谐波的概念及危害分析

谐波的概念及危害分析
谐波的概念及危害分析

什么是谐波?供电系统的谐波是怎么定义的?

电力系统中有非线性(时变或时不变)负载时,即使电源都以工频50HZ供电,当工频电压或电流作用于非线性负载时,就会产生不同于工频的其它频率的正弦电压或电流,这些不同于工频频率的正弦电压或电流,用富氏级数展开,就是人们称的电力谐波。

供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般为2≤n≤40。

Q:谐波有什么危害?

电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。谐波的危害电力系统中谐波的危害是多方面的,概括起来有以下几个方面:

1. 对供配电线路的危害

( 1)影响线路的稳定运行

供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对 10%以下

含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。

( 2)影响电网的质量

电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中 3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。

2. 对电力设备的危害

对电力电容器的危害

当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的 1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果

谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。尤其是电容器投入在电压已经畸变的电网中时,

还可能使电网的谐波加剧,即产生谐波扩大现象。另外,谐波的存在往往使电压呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。一般来说,电压每升高10%,电容器的寿命就要缩短1/2左右。再者,在谐波严重的情况下,还会使电容器鼓肚、击穿或爆炸。

对电力变压器的危害

谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加。谐波还使变压器的铁耗增大,这主要表现在铁心中的磁滞损耗增加,谐波使电压的波形变得越差,则磁滞损耗越大。同时由于以上两方面的损耗增加,因此要减少变压器的实际使用容量,或者说在选择变压器额定容量时需要考虑留出电网中的谐波含量。除此之外,谐波还导致变压器噪声增大,变压器的振动噪声主要是由于铁心的磁致伸缩引起的,随着谐波次数的增加,振动频率在 1KHZ左右的成分使混杂噪声增加,有时还发出金属声。

对电力电缆的危害

由于谐波次数高频率上升,再加之电缆导体截面积越大趋肤效应越明显,从而导致导体的交流电阻增大,使得电缆的允许通过电流减小。另外,电缆的电阻、系统母线侧及线路感抗与系统串联,提高功

率因数用的电容器及线路的容抗与系统并联,在一定数值的电感与电容下可能发生谐振。

对用电设备的危害对电动机的危害

谐波对异步电动机的影响,主要是增加电动机的附加损耗,降低效率,严重时使电动机过热。尤其是负序谐波在电动机中产生负序旋转磁场,形成与电动机旋转方向相反的转矩,起制动作用,从而减少电动机的出力。另外电动机中的谐波电流,当频率接近某零件的固有频率时还会使电动机产生机械振动,发出很大的噪声。

对低压开关设备的危害

对于配电用断路器来说,全电磁型的断路器易受谐波电流的影响使铁耗增大而发热,同时由于对电磁铁的影响与涡流影响使脱扣困难,且谐波次数越高影响越大;热磁型的断路器,由于导体的集肤次应与铁耗增加而引起发热,使得额定电流降低与脱扣电流降低;电子型的断路器,谐波也要使其额定电流降低,尤其是检测峰值的电子断路器,额定电流降低得更多。由此可知,上述三种配电断路器都可能因谐波产生误动作。

对于漏电断路器来说,由于谐波汇漏电流的作用,可能使断路器异常发热,出现误动作或不动作。对于电磁接角器来说,谐波电流使磁体部件温升增大,影响接点,线圈温度升高使额定电流降低。对于热继电器来说,因受谐波电流的影响也要使额定电流降低。在工作中它们都有可能造成误动作。

对弱电系统设备的干扰

对于计算机网络、通信、有线电视、报警与楼宇自动化等弱电设备,电力系统中的谐波通过电磁感应、静电感应与传导方式耦合到这些系统中,产生干扰。其中电感应与静电感应的耦合强度与干扰频率成正比,传导则通过公共接地耦合,有大量不平衡电流流入接地极,从而干扰弱电系统。

影响电力测量的准确性

目前采用的电力测量仪表中有磁电型和感应型,它们受谐波的影响较大。特别是电能表(多采用感应型),当谐波较大时将产生计量混乱,测量不准确。

谐波对人体有影响

从人体生理学来说,人体细胞在受到刺激兴奋时,会在细胞膜静息电位基础上发生快速电波动或可逆翻转,其频率如果与谐波频率相接近,电网谐波的电磁辐射就会直接影响人的脑磁场与心磁场。

Q:谐波是怎么产生的?

电网谐波来自于 3个方面:

一是发电源质量不高产生谐波:

发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。

二是输配电系统产生谐波:

输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中 3次谐波电流可达额定电流的0.5%。

三是用电设备产生的谐波:

晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中 3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数

次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。

电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是 2 7次的谐波,平均可达基波的8% 20%,最大可达45%。

气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。

家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。Q:谐波标准?

1. GB/T 14549—93 《电能质量公用电网谐波》该标准对不同电压等级各次谐波允许注入值都作了具体规定(略),其规定公用电网谐波电压(相电压)限值

2. 2)谐波治理就是在谐波源处安装滤波器,就近吸收谐波源产生的谐波电流,现在广泛采用的滤波器为无源滤波器,另外有利用时域补偿原理的有源滤波器,这种滤波器的优点是能做到适时补偿,且不增加电网的容性元件,但造价较高。无源滤波装置,吸收高次谐波,而所有滤波支路对基波呈现容性,正好满足无功补偿要求,不必另装并联电容器补偿装置,这种方法经济、简便,国内外广泛采用。

滤波器的种类。滤波器大致分为以下六种类型,如图

3)(a)—单调谐波滤波器; (b)—双调谐滤波器;

(c)—一阶高通滤波器; (d)—二阶高通滤波器;

(e)—三阶高通滤波器; (f)—“c” 式高通滤波器。

单调谐滤波器通频带窄,滤波效果好,损耗小,调谐容易,是使用最多的一种类型。

双调谐滤波器可替代两个单调谐滤波器,只有一个电抗器( L1 )承受全部冲击电压,但接线复杂,调谐困难,仅在超高压系统中使用。

一阶高通滤波器因基波损耗大,一般不采用。

二阶高通滤波器通频带很宽,滤波效果好,既可调谐振点,又可调谐曲线锐度,并可防意外共振与放大,因此也有以二阶宽通带做低次滤波器。

三阶高通滤波器一般用电弧炉滤波。

“C” 式高通滤波器,用于电弧炉滤波,对二次谐波特别有效。

谐波干扰问题分析与谐波治理方法建议

谐波干扰问题分析与谐波治理方法建议 一、存在的谐波干扰问题介绍 某科技发展有限公司主要从事先进陶瓷材料相关技术、产品和系统的研发,涉及生物医学材料、新能源材料、电子信息材料、化工陶瓷材料、以及多功能结构陶瓷材料等领域。 该公司目前新安装的300KW中频烧结炉,可控硅控制功率加热,出现功率因数低0.3-0.5,谐波大,造成共用的容量1250Kvar供电变压器配置的容量为600Kvar无功补偿电容装置产生过热保护无法正常投切运行等问题。 二、谐波干扰状况分析 随着我国制造业的蓬勃发展和人民生活水平的不断提高,电力电子技术在电网设备中得到广泛应用,大量的非线性负荷广泛应用在工业、商业和民用电网中,给电网造成的污染问题越来越得到重视。如在一般工业领域使用的中频炉、变频器、软启动器、电弧炉、轧机、电解槽、电镀槽等负荷,商业和民用领域如节能灯、气体灯具、变频空调、电脑、冰箱等,都产生大量的谐波,尤其是近几年在我国节能技术产业的发展过程中出现了各种类型的专用节电装置,这些节电装置采用的均是电力电子控制技术如变频控制和可控硅调压原理,属典型的谐波源,大量使用导致谐波的产生,轻者影响供电质量使制造工艺较为精细的产品质量受到影响,或者由于在节电过程中使用的节电器具产生的谐波导致谐振,而使无功得不到满意补偿甚至不补偿影响节电效果,重者导致电气设备长期发热,降低使用寿命甚至损坏、火灾,危害电网安全。 为了便于对北京某科技发展有限公司新安装使用的中频烧结炉产生谐波危害进行分析,特地借鉴下列两组关联数据

用以推断可能产生谐波的含量。 借鉴测试数据一:2014年5月9日浙江某公司新安装使用的中频烧结炉的现场测试数据显示,该中频烧结炉运行时电源进线上基波电流在17-391A有功功率在7.8-118.5KW,谐波电压总畸变率5.7-6.3%,谐波电流总畸变率42-72.9%,功率因数在0.33-0.64范围内波动。 借鉴测试数据二:2014年6月22日领步公司应邀对某新型材料(江苏)有限公司生产线300KW中频烧结炉的谐波测试数据如下:运行电流在250A时谐波参数,谐波电压总畸变率4.4%,谐波电流总畸变率29.9%;运行电流在365A时谐波参数,谐波电压总畸变率6.7%,谐波电流总畸变率30.1% 运行电流 在250A时 谐波参数

谐波的危害及其抑制措施

谐波的危害及其抑制措施 中国联通苏州分公司 柳振伟 摘要:本文对谐波的概念及产生原理、谐波产生的问题作了较为详细的描述,并对目前解决谐波问题的措施作了分析。 关键词:交频器;谐波危害;抑制谐波措施 一、概述 理想状态下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国工业用电频率以50Hz 为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基频率波的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I 区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4,6、8等为偶次谐波,如基波为50Hz 时,2次谐波为lOOHz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。一个正弦波在5次谐波和7次谐波的影响下怎样发生畸变。(相对于基波的24%和9%),如下图所示。 图1 基波和谐波 图2 失真波形 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热,使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏,从而降低继电保护、控制、以及检测装

谐波对电网危害

谐波污染对电网有哪些具体影响? 谐波污染对电网的影响主要表现在: (1)造成电网的功率损耗增加、设备寿命缩短、接地保护功能失常、遥控功能失常、线路和设备过热灯,特别是三次谐波会产生非常打的中性线电流,使得配电变压器的零线电流甚至超过相线电流值,造成设备的不安全运行。谐波对电网的安全性、稳定性、可靠性的影响还表现在可能引起电网发生谐振、使正常的供电中断、事故扩大、电网解裂灯。 (2)引起变电站局部的并联或串联谐振,造成电压互感器灯设备损坏;造成变电站系统中的设备和元件产生附加的谐波损耗,引起电力变压器、电力电缆、电动机等设备发热,电容器损坏,并加速绝缘材料的老化;造成断路器电弧熄灭时间的延长,影响断路器的开断容器;造成电子元器件的继电保护或自动装置误动作;影响电子仪表和通信系统的正常工作,降低通信质量;增大附加磁场的干扰等。 谐波对电力电容器有哪些影响? 当配电系统非线性用电负荷比重较大,并联电容器组投入时,一方面由于电容器组的谐波阻抗小,注入电容器组的谐波电流打,使电容器过负荷而严重影响其使用寿命,另一方面当电容器组的谐波容抗与系统等效谐波感相等而发生谐振时,引起电容器谐波电流严重放大使电容器过热而导致损坏。因此,电压谐波和电流谐波超标,都会使电容器的工作电流增大和出现异常,例如,对于常用自愈式并联电容器,其允许过电流倍数是1.3倍额定电流,当电容器的电流超过这一限制时,将会造成电容器的损坏增加、发热异常、绝缘加速老化而导致使用寿命降低,甚至造成损坏事故。同时,谐波使工频正弦波形发生畸变,产生锯齿状尖顶波,易在绝缘介质中引发局部放电,长时间的局部放电也会加速绝缘介质的老化、自愈性能下降,而容易导致电容器损坏。 按照电力系统谐波管理规定,电网中任何一点电压正弦波的畸变率(歌词谐波电压有效值的均方根与基波电压有效值的百分比),均不得超过表2-5规定。 表2-5 电网电压正弦波形畸变极限值 用户供电电压(kV)总电压正弦波形畸变率极限值各奇、偶次谐波电压正弦波形畸变率极限之(%) 0.38 5 4 2 6或10 4 3 1.75 35或63 3 2 1 110 1.5 1 0.5 谐波对电力变压器有哪些影响? (1)谐波电流使变压器的铜耗增加,引起局部过热,振动,噪声增大,绕组附加发热等。(2)谐波电压引起的附加损耗使变压器的磁滞及涡流损耗增加,当系统运行电压偏高或三相不对称时,励磁电流中的谐波分量增加,绝缘材料承受的电气应力

谐波的危害

1、高次谐波能使电网的电压与电流波形发生畸变,另外相同频率的谐波电压和 谐波电流要产生同次谐波的有功功率和无功功率,从而降低电网电压,增加线路损耗,浪费电网容量, 2、影响供电系统的无功补偿设备,谐波注入电网时容易造成变电站高压电容过 电流和过负荷,在谐波场合下,电容柜无法正常投切,更严重的请况下,电容柜会将电网谐波进一步放大。 3、影响设备的稳定性,尤其是对继电保护装置,危害特大。 4、谐波的存在会造成异步电动机效率下降,噪声增大;使低压开关设备产生误 动作;对工业企业自动化的正常通讯造成干扰,影响电力电子计量设备的准确性。 5、谐波的存在会使电力变压器的铜损和铁损增加,直接影响变压器的使用容量和使用效率;还会造成变压器噪声增加,缩短变压器的使用寿命。 谐波对公用电网和其他系统的危害大致有以下几个方面: 1、加大企业的电力运行成本 由于谐波不经治理是无法自然消除的,因此大量谐波电压电流在电网中游荡并积累叠加导致线路损耗增加、电力设备过热,从而加大了电力运行成本,增加了电费的支出。 2、降低了供电的可靠性 谐波电压在许多情况下能使正弦波变得更尖,不仅导致变压器、电容器等电气设备的磁滞及涡流损耗增加,而且使绝缘材料承受的电应力增大。谐波电流能使变压器的铜耗增加,所以变压器在严重的谐波负荷下将产生局部过热,噪声增大,从而加速绝缘老化,大大缩短了变压器、电动机的使用寿命,降低供电可靠性,极有可能在生产过程中造成断电的严重后果。 3、引发供电事故的发生 电网中含有大量的谐波源(变频或整流设备)以及电力电容器、变压器、电缆、电动机等负荷,这些电气设备处于经常的变动之中,极易构成串联或并联的谐振条件。当电网参数配合不利时,在一定的频率下,形成谐波振荡,产生过电压或过电流,危及电力系统的安全运行,如不加以治理极易引发输配电事故的发生。

谐波分析产生原因,危害,解决方法

谐波分析 一、谐波的相关概述 谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。 谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性。由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。 电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波。因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。 二、谐波的危害 谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率。(2)谐波影响各种电气设备的正常工作。(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故。(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 三、谐波的分析 由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害。我国对于谐波相关工作的研究大致起源于20世纪80年代。我国国家技术监督局于93年颁布了国家标准《电能质量——公用电网谐波》(GB/T 14549-1993)。该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。这个规定给我国相关人员进行谐波检测分析、谐波污染的抑制提供了理论依据和大致思路。

高频谐波的危害和治理措施

高频谐波的危害和治理 随着国内外电力电子技术的发展,大量由电力电子开关构成的、具有非线性特性的用电设备广泛应用于冶金、钢铁、交通、化工等工业领域,如电解装置、电气机车、轧制机械、高频炉等,故国内外电网中的谐波污染状况日益严重.美国电力科学研究院EPRI最近的报告指出,全美因谐波等电能质量损失达几百亿美元.电网中的高次谐波会造成旋转电机和变压器过热,使电力电容器组工作不正常,甚至造成热击穿损坏;对电力系统中的发电机、调相机、继电保护自动装置和电能计量等也有很大危害,严重时会引发设备误动作,造成重大事故;谐波污染对通信、计算机系统、高精度加工机械,检测仪表等用电设备也有严重的干扰.因此,必须采取有效的措施来消除电网中的高次谐波. 在低压配电网中这些谐波污染问题显得尤为突出,严重影响到各种类大型厂矿的正常生产,如钢铁、煤矿、化工、纺织等企业,以及IT和大规模微电子集成电路企业,造成产品报废,生产线停产,生产设备的寿命骤减甚至损坏. 谐波使电网中串、并联设备产生谐波损耗,降低发电、输电及用电设备的效率,大量的三次谐波电流流过中线时会使线路过热甚至发生火灾.谐波对计算机和数控设备具有很大危害,可以影响程序运行,破坏数据,使信息丢失,导致控制系统误动作.谐波能够影响各种电气设备的正常运行,对电机、变压器、电容器、电缆等设备造成振动、过热、绝缘老化,严重影响设备的使用寿命甚至直接造成设备损坏. 例如大众汽车在生产中所产生的谐波直接影响上海安亭电网,且谐波的干扰使得大众的DeviceNet现场总线自动化生产系统无法正常工作.这些谐波污染问题带来的严重经济损失以及随着电力市场的发展趋势,政府、企业和个人用户对电能质量越来越重视,产生谐波污染的用户需要相应的设备减轻或消除其对周边电力系统的影响,电力运行管理部门也会加强对相关企业的监督管理. 目前用户通常采用并联型无源滤波器来抑制谐波,但存在不少缺陷.现在的趋势是采用电力电子装置进行谐波补偿,即电力有源滤波器(APF).与前者相比,有源滤波器能对变化的谐波进行迅速的动态跟踪补偿,而且补偿特性不受电网阻抗的影响. 有源滤波器的应用范围很广,从最常用的钢铁企业及其他有色金属冶炼加工企业,到煤矿,造纸,化工,玻璃,纺织以及电子和大规模集成电路芯片制造企业,以及IT业所需的大量计算机服务器等,都需要有源滤波器保证其生产线的可靠稳定运行.有源滤波器的设计制造在国内外均处于一个较初步阶段.国内外生产和研发该产品的公司很少.目前在国内提供有源滤波器销售服务的只有外资企业,即ABB中国投资有限公司(上海)的低压产品部,芬兰NOKIANCAPACITOR公司,以及法国梅兰日兰电气有限公司在中国所设机构.这几家公司只提供产品的

谐波的危害及其治理研究 李文焕

谐波的危害及其治理研究李文焕 发表时间:2018-04-09T16:49:14.143Z 来源:《基层建设》2017年第36期作者:李文焕 [导读] 摘要:电能质量的好坏,直接影响到工业产品的质量,评价电能质量有三方面标准。首先是电压方面,它包含电压的波动、电压的偏移、电压的闪变等;其次是频率波动;最后是电压的波形质量,即三相电压波形的对称性和正弦波的畸变率,也就是谐波所占的比重。 神华宁夏煤业集团有限责任公司煤制油分公司宁夏回族自治区 750411 摘要:电能质量的好坏,直接影响到工业产品的质量,评价电能质量有三方面标准。首先是电压方面,它包含电压的波动、电压的偏移、电压的闪变等;其次是频率波动;最后是电压的波形质量,即三相电压波形的对称性和正弦波的畸变率,也就是谐波所占的比重。我国对电能质量的三方面都有明确的标准和规范。本文重点分析谐波的来源、谐波的现状、谐波的危害,最终提出消除谐波的方法。 关键词:电网;电能质量;谐波治理;电压 引言 随着科学技术的发展,随着工业生产水平和人民生活水平的提高,非线性用电设备在电网中大量投运,造成了电网的谐波分量占的比重越来越大。它不仅增加了电网的供电损耗,而且干扰电网的保护装置与自动化装置的正常运行,造成了这些装置的误动与拒动,直接威胁电网的安全运行。因此我们对非线性用电设备产生的谐波必须进行治理,使谐波分量不超过国家标准。 一、电力系统中谐波的来源 电力系统中的谐波来自电气设备,也就是说来自发电设备和用电设备。由于发电机的转子产生的磁场不可能是完善的正弦波,因此发电机发出的电压波形不可能是一点不失真的正弦波。目前我国应用的发电机有两大类:隐极机和凸极机。隐极机多用于汽轮发电机,凸极机多用于水轮发电机。 对于谐波分量而言,隐极机优于凸极机,但随着科技进步,可控硅、IGBT等电子励磁装置的投入,使发电机的谐波分量有所上升。当发电机的端电压高于额定电压的10%以上时,由于电机的磁饱和,会使电压的三次谐波明显增加。 二、谐波的现状 通过对市场的常用用电器的谐波状况的测试,我们了解到目前我国内工业企业的谐波污染十分严重,尤其是早些年为了节能,引入的变频电源和直流用电器的投入,其5次、7次、11次谐波电流的含量分别占基波的20%、11%、6%,这对于小功率的用户而言,还不怎样,但对于大功率的用户来说,危害就很大了,对于中频炉用户,它用常规的无功补偿就无法进行,有的用户用常规的电容器无功补偿,无法投入电容器,有的即便投入了,也对5次谐波电流放大了1.8~3.8倍以上,使得电动机、变压器等用电器的铜损、铁损大大地增加,缩短了设备的使用寿命,多交了电费。 三、谐波的危害 影响供电系统的稳定运行:供配电系统中的电力线路与电力变压器,一般采用电磁继电器,感应式继电器或新式微机保护进行检测保护,在系统中这些属于敏感元件,继电器受到高次谐波的影响容易产生误动作,微机保护由于采用了整流采样电路,也及易受到谐波的影响导致误动或拒动,这样谐波严重威胁供电系统的稳定与安全运行。 1、影响电网的质量:高次谐波能使电网的电压与电流波形发生畸变,另外相同频率的谐波电压与谐波电流要产生同次谐波的有功功率和无功功率,从而降低电网电压,增加电路损耗,浪费电网容量。 2、影响供电系统的无功补偿设备:供电系统变电站均有无功补偿设备,当谐波注入电网时容易造成高压电容过电流和过负荷,使电容异常发热:另外谐波的存在还会加快电容器绝缘介质的老化,缩短电容的使用寿命。 3、影响电力变压器的使用:谐波的存在会使电力变压器的铜损和铁损增加,直接影响变压器的使用效率;还会造成变压器噪声增加,缩短变压器的使用寿命。 4、影响用电设备:谐波的存在会造成异步电机电动机效率下降,噪声增大,影响电力电子计量设备的准确性。 四、谐波治理的方法 1、国内对谐波污染的治理: 1)无源滤波装置主要采用LC回路,并联于系统中,LC回路的设定,只能针对于某一次谐波,即针对于某一个频率为低阻抗,使得该频率流经为其设定的LC回路,达到消除(滤除)某一频率的谐波的目的。LC回路在滤除谐波的同时,在基波对系统进行无功补偿。这种滤波装置简单,成本低,但不能滤除干净。其主要元件为投切开关、电容器、电抗器以及保护和控制回路。 2)有源电力滤波器。这种滤波器是用电力电子元件产生一个大小相等,但方向相反的谐波电流,用以抵销网络中的谐波电流,这种装置的主要元件是大功率电力电子器件,成本高,在其额定功率范围内,原则上能全部滤除干净。 2、优缺点、及市场前景及其经济效益的分析: 1)无源谐波滤除装置 无源滤波的主要结构是用电抗器与电容器串联起来,组成LC 串联回路,并联于系统中,LC回路的谐振频率设定在需要滤除的谐波频率上,例如5次、7次、11次谐振点上,达到滤除这3次谐波的目的。其成本低,但滤波效果不太好,如果谐振频率设定得不好,会与系统产生谐振。现在,市场上流通较多的采取的滤波方法就是这一种,主要是因为低成本,用户容易接受。虽滤波的效果较差,只要满足国家对谐波的限制标准和电力部门对无功的要求就行了。由于其低成本,市场的需求也就大,一般而言,低压0.4KV系统大多数采用无源滤波方式,高压10KV几乎都是采用这种方式对谐波进行治理。由于我国的中小企业大多数是私有的,业主对谐波的危害认识不足,一般不愿意拿出大量的经费来治理谐波,而有的企业由于谐波的含量太大,常规的无功补偿不能凑效,供电部门对无功的要求又是十分严格的,达不到就要罚款。因此,业主不得不要求滤波。 2)有源谐波滤除装置 有源谐波滤除装置是在无源滤波的基础上发展起来的,它的滤波效果好,在其额定的无功功率范围内,滤波效果是百分之百的。它主要是由电力电子元件组成电路,使之产生一个和系统的谐波同频率、同幅度,但相位相反的谐波电流与系统中的谐波电流抵消。但由于受到电力电子元件耐压,额定电流的发展限制,成本极高,其制作也较之无源滤波装置复杂得多,成本也就高得多了。其主要的应用范围是计算机控制系统的供电系统,尤其是写字楼的供电系统,工厂的计算机控制供电系统。对单台的装置而言,其利润是可观的,但用户一般

谐波谐振产生的原因及危害分析

谐波谐振产生的原因及危害分析 摘要:在电网运行中,不可避免地会产生谐波和谐振。当谐波谐振发生时,其电压幅值高、变化速度快、持续时间长,轻则影响设备的安全稳定 运行,重则可使开关柜爆炸、毁坏设备,甚至造成大面积停电等严重 事故。本文就其定义、产生原因、危害及预防措施作以介绍,供参考。 1.定义 谐波是一个周期的正弦波分量,其频率为基波频率的整数倍,又称高次谐波。通俗地说,基波频率是50HZ,那么谐波就是频率为100HZ、150HZ、200HZ...N*50HZ的正弦波。 谐振是交流电路的一种特定工作状况,是指在含有电阻、电感、电容的交流电路中,电路两端电压与其电流一般是不同相位的,当电路中的负载或电源频率发生变化,使电压相量与电流相量同相时,称这时的电路工作状态为谐振。谐波在电网中长期存在,而谐振仅是电网某一范围内的一种异常状态。 2.产生的原因 谐波的产生是由于电网中存在着非线性负荷(谐波源),如电力变压器和电抗器、可控硅整流设备、电弧炉、旋转电机、家用电器等,另外,当系统中发生谐振时,也要产生谐波。 谐振的发生是由于电力系统中存在电感和电容等储能元件,在某些情况下,如电压互感器铁磁饱和、非全相拉合闸、输电线路一相断线并一端接地等,在部分电路中形成谐振。谐波也可产生谐振,由谐波源和系统中

的某一设备或某几台设备可能构成某次谐波的谐振电路。 3.造成的危害 3.1谐波的危害 谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也对周围的通信系统产生干扰。电力电子设备广泛应用以前,人们对谐振及其危害就进行过一些研究,并有一定认识,但那时谐波污染没有引起足够的重视。近三四十年来,各种电力、电子装置的迅速使用,使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度的关注。谐波对公用电网和其他系统的危害大致有以下几个方面。 (1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热 甚至发生火灾。 (2)谐波影响各种电气设备的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重 过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以 至损坏。 (3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述(1)和(2)的危害大大增加,甚至引起严重事故。 (4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。 (5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法 2008-05-05 23:08:43| 分类:默认分类| 标签:|字号大中小订阅 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量(PowerQuality)受到人们的日益重视。例如,工业生产中的大型生产线、飞机场、大型金融商厦、大型医院等重要场合的计算机系统一旦失电,或因受电力网上瞬态电磁干扰影响,致使计算机系统无法正常运行,将会带来巨大的经济损失。电梯、空调等变频设备、电视机、计算机、复印机、电子式镇流器荧光灯等已成为人民日常生活的一部分,如果这些装置不能正常运行,必定扰乱人们的正常生活。但是,电视机、计算机、复印机、电子式照明设备、变频调速装置、开关电源、电弧炉等用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。 近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。集成度愈来愈高的微电子技术使计算器的功能更加完美,体积愈来愈小,从而促使各种电器设备的控制向智能型控制器方向发展。随着微电子技术集成度的提高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。例如,20世纪70年代计算机迅速普遍推广,电磁干扰及抑制问题更是十分突出,一些功能正常的计算机常出现误动作,而无法找出原因。1966年日本三基电子工业公司率先开发了“模拟脉冲的高频噪音模拟器”,将它产生的脉冲注入被试计算机的电源部分,结果发现计算机在注入100~200V脉冲时就误动作,难怪计算机在现场无法正常工作,其原因之一是计算机的电源受到了污染。因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。 国际电工委员会(IEC)已于1988年开始对谐波限定提出了明确的要求。美国“IEEE电子电气工程师协会”于1992年制定了谐波限定标准IEEE—1000。在IEEEstd.519—1992标准中明确规定了计算机或类似设备的谐波电压畸变因数(THD)应在5%以下,而对于医院、飞机场等关键场所则要求THD应低于3%。 1 电网谐波的产生 1.1电源本身谐波--由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。当然,几个这样的电源并网时,总电源的电流也将偏离正弦波。 1.2由非线性负载所致 1.2.1非线性负载---谐波产生的另一个原因是由于非线性负载。当电流流经线性负载时,负载上电流与施加电压呈线性关系;而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。 1.2.2 主要非线性负载装置 (1)开关电源的高次谐波:开关电源由五部分组成:一次整流、开关振荡回路、二次整流、负载和控制,这几个部分产生的噪声不完全一样。这几种干扰可以通过电源线等产生辐射干扰,也可以通过电源产生传导干扰。 (2)变压器空载合闸涌流产生谐波:铁心中磁通变化时,会产生8~15倍额定电流的涌流,由于线圈电阻的存在,变压器空载合闸涌流一般经过几个周波即可达到稳定。所产生的励磁涌流所含的谐波成份以3次谐波为主。

谐波的危害及治理

谐波的危害及治理

谐波对供电系统的危害及治理 中铝贵州分公司第一铝矿汪元江 [摘要] [关键词] 1、引言 一个理想的电力系统是以单一恒定频率与规定幅值的稳定电压供电的。但实际上,由于近年来随着科学技术的不断发展,在电力系统中大功率整流设备和调压装置的利用、高压直流输电的应用、大量非线性负荷的出现以及供电系统本身存在的非线性元件等使得系统中的电压波形畸变越来越严重,对电力系统造成了很大的危害。因此,要实现对电网谐波的综合治理,就必须搞清楚谐波的来源、危害及电网在各种不同运行方式下谐波潮流的分布情况,以采取相应的措施限制和消除谐波,从而改善供电系统供电质量和确保系统的安全经济运行。 2、谐波产生的原因 在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率、幅度与相角。谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次,n 为整数,例如5、7、11、13、17、19等。变频器主要产生5、7次谐波。 3、电网谐波的来源 3.1 发电源产生谐波,由于发电机三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀等其他一些原因,发电源多少也会产生一些谐波,但对电网影响很小。 3.2 输配电系统产生谐波,输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性特性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。 3.3 整流设备产生谐波,近年来,由于晶闸管整流装置在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。目前,常用的整流电路几乎都采用晶闸管相控整流电路或二极管整流电路,其中以三相桥式和单相桥式

电厂发电机的谐波危害分析与测试

电厂发电机的谐波危害分析与测试 发表时间:2017-03-09T15:51:09.617Z 来源:《电力设备》2017年第1期作者:丁超孟庆铭张晓彤 [导读] 本文重点针对谐波的危害进行分析,并研究一下我国谐波的监测。 一、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。谐波的产生主要是来自下列具有非线性特性的电气设备:具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式家用电器中。 二、谐波的危害 1、增加了发、输、供和用电设备的附加损耗 发电机出现谐波会使设备过热,降低设备的效率和利用率。由于谐波电流的频率为基波频率的整数倍,高频电流流过导体时,因集肤效应的作用,使导体对谐波电流的有效电阻增加,从而增加了设备的功率损耗、电能损耗,使导体的发热严重。 2、影响继电保护和自动装置的工作和可靠性 谐波对电力系统中以负序(基波)量为基础的继电保护和自动装置的影响十分严重,这是由于这些按负序(基波)量整定的保护装置,整定值小、灵敏度高。如果在负序基础上再叠加上谐波的干扰(如电气化铁道、电弧炉等谐波源还是负序源)则会引起发电机负序电流保护误动(若误动引起跳闸,则后果严重)、变电站主变的复合电压启动过电流保护装置负序电压元件误动,母线差动保护的负序电压闭锁元件误动以及线路各种型号的距离保护、高频保护、故障录波器、自动准同期装置等发生误动,严重威胁电力系统的安全运行。 3、使测量和计量仪器的指示和计量不准确 由于电力计量装置都是按50Hz的标准的正弦波设计的,当供电电压或负荷电流中有谐波成分时,会影响感应式电能表的正常工作。在有谐波源的情况下,谐波源用户处的电能表记录了该用户吸收的基波电能并扣除一小部分谐波电能,从而谐波源虽然污染了电网,却反而少交电费;而与此同时,在线性负荷用户处,电能表记录的是该用户吸收的基波电能及部分的谐波电能,这部分谐波电能不但使线性负荷性能变坏,而且还要多交电费。电子式电能表更不利于供电部门而有利于非线性负荷用户。 4、干扰通信系统的工作 电力线路上流过的3、5、7、11等幅值较大的奇次低频谐波电流通过磁场耦合,在邻近电力线的通信线路中产生干扰电压,干扰通信系统的工作,影响通信线路通话的清晰度,而且在谐波和基波的共同作用下,触发电话铃响,甚至在极端情况下,还会威胁通信设备和人员的安全。另外高压直流(HVDC)换流站换相过程中产生的电磁噪声(3-10kHz)会干扰电力载波通信的正常工作,并使利用载波工作的闭锁和继电保护装置动作失误,影响电网运行的安全。 5、对用电设备的影响 谐波会使电视机、计算机的图形畸变,画面亮度发生波动变化,并使机内的元件出现过热,使计算机及数据处理系统出现错误。对于带有启动用的镇流器和提高功率因数用的电容器的荧光灯及汞灯来说,会因为在一定参数的配合下,形成某次谐波频率下的谐振,使镇流器或电容器因过热而损坏。对于采用晶闸管的变速装置,谐波可能使晶闸管误动作,或使控制回路误触发。 三、谐波的测试与监测 1、谐波的实验室测试 我们可以利用示波器来记录发电机端线电压和三相电流,其波形如下: 实验可知,当发电机带整流负载时,受负载非线性工作特性的影响,发电机的机端线电压和三相电流的波形都发生了严重的畸变,含有大量的谐波。而且发电机伴随着震动现象,这是受谐波电磁转矩的影响,另外发电机的定子和转子发热严重。 2、我国的谐波监测发展 我国为加强对谐波的监测,管理及治理,于1994年正式颁布了GB/T14549-93国家标准《电能质量--公用电网谐波》。为了配合国家电力公司《电网电能质量技术监督管理规定》和国家《公用电网谐波标准》的执行,各企业生产了许多电能质量监测仪等系列产品。这些产品可测量三相电压、三相电流的谐波、序分量、电压变动和闪变、电压偏差、功率因数、有功、无功、频率、暂态电压等参数,谐波可测量63次,仪器实时监测定时记录,记录结果可以存盘并打印,为用户提供丰富、完整的实测记录资料。产品广泛应用于变电站、风电场、钢铁企业及电气化铁路,产品通过相关认证,完全能够满足电网运行要求,实现对电网安全保驾护航。 谐波分析是信号处理的一种基本手段。在电力系统的谐波分析中,主要采用各种谐波分析仪分析电网电压、电流信号的谐波,该类仪表的谐波分析次数一般在40次以下。对于变频器而言,其谐波分布与电网不同,电网谐波主要为低次谐波,而变频器的谐波主要为集中在载波频率整数倍附近的高次谐波,一般的谐波分析设备只能分析50次以下的谐波,不能测量变频器输出的高次谐波。对于PWM波,当载波频率固定时,谐波的频率范围相对固定,而所需分析的谐波次数,与基波频率密切相关,基波频率越低,需要分析的谐波次数越高。一般宜采用宽频带的,运算能力较强、存储容量较大的变频功率分析仪,根据需要,其谐波分析的次数可达数百甚至数千次。例如,当载波频率为2kHz,基波频率为50Hz时,其40次左右的谐波含量最大;当基波频率为5Hz时,其400次左右的谐波含量最大,需要分析的谐波次数

什么是谐波及谐波的危害

精心整理 什么是谐波?谐波的危害 一、谐波 1. 何为谐波?在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M .Fourier) 分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以区分为偶次与奇次性,第3、5、7 次编号的为奇次谐波,而2、4、6 、8 等为偶次谐波,如基波为50Hz 时,2 次谐波为l00Hz ,3 次谐波则是150Hz 。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1 次谐波,例如5、7、11、13、17、19 等,变频器主要产生5、7 次谐波。“谐波” 到了50 年代和60 年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70 年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。谐波研究的意义,道德是因为谐波的危害十分严重。谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。 精心整理

变频器谐波危害分析及解决措施

变频器谐波危害分析及解决措施 摘要:本文从谐波的概念入手,结合变频器的内部结构的相关知识,分析变频器谐波产生的原因及其危害,在此基础上提出了抑制谐波的常用方法. 关键词:变频器谐波危害抑制 前言:在工业调速传动领域中,与传统的机械调速相比,用变频器调速有诸多优点,顾其应用非常广泛,但由于变频器逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载,变频器在现场通常与其它设备同时运行,例如计算机和传感器,这些设备常常安装得很近,这样可能会造成相互影响。因此,以变频器为代表的电力电子装置是公用电网中最主要的谐波源之一,其对电力系统中电能质量有着重要的影响。 一、变频器原理及其谐波的产生 变频器是工业调速领域中应用较广泛的设备之一,目前已在企业大量使用。变频器一般采用是交-直-交结构(如图一所示),它是把工频(50HZ)变换成各种频率的交流电源,以实现电机的变速运行的设备。其中控制电路完成对主电路的控制,变频调速装置用于交流异步电动机的调速,调速范围广、节能显著、稳定可靠。

(图一)一般通用变频器为交-直-交结构 众所周知,电机的转速和电源的频率是线性关系。 变频器就是利用这一原理将50Hz的工频电通过整流和逆变转换为频率可调方向的交流电源。变频器输入部分为整流电路,输出部分为逆变电路,这些都是由非线性原件组成的,在开断过程中,其输入端和输出端都会产生高次谐波。另外变频器输入端的谐波还会通过输入电源线对公用电网产生影响。 从结构上来看,变频器有交-直-交变频器和交-交变频器之分。目前应用较多的还是交-直-交变频器。变频器主电路为交-直-交,外部输入380V/50HZ工频电源,经三相桥式不可控整流成直流电压,经滤波电容滤波及大功率晶体管开关元件逆变为频率可调的交流信号。 在电力电子装置大量应用以后,电力电子装置成为最主要的谐波源。 变频器输入侧产生谐波机理:对于变频器而言,只要是电源侧有整流回路的,都将产生因非线性引起的谐波。以三相桥整流电路为例,交流电网电压为一正弦波,交流输入电流波形为方波,对于这个波形,

电力系统谐波对电气设备的影响

电力系统谐波对电气设备的影响 发表时间:2018-10-11T17:17:37.547Z 来源:《防护工程》2018年第11期作者:李华志[导读] 它能够破坏电力质量,影响电气设备的的正常运转,特别是对变压器、电容器和电机造成重要影响。对谐波的产生及其对电气设备的影响进行分析,并且探讨相应的应对方法。李华志 山东省德州市夏津县夏津县热电有限公司山东德州 253200摘要:谐波是在非线性阻抗特性的电力设备供电过程中产生的,它能够破坏电力质量,影响电气设备的的正常运转,特别是对变压器、电容器和电机造成重要影响。对谐波的产生及其对电气设备的影响进行分析,并且探讨相应的应对方法。关键词:电力系统;谐波;电气设备;影响引言 谐波主要是指频率为基波频率整数倍的正弦波分量,或者说电力系统的波形发生了不同程度的畸变,这种变异的波形就是谐波。电气设备本身具有非线性阻抗特性,这种特性使得电流与加载电压不成线性关系,电流波形在受到高次谐波反馈作用下发生畸变,使得电力质量受到影响,同时危害到了电气设备的运行,这种特性的存在是谐波产生的根本原因。 1 谐波对电气设备的影响与危害 谐波对电力系统的危害是一种谐波污染,对各种电气设备都有不同程度的影响和危害,主要表现为:引起过负荷和发热,增加介质应力和过电压,干扰和危害保护控制设备的性能和正常工作。 1.1对同步发电机的影响 流入电机定子绕组的谐波电流所产生的旋转磁场在转子绕组、转子极靴、槽楔等部位感应出谐波电流,集肤效应使这些部位易受到损害。定子绕组中的谐波电流同样也有集肤效应,使定子绕组出现很大的谐波涡流和漏磁,从而严重发热。此外当发电机中谐波电流的频率接近定子零部件的故有振荡频率时,可能引发发电机的剧烈振动。 1.2对感应电动机的影响 由于转子都是用硅钢片叠装成的,并有鼠笼绕组来承载感应电流,故承受谐波能力较强,只有定子绕组绝缘易受谐波影响。在额定负荷下,当存在较大谐波电流时,电动机磁饱和使电机的漏抗、励磁阻抗和负序阻抗下降。此外,励磁电流的铜损和负序电流损耗也将上升。这使得谐波所引起的感应电动机附加损耗和发热增加,要比单纯由谐波本身引起的损耗和发热更大。 1.3对变压器的影响 正常情况下,很小的励磁电流谐波分量和历时很短的合闸励磁涌流中的谐波电流不会对变压器本身构成危害,但在谐振条件下则会对变压器造成损害。当直流电流、低频电流或地磁感应电流流入变压器绕组时,变压器发生严重磁饱和,使励磁电流及其中的谐波电流大增,危害设备本身和电网的安全运行。谐波电流除引起变压器绕组附加损耗外,还会引起变压器外壳、外层硅钢片和某些紧固件发热,并有可能引起局部的严重过热。谐波还能使变压器噪声增大。 1.4电气设备在谐波作用下不正常升温,附加损耗过大 虽然谐波电流量与基波电流相比具有较大的差距,但是谐波的存在会使得设备集肤效应加剧,有效电阻在感知集肤效应的过程中,电阻值也会增长。对于一些特殊设备,还会产生较大的涡流损耗和磁滞损耗,比如带有铁心的电气设备。波形畸变到一定程度形成较大幅度的尖顶波时会使得局部放电强度加剧,在这种高消耗的情况下,很容易降低电气设备的使用寿命。 1.5继电保护装置拒动、误动 继电保护装置是保证电网安全运行的重要设备,其工作时的电压电流是以正弦工频的特性设计的,而其安装位置又非常接近谐波源,使继电器的动作特性,极易受到谐波干扰而影响其灵敏性,造成拒动或误动,引发中断生产及安全事故。其影响大小与继电器类型及工作原理相关。 当供电线路出现接地短路时,短路电流中较大的谐波分量,使整流型继电器因取样值偏小发生拒动现象。而整流型距离保护装置的振荡闭锁发生误动作,是因系统电流中的三相不对称谐波,使负序滤波器产生较大的谐波输出,造成整流后的直流脉动很大,使继电保护装置发生误动。当采用电磁型电流继电器进行短路保护时,流入继电器的谐波电流使电磁转矩增加而发生误动作。谐波电压对电磁型电压继电器的总阻抗影响较大,谐波电压使过压继电器误动,欠压继电器拒动。 1.6 谐波对通讯系统的影响 通讯线路与供电线路平行或间距较小时,使电网中的谐波在电磁感应的作用下,耦合到通讯线路内造成干扰,使信息失真甚至丢失,严重时将威胁通讯设备的正常工作及人身安全。 2 谐波的治理方法 2.1 在谐波源处吸收谐波电流。 (1)无源滤波器 无源滤波器是采用R、L、C元件构成的谐振电路,安装在电气设备的交流侧,利用LC串并联谐振的特点,对某次谐波形成低阻抗通路,达到抑制谐波的作用,其滤波效果受系统参数影响大,并有放大某一次数谐波的缺点。 (2)有源滤波器。 采用电子振荡电路,向电网注入与谐波大小相等相位相反的电流,使电网中的总谐波电流为零。这种补偿方法易控制响应快,能实现对多次谐波的补偿抑制,不受系统参数影响,能自动跟踪谐波变化,具有极强的自适应功能。 (3)加装静止无功补偿装置 谐波源产生的谐波会使供电系统的电压出现不平衡现象,影响供电的质量。采用静止无功补偿装置,能有效稳定供电电压。静止型动态无功补偿装置与无源滤波器并联,既能满足无功补偿、改善功率因数,又能消除高次谐波的影响。 2.2降低非线性设备的谐波含量

关于谐波危害及治理措施的探讨

关于谐波危害及治理措施的探讨 (作者:__________ 单位: ___________ 邮编: ___________ ) 摘要:本文作者主要就电力系统谐波的危害做了阐述 同时对我国目前电力系统中进行谐波抑制常用的方法进行了分析。 关键词:谐波危害;谐波抑制;治理措施 刖言 在电力系统中采用电力电子装置可灵活方便地变换电路形态,为用户提供高效使用电能的手段。但是,电力电子装置的广泛应用也使电网的谐波污染问题日趋严重,影响了供电质量。目前谐波与电磁干扰、功率因数降低已并列为电力系统的三大公害。因而了解谐波产生的机理,研究消除供配电系统中的高次谐波问题对改善供电质量和确保电力系统安全经济运行有着非常积极的意义。 1. 谐波及其起源 在电力系统中谐波产生的根本原因是由于非线性负载所 致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电

流,即电路中有谐波产生。谐波频率是基波频率的整倍数,根据法国数 学家傅立叶(M. Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为IOOHz,3次谐波则是150Hz。一般 地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n ±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。 2. 谐波的主要危害 谐波污染对电力系统的危害是严重的,主要表现在: 2.1谐波对线路的影响 对供电线路来说,由于集肤效应和邻近效应,线路电阻随着频率的增加会很快增加,在线路中会有很大的电能浪费。另外,在电力系统中,由于中性线电流都很小,所以其线径一般都很细,当大量的谐波电流流过中性线时,会在其上产生大量的热量,不仅会破坏绝缘,严重时还会造成短路。甚至引起火灾。而当谐波频率与网络谐振频率相近或相同时,会在线路中产生很高的谐振电压。严重时会使电力系统或用电设备的绝缘击穿,造成恶性事故。 2.2对电力变压器的影响

相关文档
最新文档