第二章+信号的采样与重建

信号采样与重建的编程实现

课程设计任务书 学生:凯鑫专业班级:电信1203班 指导教师:阙大顺,王虹工作单位:信息工程学院 题目: 信号采集与重建的编程实现 初始条件: 1.Matlab6.5以上版本软件; 2.课程设计辅导资料:“Matlab语言基础及使用入门”、“数字信号处理原理与实现”、“Matlab及 在电子信息课程中的应用”等; 3.先修课程:信号与系统、数字信号处理、Matlab应用实践及信号处理类课程等。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.课程设计时间:1周(课实践); 2.课程设计容:信号采样与重建的编程实现,具体包括:连续信号的时域采样、频谱混叠分析、 由离散序列恢复模拟信号等; 3.本课程设计统一技术要求:研读辅导资料对应章节,对选定的设计题目进行理论分析,针对具 体设计部分的原理分析、建模、必要的推导和可行性分析,画出程序设计框图,编写程序代码(含注释),上机调试运行程序,记录实验结果(含计算结果和图表),并对实验结果进行分析和总结; 4.课程设计说明书按学校“课程设计工作规”中的“统一书写格式”撰写,具体包括: ①目录; ②与设计题目相关的理论分析、归纳和总结; ③与设计容相关的原理分析、建模、推导、可行性分析; ④程序设计框图、程序代码(含注释)、程序运行结果和图表、实验结果分析和总结; ⑤课程设计的心得体会(至少500字); ⑥参考文献; ⑦其它必要容等。 时间安排: 1)第1-2天,查阅相关资料,学习设计原理。 2)第3-4天,方案选择和电路设计仿真。 3)第4-5天,电路调试和设计说明书撰写。 4)第6天,上交课程设计成果及报告,同时进行答辩。

实验五 信号的采样与恢复

信号与系统实验报告 【实验原理】 1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。抽样信号f s (t )可以看成连续信号f (t )和一组开关函数s (t )的乘积。s (t )是一组周期性窄脉冲,见图1,T s 称为抽样周期,其倒数T s =1T S ?称抽样频率。 图1矩形抽样脉冲 对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。当抽样信 号是周期性窄脉冲时,平移后的频率幅度按(sinx)x ?规律衰减。抽样信号的频谱是原信号 频谱周期的延拓,它占有的频带要比原信号频谱宽得多。 2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。 3、但原信号得以恢复的条件是f s ≥2B ,其中f s 为抽样频率,B 为原信号占有的频带宽度。而f min =2B 为最低抽样频率又称“奈奎斯特抽样率”。当f s <2B 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。在实际使用中,仅包含有限频率的信号是极少的。因此即使f s =2B ,恢复后的信号失真还是难免的。图2画出了当抽样频率f s ≥2B (不混叠时)及当抽样频率f s <2B (混叠时)两种情况下冲激抽样信号的频谱。 (a)连续信号的频谱

数字信号处理实验六-时域采样与信号的重建

实验目的: 1.了解用MATLAB语言进行时域抽样与信号重建的方法 2.进一步加深对时域信号抽样与恢复的基本原理的理解 3.掌握采样频率的确定方法和内插公式的编程方法。 二.实验内容 1认真阅读并输入实验原理与方法中介绍的例子,观察输出波形曲线,理解每一条语句的含义。. 2.已知一个连续时间信号f(t)=sinc(t)。取最高有限带宽频率fm=1Hz。(1)分别显示原连续时间信号波形和Fm=fm、Fm=2fm、Fm=3fm三种情况下抽样信号的波形。 实验程序: dt=0.1; f0=1; T0=1/f0; fm=f0; Tm=1/fm; t=-2:dt:2; f=sinc(t); subplot(4,1,1),plot(t,f,'k'); axis([min(t) max(t) 1.1*min(f) 1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3; fs=i*fm; Ts=1/fs;

n=-2:Ts:2; f=sinc(n); subplot(4,1,i+1),stem(n,f,'filled','k'); axis([min(n) max(n) 1.1*min(f) 1.1*max(f)]); end 实验截图: (2)求解原连续信号波形和抽样信号所对应的幅度谱。实验程序: dt=0.1;t=-4:dt:4;

N=length(t);f=sinc(t);Tm=1;fm=1/Tm; wm=2*pi*fm;k=1:N; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt; subplot(4,1,1),plot(w1/(2*pi),abs(F1));grid axis([0 max(4*fm) 1.1*min(F1) 1.1*max(F1)]); for i=1:3; if i<= 2 c=0 ,else c=0.2,end fs=(4-i+c)*fm; Ts=1/fs; n=-4:Ts:4; f=sinc(n); N=length(n); wm=2*pi*fs; k=1:N; w=k*wm/N; F=f*exp(-j*n'*w)*Ts; subplot(4,1,5-i),plot(w/(2*pi),abs(F),'k');grid axis([0 max(4*fm) 1.1*min(F) 1.1*max(F)]); end 实验截图:

信号采样原理

6.2 信号采样与保持 采样器与保持器是离散系统的两个基本环节,为了定量研究离散系统,必须用数学方法对信号的采样过程和保持过程加以描述。 6.2.1 信号采样 在采样过程中,把连续信号转换成脉冲或数码序列的过程,称为采样过程。实现采样的装置,称为采样开关或采样器。如果采样开关以周期T 时间闭合,并且闭合的时间为τ,这样就把一个连续函数变成了一个断续的脉冲序列,如图6-3(b)所示。 ()e t *()e t 由于采样开关闭合持续时间很短,即T τ<<,因此在分析时可以近似认为0τ≈。这样可以看出,当采样器输入为连续信号时,输出采样信号就是一串理想脉冲,采样瞬时的脉冲等于相应瞬时的值,如图6-3(c) 所示。 ()e t *()e t ()e t 图6-3 信号的采样 根据图6-3(c)可以写出采样过程的数学描述为 *()(0)()()()()()e t e t e T t T e nT t nT δδδ=+?++?+L L )?nT (6-1) 或 (6-2) * ()()()()(δδ∞∞ =?∞=?∞=?=∑∑n n e t e nT t nT e t t nT 式中,是采样拍数。由式(6-2)可以看出,采样器相当于一个幅值调制器,理想采样序 n 列可看成是由理想单位脉冲序列对连续量调制而形成的,如图 * ()e t ()()δδ∞ =?∞=?∑T n t t 6-4所示。其中,()T t δ是载波,只决定采样周期,而为被调制信号,其采样时刻的值决定调制后输出的幅值。 ()e t ()e nT 图6-4 信号的采样 6.2.2 采样定理

一般采样控制系统加到被控对象上的信号都是连续信号,那么,如何将离散信号不失真地恢复到原来的形状,便涉及采样频率如何选择的问题。采样定理指出了由离散信号完全恢复相应连续信号的必要条件。 由于理想单位脉冲序列()T t δ是周期函数,可以展开为复数形式的傅氏级数 ()ωδ+∞=?∞= ∑s jn t T n n t c e (6-3) 式中,T s /2πω=为采样角频率,T 为采样周期,是傅氏级数系数,它由下式确定 n c /2/2 1()d ωδ+??=∫s T jn t n T T c t e T t (6-4) 在]2,2[T T +?区间中,)(t T δ仅在0=t 时有值,且,所以 1|0==?t t jn s e ω0011()d δ+?= ∫n c t t T T = (6-5) 将式(6-5)代入式(6-3),得 1()ωδ+∞=?∞ =∑s jn t T n t e T (6-6) 再把式(6-6)代入式(6-2),有 * 11()()()ωω+∞+∞ =?∞=?∞==∑∑s s jn t jn t n n e t e t e e nT e T T (6-7) 将式(6-7)两边取拉氏变换,由拉氏变换的复数位移定理,得到 ∑+∞?∞=+=n s jn s E T s E )(1)(* ω (6-8) 令ωj s =,得到采样信号的傅氏变换 )(*t e * 1()[()]ωωω+∞=?∞=+∑s n E j E j n T (6-9) 式中,)(ωj E 为相应连续信号的傅氏变换,)(t e (j )E ω为的频谱。一般来说,连续信号的频带宽度是有限的,其频谱如图6-5(a)所示,其中包含的最高频率为)(t e h ω。 式(6-9)表明,采样信号具有以采样频率为周期的无限频谱,除主频谱外,还包含无限多个附加的高频频谱分量(如图6-5(b)所示),只不过在幅值上变化了* ()e t 1T 倍。为了准确复现被采样的连续信号,必须使采样后的离散信号的主频谱和高频频谱彼此不混叠,这样就可以用一个理想的低通滤波器(其幅频特性如图6-5(b)中虚线所示)滤掉全部附加的高频频谱分量,保留主频谱。

实验五(信号抽样与恢复)

实验五 信号抽样与恢复 一、实验目的 学会用MA TLAB 实现连续信号的采样和重建 二、实验原理 1.抽样定理 若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。因此,当s ω≥m ω时,不会发生频 率混叠;而当 s ω

MATLAB在数字信号处理中的应用:连续信号的采样与重建

MATLAB 在数字信号处理中的应用:连续信号的采样与重建 一、 设计目的和意义 随着通信技术的迅速发展以及计算机的广泛应用,利用数字系统处理模拟信号的情况变得更加普遍。数字电子计算机所处理和传送的都是不连续的数字信号,而实际中遇到的大都是连续变化的模拟量,现代应用中经常要求对模拟信号采样,将其转换为数字信号,然后对其进行计算处理,最好在重建为模拟信号。 采样在连续时间信号与离散时间信号之间其桥梁作用,是模拟信号数字化的第一个步骤,研究的重点是确定合适的采样频率,使得既要能够从采样信号(采样序列)中五失真地恢复原模拟信号,同时由要尽量降低采样频率,减少编码数据速率,有利于数据的存储、处理和传输。 本次设计中,通过使用用MATLAB 对信号f (t )=A1sin(2πft)+A2sin(4πft)+A3sin(5πft)在300Hz 的频率点上进行采样,并进行仿真,进一步了解MA TLAB 在数字信号处理上的应用,更加深入的了解MA TLAB 的功能。 二、 设计原理 1、 时域抽样定理 令连续信号 xa(t)的傅立叶变换为Xa (j Ω),抽样脉冲序列p(t)傅立叶变换为P (j Ω),抽样后的信号x^(t)的傅立叶变换为X^(j Ω)若采用均匀抽样,抽样周期Ts ,抽样频率为Ωs= 2πfs ,有前面分析可知:抽样过程可以通过抽样脉冲序列p (t )与连续信号xa (t )相乘来完成,即满足:x^(t)p(t),又周期信号f (t )傅立叶变换为: F[f(t)]=2[(]n s n F j n π δ∞ =-∞Ω-Ω∑ 故可以推得p(t)的傅立叶变换为: P (j Ω)=2[(]n s n P j n π δ∞ =-∞Ω-Ω∑ 其中: 根据卷积定理可知: X (j Ω)=12π Xa (j Ω)*P(j Ω) 得到抽样信号x (t )的傅立叶变换为: X (j Ω)= [()]n n s n P X j n ∞=-∞Ω-Ω∑ 其表明:信号在时域被抽样后,他的频率X (j Ω)是连续信号频率X (j Ω)的形状以抽样频率Ωs 为间隔周期重复而得到,在重复过程中幅度被p (t )的傅立叶级数Pn 加权。因为只是n 的函数,所以X (j Ω)在重复过程中不会使其形状发生变化。 假定信号x (t )的频谱限制在-Ωm~+Ωm 的范围内,若以间隔Ts 对xa (t )进行抽样信号X^(j Ω)是以Ωs 为周期重复。显然,若早抽样过程中Ωs<Ωm ,则 X^ (j Ω)将会发生频谱混叠的现象,只有在抽样的过程中满足Ωs>2Ωm 条件,X^(j Ω)才不会产生混频的混叠,在接收端完全可以有x^(t )恢复原连续信号xa (t ),这就是低通信号的抽样定理的核心内容。

数字信号处理实验五

实验五:FIR数字滤波器设计与软件实现 信息学院 10电本2班王楚炘 2010304224 10.5.1 实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示; 图10.5.1 具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,

调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本书 第7章和第?章; 采样频率Fs=1000Hz,采样周期T=1/Fs; 根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。]实验程序框图如图10.5.2所示,供读者参考。 Fs=1000,T=1/Fs xt=xtg 产生信号xt, 并显示xt及其频谱 用窗函数法或等波纹最佳逼近法 设计FIR滤波器hn 对信号xt滤波:yt=fftfilt(hn,xt) 1、计算并绘图显示滤波器损耗函数 2、绘图显示滤波器输出信号yt End 图10.5.2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. 答:用窗函数法设计线性相位低通滤波器的设计步骤: a.根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口的长度N; b.构造希望逼近的频率响应函数; c.计算h d(n); d.加窗得到设计结果h(n)=h d(n)w(n)。 (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为和,阻带上、下截止频率为和,试求理想带通滤波器的截止频率。 答:希望逼近的理想带通滤波器的截止频率分别为:

五 信号抽样与重构

实验五 信号的抽样和重构 实验目的 (1)熟悉抽样信号及其频谱。 (2)掌握抽样定理。 (3)了解理想低通滤波器。 一、实验原理 1.抽样信号 抽样信号相当于连续信号与周期性的冲击序列相乘。 )()()(t t f t f T s δ?= 在Matlab 中可以很方便的用不同的时间间隔实现对连续信号不同频率的抽样。 抽样信号的频谱等于原始信号的频谱与冲击序列的频谱的卷积。 ∑∑∞ -∞ =∞-∞=-=-*=n s n s s n F T n T F F )(1)(1)()(ωωωωδωω 抽样信号的频谱是对原始信号的频谱的周期性延拓,周期大小为抽样品率,其中每一个周期 都复制了原始信号的频谱。 2.抽样定理 一个带宽为wm 的带限信号f(t),可唯一地由它的均匀取样信号fs(nTs)确定,其中,取样间隔Ts<π/wm 。 3.低通滤波器 为了从抽样信号中恢复原始信号,可以让抽样信号通过一个低通滤波器,把一个周期的频谱取出来。理想低通滤波器的频率响应H(jw),是一个自变量为w 的门函数。让抽样信号的频谱Fs(jw)与滤波器的H(jw)相乘,可以得到抽样信号一个周期的频谱Fa(jw)。对Fa(jw)求傅立叶逆变换,可以重构原始信号。 二、验证性实验 1.绘制宽度为2的门信号G 2(t)=u(t+1)-u(t-1)的图形和频谱。 门信号并非严格意义上的有限带宽信号,但是,由于其频率f>1/τ的分量所具有的能量占有很少的比重,所以一般定义f m =1/τ为门信号的截止频率。其中的τ为门信号在时域的宽度。在本例中选取f m =0.5,临界采样频率为f s =2f m=1,过采样频率为f s >1(为了保证精度,可以将其值提高到该值的50倍),欠采样频率为f s <1。 MATLAB 程序: Ts=0.01;%采样周期=0.01,fs=100>>2fm=1 t=-4:Ts:4; f=rectpuls(t,2);% 宽度为2的门信号 w1=2*pi*10; % 频谱范围[-20*pi 20*pi] N=1000; % 计算出2*1000+1个频率点 k=0:N;

实验九信号的自然采样与恢复

实验九信号的自然采样与恢复 一、实验目的: 1、理解信号的采样及采样定理以及自然采样信号的频谱特征。 2、掌握和理解信号自然采样以及信号重建的原理,并能用MATLAB实现。 二、实验原理及方法: 本实验主要涉及采样定理的相关内容以及低通滤波器恢复原连续信号的相关知识。信号的抽样与恢复示意图如图7-1所示。 图7-1 信号的抽样与恢复示意图 信号抽样与恢复的原理框图如图7-2所示。

图 7-2 信号抽样与恢复的原理框图 由原理框图不难看出,A/D 转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A 转换环节实现数/模转换,得到连续时间信号;低通滤波器的作用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号。 原信号得以恢复的条件是B f s 2≥,其中s f 为采样频率,B 为原信号占有的频带宽度。B f 2min =为最低采样频率,当B f s 2<时,采样信号的频率会发生混迭,所以无法用低通滤波器获得原信号频谱的全部内容。 三、实验内容及步骤: 给定带限信号 f(t),其频谱为 1、画出此信号的频谱图(ω的取值:-0.5π <ω <0.5π ,精度取0.01rad )。 答:画出f(t)的频谱图即F(W)的图像 程序代码如下: #include #include #define PI 3.14 double f(double w) {

if (w>=-0.5*PI && w<=0.5*PI) return cos(w); else return 0; } main() { double w,F; FILE *fp; for (w=-0.5*PI;w<=0.5*PI;w+=0.01) { F=f(w); printf("w=%.2f, F(w)=%f\n",w,F); fp=fopen("d:\\2.txt","w"); fprintf(fp,"%f\t",F); } system("pause"); } ③F(W)的图像

应用_MATLAB实现连续信号的采样与重构

抽样定理及应用 2.1课程设计的原理 2.1.1连续信号的采样定理 模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。时域采样定理从采样信号 恢复原信号 必需满足两个条件: (1) 必须是带限信号,其频谱函数在 > 各处为零;(对信号的要求, 即只有带限信号才能适用采样定理。) (2) 取样频率不能过低,必须 >2 (或 >2)。(对取样频率的要 求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。)如果采样频率 大于或等于 ,即 ( 为连续信号 的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号 。一个频 谱在区间(- , )以外为零的频带有限信号,可唯一地由其在均匀 间隔 ( < )上的样点值 所确定。根据时域与频域的对称性, 可以由时域采样定理直接推出频域采样定理。一个时间受限信号()t f ,它集中在(m m ωω+-,)的时间范围内,则该信号的频谱()ωj F 在频域中以间隔为1ω的冲激序列进行采样,采样后的频谱)(1ωj F 可以惟一表示原信号的条件为重复周期 m t T 21≥,或频域间隔m t f 21 21≤ = πω(其中112T πω=)。采样信号 的频谱是原 信号频谱 的周期性重复,它每隔 重复出现一次。当s ω>2 时, 不会出现混叠现象,

原信号的频谱的形状不会发生变化,从而能从采样信号中恢复原信号。 >2的含义是:采样频率大于等于信号最高频率的2倍;这里的“不(注: s 混叠”意味着信号频谱没有被破坏,也就为后面恢复原信号提供了可能!) (a) (b) (c) 图* 抽样定理 a)等抽样频率时的抽样信号及频谱(不混叠) b)高抽样频率时的抽样信号及频谱(不混叠) c) 低抽样频率时的抽样信号及频谱(混叠) 2.1.2信号采样 如图1所示,给出了信号采样原理图

信号与系统实验五信号的采样与还原.

深圳大学实验报告 课程名称:信号与系统 实验名称:信号的卷积实验 学院名称:信息工程学院 专业名称:集成电路设计与集成系统 指导教师:廉德亮 报告人:学号:班级:二班 实验时间: 2015年6月04日 提交时间: 2015年6月18日

由此可见,当φ=0或是2π的整数倍时,如右图,x(t) 可以完全恢复。 当2 π φ=-时,()sin( )2 s x t t ω= 该信号在采样周期2s πω整数倍点上的值都 是零;因此 在这个采样频率下所产生的信号全是零。当这个零输入加到理想低通滤波器上时,所得输出当然也都是零。 实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上的电源(看清标识,防止接错),并打开此模块的电源开关(S1、S2)。 2、用示波器测试H07“CLKR ”的波形,为256kHz 的方波,用导线将H07“CLKR ”和H12连接起来。 3、用示波器测试H01“2kHz ”的输出波形,为2kHz 的方波,用导线连接H01“2kHz ”和H02“输入”。 4、通过测试钩T01观察输入的方波经过截止频率为2kHz 的低通滤波器后得到2kHz 的正弦波。抽样电路将对此正弦波进行抽样,然后经过还原电路还原出此正弦波。 5、用示波器观察测试钩T08“抽样脉冲序列”的波形。通过按键“频率粗调”和按键“频率细调”可以改变抽样脉冲序列的频率。抽样脉冲序列的频率的最小值为500Hz 最大值为11.5kHz 。同样通过“占空比粗调”按键和“占空比细调”按键可以调节抽样脉冲序列的占空比。“复位”按键可以使抽样脉冲序列的频率复位为500Hz 且占空比最小。通过调节抽样脉冲的频率可以实现欠采样、临界采样、过采样。 6、用示波器观察T02“抽样信号”的波形。 7、观察抽样信号经低通滤波器还原后的波形T03。 8、改变抽样频率为fs<2B 和fs ≥2B ,观察抽样信号(T02)和复原后的信号(T03),比较其失真程度。 实验数据 原信号2kHz 正弦波 单通道 抽样脉冲序列

信号的采样与恢复实验报告

竭诚为您提供优质文档/双击可除信号的采样与恢复实验报告 篇一:实验2:连续信号的采样和恢复 电子科技大学 实验报告(二) 学生姓名:学号:指导教师:一、实验室名称:信号与系统实验室二、实验项目名称:连续信号的采样和恢复三、实验原理: 实际采样和恢复系统如图3.4-1所示。可以证明,奈奎斯特采样定理仍然成立。 xpT(t) ) 图3.4-1实际采样和恢复系统 采样脉冲:p(t)??F ?pT(j?)?T 2?T ?? ?

k???(:信号的采样与恢复实验报告) 2?ak?(??k?s) 其中,?s? ,ak? ?sin(k?s?/2)T k?s?/2 F ,???T。 采样后的信号:xs(t)???xs(j?)? 1T ? ?x(j(? k??? ?k?s) 当采样频率大于信号最高频率两倍,可以用低通滤波器hr(j?)由采样后的信号xs(t)恢复原始信号x(t)。 四、实验目的与任务: 目的:1、使学生通过采样保持电路理解采样原理。 2、使学生理解采样信号的恢复。 任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢 复的波形与频谱,并与观察结果比较。

五、实验内容: 1、采样定理验证 2、采样产生频谱交迭的验证 六、实验器材(设备、元器件): 数字信号处理实验箱、信号与系统实验板的低通滤波器模块u11和u22、采样保持器模块u43、pc机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。 七、实验步骤: 打开pc机端软件ssp.exe,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。 【1.采样定理验证】 1、连接接口区的“输入信号1”和“输出信号”,如图1所示。 图1观察原始信号的连线示意图 2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6khz”。按“F4”键把采样脉冲设为10khz。 3、点击ssp软件界面上的 按钮,观察原始正弦波。 4、按图2的模块连线示意图连接各模块。 图2观察采样波形的模块连线示意图

信号采样与重建

1.软件介绍 MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩形计算、视化以线性动态线性系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多领域一面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB是矩阵实验室(Matrix Laboratory)之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。经过不断完善MATLAB已经发展成为适合多学科,多种工作平台的功能强大大大型软件。成为线性代数,自动控制理论,数理统计,数字信号处理,时间序列分析,动态系统仿真等高级课程的基本教学工具。 MTLAB的语言特点: (1)语言简洁紧凑,使用方便灵活,库函数极其丰富。 (2)运算符丰富。 (3)MATLAB既具有结构化的控制语句(如for循环,while循环,break语句和if语句),又有面向对象编程的特性。 (4)程序限制不严格,程序设计自由度大。 (5)MATLAB的图形功能强大。 (6)MATLAB的缺点是,它和其他高级程序相比,程序的执行速度较慢。由于MATLAB的程序不用编译等预处理,也不生成可执行文件,程序为解释执行,所以速度较慢。

2.课程设计的方案 2.1课程设计的原理 2.1.1连续信号的采样定理 模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其 频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。时域采样定理从采样信号 恢复原信号必需满足两个条件: (1) 必须是带限信号,其频谱函数在 > 各处为零;(对信号的要求, 即只有带限信号才能适用采样定理。) (2) 取样频率不能过低,必须 >2 (或 >2 )。(对取样频率的要求, 即取样频率要足够大,采得的样值要足够多,才能恢复原信号。)如果采样频率 大于或等于 ,即 ( 为连续信号 的有限频谱), 则采样离散信号能无失真地恢复到原来的连续信号 。一个频谱在区间 (- , )以外为零的频带有限信号 ,可唯一地由其在均匀间隔 上 的样点值所确定。根据时域与频域的对称性,可以由时域采样定理直接推 出频域采样定理。一个时间受限信号()t f ,它集中在(m m ωω+-,)的时间范围内,则该信号的频谱()ωj F 在频域中以间隔为1ω的冲激序列进行采样,采样后的 频谱)(1ωj F 可以惟一表示原信号的条件为重复周期m t T 21≥。采样信号 的 频谱是原信号频谱 的周期性重复,它每隔 重复出现一次。当s ω>2 时,不会出现混叠现象,原信号的频谱的形状不会发生变化,从而能从采样 信号 中恢复原信号 。(注:s ω>2 的含义是:采样频率大于等于 信号最高频率的2倍;这里的“不混叠”意味着信号频谱没有被破坏,也就为后面恢复原信号提供了可能!)

实验九 信号的自然采样与恢复

实验九 信号的自然采样与恢复 一、实验目的: 1、理解信号的采样及采样定理以及自然采样信号的频谱特征。 2、掌握和理解信号自然采样以及信号重建的原理,并能用MATLAB 实现。 二、实验原理及方法: 本实验主要涉及采样定理的相关内容以及低通滤波器恢复原连续信号的相关知 识。信号的抽样与恢复示意图如图7-1所示。 图7-1 信号的抽样与恢复示意图 信号抽样与恢复的原理框图如图7-2所示。 图 7-2 信号抽样与恢复的原理框图 由原理框图不难看出,A/D 转换环节实现抽样、量化、编码过程;数字信号处理 环节对得到的数字信号进行必要的处理;D/A 转换环节实现数/模转换,得到连 续时间信号;低通滤波器的作用是滤除截止频率以外的信号,恢复出与原信号相 比无失真的信号。 原信号得以恢复的条件是B f s 2≥,其中s f 为采样频率,B 为原信号占有的频带 宽度。B f 2min =为最低采样频率,当B f s 2<时,采样信号的频率会发生混迭, 所以无法用低通滤波器获得原信号频谱的全部内容。 三、实验内容及步骤: 给定带限信号 f(t),其频谱为 1、画出此信号的频谱图(ω的取值:-0.5π <ω <0.5π ,精度取0.01rad )。 答:画出f(t)的频谱图即F(W)的图像 程序代码如下: #include #include #define PI 3.14

double f(double w) { if (w>=-0.5*PI && w<=0.5*PI) return cos(w); else return 0; } main() { double w,F; FILE *fp; for (w=-0.5*PI;w<=0.5*PI;w+=0.01) { F=f(w); printf("w=%.2f, F(w)=%f\n",w,F); fp=fopen("d:\\2.txt","w"); fprintf(fp,"%f\t",F); } system("pause"); } ③F(W)的图像 2、对此频域信号进行傅里叶逆变换,得到相应的时域信号,画出此信号的时域波形f(t)(t的取值:-20s #include #define PI 3.14 double f(double t)

带通采样定理和低通采样定理

带通采样定理和低通采样定理 模拟信号经过采样转换成数字信号,时域分析为模拟信号与采样的周期冲击串相乘,根据傅里叶变换的时频对应关系可知,频域以采 样周期为周期的频谱搬移过程,低通采样定理要求采样频率大于信号最高上限频率的2倍,频谱搬移的过程不会导致频谱混叠,带通采样 频率小于这一条件,当满足一定的条件后频谱也不会混叠,但是此时频带发生传动,信号的重构和低通信号有很大差别。 一、低通采样周期性频谱搬移 低通采样的原理分析见数字信号处理(西电版)。 首先,低通采样实现的原理是进行周期性的频谱搬移,实际FFT 变换的结果只有(O:fs或者-fs/2:fs/2),周期频谱搬移就是每个周期的信号频谱相同,只是索引值不同带来的结果不同,可以保持一个周期频谱不变,改变对应的真实频率范围获得搬移的效果。 @——fftshift()函数对应的真实频谱范围:fs*(-N/2:N/2-1)/N @------fft()函数对应的真实频谱范围:fs*(0:N-1)/N 庚宙IB茸障站霆号的魚谒 E 64 2 Q 2 4 € B . :1. ■ U

的耳 IS r/ 电 £写抽Mil 保持原始信号的频谱不变,转换频谱搬移周期,刚好达到两倍采 样频率,谱结构如下: 结论: (1) 低通采样定理的周期性频谱搬移以采样频率为周期,采样频率 必须大于信号最高上限的二倍,否则就会导致频谱混叠。 (2) 低通采样后的信号重构只需要经过低通滤波器即可。 二、带通采样定理原理和重构分析 1、带通采样定理原理 带通采样定理: 一个频带限制在f L ,f H 内的连续时间信号X t ,信号带宽 B f H f L ,令 N 为不大于f H B 的最大正整数,当采样频率f s 满足一 下条件 -] I - 1 i r ■ q r n 1 1 I 1 : ! i i …-一. .... r 1 i i i i i : 1 1 1 1 i i J L J i L i * L 1 J i L ] J L €

实验一 信号的采样与恢复

实验一信号的采样与恢复 一、实验目的 1.了解电信号的采样方法与过程及信号的恢复。 2.验证采样定理。 二、实验设备 信号与系统实验(二)挂箱(ZK-3)、低频函数信号发生器、虚拟示波器 三、实验内容 1.研究正弦信号被采样的过程以及采样后的离散化信号恢复为连续信号的波形。 2.用采样定理分析实验结果。 四、实验原理 1.离散时间信号可以从离散信号源获得,也可以由连续时间信号经采样而获得。采 样信号fs(t)可以看成连续信号f(t)和一组开关函数S(t)的乘积。S(t)是一组周期性窄脉冲。由对采样信号进行傅立叶级数分析可知,采样信号的频谱包括了原连续信号以及无限多个经过平移的原信号频谱。平移的频率等于采样频率fs 及其谐波频率2fs、 3fs222。当采样后的信号是周期性窄脉冲时,平移后信号频率的幅度按(Sinx)/x 规律衰减。采样信号的频谱是原信号频谱的周期性延拓,它占有的频带要比原信号频谱宽得多。 2.采样信号在一定条件下可以恢复原来的信号,只要用一截止频率等于原信号频谱 中最高频率fn 的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号频谱的全部内容,即低通滤波器的输出为恢复后的原信号。 3.原信号得以恢复的条件是fs 2B,其中fs 为采样频率,B 为原信号占有的频带宽度。Fmin=2B 为最低采样频率。当fs 2B 时,采样信号的频谱会发生混迭,所以无法用低 通滤波器获得原信号频谱的全部内容。在实际使用时,一般取fs=(5-10)B 倍。 实验中选用fs 2B、fs=2B、fs 2B 三种采样频率对连续信号进行采样,以验证采样定理 要是信号采样后能不失真的还原,采样频率fs 必须远大于信号频率中最高频率的两倍。 2.下面的框图表示了对连续信号的采样和 对采样信号的恢复过程。实验时,除选用足够高的采样频率外,还常采用前置低通滤波器来防止信号频谱的过宽而造成采样后信号频谱的混迭。图12-1 信号的采样与恢复原理框图

信号采样与重构

实验五 信号采样与重构 一、实验目的:学会用MATLAB 实现连续信号的采样和重建 二、实验原理 1.抽样定理 若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱)(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。因此,当s ω≥m ω时,不会发生频率混叠;而当 s ω

我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。我们取理想低通的截止频率c ω=m ω。下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa : 例5-1 Sa(t)的临界采样及信号重构; wm=1; %信号带宽 wc=wm; %滤波器截止频率 Ts=pi/wm; %采样间隔 ws=2*pi/Ts; %采样角频率 n=-100:100; %时域采样电数 nTs=n*Ts %时域采样点 f=sinc(nTs/pi); Dt=0.005;t=-15:Dt:15; fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %信号重构 t1=-15:0.5:15; f1=sinc(t1/pi); subplot(211); stem(t1,f1); xlabel('kTs'); ylabel('f(kTs)'); title('sa(t)=sinc(t/pi)的临界采样信号'); subplot(212); plot(t,fa) xlabel('t'); ylabel('fa(t)'); title('由sa(t)=sinc(t/pi)的临界采样信号重构sa(t)'); grid; 例5-2 Sa(t)的过采样及信号重构和绝对误差分析 程序和例4-1类似,将采样间隔改成Ts=0.7*pi/wm , 滤波器截止频率该成wc=1.1*wm , 添加一个误差函数 wm=1; wc=1.1*wm; Ts=0.7*pi/wm; ws=2*pi/Ts; n=-100:100; nTs=n*Ts f=sinc(nTs/pi); Dt=0.005;t=-15:Dt:15; fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));

信号的采样与恢复(采样定理)

实验六 信号的抽样与恢复实验报告 光信二班 一、 实验目的 (1)了解电信号的采样方法与过程以及信号恢复的方法。 (2)验证抽样定理。 二、 实验原理 (1)离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。抽样信号f ()s t 可以看成连续信号()f t 和一组开关函数()s t 是一组周期 形窄脉冲,见图2-9-1,s T 称为抽样周期, 其倒数1s s f T 称抽样频率。 对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。平移的频率等于抽样频率f ()s t 及其谐波频率 2s f 、3s f ….。当抽样信号是周期性窄脉冲时,平移后的频率幅度按 (sin )x x 规律衰减。抽样信号的频谱是原信号频谱周期的延拓,它占 有的频带要比原信号频谱宽得多。 (2)正如测得了足够的实验数据以后,我们 可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。只要用一截止频率等于原信号频谱中最高频率n f 的低通滤波器,滤除高频分量,经滤波后得到的信号包括了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信

号。 (3)还原信号得以恢复的条件是2s m f f ≥,其中s f 为抽样频率, m f 为原信号的最高频率。而min 2m f f =为最低抽样频率,又称“奈斯特 抽样率”。当2s m f f <时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中无法用低通滤波器获得原信号频谱的全部内容。在实际使用中,仅包含有限频率的信号是极少的。因此即使min 2m f f =,回复后的信号失真还是难免的。图2-9-2画出了当抽样频率2s m f f ≥(不混叠时)及当抽样频率2s m f f <(混叠时)两种情况下冲激抽样信号的频谱。

相关文档
最新文档