线性方程组的迭代法应用及牛顿迭代法的改进

线性方程组的迭代法应用及牛顿迭代法的改进
线性方程组的迭代法应用及牛顿迭代法的改进

线性方程组的迭代法应用及牛顿迭代法的改进

摘要: 迭代解法就是通过逐次迭代逼近来得到近似解的方法。由于从不同

的问题而导出的线性代数方程组的系数矩阵不同,因此对于大型稀疏矩阵所对应线性代数方程组,用迭代法求解。本文论述了Jacobi 法,Gauss-Seidel 法,逐次超松弛法这三种迭代法,并在此基础上对牛顿型的方法进行了改进,从而使算法更为精确方便。

关键词:线性方程组,牛顿迭代法,Jacobi 法,Gauss-Seidel 法,逐次超松弛

1.线性方程组迭代法

1.1线性方程组的迭代解法的基本思想

迭代法求解基本思想:从某一初始向量X (0)=[x 1(0) ,x 2(0) ,……………x n (0) ]出发,按某种迭代规则,不断地对前一次近似值进行修改,形成近似解的向量{X (k)}。当近似解X (k) =[x 1(k) ,x 2(k) ,……………x n (k) ]收敛于方程组的精确解向量X* =[x 1*,x 2*,……………x n *]时,满足给定精度要求的近似解向量X (k)可作为X*的数值解。

1.2 线性方程组的迭代法主要研究的三个问题

(1) 如何构造迭代公式 (2) 向量数列{X (k)}的收敛条件 (3) 迭代的结束和误差估计

解线性方程组的迭代解法主要有简单迭代法、 Gauss-Seidel 法和SOR 法。简单迭代法又称同时代换法或Jacobi 法,是最简单的解线性方程组的迭代解法也是其他解法的基础。

1.3Jacobi 迭代法

设方程组点系数矩阵n n j A ai R ???=∈??满足条件0ii a ≠,i=0,1,2, …n 。把A 分解为

A=D+L+U

1112

,nn a a D a ??

??

?

?=??

??

?

? 12

1

,1

00

,0n n n a l a a -??????=??????

12

11,000n n n a a U a -??

??????=????????

在迭代法一般形式中,取N=D, P=-(L+U)形成以下迭代公式

(1)1()1(),k k x D l U x D b +--=-++ k=0,1,… (2-1)

其中(0)n x R ∈任取。故上述迭代公式(2-1)称为Jacobi 迭代法,又称简单迭代法,它的迭代矩阵是

1()J G D L U -=-+

因11()ii D diag a --=,故Jacobi 迭代法(2-1)的分量形式是

(1()1

)/n

k k i

i j j i ii j j i

x a x b a +=≠=-+∑)

(,i=0,1,2, …n k=0,1,…

1.4 Gauss-Seidel 法

解线性方程组的Gauss-Seidel 法简称Seidel 法,是对简单迭代法(Jacobi 迭代法)点改进 迭代公式

在Jacobi 迭代法点基础上可提出如下迭代公式

X (k+1)

(k+1)(k)12=C X +C X +F, k=0,1,2

(3-1)

其中21

11

2

00000,0n n c C c c ?????

?=?????? 1112

1

2222

00

0n n nn c c c c c C c ??????=??????

第i 个式子为

1(1)

()1

(1),i n

k k i

ij j ij j i j j i

x c x k c x f -+===+++∑∑ i=1,2, …n

称为(3-1)Gauss-Seidel 迭代公式

由Seidel 迭代公式(3-1)可以看出,在第k+1次迭代进行点过程中,因X 点各

个分量x i ,i=1,2, ,…,n 是逐个由迭代公式算出的,在计算分量x i (k+1) 时,序号在i 之前点新分量x 1(k+1), x 2(k+1) , …x i-1(k+1) 也已求出。Jacobi 迭代公式等号的右边未采用这些新分量点值,而是全部使用老分量x j (k)的值计算x i (k+1) 。当迭代过程收敛时,这些新分量一般较老分量更接近于真值x 1* ,x 2*,…x i-1*,若使用新分量代替老分量进行迭代,则可能使迭代过程加速,Seidel 迭代法正是这样做的。 由等价方程组构造迭代公式

1(1)

(1)()11

1(),i n

k k k i

i ij j ij j j j i ii x b a x a x a -++==+=-+∑∑ i=1,2,…n 1.5逐次超松弛法

逐次超松弛法(successive over relaxation method )简称SOR 法,是对Gauss-Seidel 迭代法点进一步改进而得到点一种加速迭代法。对于判定可收敛点迭代过程,使用SOR 法可进一步加速收敛过程。

设方程组点系数矩阵A 满足a ii ≠0,i=1,2,…n 。把A 分解为

1

1

A=

D+L+(1)D+U ω

ω

-其中ω>0称为松弛因子。在迭代法一般形式中,取

1

,N D L ω

=

+ 1

((1)D +U )P ω

=--形成以下的迭代公式 (1)1()11

1

1

(

)((1))(

),k k x D L D U x D L b ω

ω

ω

+--=-+-

+++ k=0,1…

其中(0)n x R ∈任选

经化简得SOR 方法实际计算公式为

1(1)

(1)()()111(1)i n ij ij

k k k k i i

j i j j j i ii

ii ii a a b x x x x a a a ωω-++==+??=----+????∑∑

i=1,2,…,n ;k=0,1,…

2.牛顿方法的改进

对于函数f(x),假定已给出极小点*x 的一个较好的近似点0x ,则在0x 处将f(x)泰勒展开到二次项,得二次函数()x φ。按极值条件'()0x φ=得()x φ的极小点,用它作为*x 的第一个近似点。然后再在1x 处进行泰勒展开,并求得第二个近似点

2x 。如此迭代下去,得到一维情况下的牛顿迭代公式'k 1''

k ()

()

k k f x x x f x +=-

(k=0,1,2,…)

对多元函数f(x),设k x 为f(x)极小点*x 的一个近似值,在k x 处将f(x)进行泰勒展开,

保留到二次项得21

()()()()()()()()2

T T k k k k k k f x x f x f x x x x x f x x x ?≈=+?-+-?-,

式中 2()k f x ?—f(x)在k x 处的海赛矩阵。

设1k x +为()x ?的极小点,它作为f(x)极小点*x 的下一个近似点,根据极值必要条

件1()0k x ?+?=即21()()()k k k k f x f x x x +?+?-得1

21()()k k k k x x f x f x -+??=-????

(k=0,1,2,…)

上式为多元函数求极值的牛顿法迭代公式。

对于二次函数,f(x)的上述泰勒展开式不是近似的,而是精确地。海赛矩阵是一个常矩阵,其中各元素均为常数。因此,无论从任何点出发,只需一步就可以找到极小点。因为若某一迭代法能使二次型函数在有限次迭代内达到极小点,则称此迭代方法是二次收敛的,因此牛顿方法是二次收敛的。

从牛顿法迭代公式的推演中可以看到,迭代点的位置是按照极值条件确定的,其中并未含有沿下降方向搜寻的概念。因此对于非二次函数,如果采用上述

牛顿法公式,有时会使函数值上升,即出现1>k k f f +(x )(x )现象。为此对上述牛顿

方法进行改进,引入数学规划法的概念。

如果把1

2

()()k k k d f x f x -??=-????看作是一个搜索方向,

则采取如下的迭代公式

1

2

1()()k k k k k k k k x x a d x a f x f x -+??=-=-???? (k=0,1,2,…)

式中 k a —沿牛顿方向进行以为搜索的最佳步长k a 可通过如下极小化过程求得

1()()()min k k k k k k k a

f x f x a d f x a d +=+=+。由于此种方法每次迭代都在牛顿方向

上进行一维搜索,这就避免了迭代后函数值上升的现象,从而保持了牛顿法二次收敛的特性,而对初始点的选取并没有苛刻的要求。其计算步骤如下: (1) 给定初始点0x ,收敛精度ε,置0k ←。

(2)计算1

1

222

()()()()()k k k k k k f x f x f x d f x f x --???????=-??????,,和。

(3) 求1a d k k k k x x +=+,其中k a 为沿k d 进行一维搜索的最佳步长。

(4) 检查收敛精度。若1k k x x ε+-<则*1k x x +=,停机;否则,置1k k ←+,返回到2进行搜索。

3 总结

通过上述的分析,推导,论证,我们更好的掌握了迭代发的应用,对牛顿方法的改进开拓了我们的思路。

4 参考文献:

1.《数值分析学习指导》 吴勃英 高广宏等编(高等教育出版社) 2.《数值分析全析》 杨刚 武燕等编(高等教育出版社) 3.《计算方法引论》 徐翠薇 孙绳武等编(高等教育出版社)

牛顿迭代法文献综述

“牛顿迭代法”最新进展文献综述牛顿法是一种重要的迭代法,它是逐步线性化的方法的典型代表。牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。 介绍一下牛顿迭代法研究的前沿进展,1992年南京邮电学院基础课部的夏又生写的一篇题名一类代数方程组反问题的牛顿迭代法,对一类代数方程组反问题提出了一个可行的迭代解法。从算法上看,它是一种解正问题—迭代—解正问题迭代改善的求解过程。湖南师范大学的吴专保;徐大发表的题名堆浸工艺中浸润面的非线性问题牛顿迭代方法,为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效。浙江大学电机系的林友仰发表的牛顿迭代法在非线性电磁场解算中的限制对非线性电磁场解算中的限制做了分析,求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使得存贮量和计算时间大为增加。南株洲工学院信息与计算科学系的吕勇;刘兴国发表的题名为牛顿迭代法加速收敛的一种修正格式,主要内容牛顿迭代法是求解非线性方程的一种重要的数值计算方法,在通常情况下,它具有至少平方收敛。本文利用文献[4]所建立的迭代格式xn+1=xn-αf(xfn)(x+n)f′(xn),对迭代格式中的参数α的讨论,实现了牛顿迭代法加速收敛的一种修正格式。

牛顿迭代法

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较. 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0 引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法. 迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制. (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败. 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件. 1牛顿迭代法:

ICA使用牛顿迭代法对FastICA算法经行改进

ICA用牛顿迭代法改进的FastICA算法 ICA算法原理: 独立分量分析(ICA)的过程如下图所示:在信源()st中各分量相互独立的假设下,由观察xt通过结婚系统B把他们分离开来,使输出yt逼近st。 图1-ICA的一般过程 ICA算法的研究可分为基于信息论准则的迭代估计方法和基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。基于信息论的方法研究中,各国学者从最大熵、最小互信息、最大似然和负熵最大化等角度提出了一系列估计算法。如FastICA算法, Infomax算法,最大似然估计算法等。基于统计学的方法主要有二阶累积量、四阶累积量等高阶累积量方法。本实验主要讨论FastICA算法。 1. 数据的预处理 一般情况下,所获得的数据都具有相关性,所以通常都要求对数据进行初步的白化或球化处理,因为白化处理可去除各观测信号之间的相关性,从而简化了后续独立分量的提取过程,而且,通常情况下,数据进行白化处理与不对数据进行白化处理相比,算法的收敛性较好。 若一零均值的随机向量 满足 , 其中:I为单位矩阵,我们称这个向量为白化向量。白化的本质在于去相关,这同主分量分析的目标是一样的。在ICA中,对于为零均值的独立源信号 , 有: , 且协方差矩阵是单位阵cov( S ) = I,因此,源信号 S( t )是白色的。对观测信号X( t ),我们应该寻找一个线性变换,使X( t )投影到新的子空间后变成白化向量,即:

其中,W0为白化矩阵,Z为白化向量。 利用主分量分析,我们通过计算样本向量得到一个变换 其中U和 分别代表协方差矩阵XC的特征向量矩阵和特征值矩阵。可以证明,线性变换W0满足白化变换的要求。通过正交变换,可以保证 因此,协方差矩阵: 再将 代入 且令 有 由于线性变换A~连接的是两个白色随机矢量Z( t )和S( t ),可以得出A~ 一定是一个正交变换。如果把上式中的Z( t )看作新的观测信号,那么可以说,白化使原来的混合矩阵A简化成一个新的正交矩阵A~。证明也是简单的: 其实正交变换相当于对多维矢量所在的坐标系进行一个旋转。 在多维情况下,混合矩阵A是N*N 的,白化后新的混合矩阵A~ 由于是正交矩阵,其自由度降为N*(N-1)/2,所以说白化使得ICA问题的工作量几乎减少了一半。 白化这种常规的方法作为ICA的预处理可以有效地降低问题的复杂度,而且算法简单,用传统的PCA就可完成。用PCA对观测信号进行白化的预处理使得原来所求的解混合矩阵退化成一个正交阵,减少了ICA的工作量。此外,PCA本身具有降维功能,当观测信号的个数大于源信号个数时,经过白化可以自动将观测信号数目降到与源信号维数相同。

Newton迭代法实例

基于牛顿迭代法的圆形断面临界水深直接计算 学院:建筑工程学院学号:2111206052 姓名:王瑞峰 一、问题来源 圆形断面由于具有受力条件好、适应地形能力强、水力条件好等优点,已成为农田灌溉、城市给水排水等工程较常采用的断面形式。而临界水深的计算则是进行圆形断面水力计算的关键,但其计算较繁杂,要求解高次隐函数方程,且未知量包含在三角函数中,求解难度大。自20世纪90年代,对圆形断面临界水深的计算进行了大量研究,获得了较多成果。鉴此,本文应用牛顿迭代算法,得到一种较简洁且可提供高精度算法程序的近似计算公式。 二、数学模型 相应于断面单位能量最小值的水深称为临界水深,其计算公式为: 需满足的临界流方程为: 其中 式中,d为洞径;为临界水深对应的圆心角,rad;n为流速分布不均匀系数(不特殊说明时取1.0);Q为流量,m3Is;g为重力加速度(通常取9.81 m/s2);分别为临界流对应的过水断面面积和水面宽度。 无压流圆形断面的水力要素见图1 将式(1)、(3)、(4)代入式(2)得: 将式(5)整理即得临界水深的非线形方程: 由此可知.式(6)为临界水深h。的高次隐函数方程,且未知量包含在三角函数中。 即圆形断面临界水深的求解即为式(6)的求根问题。在现行工程实际中计算临界水深时均采用近似公式或试算法,所得结果精度不高且效率较低。 三、方法选择 牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。 解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点

附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x- x0)=f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。 在对式(6)的求解方法中,应首选牛顿迭代法,因为牛顿迭代法可快速求解出其他方法求不出或难以求出的解。 引入无量纲参数k: 将式(7)代入式(6)得: 的一阶、二阶导函数分别为: 由牛顿迭代法可得: 式中,=0,1,2…为迭代次数;为的初值。 将式(8)、(9)代入式(10),可得相应于式(6)临界水深对应中心角的牛顿迭代公式: 由式(11)迭代计算出临界水深对应的中心角后,代入式(1)即可得临界水深。 根据文献,为避免渡状水面有可能接触洞顶引起水流封顶现象。洞内水面线以上的空间不宜小于隧洞断面面积的15%,且高度不小于0.4m。可得临界水深对应的中心角的最大值一般不超过4.692,相应可得无量纲参数值的上限为0.5044。故取值范围为[O.000 0,0.504 4]。 查阅文献与的近似公式: 若将式(12)视为初值函数,代入式(11)进行一次迭代计算,不仅得到了直接计算的公式,且提高了计算结果的精度。 其中 将式(13)代入式(1)即得圆形断面临界水深。 计算实例: 某引水式电站输水隧洞为圆形断面,已知洞径d=3.0 m,试确定设计流量Q=8.0m3/s时的临界水深。 四、编程实现 本文采用Fortran软件求解,程序的代码如下:

牛顿迭代法求平方根

牛顿迭代法求平方根 求n的平方根,先假设一猜测值X0= 1,然后根据以下公式求出X1,再将X1代入公式右边,继续求出X2…通过有效次迭代后即可求出n的平方根,X k+1 (迭代公式) 简单推导 假设f(x)是关于X的函数: 求出f(x)的一阶导,即斜率: 简化等式得到: 然后利用得到的最终式进行迭代运算直至求到一个比较精确的满意值,为什么可以用迭代法呢理由是中值定理(Intermediate Value Theorem):

如果f 函数在闭区间[a,b]内连续,必存在一点x 使得f(x) = c ,c 是函数f 在闭区间[a,b]内的一点 我们先猜测一X 初始值,例如1,当然地球人都知道除了1本身之外任何数的平方根都不会是1。然后代入初始值,通过迭代运算不断推进,逐步靠近精确值,直到得到我们主观认为比较满意的值为止。例如要求768的平方根,因为252 = 625,而302 = 900,我们可先代入一猜测值26,然后迭代运算,得到较精确值:。 回到我们最开始的那个”莫名其妙”的公式,我们要求的是N 的平方根,令x 2 = n ,假设一关于X 的函数f(x)为: f(X) = X 2 - n 求f(X)的一阶导为: f'(X) = 2X 代入前面求到的最终式中: X k+1 = X k - (X k 2 - n)/2X k 化简即得到我们最初提到的那个求平方根的神奇公式了: 用泰勒公式推导 我之前介绍过在The Art and Science of C 一书中有用到泰勒公式求平方根的算法,其实牛顿迭代法也可以看作是泰勒公式(Taylor Series)的简化,先回顾下泰勒公式:

非线性方程组的牛顿迭代法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

非线性方程组的牛顿迭代法的应用 一、问题背景 非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。 二、数学模型 对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。 设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有 ()()()()k k k x x x f x f x f -+≈', 于是方程()0=x f 可近似地表示为 ()()()0'=-+k k k x x x f x f 这是个线性方程,记其根为1+k x ,则1+k x 的计算公式 ()() k k k k x f x f x x ' 1- =+, ,1,0=k 这就是牛顿法。 三、算法及流程 对于非线性方程 ()()()???? ????????=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2 1212211 在()k x 处按照多元函数的泰勒展开,并取线性项得到

用牛顿迭代法求近似根

用牛顿迭代法求近似根

————————————————————————————————作者:————————————————————————————————日期:

第四题 题目:用Newton 法求方程在 74 28140x x -+= (0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001). 解:此题是用牛顿迭代法求解近似根的问题 1. Newton 迭代法的算法公式及应用条件: 设函数在有限区间[a,b]上二阶导数存在,且满足条件 ⅰ. ()()0f a f b <; ⅱ. ()''f x 在区间[a,b]上不变号; ⅲ. ()'0f x ≠; ⅳ. ()()'f c f c b a ≤-,其中c 是a,b 中使()()''min(,)f a f b 达到的一个. 则对任意初始近似值0[,]x a b ∈,由Newton 迭代过程 ()()() 1'k k k k k f x x x x f x +=Φ=-,k=0,1,2… 所生成的迭代序列{ k x }平方收敛于方程()0f x =在区间[a,b]上的唯一解а. 对本题: )9.1()9.1(0 )8(4233642)(0 )16(71127)(0 )9.1(,0)1.0(,1428)(3225333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f Θ 故以1.9为起点 ?? ???='-=+9.1)()(01x x f x f x x k k k k 2. 程序编写 #include #include void main() { double x0,x=1.9; do

改进的牛顿迭代法

改进的牛顿迭代法求解非线性方程 摘要:牛顿法思想是将非线性方程线性化,以线性方程的解逐步逼近非线性方程的解,但是其对初值、波动和可能出现的不收敛等缺点,而牛顿下山法克服了可能出现的发散的缺点。 关键词:牛顿法、牛顿下山法、非线性方程 一、牛顿法的迭代公式 设)(x f 在其零点*x 附近一阶连续可微,且0)(≠'x f ,当*0x x →时,由Taylor 公式有: ))(()()(000x x x f x f x f -'+≈ 以方程 0))(()(000=-'+x x x f x f 近似方程0)(=x f ,其解 ) ()(0001x f x f x x '-= 可作为方程的近似解,重复上述过程,得迭代公式 ),1,0(,) ()(1 ='-=+n x f x f x x n n n n 该方法称为牛顿迭代法。 二、牛顿法的改进 由于牛顿法缺点对牛顿法进行改进,使其计算简单,无需每次迭代都去计算)(x f ',且能够更好的收敛。 2.1简化的牛顿法 牛顿法的缺点之一是每次迭代都得去计算)(k x f '。为回避该问题,常用一个固定 )(k x f '迭代若干步后再求)(k x f '。这就是简化牛顿法的基本思想。 简化牛顿法的公式为: )(1k k k x cf x x -=+

迭代函数 )()(x cf x x -=? 若 2)(0,1)(1)(<'<<'-='x f c x f c x 即?,在根*x 附近成立,则迭代法局部收敛。 显然此法简化了计算量,却降低了收敛速度。 2.2牛顿下山法 牛顿法的缺点二是其收敛依赖与初值0x 的选取,若0x 偏离所求根*x 较远,则牛顿法可能发散。为防止迭代发散,我们对迭代过程再附加一项条件,即具有单调性: )()(1k k x f x f <+ 保证函数值稳定下降,然后结合牛顿法加快收敛速度,即可达目的。将牛顿法的计算结果 ) ()(1k k k k x f x f x x '-=+ 与前一步的近似值k x 适当加权平均作为新的改进值 k k k x x x )1(11λλ-+=++ 其中,称 )10(≤<λλ为下山因子,即为: ) ()(1k k k k x f x f x x '-=+λ 称为牛顿下山法。选择下山因子λ时,从 1=λ开始逐次将λ减半进行试算,直到条件成立为止。 三 举例说明 例1 求方程013=--x x 的根 (1)取5.10=x ,用牛顿法公式: 1 32131---=-+k k k k x x x x x 计算得:32472.1,32520.1,34783.1321===x x x

牛顿迭代法及其应用教学提纲

编号 毕业设计(论文)题目 Newton Raphson 算法及其应用 二级学院数学与统计学院 专业信息与计算科学 班级108010101

学生姓名侯杰学号10801010106 指导教师职称 时间 目录 摘要 (3) Abstract (3) 一、绪论 (4) 1.1 选题的背景和意义 (4) 1.2 牛顿迭代法的优点及缺点 (4) 二、Newton Raphson 算法的基本原理 (5) 2.1 Newton Raphsn算法 (5) 2.2 一种修正的Newton Raphsn算法 (7) 2.3 另外一种Newton Raphsn算法的修正 (11) 三、Newton Raphson 算法在计算方程中的应用 (18) 四、利用牛顿迭代法计算附息国债的实时收益率 (21) 4.1附息国债实时收益率的理论计算公式 (22) 4.2附息国债实时收益率的实际计算方法 (22)

4.3利用牛顿迭代法计算 (23) 五、结论 (26) 致谢 (27) 参考文献 (28) 摘要 牛顿在17世纪提出的一种近似求解方程的方法,即牛顿拉夫森迭代法.迭代法是一种不断的用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或被称为一次解法,即一次性解决的问题.迭代法又分为精确迭代以及近似迭代.“牛顿迭代法”就属于近似迭代法,本文主要讨论的就是牛顿迭代法,方法本身的发现到演变到修正的过程,避免二阶导数计算的Newton迭代法的一个改进,以及用牛顿迭代法解方程,利用牛顿迭代法计算国债的实时收益率。 关键词:Newton Raphson迭代算法;近似解;收益率; Abstract In the 17th century,Newton raised by an approximate method of solving equations,that is Newton Iteration,a process of recursion new value constantly with the old value of variable. Correspond with the iterative method is a direct method or as a solution,that is a one-time problem solving. Iteration is divided into exact iterative and approximate iterative. "Newton Iterative Method" are approximate iterative method. This article mainly focuses on the Newton Iteration. The main contents of this article include the discovery,evolution and amendment process of this methods; an improve of avoiding calculating Newton Iteration with second-order derivative; Newton Raphson iterative method of solving equations and Calculating the real-time yield of government bonds. Keywords: Newton Iterative Algorithm; approximate solution; Yield;

线性方程组的迭代法应用及牛顿迭代法的改进

线性方程组的迭代法应用及牛顿迭代法的改进 摘要: 迭代解法就是通过逐次迭代逼近来得到近似解的方法。由于从不同 的问题而导出的线性代数方程组的系数矩阵不同,因此对于大型稀疏矩阵所对应线性代数方程组,用迭代法求解。本文论述了Jacobi 法,Gauss-Seidel 法,逐次超松弛法这三种迭代法,并在此基础上对牛顿型的方法进行了改进,从而使算法更为精确方便。 关键词:线性方程组,牛顿迭代法,Jacobi 法,Gauss-Seidel 法,逐次超松弛 法 1.线性方程组迭代法 1.1线性方程组的迭代解法的基本思想 迭代法求解基本思想:从某一初始向量X (0)=[x 1(0) ,x 2(0) ,……………x n (0) ]出发,按某种迭代规则,不断地对前一次近似值进行修改,形成近似解的向量{X (k)}。当近似解X (k) =[x 1(k) ,x 2(k) ,……………x n (k) ]收敛于方程组的精确解向量X* =[x 1*,x 2*,……………x n *]时,满足给定精度要求的近似解向量X (k)可作为X*的数值解。 1.2 线性方程组的迭代法主要研究的三个问题 (1) 如何构造迭代公式 (2) 向量数列{X (k)}的收敛条件 (3) 迭代的结束和误差估计 解线性方程组的迭代解法主要有简单迭代法、 Gauss-Seidel 法和SOR 法。简单迭代法又称同时代换法或Jacobi 法,是最简单的解线性方程组的迭代解法也是其他解法的基础。 1.3Jacobi 迭代法 设方程组点系数矩阵n n j A ai R ???=∈??满足条件0ii a ≠,i=0,1,2, …n 。把A 分解为 A=D+L+U

牛顿迭代法实验报告

用牛顿迭代法求非线性方程的根 一、 实验题目 求方程()013=--=x x x f 在5.1附近的根。 二、 实验引言 (1)实验目的 1. 用牛顿迭代法求解方程的根 2. 了解迭代法的原理 3. 改进和修缮迭代法 (2)实验意义 牛顿迭代法就是众多解非线性方程迭代法中比较普遍的一种,求解方便实用。 三、 算法设计 (1)基本原理 给定初始值0x ,ε为根的容许误差,η为()x f 的容许误差,N 为迭代次数的容许值。 1.如果()0='x f 或迭带次数大于N ,则算法失败,结束;否则执行2. 2.计算()() 0001x f x f x x '-=. 3.若ε<-21x x 或()η<1x f ,则输出1x ,程序结束;否则执行4. 4.令10x x =,转向1. (2)流程图

四、程序设计program nndd01 implicit none real,parameter::e=0.005 real,parameter::n=9 real::x1 real::x0=1.5 integer::k real,external::f,y do k=1,9 if (y(x0)==0) then write(*,*)"失败" else x1=x0-f(x0)/y(x0) if (abs(x1-x0)

else x0=x1 end if end if end do end function f(x) implicit none real::f real::x f=x*x*x-x-1 return end function function y(x) implicit none real::y real::x y=3*x*x-1 return end function 五、求解结果 3 1.324718 4 1.324718 5 1.324718 6 1.324718 7 1.324718 8 1.324718 9 1.324718 六、算法评价及讨论 1.在求解在1.5处附近的根,不难发现在输入区间左端值为1时 需要迭代6次,而输入区间左端值为1.5时,却只要4次。初

牛顿迭代法

牛顿迭代法 一、 牛顿迭代法 牛顿迭代法也称为牛顿-拉夫森(Newton-Raphson)迭代法,它是数值分析中最重要的方法之一,它不仅适用于方程或方程组的求解,还常用于微分方程和积分方程求解。 二、 迭代公式 ,...2,1,0,) () (1='-=+k x f x f x x k k k k 用迭代法解非线性方程时,如何构造迭代函数是非常重要的,那么怎样构造的迭代函数才能保证迭代法收敛呢?牛顿迭代法就是常用的方法之一,其迭代格式的来源大概有以下几种方式(主要是第一种): 1、设 ],[)(2 b a C x f ∈,对)(x f 在点],[0b a x ∈作泰勒展开: !2))((''))((')()(2 0000x x f x x x f x f x f -+ -+=ξ 略去二次项,得到)(x f 的线性近似式:))((')()(000x x x f x f x f -+≈。 由此得到方程=)(x f 0的近似根(假定≠)('0x f 0),) (')(000x f x f x x - = 即可构造出迭代格式(假定≠)('k x f 0): ) (') (1k k k k x f x f x x - =+ 公式(1) 这就是牛顿迭代公式,若得到的序列{k x }收敛于α,则α就是非线性方程的根。

2、 牛顿迭代法也称为牛顿切线法,这是由于)(x f 的线性化近似函数 )(x l =))((')(000x x x f x f -+是曲线y =)(x f 过点))(,(00x f x 的切线而得名 的,求)(x f 的零点代之以求)(x l 的零点,即切线)(x l 与x 轴交点的横坐标,如右图所示,这就是牛顿切线法的几何解释。实际上,牛顿迭代法也可以从几何意义上推出。利用牛顿 迭代公式,由k x 得到1+k x ,从几何图形上看,就是过点))(,(k k x f x 作函数)(x f 的切线k l ,切线k l 与x 轴的交点就是1+k x ,所以有1 )()('+-= k k k k x x x f x f , 整理后也能得出牛顿迭代公式: ) (') (1k k k k x f x f x x - =+。 3、 要保证迭代法收敛,不管非线性方程=)(x f 0的形式如何,总可以构造: )()()(x f x k x x x -==? )0)((≠x k 作为方程求解的迭代函数。因为:)(')()()('1)('x f x k x f x k x --=? 而且)('x ?在根α附近越小,其局部收敛速度越快,故可令:0)('=α? 若≠)('αf 0(即根α不是=)(x f 0的重根),则由0)('=α?得:)('1 )(ααf k = , 因此可令 )('1 )(x f x k = ,则也可以得出迭代公式:)(')(1k k k k x f x f x x - =+。 4、 迭代法的基本思想是将方程0)(=x f 改写成等价的迭代形式

非线性方程组的牛顿迭代法的应用

非线性方程组的牛顿迭代法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

非线性方程组的牛顿迭代法的应用 一、问题背景 非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。 二、数学模型 对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。 设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有 ()()()()k k k x x x f x f x f -+≈', 于是方程()0=x f 可近似地表示为 ()()()0'=-+k k k x x x f x f 这是个线性方程,记其根为1+k x ,则1+k x 的计算公式 () () k k k k x f x f x x ' 1- =+, ,1,0=k 这就是牛顿法。 三、算法及流程 对于非线性方程 ()()()???? ????????=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2 12 12211 在()k x 处按照多元函数的泰勒展开,并取线性项得到

牛顿-拉夫森(Newton-Raphson)迭代法 2

§3.4 牛顿迭代法 牛顿迭代法也称为牛顿-拉夫森(Newton-Raphson)迭代法,它是数值分析中最重要的方法之一,它不仅适用于方程或方程组的求解,还常用于微分方程和积分方程求解。 3.4.1 牛顿迭代法 用迭代法解非线性方程时,如何构造迭代函数是非常重要的,那么怎样构造的迭代函数才能保证迭代法收敛呢?牛顿迭代法就是常用的方法之一,其迭代格式的来源大概有以下几种方式: 1设 ],[)(2b a C x f ∈,对)(x f 在点],[0b a x ∈作泰勒展开: !2))((''))((')()(2 0000x x f x x x f x f x f -+-+=ξ 略去二次项,得到)(x f 的线性近似式: ))((')()(000x x x f x f x f -+≈。 由此得到方程=)(x f 0的近似根(假定 ≠)('0x f 0),)(')(000x f x f x x -= 即可构造出迭代格式(假定≠)('k x f 0):)(') (1k k k k x f x f x x -=+ 公式(3.4.1) 这就是牛顿迭代公式,若得到的序列{k x }收敛于α,则α就是非线性方程的根。 2 牛顿迭代法也称为牛顿切线法,这是由于)(x f 的线 性化近似函数)(x l =))((')(000x x x f x f -+是曲线y = )(x f 过点))(,(00x f x 的切线而得名的,求)(x f 的零点代之 以求)(x l 的零点,即切线)(x l 与x 轴交点的横坐标,如右图 所示,这就是牛顿切线法的几何解释。实际上,牛顿迭代法 也可以从几何意义上推出。利用牛顿迭代公式,由k x 得到1+k x ,从几何图形上看,就是过点))(,(k k x f x 作函数)(x f 的切线k l ,切线k l 与x 轴的交点就是1+k x ,所以有 1)()('+-=k k k k x x x f x f ,整理后也能得出牛顿迭代公式: )(') (1k k k k x f x f x x -=+。 3 要保证迭代法收敛,不管非线性方程=)(x f 0的形式如何,总可以构造: )()()(x f x k x x x -==? )0)((≠x k ? 作为方程求解的迭代函数。因为:)(')()()('1)('x f x k x f x k x --=? 而且)('x ?在根α附近越小,其局部收敛速度越快,故可令:0)('=α?

梯度下降法、牛顿迭代法、共轭梯度法

(1) (5) 梯度下降法、牛顿迭代法、共轭梯度法 (参见:神经网络->PGM-ANN-2009-C09性能优化) 优化的目的是求出目标函数的最大值点或者最小值点,这里讨论的是迭代的方法 梯度下降法 首先,给定一个初始猜测值 ,然后按照等式 逐步修改猜测。这里向量 ? k 代表一个搜索方向,一个大于零的纯量 〉k 为学习 速度,它确定了学习步长。 当用 工k 二 X k a k P k 进行最优点迭代时,函数应该在每次迭代时 都减小,即 F (、 k 1 ■ F (二 k ) 考虑 的F (X )在X k 的一阶泰勒级数展开: F (工 k J = F (乂 「 -< k ) (4) 其中, g T 为在旧猜测值X k 处的梯度 (2) * T" F(x)二 F(x) 'F(x) =*(X - x *) 1 (X - X * ) 2 2 F (x) (3) F (工 k ) g : *

(1) (5) g k = ▽ F (x ) x=x k 要使 F (工 k -1V : F k ) 只需要(4)中右端第二项小于 0,即

T g T k k k k k ( 6) (6) 选择较小的正数:A 。这就隐含g :P k o ° 满足g :P k 0的任意向量成为一个下降方向。如果沿着此方向取足够小步长,函数一 定递减。并且,最速下降的情况发生在 g : P k 最小的时候,容易知道,当P k = -g k 时g :P k 最 小,此时,方向向量与梯度方向相反。 在(1式中,令P k =-g k ,则有 k 1 X k a k g k ( 7) 对于式(7)中学习速率的选取通常有两种方法:一种是选择固定的学习速率 :“, 另一种方法是使基于学习速率 的性能指数或目标函数 F (X ki )在每次迭代中最小化,即 沿着梯度反方向实现最小化: X k1 = X k -,k g k ° 注意: 1、对于较小的学习速度最速下降轨迹的路径总是与轮廓线正交,这是因为梯度与轮廓 线总是正交的。 2 、如果改变学习速度,学习速度太大,算法会变得不稳定,振荡不会衰减,反而会增 大。 3、稳定的学习速率 对于任意函数,确定最大可行的学习速度是不可能的,但对于二次函数,可以确定 一个上界。令特 征函数为: 1 X T AX d T X c 2 I F(X)二 AX d 代入最速下降法公式(7)中 X k 1 二 X k -a k g k 二 X k -ajAX k d) = (I -a k A ) X k -a k d ( 9) 在动态系统中,如果矩阵[I -aA ]的特征值小于 1则该系统是稳定的。可用赫森矩阵 A 的特征值来表示该矩阵的特征值,假设 A 的特征值和特征向量分别为 匚仆’2, 'n [和 立,Z 2,…Z n 二那么 g F(x)二 (8) 那么梯度为

利用牛顿迭代法求解非线性代数方程组

利用牛顿迭代法求解非线性代数方程组 一、 问题描述 在实际应用的很多领域中,都涉及到非线性方程组的求解问题。由于方程的非线性,给我们解题带来一定困难。牛顿迭代法是求解非线性方程组的有效方法。下面具体对牛顿迭代法的算法进行讨论,并通过实例理解牛顿迭代法。 二、 算法基本思想 牛顿迭代法求解非线性代数方程组的主要思想是将非线性函数线性化。下面我们具体讨论线性化过程: 令: ()()()()?? ?? ????????=????? ???????=????????????=0000,,2121 n n x x x x x f x f x f x F (3-1) 则非线性方程组(3-2) ()()()0 ,,,0 ,,,0,,,21212211===n n n n x x x f x x x f x x x f (3-2) 可写为向量形式 ()0=x F (3-3) ? ()0=x F 成为向量函数。

设()()() ()k n k k x x x ,,,2 1 是方程组(3-2)的一组近似解,把它的左端在()()() ()k n k k x x x ,,,2 1 处用多元函数的泰勒展式展开,然后取线性部分,便得方程组(3-2)得近似方程组 ()()() ( ) ()()() () ()()()() ( )()()() () ()()() () ( ) ()()() () ()0 ,,,,,,0 ,,,,,,0 ,,,,,,1 21211 2122121 211211=???+=???+=???+∑∑∑===k j n j k n k k n k n k k n k j n j k n k k k n k k k j n j k n k k k n k k x x x x x f x x x f x x x x x f x x x f x x x x x f x x x f (3-4) 这是关于()()()n i x x x k i i k i ,,2,1 =-=?的线性方程组,如果它的系数矩阵 ????????? ???????????????????????????????n n n n n n x f x f x f x f x f x f x f x f x f 2 1 2221 2121 11 (3-5) 非奇异,则可解得 () ()()???? ?? ? ???????---?????????? ??????????????????????????????=?????????????????-n n n n n n n k n k k f f f x f x f x f x f x f x f x f x f x f x x x 21 1 2 1 2221 2121 11 21 (3-6) 矩阵(3-5)称为向量函数()x F 的Jacobi 矩阵,记作()x F ' 。又记

牛顿迭代法论文

目录 一牛顿迭代法的简介 (4) 1.1 牛顿迭代法的产生背景 (4) 1.2 牛顿迭代法的概述 (4) 1.3 牛顿迭代法的优点 (4) 二牛顿迭代法的分析 (4) 2.1 牛顿迭代法的思想 (4) 2.2 牛顿迭代法的要求 (5) 2.3 牛顿.迭代法 (6) 三牛顿迭代求根的方法 (7) 四牛顿迭代法具体例子的实现 (7) 伍牛顿迭代法的收敛性 (10) 六、迭代求根应注意的事项 (10) 七、参考文献 (11) 八附录.c语言代码 (13)

题目: 牛顿法---插值方法 摘要: 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。牛顿迭代法是一个重要的计算方法和思想。牛顿迭代法的主要功能:计算方程时可以比较快速方便的计算出来结果但并不影响计算出来结果的精确度,运用于多种工业设计和数学设计方面. 关键字: 牛顿迭代方程根算法

一 .牛顿迭代法简介 1.1 牛顿迭代法的产生背景 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。 1.2 牛顿迭代法的概述 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0) f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +…取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。 1.3 牛顿迭代法的优点 迭代法是求方程近似根的一个重要方法,也是计算方法中的一种基本方法,它的算法简单,是用于求方程或方程组近似根的一种常用的算法设计方法。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具

相关文档
最新文档