有限元软件进行疲劳分析的若干问题

有限元软件进行疲劳分析的若干问题
有限元软件进行疲劳分析的若干问题

首先要明确我们大体上遇到的疲劳问题均为高周疲劳问题(当然不排除个别如压力容器和燃气轮机的零件疲劳问题),应力水平较低,破坏循环次数一般大于十的四次方或五次方。疲劳设计和寿命预测方法一般有无限长寿命设计法和有限寿命设计法。无限寿命设计法使用的是S-N曲线的右段水平部分(疲劳极限),而有限寿命设计法使用的是S-N曲线的左段斜线部分。有限寿命设计的设计应力一般高于疲劳极限,这时就不能只考虑最高应力,而要按照一定的累积损伤理论估算总的疲劳损伤。

大多数零件所受循环载荷的幅值都是变化的,也就是说,大多数零件都是在变幅载荷下工作。变幅载荷下的疲劳破坏,是不同频率和幅值的载荷所造成的损伤逐渐积累的结果。因此,疲劳累计损伤是有限寿命设计的核心问题。

一般常用三种累积损伤理论,其各自适用范围如下:

线性疲劳累积损伤理论适合于高周疲劳寿命计算,可较好地预测疲劳寿命均值。线性累计损伤理论指的是损伤积累与循环次数成线性关系,包括Miner法则和相对Miner法则;Miner 理论的表达式为(D为损伤)

修正的线性疲劳累积损伤理论适合于低周疲劳寿命计算;

而非线性疲劳累积损伤理论对二级加载情况的疲劳寿命估算比较有效。非线性累计损伤理论包括损伤曲线法和Corten-Dolan理论。

要注意的是,只有当应力高于疲劳极限时,每一循环使结构产生一定量的损伤,这种损伤是累积的;当应力低于疲劳极限时,由于此时N将无穷大,因此,它的循环便不必考虑。

国内外常用的疲劳设计方法-安全寿命法的具体步骤为:

1. 得到用于疲劳计算的载荷谱;

2. 计算构件各位置的应力历程;

3. 利用计数法(如雨流法)将应力历程整理为不同应力幅及其相应的循环次数;

4. 由S-N曲线得到应力幅对应的使用极限;

5. 利用累积损伤理论(如Miner准则)计算总损伤;

6. 计算安全寿命Ts=TL/D

MSC.Fatigue软件与此方法结合的很好,然而,有限元法解决实际工程中的疲劳问题还有一些问题:

1. 目前疲劳理论对于材料微裂纹的形成和扩展过程中的某些效应无法全面彻底地分析其机理,因此在此基础上发展而来的各种方法在某些情况下可能导致结果误差很大;

2. 各种疲劳分析有限元法对应力类型及作用方式十分敏感,而实际工程中这些因素往往无法精确得到,造成结果分散性相当大;

3. 很难预先判断易发生疲劳破坏的危险区域,而想要对其中所有可能发生初始裂纹的节点进行细化建模分析目前显然不太现实;

4. 不确定因素如载荷时间历程的复杂性、模型试验结果的分散性、残余应力及腐蚀影响等,可能导致结果与实际情况存在量级上的偏差。

对于常用的疲劳分析软件Fatigue,其自带三种分析方法适用范围如下:

1. S-N曲线总寿命分析法:

疲劳寿命相当长的结构,且很少发生塑性变形;

裂纹初始化及裂纹扩展模型不适用的结构如复合材料、焊接材料、塑料以及一些非钢结构;已有针对结构的大量现成S-N数据的情形;

焊接热点区域疲劳分析以及随机振动引发的疲劳问题。

2. 适用裂纹初始化分析法的情形:

基本没有缺陷的金属构件;

对安全性要求高,把初始裂纹的发生作为疲劳失效准则的构件;

确定哪些节点可能会发生疲劳初始裂纹并研究裂纹扩展情况时;

分析结构使用不同材料以及不同表面处理情况的影响效应时;

各项同性且延展性强的金属材料构件,具有对称的循环应力-应变曲线;

塑性占据主要地位的低周疲劳。

3. 裂纹扩展分析法适用情形:

已有裂纹的结构及假定在制造阶段已经发生初始裂纹的结构,如焊接结构;

实现程序中的预报分析避免试件发生实际裂纹扩展;

在安排对结构的例行检查之前应进行裂纹扩展计算,从而确定常规检查频率的情形;

已发生初始裂纹后简单地计算结构的剩余寿命;

各项同性且延展性强的金属材料构件,具有对称的循环应力-应变曲线。

一般情况下常用全寿命(S-N)分析,它以材料或零件的应力为基础,用雨流循环计数法和Miner线性累积损伤理论分析。可以选择诸如平均应力修正方法和置信参数等不同参数,可以应用材料或零件的S-N曲线。这种方法对裂纹的产生和扩展不加以明确区分,能够预测到有较大损伤或破坏为止的总寿命。当然此方法还可以对材料在一系列循环载荷作用下各部位的损伤度、剩余寿命进行评价。

影响疲劳强度的主要因素有:

1. 平均应力。大部分疲劳测试是在R=-1(全对称循环载荷)下进行,若在其它R值下需要对S-N曲线进行修正,常用平均应力修正方法有古德曼与戈贝尔法。古德曼法偏于保守,真实值介于两者之间。用疲劳极限图表示,横坐标为平均应力,纵坐标为应力幅;

2. 尺寸效应。一般来讲尺寸越大,疲劳强度越低;

3. 载荷类型;

4. 缺口与不连续形状;

5. 表面处理及粗糙度。

有限元法进行疲劳分析

有限元法进行疲劳分析 1一、有限元法疲劳分析的基本思路 用有限元法进行疲劳分析,其基本思路是:首先进行静或动强度分析,然后进入到后处理器取出相关的应力应变结果,在后处理器中再定义载荷事件,循环材料特性,接着根据所需要的疲劳准则对每一个载荷事件进行寿命计算,最后根据累计损伤理论判断是否开始破坏。由于结构受力状态往往是一复杂的应力状态,而在实验中测得的结构材料S-N曲线又常是在简单应力状态下获得的,因此常用最小能量屈服准则或其它等效准则,将所研究的疲劳点上的复杂应力用一个等效应力替代。对有限元法而言,这一过程很容易实现。等效替代以后,即可参照原始材料的S-N曲线进行疲劳寿命评估。上述方法称之为应力-寿命法或S-N法,该方法不严格区分裂纹产生和裂纹扩展,而是给出结构发生突然失效前的全寿命估计。当然,还可以采用更加现代化的局部应变法或初始裂纹法。因篇幅所限,因此仅讨论S-N法,且针对车辆结构疲劳分析。 2二、疲劳分析 由于车辆结构的零部件属于低应力、高循环疲劳,故常使用Stress life准则,并使用修正Goodman图,此时,S-N曲线的经验公式修正为: 计算中需要的材料参数包括:弹性模量、疲劳强度系数、疲劳强度指数、强度极限。 其具体的分析过程是: 1.建立物理模型(Physical Model) 对于疲劳分析来说,物理模型即包含结点、单元、物理特性和材料特性的有限元模型。

2.建立数学模型(Mathematical Model) 数学模型也就是使用物理模型计算应力或应变。求解后,可从后处理器中获取相关的应力或应变。 3.载荷工况(Loading Conditions) 对于静态疲劳分析来说,可以用建立载荷函数的方式施加载荷。 4.定义事件(Events) 在进行疲劳评估之前,必须先定义事件。它由物理模型、数学模型、载荷工况组成,如图1-1所示。 5.评估(Evaluation) 一般来说,我们可进行下列估算: ·事件损伤(Event Damage)

有限元分析软件比较分析

有限元分析软件 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50 年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC 四个比较知名比较大的公司,其中ADINA、ABAQUS 在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC 进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA 以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS 软件与ANSYS 软件的对比分析: 1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。由于ANSYS 产品进入中国市场早于ABAQUS,并且在五年前ANSYS 的界面是当时最好的界面之一,所以在中国,ANSYS 软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域:ANSYS 软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS 则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3.性价比:ANSYS 软件由于价格政策灵活,具有多种销售方案,在解决常规的

(完整word版)有限元分析软件的比较

有限元分析软件的比较(购买必看)-转贴 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element A nalysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PA FEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件

利用有限元法分析汽车后轴的疲劳失效

利用有限元法对汽车后轴套失效分析 文章信息: 文章历史:发表于2008年8月14日,文库公认于2008年9月12日,2008年9月25日在网上刊登。 关键词: 后轴套,应力集中,疲劳失效,有限元分析 文章摘要: 对汽车后轴轴套样品出现在预期的负载周期的早期疲劳失效的分析。在这些试验中,裂纹主要出现在样品的同一区域。为了确定失效的原因,对后轴套进行了详细的CAD建模,轴套材料的力学性能通过拉伸试验确定。通过这些资料来对应力和疲劳强度进行有限元分析。在负载周期内疲劳裂纹产生的位置和最小数目决定了零件失效。对试验结果进行了比较分析。提出了解决现有问题的设计来提高轴套的疲劳寿命。 版权所有爱思唯尔(世界领先的科技及医学出版公司)2008 第一章前言 由于其高负荷能力,通常固体轴用于重型商用车辆。固体轴的结构可以从图1中看到。在车辆的使用寿命中,道路的表面粗糙度产生的动态力使轴套产生动态应力。这些力将导致轴套的疲劳失效,也就是整个车辆的主要承载部分。因此它是至关重要的,桥壳的疲劳破坏违背了可预测的使用寿命。在批量生产前,轴套样品由于动态垂直力导致的负荷能力和疲劳寿命应该通过疲劳试验确定,如图2所示。

这些试验中,一个可以检测液动执行机构采用循环垂直荷载作用于样品上,直到疲劳裂纹的产生。根据一般标准,轴套样品必须承受5×105N的载荷循环而不产生疲劳失效。在对一根非对称轴套的垂直方向疲劳测试中,如图3所示,在极限载荷循环前,疲劳裂纹在某些轴上开始产生。通过观察,最小的载荷循环为3.7×105N时,便产生疲劳失效。在这些试验中,裂纹产生于E1到E2的班卓过度区域。可以从失效的实例中看出,如图4所示。 为了预测失效的原因,一份详细的轴套实体模型通过CATIA V5R15商业软件创建。利用该模型,建立有限元模型。应力和疲劳强度分析是在ANSYS V11.0商业有限元软件中进行的。轴套材料力学性能通过拉伸试验并由FE分析获得。车轴最大动态力负荷,通过RecurDyn软件进行车辆动态仿真获得。通过这些分析,可以获得集中应力产生的区域。通过进行疲劳强度分析,可以建立一份把疲劳强度的因素加以考虑轴套材料的S-N曲线。把分析结果与轴套垂直方向上的疲劳强度试验进行比较。为了防止提前失效和增强疲劳寿命,提出了一些优化设计建议。

各种有限元分析软件比较

各种有限元分析软件比较 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析具有确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费等作用,越来越被应用,越来越的有限元分析也不断被开发出来,当我们在做有限元分析时,我们该选择什么样的软件?或者我们该学习什么软件?成了大多数人困惑的问题。看板网根据自己超过十年的有限元分析项目经验和培训经验,对各种有限元分析软件进行了一些比较,希望大家在选择时能够大家做参考。 有限元分析常用软件 国外软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有三维结构设计方面的UG,CATIA,Proe等都是比较强大的。 国内软件 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS等。 当然首先要明确你要用这个软件进行什么分析,一般会用到有限元分析的地方有:1.模流分析;2.结构强度分析;3.电磁场分析;4.谐响应分析(比如查找共振频率);5. 铸造分析。等等 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 workbench是一个综合性的有限元分析软件,几乎囊括了所有有限元分析领域,传统的优势领域有强度分析、谐响应分析和电磁分析。workbench是ansys

各大CAE软件特点比较

有限元分析软件比较 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS 专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA 是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1.在世界范围内的知名度: 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域: ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次

基于有限元的疲劳设计分析系统MSC_FATIGUE_林晓斌

3 Ba nnantine J A ,Co mer J J ,Handrock J L .Fundamentals o f M etal Fa tig ue Ana ly -sis.Pretice Hall,1990. 4 鲍万年.机械强度有限寿命设计专家工作站配置的疲劳寿命预测和局部应变法.中国机械工程,1997,8(3): 25~27 5 nCode Internatio na l Limited.The n Code Boo k o f Fa-tig ue Theo ry ,1997. 6 林晓斌,Hey es P J .多轴疲劳寿命工程预测方法.中国机械工程,1998,9(11): 20~23 7 Halfpenny A ,林晓斌.基于功率谱密度信号的疲劳寿命估计.中国机械工程,1998,9(11): 16~19 8 Austen I M ,林晓斌.加速疲劳试验的疲劳编辑技术.中国机械工程,1998,9(11):27~30 9 Ensor D F ,林晓斌.关联用户用途的试车技术.中国机 械工程,1998,9(11): 24~28 林晓斌 男,1963年生。英国n Cod e 国际有限公司高级疲劳工程师、英国Sheffield 大学客座研究员。1978~1990年在浙江大学学习工作,主要从事压力容器的安全性研究。1994年获英国Sh effield 大学博士学位,接着做了近两年的博士后研究,在疲劳裂纹形状扩展研究领域取得了国际性领先成果。1996年加入nCode,从事疲劳新技术的开发研究,已开发了多轴疲劳寿命分析工具。当前的研究包括多轴疲劳、热机疲劳、疲劳裂纹形状扩展模拟、压力容器及管道的疲劳断裂等。发表论文40篇。 基于有限元的疲劳设计分析系统M SC /FA TIGU E Pete r J .Heyes 博士 Peter J .Heyes 林晓斌译 摘要 简单描述了基于有限元分析结果进行疲劳寿命分析的思路,着重 介绍了根据时域载荷输入计算构件内各点弹性应力应变响应的各种方法,以 及从弹性应力应变结果近似计算弹塑性应力应变历史,并考虑多轴影响的各种途径;简单介绍了几种包含在M SC /FATIGUE 中的疲劳寿命计算方法及其各自的特点;总结了M SC /FA TIGU E 系统的功能和特点,并给出了一个转向节疲劳分析例子。 关键词 疲劳设计 有限元分析 计算机辅助工程中国图书资料分类法分类号 TP202 TB115 产品的疲劳寿命是现代设计的一个重要指标,因为随着市场竞争的日趋激烈,产品的寿命对用户来说显得愈来愈重要。与传统的静强度设 计相比,疲劳寿命设计需要了解产品的使用环境,应用现代疲劳理论,并结合试验验证,以确保所需要的设计寿命。 发达国家目前在产品设计中已大量使用计算机模拟技术,其中的有限元技术已经成为一种不可缺少的分析工具。根据有限元获得的应力应变结果进行进一步的疲劳寿命设计已经在一些重要的工业领域(如汽车、航空航天和机器制造等)开始得到应用。因为,与基于试验的传统方法相比,有限元疲劳计算能够提供零部件表面的疲劳寿命分布图,可以在设计阶段判断零部件的疲劳寿命薄弱位置,通过修改设计可以预先避免不合理的 收稿日期: 1998—09—03 寿命分布。因此,它能够减少试验样机的数量,缩短产品的开发周期,进而降低开发成本,提高市场竞争力。 1 技术背景 疲劳寿命计算需要知道载荷的变化历史、结构的几何参数,以及有关的材料性能参数或曲线,疲劳计算的简单流程图见本期第13页。 用有限元计算疲劳寿命通常分为两步:第一步是根据载荷和几何结构计算中的应力应变变化历史,对于一个实验工程构件,通常在多个位置同时承受不同的动态载荷,构件的几何形状也往往很复杂,计算这样一个动态应力应变响应,是有限元分析的主要任务。一旦获得应力应变响应,结合材料性能参数,我们就可以应用不同的疲劳损伤模型进行寿命计算,这是第二步。疲劳寿命的理论预测精度既依赖于应力应变响应的正确模 · 12·中国机械工程1998年第9卷第11期

有限元分析及应用大作业

有限元分析及应用大作业 作业要求: 1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 也可根据自己科研工作给出计算实例。 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界 条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的 影响分析、不同网格划分方案对结果的影响分析等) 题一:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(注意ANSYS中用四边形单元退化为三节点三角形单元) 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 解:1.建模: 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作

用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况P=98000-9800*Y;建立几何模型,进行求解;假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3; 2:有限元建模过程: 2.1 进入ANSYS : 程序→ANSYS APDL 15.0 2.2设置计算类型: ANSYS Main Menu: Preferences →select Structural →OK 2.3选择单元类型: ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 182(三节点常应变单元选择Solid Quad 4node 182,六节点三角形单元选择Solid Quad 8node 183)→OK (back to Element Types window) →Option →select K3: Plane Strain →OK→Close (the Element Type window) 2.4定义材料参数: ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 →OK 2.5生成几何模型: 生成特征点: ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS →依次输入四个点的坐标:input:1(0,0),2(10,0),3(1,5),4(0.45,5) →OK 生成坝体截面: ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接四个特征点,1(0,0),2(6,0),3(0,10) →OK 2.6 网格划分: ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条直角边:OK→input NDIV: 15 →Apply→依次拾取斜边:OK →input NDIV: 20 →OK →(back to the mesh tool window)Mesh:Areas, Shape: tri, Mapped →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window) 2.7 模型施加约束: 给底边施加x和y方向的约束: ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On lines →pick the lines →OK →select Lab2:UX, UY →OK 给竖直边施加y方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数: 98000-9800*{Y};3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file:将需要的.func文件打开,参数名取meng,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取竖直边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷为meng参数名→OK 2.8 分析计算: ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load

(完整)各种有限元分析软件比较

(完整)各种有限元分析软件比较 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)各种有限元分析软件比较)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)各种有限元分析软件比较的全部内容。

各种有限元分析软件比较 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统. 有限元分析具有确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题;模拟各种试验方案,减少试验时间和经费等作用,越来越被应用,越来越的有限元分析也不断被开发出来,当我们在做有限元分析时,我们该选择什么样的软件?或者我们该学习什么软件?成了大多数人困惑的问题。看板网根据自己超过十年的有限元分析项目经验和培训经验,对各种有限元分析软件进行了一些比较,希望大家在选择时能够大家做参考。 有限元分析常用软件 国外软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有三维结构设计方面的UG,CATIA,Proe等都是比较强大的。 国内软件 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS等。 当然首先要明确你要用这个软件进行什么分析,一般会用到有限元分析的地方有:1。模流分析;2.结构强度分析;3。电磁场分析;4。谐响应分析(比如查找共振频率);5。铸造分析。等等 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下.ABAQUS 专注结构分析目前没有流体模块.MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。

有限元软件进行疲劳分析的若干问题

首先要明确我们大体上遇到的疲劳问题均为高周疲劳问题(当然不排除个别如压力容器和燃气轮机的零件疲劳问题),应力水平较低,破坏循环次数一般大于十的四次方或五次方。疲劳设计和寿命预测方法一般有无限长寿命设计法和有限寿命设计法。无限寿命设计法使用的是S-N曲线的右段水平部分(疲劳极限),而有限寿命设计法使用的是S-N曲线的左段斜线部分。有限寿命设计的设计应力一般高于疲劳极限,这时就不能只考虑最高应力,而要按照一定的累积损伤理论估算总的疲劳损伤。 大多数零件所受循环载荷的幅值都是变化的,也就是说,大多数零件都是在变幅载荷下工作。变幅载荷下的疲劳破坏,是不同频率和幅值的载荷所造成的损伤逐渐积累的结果。因此,疲劳累计损伤是有限寿命设计的核心问题。 一般常用三种累积损伤理论,其各自适用范围如下: 线性疲劳累积损伤理论适合于高周疲劳寿命计算,可较好地预测疲劳寿命均值。线性累计损伤理论指的是损伤积累与循环次数成线性关系,包括Miner法则和相对Miner法则;Miner 理论的表达式为(D为损伤) 修正的线性疲劳累积损伤理论适合于低周疲劳寿命计算; 而非线性疲劳累积损伤理论对二级加载情况的疲劳寿命估算比较有效。非线性累计损伤理论包括损伤曲线法和Corten-Dolan理论。 要注意的是,只有当应力高于疲劳极限时,每一循环使结构产生一定量的损伤,这种损伤是累积的;当应力低于疲劳极限时,由于此时N将无穷大,因此,它的循环便不必考虑。 国内外常用的疲劳设计方法-安全寿命法的具体步骤为: 1. 得到用于疲劳计算的载荷谱; 2. 计算构件各位置的应力历程; 3. 利用计数法(如雨流法)将应力历程整理为不同应力幅及其相应的循环次数; 4. 由S-N曲线得到应力幅对应的使用极限; 5. 利用累积损伤理论(如Miner准则)计算总损伤; 6. 计算安全寿命Ts=TL/D MSC.Fatigue软件与此方法结合的很好,然而,有限元法解决实际工程中的疲劳问题还有一些问题: 1. 目前疲劳理论对于材料微裂纹的形成和扩展过程中的某些效应无法全面彻底地分析其机理,因此在此基础上发展而来的各种方法在某些情况下可能导致结果误差很大; 2. 各种疲劳分析有限元法对应力类型及作用方式十分敏感,而实际工程中这些因素往往无法精确得到,造成结果分散性相当大; 3. 很难预先判断易发生疲劳破坏的危险区域,而想要对其中所有可能发生初始裂纹的节点进行细化建模分析目前显然不太现实; 4. 不确定因素如载荷时间历程的复杂性、模型试验结果的分散性、残余应力及腐蚀影响等,可能导致结果与实际情况存在量级上的偏差。 对于常用的疲劳分析软件Fatigue,其自带三种分析方法适用范围如下: 1. S-N曲线总寿命分析法: 疲劳寿命相当长的结构,且很少发生塑性变形; 裂纹初始化及裂纹扩展模型不适用的结构如复合材料、焊接材料、塑料以及一些非钢结构;已有针对结构的大量现成S-N数据的情形; 焊接热点区域疲劳分析以及随机振动引发的疲劳问题。 2. 适用裂纹初始化分析法的情形: 基本没有缺陷的金属构件;

基于模态应力恢复的有限元疲劳分析法_张林波

第15卷增刊计算机辅助工程 V ol. 15 Supp1. 2006年9月COMPUTER AIDED ENGINEERING Sep. 2006 文章编号:1006-0871(2006)S1-0202-03 基于模态应力恢复的有限元疲劳分析法 张林波,黄鹏程,柳杨,瞿元 (奇瑞汽车有限公司乘用车工程研究院,安徽芜湖 241009) 摘要:结合实例介绍基于模态应力恢复的有限元疲劳分析法及分析流程,它是一种综合 MSC Nastran, MSC Adams及MSC Fatigue的疲劳寿命集成化仿真方法,非常适合汽车零部件 的有限元疲劳分析. 关键词:模态;应力恢复;有限元;疲劳;汽车 中图分类号:O241.82;U461.7 文献标志码:A FEM-based Fatigue Analysis Using Modal Stress Recovery Method ZHANG Linbo, HUANG Pengcheng, LIU Yang, QU Yuan (Passenger Vehicle Product Development, Chery Automobile Co., Ltd., Wuhu Anhui 241009, China) Abstract: The FEM-based fatigue analysis method and procedure are described through an example. The method is an integrated fatigue simulation method using MSC Nastran,MSC Adams and MSC Fatigue together, which is useful to the fatigue analysis for automobile components. Key words: mode shape; stress recovery; fatigue; finite element; automobile 0 引言 随着行业竞争加剧,通过加快产品研发速度、降低产品成本、提高产品可靠性的手段提高产品竞争力,已经为各企业所认可. 疲劳分析是一个重要途径,在产品研发中得到越来越多的应用. 汽车零部件疲劳分析方法主要有静态(或准静态)、动态、随机振动疲劳分析等,对于给定的问题,应根据结构所受载荷及其动态特性不同,判断并选择正确的疲劳分析方法. 静态(准静态)疲劳分析方法的应力时间历程采用线性静态叠加法计算,并应用Miner 准则进行疲劳分析,计算效率很高,因而在汽车零部件的疲劳分析上得到广泛应用. 但由于静态(或准静态)疲劳分析方法忽略动态因素,当结构的固有频率与外载荷的频率接近时,计算结果存在很大误差. 本文采用模态应力恢复方法计算动态应力时间历程,并进行有限元疲劳分析. 它是一种结合MSC Nastran,MSC Adams及MSC Fatigue等几种软件的疲劳寿命集成化分析方法. [1]在汽车动力学仿真过程中,有多种方法可以考虑零部件的柔性,MSC Adams采用模态综合法,该方法由于能够大规模减少自由度,因而与常规的瞬态应力计算方法相比,能够显著提高计算效率. 此外,MSC Nastran,MSC Adams,MSC Adams与MSC Fatigue之间有良好的数据接口,使得疲劳寿命集成化分析方法具有很好的可操作性和效率. 1 模态应力恢复方法简介 基于模态应力恢复的有限元疲劳分析方法主要 收稿日期;2006-06-29;修回日期:2006-07-06 作者简介:张林波(1973- ),男,吉林靖宇人,副研究员,博士,研究方向为汽车强度和耐久性,(E-mail) zhanglinbo@https://www.360docs.net/doc/528953696.html,

基于有限元法的汽车构件疲劳寿命分析

万方数据

Vol2lNo22008硝 机械研究与应用 MECHANICALRESEARCH&APPLICATION 第2l卷第2期 2008年4月 以汽车企业长期积累的相关车型的路面载荷数据库或典型零件的经验载荷数据库等作为参考载荷进行疲劳分析。 (3)半理论分析方法根据部分位置的测量载荷,通常为轮轴的载荷,利用多体动力学等方法可以得到其它连接位置的载荷。 (4)全理论分析方法无需试验,仅通过多体动力学或虚拟实验场(VPG)仿真技术获取悬架和其它 位置的路面载荷时间历程。 本文实例是建立多体动力学仿真模型获取构件需要部位的载荷时间历程。圈 引渊嚣ll簖躺簇亟匾H藉篙凄董籍 图1定义名义应力法流程 5工程分析实例 采用通过多体动力学仿真软件ADAMS,直接从系统载荷谱求得结构的动力响应时间历程,采用有限元法计算出关键结构部件上各关键危险部位的应力,最后结合材料的基本疲劳性能数据进行结构寿命估算【5】。系统载荷可以是实际的载荷、位移和加速度等。多体动力学分析的结果是部件的载荷历程,可加快结构的疲劳寿命分析,比如对于载荷历程中结构的无损伤部分就可忽略。多体有限元疲劳分析流程如图2所示。 图2多体有限元疲劳分析流程图 利用三维造型软件UG和机械系统动力学仿真软件ADAMS/View,按照ADAMS建模的要求建立该型轿车悬架的虚拟模型。如图3所示。 ?58? 图3悬架系统的动力学仿真模型 根据目标悬架中零部件间的相对运动关系,定义零部件的拓扑结构,对零部件重新组合,将没有相对运动关系的零部件组合为一体,确定重新组合后零件间的连接关系和连接点的位置,计算或测量重新组合后的零部件质心位置、质量和转动惯量,确定减振器的阻尼特性和弹簧的刚度特性,定义主销轴线,输人车轮的前束角和外倾角。不允许过约束的运动,橡胶轴承和弹簧属于柔性连接,它们在发生运动干涉的部件之间产生阻力,阻止迸一步的干涉发生。假定各铰链处的橡胶轴承在各个方向上的刚度相等,则在相应的位置施加轴套力。 5.1仿真结果 对于悬架系统,采用额定载荷作用下的单轮跳动进行仿真。采用B级路面谱模拟路面状态如图4所示,用C语言编辑路面谱,将.txt的程序文件读人ADAMS。 . 图4B级路面谱 悬架的仿真分析是为了对其中的转向节进一步地有限元分析和疲劳寿命计算,得到的转向节在竖直方向的受力随仿真时间的变化,经仿真动画计算,得出转向节上端受力的载荷时间历程,如图5所示。 根据动力学仿真分析的结果,通过确定坐标标记确定ADAMS输出的构件为刚性构件,即下控制臂。载荷的作用点为下控制臂球头销连接处,在载荷的作用点设置坐标标记以获得作用点的载荷值,同时可指定载荷作用点的节点号(在有限元分析中,MSC系列软件将自动的匹配运算确定节点号的对应关系),输 出仿真50s时刻下控制臂的载荷历程信息。由AD-  万方数据

有限元分析软件及应用

3.5 ANSYS软件加载、求解、后处理技术 3.5.1 ANSYS 3.5.1 ANSYS 荷载概述荷载概述 在这一节中将讨论: 有限元分析软件及应用 8 有限元分析软件及应用 8 A. 载荷分类 3.5 ANSYS 软件加载、求解、后处理技术 3.5 ANSYS 软件加载、求解、后处理技术 B. 加载 C. 节点坐标系 D. 校验载荷 孙瑛 孙瑛 E. 删除载荷 哈哈尔尔滨滨工工业业大学空大学空间结间结构研构研究中心究中心 2010秋 2010秋 SSRC SSRC 1/ 76 S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A

理技术 A. 载荷分类 B. 加载 A. 载荷分类 B. 加载 ANSYS中的载荷可分为: 可在实体模型或 FEA 模型节点和单元上加载自由度DOF - 定义节点的自由度( DOF )值结构分析_ 沿单元边界均布的压力 沿线均布的压力 位移集中载荷 - 点载荷结构分析_力面载荷 - 作用在表面的分布载荷结构分析_压力 在关键点处 在节点处约 约束体积载荷 - 作用在体积或场域内热分析_ 体积膨胀、内生 束 成热、电磁分析_ magnetic current density等实体模型 FEA 模型惯性载荷 - 结构质量或惯性引起的载荷重力、角速度等 在关键点加集中力在节点加集中力 SSR SSRC C SSR SSRC C 2/ 76 3/ 76 S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A

基于ANSYS的有限元分析

有限元大作业 基于ansys的有限元分析 班级: 学号: 姓名: 指导老师: 完成日期:

ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo,NASTRAN, Alogor, I-DEAS, AutoCAD 等。是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。ANSYS功能强大,操作简单方便,现在已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。目前,中国100多所理工院校采用ANSYS软件进行有限元分析或者作为标准教学软件。 2D Bracket 问题描述: We will model the bracket as a solid 8 node plane stress element. 1.Geometry: The thickness of the bracket is 3.125 mm 2.Material: steel with modulus of elasticity E=200 GPa. 3.Boundary conditions: The bracket is fixed at its left edge. 4.Loading: The bracket is loaded uniformly along its top surface. The load is 2625 N/m. 5.Objective: a.Plot deformed shape b.Determine the principal stress and the von Mises stress. (Use the stress plots to determine these) c.Remodel the bracket without the fillet at the corner or change the fillet radius to 0.012 and 0.006m, and see how d.principal stress and von Mises stress chang e.

主流CAE有限元分析软件的比较

随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA 在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PAFEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件 LS-DYNA是一个通用显式非线性动力分析有限元程序,最初是1976年在美国劳伦斯利弗莫尔国家实验室(Lawrence Livermore National Lab.)由J.O.Hallquist 主持开发完成的,主要目的是为核武器的弹头设计提供分析工具,后经多次扩充和改进,计算功能更为强大。此软件受到美国能源部的大力资助以及世界十余家著名数值模拟软件公司(如ANSYS、MSC.software、ETA等)的加盟,极大地加强了其的前后处理能力和通用性,在全世界范围内得到了广泛的使用。在软件的广告中声称可以求解各种三维非线性结构的高速碰撞、爆炸和金属成型等接触非线性、冲击载荷非线性和材料非线性问题。即使是这样一个被人们所称道的数值模拟软件,实际上仍在诸多不足,特别是在爆炸冲击方面,功能相对较弱,其欧拉混合单元中目前最多只能容许三种物质,边界处理很粗糙,在拉格朗日——欧拉结合方面不如DYTRAN灵活。虽然提供了十余种岩土介质模型,但每种模型都有不足,缺少基本材料数据和依据,让用户难于选择和使用。2. MSC.software公司的DYTRAN软件 当前另一个可以计算侵彻与爆炸的商业通用软件是MSC.Software Corporation ( MSC公司) 的MSC.DYTR AN程序。该程序在是在LS-DYNA3D的框架下,在程序中增加荷兰PISCES INTERNATIONAL公司开发的PICSES的高级流体动力学和流体——结构相互作用功能,还在PISCES的欧拉模式算法基础上,开发了物质流动算法和流固耦合算法。在同类软件中,其高度非线性、流—固耦合方面有独特之处。MSC.DYTR AN的算法基本上可以概况为:MSC.DYTRAN采用基于Lagrange格式的有限单元方法(FEM)模拟结构的变形和应力,用基于纯Euler格式的有限体积方法(FVM)描述材料(包括气体和液体)流动,对通过流体与固体界面传递相互作用的流体—结构耦合分析,采用基于混合的Lagrange格式和纯Euler 格式的有限单元与有限体积技术,完成全耦合的流体-结构相互作用模拟。MSC.DYTRAN用有限体积法跟踪

相关文档
最新文档