微积分公式、三角公式和向量运算法则表

微积分公式、三角公式和向量运算法则表
微积分公式、三角公式和向量运算法则表

微积分公式、三角公式和向量运算法则表

一、基本导数公式

⑴()0c '= ⑵()1

u

u x ux

-'= ⑶()sin cos x x '=

⑷()cos sin x x '=- ⑸()2

tan sec x x '= ⑹()2

cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x

x

e e '= ⑽()ln x

x

a a

a '= ⑾()1

ln x x

'=

⑿(

)1

log ln x

a

x a

'= ⒀(

)arcsin x '= ⒁(

)arccos x '=⒂()21arctan 1x x '=

+ ⒃()2

1arc cot 1x x '=-+⒄()1x '=

'=

二、导数的四则运算法则

()u v u v '''±=± ()uv u v uv '''=+ 2

u u v uv v v '''-??= ???

三、高阶导数的运算法则 (1)()()()

()

()

()()n n n u x v x u x v x ±=±???? (2)()()

()()n n cu x cu x =????

(3)()()()

()n n n

u ax b a u

ax b +=+????

(4)()()()

(

)

()()()0

n

n n k k k n k u x v x c u x v x -=?=????

四、基本初等函数的n 阶导数公式 (1)()

()

!n n

x

n = (2)()

()

n ax b n ax b e a e ++=? (3)()

()

ln n x x n a a a =

(4)()()

sin sin 2n n ax b a ax b n π??+=++??? ???

?? (5) ()()cos cos 2n n

ax b a ax b n π??+=++??? ????

? (6)()

()

()

1

1!

1n n n

n a n ax b ax b +???

=- ?+??

+ (7) ()()

()

()()

1

1!

ln 1n n n n

a n ax

b ax b -?-+=-????

+

五、微分公式与微分运算法则

⑴()0d c = ⑵()

1

d x x dx μμμ-= ⑶()sin cos d x xdx =

⑷()cos sin d x xdx =- ⑸()2

tan sec d x xdx = ⑹()2

cot csc d x xdx =-

⑺()sec sec tan d x x xdx =? ⑻()csc csc cot d x x xdx =-?

⑼()

x x d e e dx = ⑽()

ln x x

d a a adx = ⑾()1ln d x dx x

=

⑿(

)1

log ln x

a

d dx x a

= ⒀(

)arcsin d x = ⒁(

)arccos d x =

⒂()21arctan 1d x dx x =

+ ⒃()2

1

arc cot 1d x dx x =-+ 六、微分运算法则

⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2

u vdu udv

d v v -??= ???

七、基本积分公式

⑴kdx kx c =+?

⑸x x e dx e c =+? ⑹cos sin xdx x c =+? ⑺sin cos xdx x c =-+? ⑻2

21sec tan cos dx xdx x c x ==+??

⑼2

21csc cot sin xdx x c x ==-+?? ⑽21arctan 1dx x c x

=++? ⑾

arcsin x c =+

八、补充积分公式

22

11arctan x dx c a x a a

=++? 22

11ln 2x a

dx c x a a x a

-=+-+?

arcsin x

c a =+

ln x c =+

九、下列常用凑微分公式

十、分部积分法公式

⑴形如n ax x e dx ?

,令n

u x =,ax dv e dx =

形如sin n x xdx ?令n

u x =,sin dv xdx =

形如cos n x xdx ?

令n

u x =,cos dv xdx =

⑵形如arctan n x xdx ?,令arctan u x =,n

dv x dx =

形如ln n x xdx ?

,令ln u x =,n

dv x dx =

⑶形如sin ax e xdx ?

,cos ax

e xdx ?

令,sin ,cos ax u e x x =均可。

十一、第二换元积分法中的三角换元公式

s i n x a t = (2) t a n x a t

= sec x a t = 【特殊角的三角函数值】

(1)sin 00= (2)1sin

6

=

(3)sin 32

π= (4)sin 12π=) (5)sin 0π=

(1)cos 01= (2)cos

6

π

=

(3)1cos 32π= (4)cos 02π=) (5)cos 1π=-

(1)tan 00= (2)tan

6

π

=

(3)tan 3π=(4)tan 2π不存在 (5)tan 0π=

(1)cot 0不存在 (2)cot 6

π

= (3)cot

3

π

=

(4)cot 02π=(5)cot π不存在

十二、重要公式

(1)0sin lim

1x x

x

→= (2)()1

0lim 1x x x e →+= (3))1n a o >=

(4)1n = (5)lim arctan 2

x x π

→∞

=

(6)lim tan 2

x arc x π

→-∞

=-

(7)lim arc cot 0x x →∞

= (8)lim arc cot x x π→-∞

= (9)lim 0x

x e →-∞

=

(10)lim x x e →+∞

=∞ (11)0

lim 1x

x x +

→= (12)0

101101lim

0n n n m m x m a n m

b a x a x a n m b x b x b n m

--→∞?=??+++?

=

>???

(系数不为0的情况) 十三、下列常用等价无穷小关系(0x →)

sin x x tan x x a r c s i n x x arctan x x 2

11c o s 2

x x -

()ln 1x x + 1x e x - 1l n x a x a - ()11x x ?

+-?

十四、三角函数公式

1.两角和公式

sin()sin cos cos sin A B A B A B +=+ s i n ()s i n c o s c o s s A B A B A B -=- cos()cos cos sin sin A B A B A B +=- c o s ()c o s

c o s

s i n s

A B A B A B -=+ tan tan tan()1tan tan A B A B A B ++=

- tan tan tan()1tan tan A B

A B A B --=+

cot cot 1cot()cot cot A B A B B A ?-+=+ cot cot 1

cot()cot cot A B A B B A

?+-=-

2.二倍角公式

sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=-

22tan tan 21tan A

A A

=

-

3.半角公式

sin

2A =

cos 2A =

sin tan

21cos A A A ==+

sin cot 21cos A A

A

==

- 4.和差化积公式

sin sin 2sin

cos 22a b a b a b +-+=? sin sin 2cos sin 22a b a b

a b +--=? cos cos 2cos cos 22a b a b a b +-+=? cos cos 2sin sin 22

a b a b

a b +--=-?

()sin tan tan cos cos a b a b a b

++=

?

5.积化和差公式

()()1

sin sin cos cos 2

a b a b a b =-+--????

()()1

cos cos cos cos 2

a b a b a b =

++-????

()()1sin cos sin sin 2a b a b a b =

++-???? ()()1c o s s i n s i n

s i n 2a b a b a b =+--???

?

6.万能公式

22tan

2sin 1tan 2

a

a a

=

+ 2

2

1tan 2cos 1tan 2a a a -=+ 22t a n

2t a n 1t a n

2

a

a a

=- 7.平方关系

22sin cos 1x x += 22sec n 1x ta x -= 22csc cot 1x x -=

8.倒数关系

tan cot 1x x ?= s e c c o s 1x x ?= c sin 1cs x x ?=

9.商数关系

sin tan cos x x x =

cos cot sin x

x x

= 十五、几种常见的微分方程 1.可分离变量的微分方程:

()()dy

f x

g y dx

= , ()()()()11220f x g y dx f x g y dy += 2.齐次微分方程:dy y f dx x ??= ???

3.一阶线性非齐次微分方程:

()()dy

p x y Q x dx

+= 解为:

()()()p x dx p x dx y e Q x e dx c -????=+????

? 向量运算法则

向量的加法满足平行四边形法则和三角形法则。

1、向量的加法OB+OA=OC 。 a+b=(x+x',y+y')。 a+0=0+a=a 。

向量加法的运算律: 交换律:a+b=b+a ;

结合律:(a+b)+c=a+(b+c)。 2、向量的减法

如果a 、b 是互为相反的向量,那么a=-b,b=-a,a+b=0。0的反向量为0 向量的减法

AB-AC=CB 。即“共同起点,指向被 向量的减法减”

a=(x,y)b=(x',y') 则a-b=(x-x',y-y')。 3、数乘向量

实数λ和向量a 的乘积是一个向量,记作λa,且∣λa ∣=∣λ∣·∣a ∣。 当λ>0时,λa 与a 同方向; 向量的数乘

当λ<0时,λa 与a 反方向;

向量的数乘当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa。

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb。

数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

4、向量的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a·b=x·x'+y·y'。向量的数量积的运算律

a·b=b·a(交换律);

(λa)·b=λ(a·b)(关于数乘法的结合律);

(a+b)·c=a·c+b·c(分配律);

向量的数量积的性质

a·a=|a|的平方。

a⊥b 〈=〉a·b=0。

|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。

2、向量的数量积不满足消去律,即:由a·b=a·c (a≠0),推不出b=c。

3、|a·b|≠|a|·|b|

4、由|a|=|b| ,推不出a=b或a=-b。

5、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a垂直b〈=〉a×b=|a||b|。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

a×(b+c)=a×b+a×c。

注:向量没有除法,“向量AB/向量CD”是没有意义的。

微积分公式与运算法则

微积分公式与运算法则 1、基本公式 (1)导数公式 (2) 微分公式 (xμ)ˊ=μxμ-1d(xμ)= μxμ-1 dx (ax)ˊ= axlna d(a x)= a x lnadx (logax)ˊ=1/(xlna) d(loga x)= 1/(xlna) dx (sin x)ˊ= cos x d(sin x)= cos xdx (con x)ˊ=-sin x d(con x)= -sin xdx (tan x)ˊ=sec2 x d(tan x)= sec2 x dx (cotx)ˊ= -csc2x d(cot x)= -csc2x dx (sec x)ˊ= sec x·tan x d(secx)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2d(arcsin x)=1

/(1-x2)1/2 dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)=-1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx 2、运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ (μυ)ˊ=μˊυ+μυˊ (μ/υ)ˊ=(μˊυ-μυˊ)/υ2 (2)函数与差积商的微分法则 d(αμ+βυ)= αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)= (υdμ-μdυ)/υ2

高等数学公式(定积分 微积分 三角函数 导函数 等等 应有尽有)

高等数学公式 基本积分表(1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+ (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)2 1 tan cos dx x C x =+? (9)21 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+? (12)x x e dx e C =+? (13)ln x x a a dx C a =+?,(0,1)a a >≠且 (14)shxdx chx C =+? (15)chxdx shx C =+? (16)22 11tan x dx arc C a x a a =++? (17)2 2 11ln ||2x a dx C x a a x a -=+-+? (18) sin x arc C a =+ (19) ln(x C =++

(20) ln |x C =++ (21)tan ln |cos |xdx x C =-+? (22)cot ln |sin |xdx x C =+? (23)sec ln |sec tan |xdx x x C =++? (24)csc ln |csc cot |xdx x x C =-+? 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。 3、复习三角函数公式: 2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2 x x += , 21cos 2sin 2 x x -= 。 注:由[()]'()[()]()f x x dx f x d x ????=??,此步为凑微分过程,所以第一类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。 小结: 1常用凑微分公式

微积分公式与运算法则 (1)

微积分公式与运算法则 1.基本公式 (1)导数公式 (2) 微分公式 (xμ)ˊ= μxμ-1 d(xμ)= μxμ-1 dx (a x)ˊ= a x lna d(a x)= a x lna dx (loga x)ˊ= 1/(xlna) d(loga x)= 1/(xlna) dx (sin x)ˊ= cos x d(sin x)= cos x dx (con x)ˊ= -sin x d(con x)= -sin x dx (tan x)ˊ= sec2 x d(tan x)= sec2 x dx (cot x)ˊ= -csc2 x d(cot x)= -csc2 x dx (sec x)ˊ= sec x·tan x d(sec x)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2 d(arcsin x)= 1/(1-x2)1/2 dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)= -1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ= (μˊυ-μυˊ)/υ2

微积分及三角函数公式

微积分及三角函数基本公式

cos (α±β)=cos α cos β μsin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β) sin α - sin β = 2 cos ?(α+β) sin ?(α-β) cos α + cos β = 2 cos ?(α+β) cos ?(α-β) cos α - cos β = -2 sin ?(α+β) sin ?(α-β) tan (α±β)= βαβαtan tan tan tan μ±, cot (α±β)=β αβ αcot cot cot cot ±μ e x =1+x+!22x +!33x +…+! n x n + … sin x = x-!33x +!55x -!77 x +…+)!12()1(12+-+n x n n + … cos x = 1-!22x +!44x -!66 x +…+)!2()1(2n x n n -+ … ln (1+x) = x-22x +33x -44 x +…+)!1()1(1+-+n x n n + … tan -1 x = x-33x +55x -7 7 x +…+)12()1(12+-+n x n n + … (1+x)r =1+r x+ !2)1(-r r x 2+! 3)2)(1(--r r r x 3 +… -1

高数微积分公式大全 ()

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '=⑵1x x μμμ-=⑶()sin cos x x '= ⑷()cos sin x x '=-⑸()2tan sec x x '=⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=?⑻()csc csc cot x x x '=-? ⑼()x x e e '=⑽()ln x x a a a '=⑾()1ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '=⒁( )arccos x '= ⒂()21arctan 1x x '= +⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ '=二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±????(2)()() () ()n n cu x cu x =???? (3)()() () ()n n n u ax b a u ax b +=+???? (4)()()() ()()()() n n n k k k n k u x v x c u x v x -=?=????∑ 四、基本初等函数的n 阶导数公式 (1)()()!n n x n =(2)()()n ax b n ax b e a e ++=?(3)()() ln n x x n a a a = (4)()()sin sin 2n n ax b a ax b n π??+=++??? ?????(5)()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6)() () () 1 1! 1n n n n a n ax b ax b +???=- ? +?? +(7)()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-????+ 五、微分公式与微分运算法则 ⑴()0d c =⑵()1d x x dx μμμ-=⑶()sin cos d x xdx = ⑷()cos sin d x xdx =-⑸()2tan sec d x xdx =⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =?⑻()csc csc cot d x x xdx =-?

微积分及三角函数公式合集

第一部分:常用积分公式 基本积分公式: 1 kdx kx c =+? 2 1 1 x x dx c μμ μ+= ++? 3 ln dx x c x =+? 4 ln x x a a dx c a =+? 5 x x e dx e c =+? 6 cos sin xdx x c =+? 7 sin cos xdx x c =-+? 8 2 21sec tan cos dx xdx x c x ==+?? 9 22 1 csc cot sin xdx x c x ==-+?? 10 2 1arctan 1dx x c x =++? 11 arcsin x c =+ 12 tan ln cos xdx x c =-+? 13 cot ln sin xdx x c =+? 14 sec ln sec tan xdx x x c =++? 15 csc ln csc cot xdx x x c =-+? 16 22 11arctan x dx c a x a a =++? 17 22 11ln 2x a dx c x a a x a -=+-+? 18 arcsin x c a =+

19 ln x c =+ 分部积分法公式 1 形如n ax x e dx ? ,令n u x =,ax dv e dx = 2 形如sin n x xdx ?令n u x =,sin dv xdx = 3 形如cos n x xdx ? 令n u x =,cos dv xdx = 4 形如arctan n x xdx ?,令arctan u x =,n dv x dx = 5 形如ln n x xdx ?,令ln u x =,n dv x dx = 6 形如sin ax e xdx ? ,cos ax e xdx ? 令,sin ,cos ax u e x x =均可。 常用凑微分公式 1. ()()()1 f ax b dx f ax b d ax b a += ++? ? 2. ()()()11 f x x dx f x d x μμμμμ-= ? ? 3. ()()()1 ln ln ln f x dx f x d x x ?=? ? 4. ()()()x x x x f e e dx f e d e ?=?? 5. ()()()1 ln x x x x f a a dx f a d a a ?= ? ? 6. ()()()sin cos sin sin f x xdx f x d x ?=?? 7. ()()()cos sin cos cos f x xdx f x d x ?=-?? 8. ()()()2 tan sec tan tan f x xdx f x d x ?=?? 9. 2dx f d =? 10.21111()()()f dx f d x x x x =-?? 11.()()()2 cot csc cot cot f x xdx f x d x ?=??

5.2 微积分基本公式-习题

1.设函数0 cos x y tdt = ?,求'(0)y ,'()4 y π。 【解】由题设得'()cos y x x =, 于是得 '(0)cos01y ==,'()cos 4 4 2 y ππ == 。 2.计算下列各导数: ⑴20x d dx ?; 【解】20x d dx ?2)x =2= ⑵ 1t d dt dx ; 【解】1t d dt dx 1 ()t d dt dx =-=-=。 ⑶ cos 2 sin cos()x x d t dt dx π?; 【解】cos 2sin cos()x x d t dt dx π?0cos 2 2sin 0[cos()cos()]x x d t dt t dt dx ππ=+?? 》 0cos 22 sin 0cos()cos()x x d d t dt t dt dx dx ππ= +?? sin cos 2200 [cos()]cos()x x d d t dt t dt dx dx ππ=-+?? 22cos(sin )(sin )cos(cos )(cos )d d x x x x dx dx ππ=-+ 22cos(sin )cos cos[(1sin )](sin )x x x x ππ=-+-- 22cos(sin )cos cos(sin )sin x x x x πππ=--- 22cos(sin )cos cos(sin )sin x x x x ππ=-+ 2cos(sin )(sin cos )x x x π=-。 ⑷2ln 1 x x d dt dx t ?。 【解】 2ln 1x x d dt dx t ?21ln 11 1[]x x d dt dt dx t t =+?? 21ln 111x x d d dt dt dx t dx t =+?? …

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

微积分公式与运算法则

微积分公式与运算法则文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

微积分公式与运算法则 1.基本公式 (1)导数公式(2)微分公式 (xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx (a x)ˊ=a x lnad(a x)=a x lnadx (loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx (sinx)ˊ=cosxd(sinx)=cosxdx (conx)ˊ=-sinxd(conx)=-sinxdx (tanx)ˊ=sec2xd(tanx)=sec2xdx (cotx)ˊ=-csc2xd(cotx)=-csc2xdx (secx)ˊ=secx·tanxd(secx)=secx·tanxdx (cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx (arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx (arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx (arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx (arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx (sinhx)ˊ=coshxd(sinhx)=coshxdx (coshx)ˊ=sinhxd(coshx)=sinhxdx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ

(μ/υ)ˊ=(μˊυ-μυˊ)/υ2 (2)函数和差积商的微分法则 d(αμ+βυ)=αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)=(υdμ-μdυ)/υ2 3.复合函数的微分法则 设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为 dy/dx=fˊ[ψ(x)]·ψˊ(x) 所以复合函数的微分为 dy=fˊ[ψ(x)]·ψˊ(x)dx 由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ 由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。

微积分及三角函数公式合集

第一部分:常用积分公式 基本积分公式: 1 kdx kx c =+? 2 1 1 x x dx c μμμ+=++? 3 ln dx x c x =+? 4 ln x x a a dx c a =+? 5 x x e dx e c =+? 6 cos sin xdx x c =+? 7 sin cos xdx x c =-+? 8 221sec tan cos dx xdx x c x ==+?? 9 221csc cot sin xdx x c x ==-+?? 10 21arctan 1dx x c x =++? 11 arcsin x c =+ 12 tan ln cos xdx x c =-+? 13 cot ln sin xdx x c =+? 14 sec ln sec tan xdx x x c =++? 15 csc ln csc cot xdx x x c =-+? 16 2211arctan x dx c a x a a =++? 17 2211ln 2x a dx c x a a x a -=+-+? 18 arcsin x c a =+

19 ln x c =+ 分部积分法公式 1 形如n ax x e dx ?,令n u x =,ax dv e dx = 2 形如sin n x xdx ? 令n u x =,sin dv xdx = 3 形如cos n x xdx ?令n u x =,cos dv xdx = 4 形如arctan n x xdx ? ,令arctan u x =,n dv x dx = 5 形如ln n x xdx ? ,令ln u x =,n dv x dx = 6 形如sin ax e xdx ?,cos ax e xdx ?令,sin ,cos ax u e x x =均可。 常用凑微分公式 1. ()()()1f ax b dx f ax b d ax b a +=++? ? 2. ()()()11f x x dx f x d x μμμμμ-=?? 3. ()()()1ln ln ln f x dx f x d x x ?=?? 4. ()()()x x x x f e e dx f e d e ?=?? 5. ()()()1ln x x x x f a a dx f a d a a ?=?? 6. ()()()sin cos sin sin f x xdx f x d x ?=?? 7. ()()()cos sin cos cos f x xdx f x d x ?=-?? 8. ()()()2tan sec tan tan f x xdx f x d x ?=?? 9. 2dx f d =? 10. 21111()()()f dx f d x x x x =-?? 11. ()()()2cot csc cot cot f x xdx f x d x ?=??

微积分公式与运算法则

创作编号:BG7531400019813488897SX 创作者:别如克* 微积分公式与运算法则 1.基本公式 (1)导数公式 (2) 微分公式 (xμ)ˊ= μxμ-1 d(xμ)= μxμ-1 dx (a x)ˊ= a x lna d(a x)= a x lna dx (loga x)ˊ= 1/(xlna) d(loga x)= 1/(xlna) dx (sin x)ˊ= cos x d(sin x)= cos x dx (con x)ˊ= -sin x d(con x)= -sin x dx (tan x)ˊ= sec2 x d(tan x)= sec2 x dx (cot x)ˊ= -csc2 x d(cot x)= -csc2 x dx (sec x)ˊ= sec x·tan x d(sec x)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2 d(arcsin x)= 1/(1-x2)1/2

dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)= -1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ (μ/υ)ˊ= (μˊυ-μυˊ)/υ2 (2)函数和差积商的微分法则 d(αμ+βυ)= αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)= (υdμ-μdυ)/υ2

微积分及三角函数公式合集

微积分及三角函数公式 合集 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第一部分:常用积分公式 基本积分公式: 1 kdx kx c =+? 2 1 1 x x dx c μμ μ+= ++? 3 ln dx x c x =+? 4 ln x x a a dx c a =+? 5 x x e dx e c =+? 6 cos sin xdx x c =+? 7 sin cos xdx x c =-+? 8 2 21sec tan cos dx xdx x c x ==+? ? 9 221 csc cot sin xdx x c x ==-+?? 10 2 1 arctan 1dx x c x =++? 11 arcsin x c =+ 12 tan ln cos xdx x c =-+? 13 cot ln sin xdx x c =+? 14 sec ln sec tan xdx x x c =++? 15 csc ln csc cot xdx x x c =-+? 16 22 11arctan x dx c a x a a =++? 17 2211ln 2x a dx c x a a x a -=+-+? 18 arcsin x c a =+

19 ln x c =+ 分部积分法公式 1 形如n ax x e dx ?,令n u x =,ax dv e dx = 2 形如sin n x xdx ?令n u x =,sin dv xdx = 3 形如cos n x xdx ?令n u x =,cos dv xdx = 4 形如arctan n x xdx ?,令arctan u x =,n dv x dx = 5 形如ln n x xdx ?,令ln u x =,n dv x dx = 6 形如sin ax e xdx ?,cos ax e xdx ?令,sin ,cos ax u e x x =均可。 常用凑微分公式 1. ()()()1 f ax b dx f ax b d ax b a +=++?? 2. ()()()11 f x x dx f x d x μμμμμ-= ?? 3. ()()()1ln ln ln f x dx f x d x x ?=?? 4. ()()()x x x x f e e dx f e d e ?=?? 5. ()()()1ln x x x x f a a dx f a d a a ?= ?? 6. ()()()sin cos sin sin f x xdx f x d x ?=?? 7. ()()()cos sin cos cos f x xdx f x d x ?=-?? 8. ()()()2tan sec tan tan f x xdx f x d x ?=?? 9. 2dx f d =? 10.21111()()()f dx f d x x x x =-? ? 11.()()()2cot csc cot cot f x xdx f x d x ?=?? 第二部分:常用微分、导数公式 (c=常数)

微积分及三角函数公式合集

微积分及三角函数公式合 集 Last updated on the afternoon of January 3, 2021

第一部分:常用积分公式 基本积分公式: 1 kdx kx c =+? 2 1 1 x x dx c μμ μ+= ++? 3 ln dx x c x =+? 4 ln x x a a dx c a =+? 5 x x e dx e c =+? 6 cos sin xdx x c =+? 7 sin cos xdx x c =-+? 8 22 1 sec tan cos dx xdx x c x ==+? ? 9 221 csc cot sin xdx x c x ==-+?? 10 2 1 arctan 1dx x c x =++? 11 arcsin x c =+ 12 tan ln cos xdx x c =-+? 13 cot ln sin xdx x c =+? 14 sec ln sec tan xdx x x c =++? 15 csc ln csc cot xdx x x c =-+? 16 22 11arctan x dx c a x a a =++? 17 2211ln 2x a dx c x a a x a -=+-+?

18 arcsin x c a =+ 19 ln x c =+ 分部积分法公式 1 形如n ax x e dx ?,令n u x =,ax dv e dx = 2 形如sin n x xdx ?令n u x =,sin dv xdx = 3 形如cos n x xdx ?令n u x =,cos dv xdx = 4 形如arctan n x xdx ?,令arctan u x =,n dv x dx = 5 形如ln n x xdx ?,令ln u x =,n dv x dx = 6 形如sin ax e xdx ?,cos ax e xdx ?令,sin ,cos ax u e x x =均可。 常用凑微分公式 1. ()()()1 f ax b dx f ax b d ax b a +=++?? 2. ()()()11 f x x dx f x d x μμμμμ-= ?? 3. ()()()1ln ln ln f x dx f x d x x ?=?? 4. ()()()x x x x f e e dx f e d e ?=?? 5. ()()()1ln x x x x f a a dx f a d a a ?= ?? 6. ()()()sin cos sin sin f x xdx f x d x ?=?? 7. ()()()cos sin cos cos f x xdx f x d x ?=-?? 8. ()()()2tan sec tan tan f x xdx f x d x ?=?? 9. 2dx f d =? 10.21111()()()f dx f d x x x x =-? ?

微积分基本公式

微积分公式

tan -1 x = x-33x +55x -7 7 x +…+)12()1(12+-+n x n n + … (1+x)r =1+r x+!2)1(-r r x 2+! 3)2)(1(--r r r x 3 +… -1

(完整word版)证明微积分基本公式

定义(定积分) 设函数f (x )是定义在闭区间[a ,b ]上的连续函数,用n + 1个分点 a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b 把闭区间[a ,b ]划分成n 个小区间 [x 0,x 1],[x 1,x 2],…,[x i – 1,x i ],…,[x n – 1,x n ] 记各小区间[x i – 1,x i ](i = 1,2,…,n )的长度为Δx i = x i - x i – 1,在各小区间[x i – 1,x i ]内任取一点ξi ,取函数值f (ξi )与小区间长度Δx i 的乘积f (ξi )Δx i ,作和式 n n i i n i i i x f x f x f x f x f Δ)(Δ)(Δ)(Δ)(Δ)(22111ξξξξξ+++++=∑= 称为函数f (x )在区间[a ,b ]上的积分和。记各小区间的最大长度为d = max{Δx i },如果对于区间 [a ,b ]任意的划分和点ξi 在[x i – 1,x i ]上的任意取法,当d → 0时,积分和的极限存在,则称此极限为函数f (x )在区间[a ,b ]上的定积分,简称积分,记为 ∑?=→=n i i i d b a x x f x x f 10Δ)(lim d )( 其中?为积分号,[a , b ]称为积分区间,f (x )称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限。如果函数f (x )在区间[a ,b ]上的积分存在,则称f (x )在[a ,b ]上可积。 上述定义中的积分限要求a < b ,实际上这个限制可以解除,补充两条规定: (1)当a = b 时,规定0d )(=?a a x x f ; (2)当a > b 时,规定??-=a b b a x x f x x f d )(d )(。 可以看出,这两条规定是合理的,其中第一条规定也可以根据第二条推出。 定理1(可积的必要条件) 如果函数f (x )在闭区间[a ,b ]上的可积,则f (x )在[a ,b ]上有界。 定理2(可积的充分条件) 1.如果函数f (x )在闭区间[a ,b ]上的连续,则f (x )在[a ,b ]上可积。 2.如果函数f (x )在闭区间[a ,b ]上的单调,则f (x )在[a ,b ]上可积。 3.如果在闭区间[a ,b ]内除去有限个不连续点外,函数f (x )有界,则f (x )在[a ,b ]上可积。 引理(微分中值定理) 设函数f (x )在闭区间[a ,b ]内连续,在开区间(a ,b )内可导,则至少存在一点ξ∈(a ,b ),成立等式 f (b ) ? f (a ) = f'(ξ)(b ? a ) 以上结论称为微分中值定理,等式称为微分中值公式。 设函数f (x )在闭区间[a ,b ]内连续,则可以证明f (x )在[a ,b ]上可积,于是存在新的函数F (x ),成立微分关系F'(x ) = f (x )或d F (x ) = f (x )d x ,则称F (x )为f (x )的一个原函数。试利用微分中值定理和定积分的定义证明微积分基本公式 )()()(d )(a F b F x F x x f b a b a -==? 这个公式又称为牛顿-莱布尼茨公式。 证明:

高等数学常用积分公式查询表

导数公式: 基本积分表: 1.d x ax b +?=1ln ax b C a ++ 2.()d ax b x μ+?=11()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?=21(ln )ax b b ax b C a +-++ 5.d ()x x ax b +?=1ln ax b C b x +-+ 6.2d ()x x ax b +?=21ln a ax b C bx b x +-++ 10 .x C 19.22d x x a +?=1arctan x C a a + 21.22d x x a -?=1ln 2x a C a x a -++ 23.2d x x ax b +?=21ln 2ax b C a ++ 24.2 2d x x ax b +?=2d x b x a a ax b -+? a x x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='?-='?='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='

31. 1arsh x C a +=ln(x C + 32. =C + 33. x =C 34. x =C + 35.2 x =2ln(2a x C -++ 39. x 2 ln(2a x C +++ 43.x a C + 44.2d x x ?=ln(x C +++ 47. x =C 53.x 2 ln 2 a x C 57.x =arccos a a C x + 59. arcsin x C a + 61. x =C

高等数学常用积分公式查询表

导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

微积分及三角函数公式

微积分及三角函数基本公式 sin x dx = -cos x + C cos x dx = sin x + C tan x dx = ln |sec x | + C cot x dx = ln |sin x | + C sec x dx = ln |sec x + tan x | + C csc x dx = ln |csc x – cot x | + C sin -1(-x) = -sin -1 x cos -1(-x) = - cos -1 x tan -1(-x) = -tan -1 x cot -1(-x) = - cot -1 x sec -1(-x) = - sec -1 x csc -1(-x) = - csc -1 x sin -1 x dx = x sin -1 x+21x -+C cos -1 x dx = x cos -1 x-21x -+C tan -1 x dx = x tan -1 x-?ln (1+x 2)+C cot -1 x dx = x cot -1 x+?ln (1+x 2)+C sec -1 x dx = x sec -1 x- ln |x+12-x |+C csc -1 x dx = x csc -1 x+ ln |x+12-x |+C sinh x dx = cosh x + C cosh x dx = sinh x + C tanh x dx = ln | cosh x |+ C coth x dx = ln | sinh x | + C sech x dx = -2tan -1 (e -x ) + C csch x dx = 2 ln | x x e e 211---+| + C d uv = u d v + v d u d uv = uv = u d v + v d u → u d v = uv - v d u cos 2θ-sin 2θ=cos2θ cos 2θ+ sin 2θ=1 cosh 2θ-sinh 2θ=1 cosh 2θ+sinh 2θ=cosh2θ sinh -1 x dx = x sinh -1 x-21x ++ C cosh -1 x dx = x cosh -1 x-12-x + C tanh -1 x dx = x tanh -1 x+ ? ln | 1-x 2|+ C coth -1 x dx = x coth -1 x- ? ln | 1-x 2|+ C sech -1 x dx = x sech -1 x- sin -1 x + C csch -1 x dx = x csch -1 x+ sinh -1 x + C a b c α β γ R

相关文档
最新文档