用就是合成维兰德-米歇尔酮(Wieland-Miescher ketone,图13)。维兰德-米歇尔酮是人工合成类固醇化合物的一种基本原料,在现代天然产物全合成中也常作为起始原料使用,如Danishefsky的紫杉醇全合成[16]和Corey的长叶烯(longifolene)全合成[17-18]等。Robinson教授曾完成了对青霉素结构的确定,但是其中有一个小错误,后来他与美国化学家Robert Burns Woodward 合作对其进行了纠正。正是Robinson教授对生物碱提取分离、结构确定以及应用的开创性工作,开拓了有机化学中生

物碱领域。此外,他的成就还包括:成功合成了青霉素、马钱子碱等药物;发明使用圆圈符号代表苯的结构,使用弯曲箭头代表电子运动等。我国著名天然药物化学家曾广方教授(1902—1979)曾师从Robinson教授,进行精细有机合成研究。1952年,美国科学家Selman AbrahamWaksman (1888—1973,图14)因发现第一个有效对抗结核病的抗生素链霉素(streptomycin,图15)而荣获诺贝尔生理与医学奖。1943年Waksman与他的学生在实验室成功从土壤中的放线菌(actinomycetes)中分离出链霉素,这是当时第一个能够有效治疗肺结核的药物。链霉素的发现改变了现代医学的进程,在拯救无数生命的同时,也开辟了研究抗生素的新学术领域。Waksman毕生主要研究土壤细菌学,特别是

在抗生素研究方面获得了许多成果。除了发现链霉素,还陆续发现了放线菌素(actinomycin)、棒曲霉素(patulin)、链丝菌素(streptothticin)、新霉素(neomycin)和其他数种抗生物质。后来他建议把这些物质总命名为抗生素(antibiotics)。一般认为Waksman获得诺贝尔奖不仅是由于其发现链霉素,而是因为他发明了一系列分离抗生素的方法和技术,从而开启了人类发现、研究抗生素药物的大门,大大地推动了对于抗生素的研究,Waksman教授也因此被称为“抗生素之父”。Waksman著述众多,主要有《酶》(Enzymes,1926)、《土壤微生物学原理》(Principles of Soil Microbiology,1928)、

《链霉素性质及其实际应用》(Streptomycin:Nature and Practical Applications,1949)、《新霉素》(Neomycin,1952)等。1964年,英国著名结构化学家DorothyMary Hodgkin (1910—1994,图16)教授因在天然产物结构研究方面的卓越成就荣获诺贝尔化学奖,成为英国历史上第一个获得诺贝尔奖的女性科学家,也是国际上继居里夫人(Madame Curie)母女后第3位获得诺贝尔化学奖的女性科学家。Hodgkin教授一生致力于重要生理活性天然产物的结构研究。1934年,还在剑桥大学学习的Hodgkin与其导师、英国化

学家John Desmond Bernal(1901—1971)一起首先将X

射线衍射用于化合物结构研究,对胃蛋白酶(pepsin)晶体结构进行了测定;1949年,她发表了关于青霉素结构确定

的研究成果;1956年,Hodgkin教授历经8年研究,终于完成了利用X射线衍射法对维生素B12(vitamin B12)晶体结构的确定,从而为实现维生素B12的人工合成奠定了基础。Hodgkin教授对中国有着深厚的感情,曾经8次访问中国。1972年,在日本京都举行的国际晶体学大会上,Hodgkin

教授在大会上热情介绍中国科学家的工作,首先向全世界宣告中国已经独立地分析出胰岛素结构。1975年,她在英国《自然》杂志上发表了一篇题为中国的胰岛素研究的文章。正是Hodgkin教授的肯定和热情推荐,使中国科学家在当时那段几乎与外国隔绝的困难时期做出的成就获得了国际同

行应有的承认。Hodgkin教授对中国科学家于1978年正式加入晶体学的国际科研共同体也起到了重要作用,给予了我国晶体化学发展不遗余力的支持。唐有祺院士等数名中国科学家曾在其研究室学习。3 1965年

1965年,美国化学家Robert BurnsWoodward (1917—1979,图17)因在有机合成特别是复杂天然产物全合成领域的成就荣获诺贝尔化学奖,但Woodward教授的成就却远不止于此,除了在有机合成方面,他在化合物结构鉴定、化学理论创立等多个领域均做出了卓越的贡献,因此Woodward被誉为20世纪最伟大的有机化学家,也是因天然产物研究获得诺贝尔奖的大师中最杰出的典范。Woodward被誉为“现代有机合成之父”,一生中完成了众多令人瞩目的复杂天然产物全合成(图18),如奎宁(quinine)[19]、胆固醇[20]、可的松(cortisone)、羊毛脂醇(lanosterol)、利血平(reserpine)[21]、士的宁[22]、麦角酸(lysergic acid)、叶绿素[23]、四环素(tetracycline)、秋水仙碱(colchicine)、头孢菌素C(cephalosporin C)、维生素B12等[24]。1944年,Woodward和同事W. E.Doering宣布完成了奎宁的全合成,此研究成果公开报道后,得到了化学界的高度赞誉,被认为是有机合成史上的里程碑式成果,并一致认为Woodward和Doering首次提出立体选择性反应(stereoselective reaction)的定义并在合成中应用,开创

和引导了有机合成化学理论和实际应用的里程碑式的飞跃

发展[25]。1951年,Woodward完成了包括胆固醇在内的多个类固醇化合物的全合成,他首先提出了适用于任何非芳香性类固醇类化合物的合成方法,而仅仅数年以前,Woodward 几乎没有利用色谱手段,只通过IR、UV和CHN分析方法就解决了具有9个手性中心的类固醇化合物立体结构确定的问题[21]。1956年,Woodward又第一个提出了利血平的全合成路线,这距1955年利血平化学结构得到确定只有1年,而距提取分离得到利血平单体也仅有4年时间。特别说明的是Woodward获得诺贝尔奖后完成了维生素B12的全合成,这个复杂天然产物的全合成历经11年、超过100步反应,堪称Woodward全合成研究的最高杰作,被公认为代表着当代有机合成研究的最高水平和成就[26]。在生物合成方面,Woodward教授也卓有建树,第一个提出甾体激素的正确生源途径,也对吲哚类生物碱和大环内酯类化合物的生物合成途径进行了研究。Woodward教授在有机合成过程中应用红外光谱技术与化学降解方法来测定复杂分子的结构,因此在天然产物结构鉴定方面也取得了许多重要成就。世界大战期间,Woodward提出了青霉素正确的β-内酰胺结构,纠正了英国化学家Robert Robinson教授此前提出的错误结构推论。此外,他还完成了山道年酸(santonic acid)、马钱子碱、棒曲霉素(patulin)、土霉素(terramycin)、金霉素

(aureomycin)、沙巴达碱(cevine)、碳霉素(magnamycin)、胶霉毒素(gliotoxin)、竹桃霉素(oleandomycin)、链黑菌素(streptonigrin)及著名的海洋天然产物河豚毒素(tetrodotoxin)[27]等复杂天然产物的结构鉴定。在测定碳霉素结构时,Woodward发现了一类前所未知的天然产物即大环内酯类化合物(macrolides),并对其生物合成的可能途径做出了推测。1952年,Woodward与Geoffrey Wilkinson (1921—1996)等最早推测了二茂铁(ferrocene)的正确结构[28],引发了金属有机化学的研究热潮。而后Wilkinson 与Pauson、Fischer因对金属有机化学杰出贡献获得了1973年诺贝尔化学奖。Woodward在有机化学理论方面也做出了重大贡献。1941—1942年,他描述了分子结构与紫外光谱间的关系,将紫外光谱用于鉴定共轭体系,提出了Woodward规则。后来他又意识到红外光谱的重要意义,在利血平的合成过程中做了30余张红外光谱图,在红外光谱鉴定有机物结构方面起到了奠基性的作用。在成功完成全合成维生素B12过程中,Woodward偶然发现在[4+2]环合反应中光或热条件下可以引发不同的立体化学反应,得到不同的立体构型产物,Woodward与他的学生、著名量子化学家Roald Hoffmann还通过对这些反应规律更深入的研究和总结,最终诞生了有机化学理论中非常著名、非常重要的“轨道对称守恒定律”(The Conservation of Orbital Symmetry),

又称Woodward-Hoffmann规则(Woodward-Hoffmannrules)[29]。“轨道对称守恒原理”是建立在日本化学家福井谦一(Kenichi Fukui)创立的“前线轨道理论”(frontier molecular orbital theory)基础之上并发展开创的新的量子化学理论。1981年,日本化学家福井谦一与Hoffmann因此伟大成绩共同荣获诺贝尔化学奖。“轨道对称守恒原理”以及“前线轨道理论”是对量子化学重要的发展促进,堪称自20世纪60年代

以来最重要的化学理论。4 20世纪60~70年代

1969年,挪威化学家Odd Hassel(1897—1981,图19)和英国化学家DerekHarold Richard Barton(1918—1998,图19)因为分别通过对环己烷、天然甾体(steroides)等

化合物立体构型的研究发展了立体化学理论,而共同荣获当年度诺贝尔化学奖。Hassel教授由环己烷入手,应用X射

线衍射等技术对环己烷在不同状态条件下的立体结构进行

了认真全面的研究,最终提出了构象(conformation)、椅式构象(chair conformation)、船式构象(boat conformation)、构象分析(conformational analysis)等概念,总结出构象分析原理并建立了相关的分析方法,这是对立体化学理论的重大贡献。Barton将Hassel提出的构象分析原理应用在甾体化合物立体结构中,明确地阐明了分子的特性和空间的构型(configuration)与构象(conformation)的关系,进一步

发展了有机立体化学理论。在Barton之前,科学家对甾体化

合物立体结构进行研究时都是通过其与“赤道构象”(equatorial conformations)之间的区别加以解释的。在这构象中,氢原子与碳原子在同一平面上,并在轴的方向上,而且与环成垂直。Barton也用同样方法进行了植物碱、萜烯、多萜烯的研究,并且建立起如何使用构象分析的一般规则,构象分析成为了化学研究中一个强有力的工具。在Hassel 提出的环己烷构象分析基础上,Barton利用X射线衍射技术对甾体化合物分子结构进行分析,明确了甾体分子中3个骈联的环己烷骨架以及骈联的一个环戊烷骨架的相互空间关系,并确定了一些甾体化合物的构象,最终提出了构型(configuration)的概念,完美解释了甾体类化合物的立体结构及其反应特性。20世纪50年代初,Barton关于构象分析的著名论文[30]公开发表,在科学界引起巨大反响,许多化学家认为,构象分析的引入是自1874年Jacobus Henricus van’t Hoff(1852—1911)和Joseph Achille Le Bel (1847—1930)提出“正四面体”学说以来,立体化学研究的第一个真正的突破,构象分析思想的引入,极大地改变了立体化学研究方向,也成为有机化学的一个不可分割的部分,其贡献之大不言而喻。同时,甾体分子因其立体结构的特殊性也在有机化学特别是有机化学理论发展史上占有极其重

要的地位,而甾体物质因其特殊生理活性,在药物研究与应用中也有极其重要的作用。Barton教授的其他成就还包括

在合成甾醇类激素方面,发明了著名的合成醛甾醇的一种简便方法,后被称为“巴顿反应”(Barton reaction)。以及有关合成青霉素和各种四环素类抗菌素的重要研究等。1994年,Barton教授当选为中国科学院外籍院士。1975年,瑞士化学家VladimirPrelog(1906—1998,图20)因为研究有机分子立体化学和反应取得的成就与英国化学家John Warcup Cornforth(1917—2013)分享了当年的诺贝尔化学奖。Prelog的早期工作对象是生物碱,他的研究解决了很多天然产物的立体构型(configuration)。Prelog深入研究了在8~12元环状结构中构象和化学活性的关系,认为有机分子的构象会影响反应结果,即可能造成反应产物不同或使各种反应产物的比例发生改变,根据这项研究成果许多重要反应产物及其立体构型都可以预测。1956年,Prelog与著名有机化学家Christopher Ingold(1893—1970)、Robert Sidney Cahn(1899—1981)一起将绝对构型的标记即R/S (rectus/sinister,拉丁文“右/左”)体系引入有机化学,首次使对映体或镜像体能够被清楚地描述出来。R/S构型命名原则用于表达手性碳原子的构型,于1970年被国际纯粹与应用化学联合会(IUPAC)采用。为了清楚阐明“不对称性”这一立体化学名词的内涵,3位有机化学家还建议用“手性(chirality)”表示分子的与手类似的不重合性质。他们的观点被有机化学家广泛接受,从而为立体化学的发展奠定了新

的基石。后来,Prelog开始研究微生物代谢产物,并发现了许多新的天然物质,比如发现了第1个天然含硼化合物的硼霉素(boromycin)。Prelog还把构象对反应产物的影响成果应用到酶、辅酶与底物之间的反应中,得到了关于微生物立体专一性的结论。5 20世纪90年代至21世纪初1990年,美国化学家Elias JamesCorey(1928—,图21)因为在复杂天然有机化合物合成方面的成就而荣获诺贝尔化学奖,其中最主要的贡献就是发展了有机合成理论和方法学,创造性地提出“逆合成分析法(retrosynthetic analysis)”。他也是

继Woodward教授之后,又一位获得诺贝尔化学奖的有机合成大师。从20世纪50年代后期到荣获诺贝尔奖的30多年时间里,Corey与他的团队完成了上百个复杂天然产物的全合成(图22),如长叶烯[17-18]、前列腺素E1[31](prostaglandin E1,图23)、银杏内酯B[32](ginkgolide B)、美登木素[33](maytansine)、Et 743[34](ecteinascidin 743、trabectedin)、喜树碱(camptothecin)[35]、红霉素大环内酯A(erythromycin macrocyclic lactone A)、白三烯A4(leukotrieneA4)等。对Corey几个公认的经典合成进行简要介绍。在完成复杂天然产物合成的同时,Corey教授通过慎密的思考,创造性地提出了“逆合成分析法(retrosynthetic analysis)”[36]。常规的全合成思路是从起始原料开始考虑

如何一步一步合成以获得最终目标产物,而逆合成是从目标

天然药物化学总结归纳

天然药物化学总结归纳 第一节总论 一、绪论 1.天然药物化学研究内容:结构特点、理化性质、提取分离方法及结构鉴定 ⑴有效部位:具有生理活性的多种成分的组合物。 ⑵有效成分:具有生理活性、能够防病治病的单体物质。 2.天然药物来源:植物、动物、矿物和微生物,并以植物为主。 3.天然药物化学在药学事业中的地位: ⑴提供化学药物的先导化合物; ⑵探讨中药治病的物质基础; ⑶为中药炮制的现代科学研究奠定基础; ⑷为中药、中药制剂的质量控制提供依据; ⑸开辟药源、创制新药。 二、中草药有效成分的提取方法 1.溶剂提取法:据天然产物中各成分的溶解性能,选用对需要的成分溶解度大而对其他成分溶解度小的溶剂, ⑴常用的提取溶剂: 各种极性由小到大的顺序如下: 石油醚﹤苯﹤氯仿﹤乙醚﹤二氯甲烷﹤乙酸乙酯﹤正丁醇﹤丙酮﹤乙醇﹤甲醇﹤水 亲脂性有机溶剂亲水性有机溶剂 ⑵各类溶剂所能溶解的成分: 1)水:氨基酸、蛋白质、糖类、生物碱盐、有机酸盐、无机盐等 2)甲醇、乙醇、丙酮:苷类、生物碱、鞣质等极性化合物 3)氯仿、乙酸乙酯:游离生物碱、有机酸、蒽醌、黄酮、香豆素的苷元等中等极性化合物 石油醚:脱脂,溶解油脂、蜡、叶绿素等小极性成分;正丁醇:苷类化合物。 ⑶溶剂提取的操作方法: 1)浸渍法:遇热不稳定有效成分,出膏率低,(水为溶剂需加入适当的防腐剂) 2)渗漉法: 3)煎煮法:不宜提取挥发性成分或热敏性成分。(水为溶剂) 4)回流提取法:不适合热敏成分;(乙醇、氯仿为溶剂) 5)连续回流提取法:不适合热敏性成分。 6)超临界流体萃取技术:适于热敏性成分的提取。超临界流体:二氧化碳;夹带剂:乙醇; 7)超声波提取技术:适用于各种溶剂的提取,也适用于遇热不稳定成分的提取 2.水蒸气蒸馏法:挥发性、能随水蒸气蒸馏且不被破坏的成分。(挥发油的提取。) 3.升华法:具有升华性的成分(茶叶中的咖啡因、樟木中的樟脑) 三、中草药有效成分的分离与精制 1.溶剂萃取法: ⑴正丁醇-水萃取法使皂苷转移至正丁醇层(人参皂苷溶在正丁醇层,水溶性杂质在水层)。 ⑵乙酸乙酯-水萃取法使黄酮苷元转移至乙酸乙酯层 2.沉淀法: ⑴溶剂沉淀法: 1)水/醇法:多糖、蛋白质等水溶性大分子被沉淀; 2)醇/水法:除去树脂、叶绿素等脂溶性杂质。 ⑵酸碱沉淀法: 1)碱提取酸沉淀法:黄酮、蒽醌、有机酸等酸性成分。 2)酸提取碱沉淀法:生物碱。 ⑶盐析法:三颗针中提取小檗碱就是加入氯化钠促使其生成盐酸小檗碱而析出沉淀的。 第二节苷类 1.定义:苷类(又称配糖体):是指糖或糖的衍生物端基碳原子上的羟基与非糖物质脱水缩合而形成的一类化合物。

天然药物化学(2016简答题)

1*天然药物化学研究的内容有哪些? 答:天然药物中各类化学成分的结构特点、理化性质、提取分离与鉴定方法,操作技术及实际应用。 2*如何理解有效成分和无效成分? 答:有效成分是指天然药物中经药效实验筛选具有生物活性并能代表临床疗效的单体化合物,能用结构式表示,具有一定的物理常数。天然药物中不代表其治疗作用的成分为无效成分。一般认为天然药物中的蛋白质、多糖、淀粉、树脂、叶绿素、纤维素等成分是无效成分或杂质。 3*天然药物有效成分提取方法有几种?采用这些方法提取的依据是什么? 答:①溶剂提取法:利用溶剂把天然药物中所需要的成分溶解出来,而对其它成分不溶解或少溶解。②水蒸气蒸馏法:利用某些化学成分具有挥发性,能随水蒸气蒸馏而不被破坏的性质。③升华法:利用某些化合物具有升华的性。 4*常用溶剂的亲水性或亲脂性的强弱顺序如何排列?哪些与水混溶?哪些与水不混溶? 答:石油醚>苯>氯仿>乙醚>乙酸乙酯>正丁醇(与水互不相容)>丙酮>乙醇>甲醇>水(与水相混溶) 5*两相溶剂萃取法是根据什么原理进行?在实际工作中如何选择溶剂? 答:利用混合物中各成分在两相互不相溶的溶剂中分配系数不同而达到分离的目的。实际工作中,在水提取液中有效成分是亲脂的多选用亲脂性有机溶剂如苯、氯仿、乙醚等进行液‐液萃取;若有效成分是偏于亲水性的则改用弱亲脂性溶剂如乙酸乙酯、正丁醇等,也可采用氯仿或乙醚加适量乙醇或甲醇的混合剂。 6*色谱法的基本原理是什么? 答:利用混合物中各成分在不同的两相中吸附、分配及其亲和力的差异而达到相互分离的方法。 7*聚酰胺吸附力与哪些因素有关? 答:①与溶剂有关:一般在水中吸附能力最强,有机溶剂中较弱,碱性溶剂中最弱;②与形成氢键的基团多少有关:分子结构中含酚羟基、羧基、醌或羰基越多,吸附越牢;③与形成氢键的基团位置有关:一般间位>对位>邻位;④芳香核、共轭双键越多,吸附越牢;⑤对形成分子内氢键的化合物吸附力减弱。 8*简述苷的分类。 答:据苷键的构型不同分为α-苷、β-苷;依据在植物体内的存在状态不同,可分为原生苷和次生苷;依据苷的结构中单糖数目的不同,可分为单糖苷、双糖苷、三糖苷;依据苷元结构不同,可分为黄酮苷、蒽醌苷、香豆素苷;依据糖链的数目不同,分为单糖链苷、双糖链苷;依据苷的生物活性,分为强心苷、皂苷等。 9*简述苷键酸水解的影响因素。 答:①苷原子不同,水解难以顺序:N-苷>O苷>S苷>C苷②呋喃糖苷较吡喃糖易水解③酮糖苷较醛糖苷易水解④吡喃糖苷中C5取代基越大越难水解。⑤吸点子基的诱导效应,尤其是C2上取代基的吸点子基对质子的竞争吸引,使苷键原子的电子云密度降低,质子化能力下降,水解速度下降⑥芳香族苷因苷元部分有供电子基,水解比脂肪族苷容易。 10*如何用化学方法鉴别:葡萄糖、丹皮苷、丹皮酚。 答:三种样品分别做α-萘酚-浓硫酸反应,不产生紫色环的是丹皮酚。产生紫色环的,再分别做斐林反应,产生砖红色沉淀的是葡萄糖,不反应的是丹皮苷。 11*为何《中华人民共和国药典》规定新采集的大黄必须储存两年以上才可药用?

天然药物化学期末总结

1.天然药物化学:是应用现代理论、方法与技术研究天然药物中化学成分的学科。 2.天然药化的研究内容:主要包括:天然药物中各类型化学成分的结构特点、理化性质、提取分离的方法与技术以及各类型化学成分的结构检识、鉴定、测定和修饰等。 3.有效成分:天然药物中含有多种化学成分,具有一定生理活性的成分称为有效成分。 4.无效成分:无生理活性的成分称为无效成分。 5.有效部位:将含有一种主要有效成分或一组结构相近的有效成分提取分离部位称为有效部位。 6.提取:是指选用适宜的溶剂和适当的方法将所需药物提出而杂质尽可能少地被提出的过程,通常所得的提取物是多种成分的混合物。 7.分离:是选用适当的方法再将其中所含各种成分逐一分开,并把所得单体加以精制纯化的过程。 8.研究天然药物有效成分的意义:⑴控制天然药物及其制剂的质量;⑵探索天然药物治病的原理;⑶开辟和扩大药源、促进新药开发;⑷改进药物制剂、提高临床疗效;⑸为中药炮制提供现代科学依据。 9.天然药物中各类化学成分的名称:糖和苷类;生物碱;醌类;黄酮;香豆素类;有机酸类;挥发油和萜类;甾体类化合物;鞣质类;氨基酸、蛋白质和酶;树脂;植物色素。 10.溶剂提取法的原理:“相似相溶”原理。 11.常用溶剂的极性大小规律:石油醚<四氯化碳<苯<二氯甲烷<三氯甲烷<乙醚<乙酸乙酯<正丁醇<丙酮<甲醇(乙醇)<水。 12.亲水性有机溶剂:主要为甲醇、乙醇、丙酮等,其中以乙醇最为常用,此类溶剂对植物细胞穿透力较强,溶解范围广泛,有提取黏度小、沸点低、不易霉变等特点。 13.亲脂性有机溶剂:如:石油醚、苯、乙醚、三氯甲烷、乙酸乙酯等,这类溶剂沸点低,浓缩回收方便,但这类溶剂易燃,有毒,价贵,设备要求较高,穿透药材组织的能力较差,提取时间较长。 14.溶剂提取的方法:⑴浸渍法;⑵渗漉法;⑶煎煮法;⑷回流提取法;⑸连续回流提取法。(详见课本P10) 15.水蒸气蒸馏法的定义:将水蒸气通入含有挥发性成分的药材中,使药材中挥发性成分随水蒸气蒸馏出来的一种提取方法。原理:当水和与水互不相溶的液体成分共存时,根据道尔顿分压定律,整个体系的总蒸汽压等于两组分蒸汽压之和,虽然各组分自身的沸点高于混合液的沸点,但当总蒸汽压等于外界大气压时,混合物开始沸腾并被蒸馏出来。适用范围:适用于具有挥发性,难溶或不溶于水,能随水蒸气蒸馏而不被破坏的天然产物成分的提取。天然产物中挥发油成分的提取多用此法。 16.超临界流体的性质:超临界流体是处于临界温度(Tc)和临界压力(Pc)以上,介于气体和液体之间的流体。这种流体同时具有液体和气体的双重特性,它的密度与液体相似,黏度与气体相似,扩散系数虽不及气体大,但比液体大100倍。 17.可作为超临界流体的物质:CO2、NH3、C2H6、C7H16等,其中CO2应用较多,原因:CO2的临界温度(Tc=31.4℃)接近室温,临界压力(Pc=7.37Pa)也不太高,易操作,且本身呈惰性,价格便宜,是中药超临界流体萃取中最常用的溶剂。 18.分离纯化的方法:⑴系统溶剂分离法 ⑵两项溶剂萃取法:①简单萃取法;②逆流连续萃取法:移动相(或分散相):相对密度小的相液,固定相(或连续相):相对密度大的相液;③逆流分溶法:条件:当混合物各成分的分配系数很接近时,一般不宜分离,可选择此法,极性过大或过小,或分配系数受温度或浓度影响过大及抑郁乳化的溶剂试剂均不宜采用此法;④液滴逆流分配法 ⑶沉淀法:①酸碱沉淀法;②试剂沉淀法(选择判断):雷氏铵盐可与水溶性的季铵碱生成

中职天然药物化学基础阶段性测验一(全本课后)

天然药物化学基础阶段性测验一 班级 ---------- 姓名 ------------ 得分 -------------- 一.单项选择题(50分) 1.天然药物有效成分最常用的提取方法是 A.水蒸气蒸馏法 B.溶剂提取法 C.两相溶剂萃取法 D.沉淀法 E.盐析法 2不属于亲脂性有机溶剂的是 A.三氯甲烷 B.苯 C.正丁醇 D.丙酮 E.乙醚 3.与水互溶的溶剂是 A.丙酮 B.乙酸乙酯 C.正丁醇 D.三氯甲烷 E.石油醚 4.能与水分层的溶剂是 A.乙醚 B.丙酮 C.甲醇 D.乙醇 E.丙酮和甲醇(1:1) 5.溶剂极性由小到大顺序排列的是 A.石油醚.乙醚.乙酸乙酯 B.石油醚.丙酮.乙酸乙酯 C.石油醚.乙酸乙酯.三氯甲烷 D.三氯甲烷.乙酸乙酯.乙醚 E.乙醚.乙酸乙酯.三氯甲烷 6.下列溶剂中溶解化学成分范围最广的溶剂是 A.水 B.乙醇 C.乙醚 D.苯 E.三氯甲烷 7.银杏叶中含有的特征成分类型为 A.黄酮 B.二氢黄酮醇 C.异黄酮 D.查耳酮 E.双黄酮 8.煎煮法不宜使用的器皿是 A.不锈钢锅 B.铁器 C.瓷器 D.陶器 E.砂器 9.下列方法不能使用有机溶剂的是 A.回流法 B.煎煮法 C.渗漉法 D.浸渍法 E.连续回流法 10.从天然药物中提取对热不稳定的成分选用 A.回流提取法 B.煎煮 C.渗漉 D.连续回流法 E.水蒸气蒸馏 11.影响提取效率的关键因素是 A.天然药物粉碎度 B.温度 C.时间 D.浓度差 E.溶剂的选择 12.最常用的超临界流体物质是 A.二氧化碳 B.甲醇 C.苯 D.乙烷 E.六氟化硫 13.两相溶剂萃取法的原理是利用混合物中各成分在两相溶剂中的 A.密度不同 B.分配系数不同 C.移动速度不同 D.萃取常数不同 E.介电常数不同 14.从天然药物的水提取液中萃取强亲脂性成分.宜选用 A.乙醇 B.甲醇 C.正丁醇 D.乙酸乙酯 E.苯 15.采用两相溶剂萃取法分离化学成分的原理是 A.两相溶剂互溶 B.两相溶剂互不相溶 C.两相溶剂极性相同 D.两相溶剂极性不同 E.两相溶剂亲脂性有差异 16.四氢硼钠反应用于鉴别 A.黄酮.黄酮醇 B.异黄酮 C.二氢黄酮.二氢黄酮醇 D.查耳酮 E.花色素 17.下列官能团极性由小到大的排列顺序是 A.羧基.烷基.醚基 B.烷基.羧基.醚基 C.醚基.烷基.羧基D.醚基.羧基.烷基 E.烷基.醚基.羧基

天然药物化学期末考试

天然药物化学基础期末考试 班级---------- 姓名------------ 得分-------------- 一.单项选择题(50分) 1、天然药物有效成分最常用的提取方法是 A、水蒸气蒸馏法 B、容剂提取法 C、两相溶剂萃取法 D、沉淀法 E、 盐析法 2不属于亲脂性有机溶剂的是 A、三氯甲烷 B、苯 C、正丁醇 D、丙酮 E、乙醚 3,与水互溶的溶剂是 A、丙酮 B、乙酸乙酯 C、正丁醇 D、三氯甲烷 E、石油醚 4,能与水分层的溶剂是 A、乙醚 B、丙酮 C、甲醇 D、乙醇 E、丙酮和甲醇(1:1) 5、溶剂极性由小到大顺序排列的是 A、石油醚、乙醚、乙酸乙酯 B、石油醚、丙酮、乙酸乙酯 C、石油醚、乙酸乙酯、三氯甲烷 D、三氯甲烷、乙酸乙酯、乙醚 E、乙醚、乙酸乙酯、三氯甲烷 6、下列溶剂中溶解化学成分范围最广的溶剂是 A、水 B、乙醇 C、乙醚 D、苯 E、三氯甲烷 7、银杏叶中含有的特征成分类型为 A、黄酮 B、二氢黄酮醇 C、异黄酮 D、查耳酮 E、双黄酮 8、煎煮法不宜使用的器皿是 A、不锈钢锅 B、铁器 C、瓷器 D、陶器 E、砂器 9、下列方法不能使用有机溶剂的是 A、回流法 B、煎煮法 C、渗漉法 D、浸渍法 E、连续回流法 10、从天然药物中提取对热不稳定的成分选用 A、回流提取法 B、煎煮 C、渗漉 D、连续回流法 E、水蒸气蒸馏 11、影响提取效率的关键因素是 A、天然药物粉碎度 B、温度 C、时间 D、浓度差 E、溶剂的选择 12、最常用的超临界流体物质是 A、二氧化碳 B、甲醇 C、苯 D、乙烷 E、六氟化硫 13、两相溶剂萃取法的原理是利用混合物中各成分在两相溶剂中的 A、密度不同 B、分配系数不同 C、移动速度不同 D、萃取常数不同 E、介电常数不同 14、从天然药物的水提取液中萃取强亲脂性成分,宜选用 A、乙醇 B、甲醇 C、正丁醇 D、乙酸乙酯 E、苯 15、采用两相溶剂萃取法分离化学成分的原理是 A、两相溶剂互溶 B、两相溶剂互不相溶 C、两相溶剂极性相同 D、两相溶剂极性不同 E、两相溶剂亲脂性有差异 16、四氢硼钠反应用于鉴别 A、黄酮、黄酮醇 B、异黄酮 C、二氢黄酮、二氢黄酮醇

天然药物化学基础习题(中职)

第一章绪论 一、选择题 1、一般情况下,认为是无效成分或杂质的是() A、生物碱 B、叶绿素 C、强心苷 D、黄酮 E、皂苷 二、名词解释 1、有效成分 2、有效部分 3、无效成分 第二章天然药物化学成分的提取与分离 一、选择题 1、两相溶剂萃取法的原理是利用混合物中各成分在两相溶剂中的() A、比重不同 B、分配系数不同 C、分离系数不同 D、萃取常数不同 E、介电常数不同 2、原理为氢键吸附的色谱是() A、离子交换色谱 B、凝胶色谱 C、聚酰胺色谱 D、硅胶色谱 E、氧化铝色谱 3、分馏法分离适用于() A、极性大成分 B、极性小成分 C、升华性成分 D、挥发性成分 E、内脂类成分 4、原理为分子筛的色谱是() A、离子交换色谱 B、凝胶色谱 C、聚酰胺色谱 D、硅胶色谱 E、氧化铝色谱 5、下列各组溶剂,按极性大小排列,正确的是() A、水>丙酮>甲醇 B、乙醇>乙酸乙酯>乙醚 C、乙醇>甲醇>乙酸乙酯 D、丙酮>乙醇>甲醇 E、苯>乙醚>甲醇 6、不属亲脂性有机溶剂的是() A、氯仿 B、苯 C、正丁醇 D、丙酮 E、乙醚 7、从天然药物中提取对热不稳定的成分宜选用() A、回流提取法 B、煎煮法 C、渗漉法 D、连续回流法 E、蒸馏法 8、下列类型基团极性最大的是( ) A、醛基 B、酮基 C、酯基 D、烯基 E、醇羟基 9、采用溶剂极性递增的方法进行活性成分提取,下列溶剂排列顺序正确的是() A、C6H6、CHCl3、Me2CO、EtOAC、EtOH、H2O B、C6H6、CHCl3、EtOAC 、Me2CO、EtOH、H2O C、H2O、EtOAC、EtOH、Me2CO、CHCl3、C6H6 D、CHCl3、EtOAC、C6H6、Me2CO、EtOH、H2O E、H2O、EtOAC、Me2CO、EtOH、 C6H6、CHCl3 10、下列那项不是影响提取效率的因素是() A、药材粉碎度 B、温度 C、时间 D、细胞内外浓度差 E、晶种 11、采用液-液萃取法分离化合物的原则是() A、两相溶剂互溶 B、两相溶剂互不溶 C、两相溶剂极性相同 D、两相溶剂极性不同 E、两相溶剂亲脂性有差异 12、极性最小的溶剂是( ) A、丙酮 B、乙醇 C、乙酸乙酯 D、水 E、正丁醇

天然药物化学实验

天然药物化学实验 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

实验一天然产物化学成分系统预试验 天然产物中所含的化学成分种类很多,在深入研究之前应首先了解其中含有哪些类型的化学成分,如生物碱、皂苷、黄酮类等等。这就需要进行各类化学成分的系统定性预试验。或根据研究的需要进行单项预试法来初步判断。 一、实验目的与要求 掌握未知成分的天然产物是怎样初步提取分离的,熟悉各主要成分的试管试验、沉淀反应和纸层析、薄层层析的方法并根据试验结果判断含有什么类型的化学成分。 二、基本原理 利用各类成分的颜色反应和沉淀反应,对天然产物的提取液进行检查可以初步判断其中的化学成分。由于提取液大多数颜色较深,影响对颜色变化的观察,可以使用薄层层析(TLC)或纸层析(PC)等方法对天然产物的提取液进行初步分离,再进一步检查。 三、实验内容: 利用不同成分在各种溶剂中的溶解度的不同,一般可采用以下3种溶剂分别提取,试验。 1.水浸液:取中草药粗粉5 g加水60 ml,在50~60℃的水浴上加热1小时,过滤,滤液进行下列试验。

*在试管进行,△在滤纸或硅胶CMC-Na薄层板上进行,下同。 糖鉴定 (1)α-萘酚一硫酸试剂检查还原糖。 ①溶液I:10%α-萘酚乙醇溶液。溶液II:硫酸。取1ml样品的稀乙醇溶液或水溶液,加入溶液I 2滴~3滴,混匀,沿试管壁缓缓加入少量溶液II,二液面交界处产生紫红色环为阳性反应。 (2)斐林试剂检查还原糖。 溶液I:6.93g结晶硫酸铜溶于100ml水中。溶液II:34.6g酒石酸钾钠、10g氢氧化钠溶于100ml水中。取1ml样品热水提取液,加入4滴~5滴用时配制的溶液I、II 等量混合液,在沸水浴中加热数分钟,产生砖红色沉淀为阳性反应。如检查多糖和苷,取1ml样品水提液,加入1m110% 盐酸溶液,在沸水浴上加热10min,过滤,(成盐去除杂质)再用10%氢氧化钠溶液调至中性,按上述方法检查还原糖。 或者直接用高效液相色谱看色谱图。 酚类鉴定试剂 (1)三氯化铁试剂检查酚类化合物、鞣质1%~5%三氯化铁水溶液或乙醇溶液,加盐酸酸化。取1ml样品的乙醇溶液,加入试剂1滴~2滴,显绿、蓝绿或暗紫色为阳性反应。作色谱显色剂用,喷洒后,显绿或兰色斑点为阳性。 2.乙醇提取液 取中草药粗粉5 g,加5~12倍量95%乙醇,在水浴上加热回流提取1小时,过滤,滤液留2 ml作(1)项试验,其余回收乙醇至无醇味,并浓缩成浸膏状,浸膏分为二部分,一部分加少量2% HCL振摇溶过滤。分出酸液,作(2)项式验,附于滤纸上的一部分再以少量乙醇溶解,溶液作(3)项试验;

(完整版)天然药物化学笔记整理

第一章总论 1. 天然药物化学概述:天然药物化学是药物化学的一个分支学科。它主要用现代科学理论和技术方法研究天然化学物资;具体内容包括主要类型的天然化学成分的结构类型、提取分离方法、结构测定等。 来源: 植物(为主)、动物、矿物天然药物中的活性成分是其药效的物资基础。 2. 提取分离的方法 1)提取前文献查阅综述和药材生药鉴定 2)提取方法 (一)溶剂提取法原理:“相似者相溶”,通过选择适当溶剂将中药中的化学成分从药材中提取出来。 常见溶剂的极性强弱顺序:石油醚(低沸点—高沸点)<环己烷<二硫化碳<四氯化碳<三氯乙烯<苯<二氯甲烷<氯仿<乙醚<乙酸乙酯<丙酮<乙醇<甲醇<乙腈<水<吡啶<乙酸分类:①浸渍法②渗漉法:不断向粉碎的中药材中添加新鲜浸出溶剂,使其渗过药材,从渗漉筒下端出口流出浸出液的方法。缺点:消耗溶剂量大,费时长,操作麻烦。 ③煎煮法④回流提取法⑤连续回流提取法:可弥补回流提取法中溶剂消耗量大,操作台繁琐的不足,实验室常用索氏提取器(沙氏)来完成本法操作。缺点:时间长,受热易分解的成分不宜使用此法。⑥超临界流体萃取技术⑦超声波提取技术 (二)水蒸气蒸馏法 ①适用范围:具有挥发性、能随水蒸气蒸馏而不被破坏、且难容或不溶于水是我成分的提取。 ②原理:给予两种互不相溶的液体共存时,各组分的蒸汽压和它们在纯粹状态时的蒸汽压相等,而另一种液体的存在并不影响它们的蒸汽压,混合体系的总蒸汽压等于两纯组分蒸汽压之和,由于体系中的蒸汽压比任何一组分的蒸汽压都高,所以混合物的沸点比任一组分的沸点为低。 (三)升华法原理:遇热挥发使用范围:游离蒽醌 (四)压榨法原理:机械挤压适用范围:新鲜药材,种子植物油 3)分离纯化法 ①根据物质溶解度的不同进行分离 a. 温度不同,溶解度不同 b. 改变溶液的极性去杂 c. 酸碱法 d. 沉淀法 ②根据物质分配比不同极性分离 原理: 利用物质在两种互不相溶的溶剂中的分配系数的不同达到分离 a. 液-液萃取法 b.反流分布法 c.液滴逆流层析法 d.高速逆流层析法 e.GC法 f.LC法:LC分配层析载体主要有---硅胶,硅藻土,纤维素等;有正反相之分;压力有低、中、高之分; 载量有 分析、制备之分。 ③根据物质吸附性不同极性分离 a. ※极性吸附剂(如SiO2,Al2O3...)极性强,吸附力大 ※非极性吸附剂(如活性炭-对非极性化合物的吸附力强(洗脱时洗脱力随洗脱剂的极性降低而增大)。 b. 化合物的极性大小依化合物的官能团的极性大小而定;

天然药物化学史话_四大光谱_在天然产物结构鉴定中的应用_王思明

?专论? 天然药物化学史话:“四大光谱”在天然产物结构鉴定中的应用 王思明1, 2,付炎2,刘丹2,王于方2,李力更2,霍长虹2,李勇1,刘江1*,张嫚丽2,史清文2* 1. 河北医科大学第四医院药剂科,河北石家庄 050011 2. 河北医科大学药学院天然药物化学教研室,河北石家庄 050017 摘要:天然产物化学研究在药物研发中起着非常重要的作用,结构研究又是天然产物化学研究中最重要的工作之一。在天然药物化学史话系列文章的基础上,对在天然产物结构研究中起绝对主导作用的“四大光谱”分析技术,即红外光谱、紫外光谱、质谱、核磁共振波谱在天然产物结构鉴定中的应用历史进行回顾与总结,并对其发展前景进行展望。 关键词:天然产物化学;天然药物化学;结构鉴定;紫外光谱;红外光谱;质谱;核磁共振波谱 中图分类号:R284 文献标志码:A 文章编号:0253 - 2670(2016)16 - 2779 - 18 DOI: 10.7501/j.issn.0253-2670.2016.16.001 Historical story on natural medicine chemistry:Application of UV,IR,MS,and NMR spectra in structure elucidation of natural products WANG Si-ming1, 2, FU Yan2, LIU Dan2, WANG Yu-fang2, LI Li-geng2, HUO Chang-hong2, LI Yong1, LIU Jiang1, ZHANG Man-li2, SHI Qing-wen2 1. Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China 2. College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China Abstract: The study on natural product chemistry plays an important role in drug development, and the structure elucidation is one of the vital tasks in the natural product chemistry research. This paper summarized the application of UV, IR, MS, and NMR spectra in the structure elucidation of natural products with 123 papers cited. This article is one of the series of historical stories on natural product chemistry published in this journal, which are reviewed and summerized. The developing future is looked forward. Key words: natural product chemistry; natural medicine chemistry; structural elucidation; ultraviolet spectroscopy; infrared spectroscopy; mass spectrometry; nuclear magnetic resonance spectroscopy 天然产物是自然界的生物在千百万年的进化过程中通过自然选择合成以及保留下来的结构各异的次生代谢产物,这些次生代谢产物由于结构的多样性而具有多种多样的生物活性。天然产物对人类最大的贡献之一就是成为药物,在人类历史上,天然药物一直是人们防病治病的主要手段。天然产物具有结构多样性、生物活性多样性和类药性而成为新药开发研究的重点,临床上应用的许多药物都直接或间接来源于天然产物,天然产物在新药开发、绿色生物农药研制、保健功能食品和天然化妆品开发中扮演了非常重要的角色[1-7]。 对天然产物的研究一直是科学家们特别关注的领域,尤其是天然产物的结构鉴定更被视为其中最为关键、困难的工作之一。天然产物数量巨大、结构类型繁多,特别是立体化学结构的测定尤为困难。早期研究中,天然产物的结构确定主要是通过各种化学反应如制备衍生物、化学降解甚至全合成方法对照等手段来完成,最初一个复杂化合物的结构鉴 收稿日期:2016-02-26 基金项目:河北省重点基础研究课题(15962704D);河北省中医药管理局课题(2016040);河北省教育厅重点课题(ZD2016093);河北省重点课题(ZD2016093);河北医科大学教育科学研究重点课题资助项目(2012yb-19,2014yb-21);2016年河北医科大学校内科研发展基金(kyfz111) 作者简介:王思明(1988—),女,河北石家庄市人,药剂师。Tel: (0311)86265634 E-mail: fuyan0228@https://www.360docs.net/doc/5210787453.html, *通信作者刘江(1968—),女,河北石家庄市人,主任药剂师。 史清文(1964—),男,河北沧州人,教授,博士生导师,主要从事天然产物中活性成分的研究。 Tel: (0311)86261270 86265634 E-mail: shiqingwen@https://www.360docs.net/doc/5210787453.html,

天然药物化学实验讲义

天然药物化学实验讲义目录 一、芦荟粗多糖的提取及鉴定 二、大黄中蒽醌苷元的提取、分离与鉴别 三、槐米中芦丁、槲皮素的提取、分离与鉴别 四、八角茴香挥发油的提取及鉴别 五、黄柏中生物碱的提取、分离和鉴别 六、茶叶中咖啡因的提取 前言 《天然药物化学实验》是一门实践性很强的课程,理论教学与实验教学是一个不可分割的完整体系。通过实验课的学习使学生能印证并加深理解课堂讲授的理论知识,掌握由天然药物中提取、分离、精制有效成分,并对其进行鉴别的基本方法和技能,提高学生独立动手、观察分析、解决问题的能力,培养学生严谨的科学态度和良好的科研作风。

实验一芦荟粗多糖的提取及鉴定 一、实验目的 1、水提醇沉法提取多糖的原理和方法 2、掌握高速冷冻离心机、旋转蒸发器等仪器的用法 3、了解芦荟多糖在医药中的应用 二、实验原理 芦荟的多糖类可增强人体对疾病的抵抗力,治愈皮肤炎、慢性肾炎、膀胱炎、支气管炎等慢性病症,抑制、破坏异常细胞的生长的作用,从而达到抗癌目的。植物体内的可溶性糖主要是指能溶于水及乙醇的单糖和寡聚糖,所以本实验采用水提醇沉法提取芦荟中的粗多糖。 三、试剂、材料及仪器 1、试剂:盐酸、无水乙醇、丙酮、乙醚、葡萄糖对照品、苯酚、浓硫酸 2、材料和仪器:芦荟叶、烧杯、移液管、量筒、容量瓶、玻璃棒、旋转蒸发仪、电子天平、真空泵、电热恒温水浴锅、紫外-可见分光光度计、高速离心机、真空冷冻干燥机。 四、实验方法与步骤 1、取芦荟鲜叶50g,洗净,去掉叶尖和叶底,在蒸馏水水中浸泡0.5h,已除去由表面滲出的黄色液体。然后切去表皮,将内层凝胶(匀浆后)置于烧杯中,加入三倍蒸馏水,置于55℃恒温水浴锅中加热浸提4h。 2、浸提液离心分离(2500r/min,5min)并过滤(直接6层纱布过滤),将所得液汁减压浓缩(至30ml),用6mol/L的盐酸调pH值3.2左右,向经过调酸处理的芦荟凝胶浓缩汁中缓慢加入6倍量的95%乙醇,边加边搅拌大约需要15~30min,室温下静置2h,离心分离(2500r/min,7min)得多糖沉淀。依次用乙醇、丙酮和乙醚洗涤,然后真空干燥(通风橱干燥),最终得到的沉淀即为芦荟多糖粗品。 3、芦荟多糖的鉴定 对芦荟多糖的鉴定利用改进的苯酚一硫酸法。苯嘞一硫酸试剂能与芦荟多糖中的己糖起显色反应,在一定波长下其吸光度的变化与多糖含量呈线性关系。采用苯酚一硫酸显色法鉴定芦荟多糖,芦荟中的多糖在硫酸的作用下,先水解成单糖,并迅速脱水生成糠醛衍生物,然后和苯酚缩合成有色化合物共轭酚在490nm处有最大波长,由此可以鉴定出芦荟中的多糖(图1)。

天然药物化学期末知识点整理.doc

精品资料
第一章 总论
1.常用的天然化学成分的提取、分离、鉴定方法
提取
溶剂提取法 水蒸气蒸馏法 超临界流体提取法 升华法、超声波提取法、微波提取法
分离纯化
㈠ 两相溶剂萃取法: 溶剂法、逆流分配法 萃取操作要尽量防止乳化,破坏乳化的方法:①轻度乳化可用金属丝在乳 化层搅拌使之破坏;②乳化层加热或冷冻使之破坏;③长时间放置使之自 然分层;④将乳化层抽滤;⑤加入表面活性更大的表面活性剂;⑥乳化离 心
㈡ 系统溶剂分离法:适用于有效成分为未知的药材 ㈢ 结晶法:根据溶解度差别分离
操作:加热溶解、趁热过滤、放冷析晶、再抽滤 结晶纯度的判断:①形状和色泽:形状一致,色泽均一
②熔点和熔距:熔点不下降、熔距<2℃ ③TLC:3 种不同系统的展开剂、单一圆整的斑点 ㈣ 沉淀法:根据溶解度差别分离 ① 溶剂提取法:水提醇沉法、醇提水沉法;②酸碱沉淀法 ㈤ 色谱法:P22
2.溶剂提取法与水蒸气蒸馏法的原理、操作及其特点 ⑴溶剂提取法 ·根据被提取成分的性质和溶剂性质
浸渍法、渗漉法:热不稳定,不能加热 煎煮法:提取原生苷类,杀酶保苷
不宜用于遇热易被破坏或具有挥发性的化学成分的提取 提取方法
回流提取法:溶剂用量较大且含受热易被破坏有效成分的天然药物不宜用此法 连续回流提取法:提取效率最高且与虹吸次数有关
1、水(可提出氨基酸、糖类、无机盐等水溶性成分) 2、亲水性有机溶剂:丙酮或乙醇、甲醇(可提出苷类、生物碱盐以及鞣质 等极性化合物 3、亲脂性有机溶剂: 石油醚或汽油(可提取油脂、蜡、叶绿素、挥发油、游离甾体及三萜化合物) 三氯甲烷或乙酸乙酯(可提取游离生物碱、有机酸及黄酮、香豆素的苷元等 中等极性化合物)

天然药物化学基础试卷B

第1页 (共8页) 第2页 (共8页) 密 班级 姓名 学号 考试地点 密 封 线 内 不 得 答 题 2018--2019学年第一学期期末考试试卷(B 卷) 课程 天然药物化学基础 适用班级17药剂1班、17药剂2班 份数 102 本试卷共6页,满分100 分;考试时间:90 分钟;考试方式:闭卷;命题人:林文城 1、根据不同性质的化学成分,请用连线选择与其相适应的色谱分离方法。 1、采用液-液萃取法分离化合物的原则是( ) A 、两相溶剂互溶 B 、两相溶剂互不溶 C 、两相溶剂极性相同 D 、两相溶剂极性不同 E 、两相溶剂亲脂性有差异 2、极性最小的溶剂是( ) A 、丙酮 B 、乙醇 C 、乙酸乙酯 D 、水 E 、正丁醇 3、可作为提取方法的是( ) A 、色谱法 B 、结晶法 C 、两相溶剂萃取法 D 、水蒸气蒸馏法 E 、盐析法 3、下列溶剂能与水互溶的是( ) A 、乙醚 B 、氯仿 C 、苯 D 、石油醚 E 、甲醇 4、萃取分离法通常选用的两相溶剂是( ) A 、水-亲脂性有机溶剂 B 、两相能混溶的溶剂 C 、水-亲水性有机溶剂 D 、乙酸乙酯-石油醚 E 、亲水性有机溶剂-亲脂性有机溶剂 5、天然药物化学研究的对象是( ) A 天然药物中的化学成分 B 、化学药物的药理作用 C 、生物药物的药理作用 D 、天然药物的功效 E 、化学药物中的化学成分 6、下列方法不能用于除去鞣质的是( ) A 、热处理冷藏法 B 、聚酰胺吸附法 C 、明胶沉淀法 D 、乙醇沉淀法 E 、铅盐沉淀法 7、下列哪项不是有机酸的性质( ) A 、具有酸性 B 、可与碱反应生成盐 C 、其铅盐易溶于水 D 、能被醋酸铅沉淀 E 、可溶于碳酸氢钠溶液 一、连线题:(每小题2分,共10分) 二、选择题题:(每小题1分,共20分)

天然药物化学探究进展

天然药物化学的研究进展 摘要:结合当今世界医药研究的新方向,我们不难看出在今后相当长的时间里,世界医药研究的新方向应该是生物制药。这并不是空穴来风。有专家认为本世纪药物化学的发展趋势为生物化学的发展,是因为:生命科学,如结构生物学、分子生物学、分子遗传学、基因学和生物技术的超速进展,为发现新药提供理论依据和技术支撑。随着科学技术的日益发展,人们对天然药物化学的研究也发生了重大的变化,层分离技术和各种光谱分析法,对天然药物成分复杂,含量少。不容易分离的得到很大的解决。则本文对天然药物化学的研究进展作一综述。 关键词:天然药物;研究;方法。

The research progress of natural medicine chemistry Abstract:With the development of science and technology, the study of natural medicinal chemistry has undergone a major https://www.360docs.net/doc/5210787453.html,yer separation technology and various spectral analysis method, the natural medicine composition is complicated, less content.Not easy to separate greatly solve.Progress in the study of natural medicinal chemistry, this paper made a review.

药物化学史 - 论文

药物化学史 摘要:阐明了药物化学从古至今的发展历史以及一些重大发现与成就的事例。 关键词:药物化学/历史/药物发现 一、汤剂、草药及炼丹的时代 古代外国文明都是将植物提取物作为药用,主要依赖于偶然的发现和仔细的观察,如: 1.美国印第安(Andcan) 山区的信使和锻矿工人咀嚼可可叶作为兴奋荆和欣快剂,在宗教仪式上人们也服用各种含有拟精神病和致幻化合物的蘑菇,南美印第安人用毒藤做成箭毒树脂来馀抹在弓箭及武器上。 2.罂粟汁在公元前三世纪就用作镇痛药,对它的了解或许更早些.瑞士炼丹术士菲利普斯·帕拉塞尔瑟斯(Philippus Paracelsus)制出鸦片酊,得到纯度较高的鸦片提取物。吸鸦片终于在十八世纪形成潮流,这或许是药物滥用之先端。 3.十三世纪阿拉伯炼金术士杜撰出点金石,人们希望得到万应灵药和长生不老药,这对对植物提取物的热情有所下降,后来一些人信奉无机药物三大“素”—盐、硫黄和汞。后者以甘汞丸剂形式流传下去,主要用于利尿[1]。又如秋水仙-缓解关节疼痛、古柯叶-增加耐力和抵御饥饿、金鸡纳树树皮-高烧和疟疾等等 中国古代主要是本草的药物化学的发展。中国古代著名的《本草》,有《神农本草经》(公元前221年至公元后265年)、《神农本草经集注》、《名医别录》(公元502~536 年)、《新修本草》(唐本草,公元659年)、《开宝本草》(公元968-975年)、《经史证类备急本草》(证类本草,公元1108年)、《本草纲目》(1596年)等。特别是李时珍(1518~1593年)所著的《本草纲目》,从1596年明万历52卷金陵原捌印本问世至1912年,已有14种版本《本草纲目》的各国译本或专部译本,自1735-1941年有法文本、日文本、德文本、英文本,共计14种之多。《本草纲目》的广泛传播,对中国各民族的繁衍昌盛有不可磨灭的贡献,对世界各国医药发展亦有巨大影响。 下面阐述下中国古代药物化学的主要成就: 1.冶金与金属化学药物的实践、发现和发明 “金”自古用为定神、强壮药物。“银”也是定神镇惊药,《唐本草》中已有记载。“砒石”为砷矿,首载于《开宝本草》,为治疟、催吐、疗疮药,有大毒。葛洪在《拖朴子·仙药》中记述硝石、雄黄合炼,其升华物飞之如烟云(布)“白如冰”。 2.炼丹与无机台成化学药物的实践、发现和发明 古代炼丹盛行以求长生不老药。晋朝著名炼丹家葛洪(公元281~341年)《抱朴子》中,详述了炼丹方法和一些化学的实践知识。“红升丹”(红粉)由水银、硝石、白矾等炼制,赤者为红升丹,黄者为黄升丹,系不同晶形的氧化汞(HgO)。古文献《周礼·天官》(公元前256年前)中已有炼丹的文字,《本经》及《别录》记述“水银熔化还复为丹”。3.升华制备药暂的实践、发现和发明 中国古代炼丹米的实践发展了升华法制备药物砒霜、灵砂、银朱、轻粉亚铅华等化学药物的制备,都与升华法有关《本草纲目》炼樟脑法的记载甚详。这种精制方法,可以说明升华法已广泛应用“樟脑。最早见于洪道的《集验方》(1170年)一书,由马可渡罗带到西方《本草品汇精要》(1506年)中也有收载欧洲19世纪初(1832年)才提制到樟脑。 4.汞齐合金技术与本草化学药物制备 公元前221年前出土文物中,有镀金器皿,汉末献帝(公元190年)时有“黄金涂身”的记

天然药物化学实验报告(槲皮素的提取与鉴别)

天然药物化学实验报告 一、实验题目:槐米中槲皮素的提取分离及结构鉴定 二、实验目的: 通过对该选题进行资料查阅、方案设计、试验、结果分析等,让我自己学到一套系统、完整的槐米药效成分芦丁和槲皮素进行基源鉴定、提取、分离和结构鉴定的方法,并通过此项训练,提高自己的动手操作能力及综合运用自己所学知识的能力,培养自己独立思考、分析问题、解决问题的能力。 掌握槐米中槲皮素的提取及提取方法 了解槲皮素的药理作用及应用价值 掌握槲皮素的纯度检测 掌握槲皮素的结构鉴定的方法 三、实验基本原理: 本实验主要利用黄酮类化合物虽然有一定的极性,可溶于水,但却难溶于酸性水,易溶于碱性水,故可用碱性水提取,再将碱水提取液调成酸性,黄酮苷类即可沉淀析出。以槐米为原料,采用煎煮法提取槐米有效成分芦丁,然后酸溶液水解获得槲皮素粗品,乙醇重结晶获得槲皮素精品。 四、实验所用试剂、仪器的型号及生产厂家: (一)实验试剂,见下表: 序号名称数量规格生产厂家 1 95%乙醇溶液25ml 500ml/瓶 AR 天津天力 2 浓H2SO4 12ml 500ml/瓶 AR 天津天力 3 甲醇10ml 500ml/瓶 AR 天津天力 4 无水乙醇43ml 500ml/瓶 AR 天津天力 5 纯净水1500ml 18L/桶万家纯水 6 硅胶GF254 30g 500g/瓶 青岛海浪 薄层层析

(二)实验仪器,见下表: 序号名称数量型号生产厂家 1 电子天平1台IM-B200 2 余姚市纪铭称量校验设备有 限公司 2 圆底烧瓶1个GG-17 1000ml 蜀牛 3 烧杯1个GG-17 1000ml 蜀牛 4 烧杯1个 GG-17 500ml 环球 5 烧杯1个GG-17 250ml Jing Xing 6 量筒1个100ml BOMEX 7 量筒1个10ml 旌湖 8 直型冷凝 管 1个BOMEX 9 75?弯管1个 10 橡胶管2条 11 移液管1个10ml 12 玻璃棒1个直径7mm 长40cm 高邮亚泰 13 尾接管1个BZ24129 HENG TAJ 14 布氏漏斗1个 15 抽滤瓶1个GG-17 500ml 蜀牛 16 滤纸1张 17 玻璃漏斗1个 18 研钵1套 19 胶头滴管1个 20 薄层板10个 21 展开缸1个P-1 100×100 上海信谊仪器 厂 22 紫外光谱 仪 1台 UV-8三用紫外分 析仪 无锡科达仪器 厂 23 熔点测定 仪 1台 X-6显微熔点测定 仪 北京泰克仪器 有限公司 24 真空泵1台SHD-III型循环水 式多用真空泵 保定高新区阳 光科教仪器厂 25 电热套1台98-1-C型数字控 温电热套 天津市泰斯特 仪器有限公司

天然药物化学期末考试题及答案

2010年秋季学期期末考试 试卷(A) 考试科目:天然药物化学考试类别:初修 适用专业:制药工程 学号:姓名:专业:年级:班级: 1分,共20分)每题有4个备选答案,请从中选出1个最佳答案,将其序号字母填入括号内,以示回答。多选、错选、不选均不给分。 1.下列溶剂中极性最强的溶剂是:() A.CHCl 3 O B. Et 2 C. n-BuOH CO D. M 2 2. 能与水分层的溶剂是:() A.EtOAC B. Me CO 2 C. EtOH D. MeOH 3.两相溶剂萃取法分离混合物中各组分的原理是:() A.各组分的结构类型不同 B.各组分的分配系数不同

C.各组分的化学性质不同 D.两相溶剂的极性相差大 4. 下列生物碱碱性最强的是:( ) A. 麻黄碱 B. 伪麻黄碱 C. 去甲麻黄碱 D. 秋水酰胺 5. 下列黄酮类化合物酸性最强的是:( ) A. 黄苓素 B. 大豆素 C. 槲皮素 D. 葛根素 6.中药黄苓所含主要成分是:( ) A. 生物碱类 B. 二氢黄酮类 C. 查耳酮类 D.黄酮类 7.葡聚糖凝胶分离混合物的基本原理是 A. 物理吸附 B. 离子交换

C. 分子筛作用 D. 氢键作用 8.阳离子交换树脂一般可以用于分离:()A.黄酮类化合物 B.生物碱类化合物 C.有机酸类化合物 D.苷类化合物 9.P-π共轭效应使生物碱的碱性:()A.增强 B.无影响 C.降低 D.除胍外都使碱性降低 10.供电诱导效应一般使生物碱的碱性:()A.增强 B.降低 C.有时增强,有时降低 D.无影响 11.大多数生物碱生物合成途径为:()A.复合途径

天然药物化学研究与新药开发-胡国强

天然药物化学研究与新药开发 姓名:曹宁专业:药理学学号:104753141002 摘要: 自从有人类历史以来, 天然药物一直是人类防病治病的主要来源。天然产 物是自然界的生物历经千百万年的进化过程通过自然选择保留下来的二次代谢产物, 具有化学多样性、生物多样性和类药性。临床上应用的许多药物都直接或间接来源于天然产物, 如天然产物可作为药物半合成的前体物、药物化学合成的模板以及为药物设计提供了新的思路。但是在20 世纪80~ 90 年代, 由于受高通量筛选和组合化学的影响, 天然药物的研究一度进入低谷。近10 年来天然药物化学在新药研发 中的作用又重新受到科学家的重视, 天然产物已成为发现治疗重大疾病的药物或重要先导化合物的主要源泉之一。现就天然药物化学在新药开发中的作用进行了回顾与总结, 并对其前景进行了展望。 关键词: 天然药物化学; 新药研发; 回顾与展望 21 世纪是世界制药工业充满生机和剧烈竞争的世纪, 我国制药产业由于研发 能力严重滞后等原因, 许多制药公司面临生死存亡的关键选择。制药产业是国际公认的国际化朝阳产业, 药品是国际贸易交换量最大的15 类产品之一, 也是国际贸 易中增长最快的5 类产品之一。药物作为保障人类生命与健康的特殊商品, 也决定了药物研发过程的复杂性和艰巨性, 因此药物制造业成为高投入、高风险、高科技、长周期, 但是高利润的产业。由于世界各国法律赋予新药的特殊地位使其在一定时期内具有垄断性质, 同时新药开发并成功上市往往为药厂带来极其巨大的利润, 所以开发新药是世界各大药企争取市场份额、扩大利润的重要途径, 寻找新的先导化合物开发新药被各大制药企业视为生命线。目前合成药物开发难度越来越大, 表现在开发费用激增、周期延长、成功率大幅下降、造成的环境污染越来越严重等, 所以科学家又重新将新药开发的目光关注到天然产物上, 尤其是天然抗癌药物紫杉醇( tax ol) 的发现更使科学家对从天然产物中发现新药充满了信心。地球上存在的25~ 35 万种高等植物一直是药物的主要来源, 至今世界上仍有约75% 的人口主要 依靠这些高等植物作为最基本医疗保健来源, 植物提取物是国际天然医药保健品市场上一种新的产品形态[ 1]。自然界的生物在其漫长的进化过程中合成了许许多多结

相关文档
最新文档