不同玉米骨干自交系种子萌发时淀粉分解酶类活性动态变化

不同玉米骨干自交系种子萌发时淀粉分解酶类活性动态变化
不同玉米骨干自交系种子萌发时淀粉分解酶类活性动态变化

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

玉米淀粉生产工艺流程图

玉米淀粉生产工艺流程图 原料玉米 ↓ 净化→杂质 ↓ 硫磺→制酸→浸泡→稀玉米浆→浓缩→玉米浆 ↓ 破碎→胚芽→洗涤→脱水→干燥→榨油 ↓ 精磨 ↓ 筛洗→渣皮→脱水→干燥→粉碎→纤维粉 ↓ 分离→浓缩→脱水→干燥→蛋白粉 ↓ 清水→淀粉洗涤 ↓ 精制淀粉乳→制糖、变性淀粉等 ↓ 脱水 ↓ 干燥 ↓ 淀粉成品 ↓ 计量包装 主要设备 1.提升机1台 2.清理筛1台 3.除石槽2台(自制) 4.亚硫酸罐1个(自制) 5.硫磺吸收塔 2 座 6.浸泡罐6个(自制) 7.重力筛2台 8.破碎磨2台 9.针磨1台 10.胚芽旋流器2台 11.胚芽筛1台 12.压力曲筛7 台

13.洗涤槽1套(自制) 14.分离机2台 15.洗涤旋流器一套 16.汽浮槽2台(自制) 17.螺旋挤干机2台 18.管束干燥机3台 19.板框压滤机4台 20.沉淀罐4个 21.地池1个 22.刮刀离心机1台 23.气流干燥机组1套 24.原浆罐浓浆罐洗涤水罐各一个 25.各种泵、管道、阀门 玉米:水分%(m/m)≤14%杂质率%≤2%淀粉含量%(m/m)≥70% 淀粉:65-68% 胚芽6-8% 纤维粉8-10% 蛋白粉 4.5-6% 一吨玉米可生产酒精0.3-0.32 吨吨淀粉可生产麦芽糖浆1.15吨采用传统的玉米湿磨法(即用亚硫酸水溶液逆流浸泡玉米提取可溶性成分得玉米浸泡水,齿磨破碎、旋流分离提取玉米胚芽,筛分去渣,碟片分离机与旋流分离器组合使用分离去除蛋白)闭路循环生产工艺生产玉米淀粉,从而保证工艺的可靠性。同时充分利用工艺过程水,达到节省用水的目的。 玉米淀粉是以玉米为原料,经过原粮清理,浸泡,破碎,精磨,分离,淀粉精致,脱水,烘干,计量包装,成品。生产的过程中同步分离出胚芽,纤维粉,玉米蛋白粉及玉米浆。这些副产品还要分别经过分离,洗涤,脱水,烘干到计量包装。最终完成整套的生产过程。玉米淀粉生产线是一套连续的流水作业。玉米浆还可以和玉米纤维粉混合制成喷浆纤维,是做饲料的很好原料。 吨淀粉用水5吨左右电180度左右煤200公斤左右

浅谈蜡质玉米淀粉的开发与应用

浅谈蜡质玉米淀粉的开发与应用 北京化工研究院 王桂芸 蜡质玉米(Waxy Corn)又称糯玉米。我国民间俗称粘玉米。蜡质玉米外观不透明,质地致密匀质,似石蜡。当用刀切开其籽粒,切口表面有蜡样光泽,虽然其不含蜡的成分,但由此得名蜡质玉米。 由蜡质玉米生产的蜡质玉米淀粉与普通玉米淀粉相比,具有如下特性: 1.几乎全部为支链淀粉。 2.高度的膨胀性。 3.糊液透明度搞。 4.糊液稳定性好,不易老化。 5.糊液具有较强的粘结性和成模性。 蜡质玉米发源于我国,20世纪初传入美国走向世界。据有关资料报道,1996年美国蜡质玉米产量约200万吨。这些蜡质玉米几乎全部用于湿磨工业加工淀粉。 我国虽是蜡质玉米发源地,但由于长期以来只是农民的自发种植,仍沿用保留的地方品种,未形成规模。"八五"期间国家组织攻关,也先后育有"白糯1号"、"白糯2号"、"鲁糯1号"、"春糯1号"等品种。其中"白糯2号"为中国农业大学北京金粒特用玉米研究中心的科研成果。"白糯2号"自1992年育成后,经进行了品比试验后,于1997年开始在北京、西北等地进行大面积种植,并在西北、山西等地均建有淀粉加工厂,为中国蜡质玉米及其淀粉的生产起到了很大的推动作用,同时当地农民及企业也取得了比较好的经济效益。 "白糯2号"经农业部谷物品质监督检验测试中心检验,此品种水旱地均可种植,具有抗玉米大、小班病、青枯病等,抗倒性强。此品种支链淀粉含量超过99%,淀粉含量为69%。此品种的淀粉含量及支链淀粉所占比例,在国内外同类型产品中居领先地位,用该品种为原料所生产的淀粉及改性淀粉的产品质量也完全达到国外同类产品水平。 北京兰明道生物技术公司与北京金粒特用玉米研究中心合作,准备扩大其种植面积,以保证蜡质玉米有稳定的原料基地,进而满足生产变性淀粉所用原料的稳定性。 长期以来,蜡质玉米淀粉及其衍生物的产品市场一直被美国垄断。中国每年进口其衍生物产品已超过3万吨,主要用于食品和日化。我国自二十世纪八十年代以来对变性淀粉的研究与应用已取得比较好的经济和社会效益。一些科研单位和大专院校在科研方面也取得了很好的业绩,在国内蜡质玉米淀粉原料有保障的前提下,采用国内高新技术生产以蜡质玉米淀粉为原料的淀粉衍生物,取代进口,进而打入国际市场已是我国蜡质玉米淀粉及其衍生物的发展趋势。 中石化股份有限公司北京化工研究院自1985年开始进行淀粉衍生物的研究与应用,并先后在北京、广东、云南、山东、河北、河南等地建有工业化生产装置,生产造纸、纺织、养殖、建材等领域所用变性淀粉。近年来根据市场需求情况,本院对以"白糯2号"种植的蜡质玉米生产的蜡质玉米淀粉为原料进行其衍生物的研究和开发。主要开发品种为羟烷基淀粉。我们与有关单位合作在医药发面的应用研究取得了一定的成绩。随着此项工作的不断深入必将取得较好的社会效益和经济效益。 以"白糯2号"种植、生产的蜡质玉米淀粉为原料制备的变性淀粉,在火腿肠加工中,其添加量为5%时,火腿肠之硬度、弹性、咀嚼性、细致感、保水性与添加相同量大豆分离蛋白者接近,由此看出,用此产品作为添加剂不仅对提高产品质量起到很好的作用,同时还可以降低产品成本,提高经济效益。 同样用上述原料制备的另一牌号变性淀粉用于酸奶加工中,添加量仅为0.8%的条件下,大大改善其保水性,深受使用厂家欢迎。 另外,用上述原料制备的羟甲基淀粉与普通玉米淀粉制备的产品相比,其糊液光亮、透明,冷热粘度稳定性好。可作食品增稠剂,医药崩解剂及印染糊料等等。 二十世纪八十年代以来我国变性淀粉的生产与应用已取得了比较好的经济效益和社会效益。但以上的原淀粉主要以普通玉米淀粉、木薯淀粉、小麦淀粉为原料。以蜡质玉米淀粉为原料的淀粉衍生物的研究受原料限制未能得到充足的发展,现北京兰明道生物技术有限公司和中国农业大学已创造了良好的基础,我们科研人员应借助这良好的基础,把中国的以蜡质玉米淀粉为原料生产的衍生物产品做好、做大,占领中国市场进而打入国际市场。

马铃薯栽培知识整理

马铃薯栽培重点知识 一、马铃薯栽培区划(北方一作区、中原二作区、南方二作区和西南混作区) ◆本区包括东北地区的黑龙江、吉林两省和辽宁省除辽东半岛以外的大部,华北地区的河北北部、山西北部、内蒙古及西北 地区宁夏、甘肃、陕西北部、青海东部和新疆天山以北地区。 ◆本区气象特点是无霜期短,一般在110~170d,年平均温度在-4~10℃,大于5℃积温在2000~3500℃,年降水量为50~1000mm。 本地区气候凉爽日照充足,昼夜温差大,适于马铃薯生长发育,因而栽培面积较大,占全国马铃薯总栽培面积的50%以上,是我国马铃薯主要产区,如黑龙江、内蒙古等地因所产块茎的种性好,成为我国重要的种薯生产基地。 ◆本地区种植马铃薯一般是一年只栽培一季,为春播秋收的夏作类型,每年的4~5月份播种,9~10月收获。本区晚疫病、早 疫病、黑胫病发病比较严重。适于本区的品种类型应以中晚熟为主,宜选休眠期长,耐贮性好抗,逆性强,丰产性好的品种。本区拥有“中国马玲薯之乡”称号的有甘肃省定西市安定区、黑龙江省讷河市、宁夏的西吉县、河北省围场县、内蒙古自治区的武川县,陕西省定边县。 二、马铃薯的生长发育时期 ◆芽条生长期种薯播种后,从萌发开始,经历芽条生长,根系形成,至幼苗出土,马玲薯的生长从块茎上的芽萌发开 始,从芽萌生至出苗是芽条生长期,此期进行主茎的第一段生长。 ◆幼苗期(团棵期)从幼苗出土,经历根系发育,主茎孕育花蕾,匍匐茎伸长及顶端膨大块茎具雏形,,为幼苗期,从 出苗到早熟品种的第六叶或中晚熟品种的第八片叶展到第平,即完成了第一个叶序的生长,称团颗,是主茎的第二段生长。 ◆块茎形成期(发棵期)从马铃薯的幼苗期到第十二片叶或第16片叶展平,早熟品种以第一花絮开花,并发生第一对顶 生侧枝,晚熟品种于第二花絮开花并从花絮下发生第二对侧枝,以及主茎上也发生部分侧枝为第三段生长结束的标志,为期30天左右,称为马铃薯的块茎形成期。 ◆块茎增长期(结薯期)发棵期主茎生长完成并开始侧生茎叶生长后,从地上部茎叶与地下部块茎的干物质量达到 平衡时,便进入以块茎生长为主的块茎增长期(结薯期)此期叶面积已经达到最大值,茎叶生长逐渐缓慢并停止,地上部制造的养分不断向块茎输送,块茎的体积和重量不断增长,尤其开花期的十多天膨大最快,是决定块茎体积大小的关键时期。 ◆淀粉积累期茎叶开始逐渐衰老,到块茎体积和重量继续增加,这段时间主要是块茎积累淀粉的时期。 ◆成熟期在生产实践中,马铃薯没有绝对的成熟期,收获时期决定于生产目的和轮作中的要求,一般当植株地上部茎叶

马铃薯鉴别检测淀粉及内部杂质的方法

马铃薯鉴别检测淀粉及内部杂质的方法 马铃薯淀粉是食品行业重要的配料,也是广泛应用于、制药、化工等几十个工业领域的重要佳品,受市场经济需求和价格的影响,马铃薯淀粉工业生产和销售中的掺假行为,使得其作用功效大打折扣,研究其鉴别检测方法和内部杂质去除方法,是解决掺假问题和提纯工艺不足问题的有效方法。 马铃薯淀粉的功效和作用 马铃薯首先是食品工业的重要配料,尤其是其广泛应用于煎炸烹炒、做汤勾芡。一级品马铃薯淀粉还具有高粘度、高透明度、糊化温度低、吸水性强、膨胀力大等性能。在食品、制药等行业,且糊化温度为58-65摄氏度、粘稠度可达2000BU,其粘性特质决定了其作为增稠剂的价值。支链淀粉含量约有80%,避免了凝胶和老化现象。 马铃薯淀粉的鉴别检测 随着人类对健康管理的重视和食品质量与食品安全的重视程度提高,淀粉制品被列入28类食品的质量安全市场准入产品中的一类,。不仅关乎人类的食品健康,同时也在工业和医药行业受到了相应的重视。淀粉的实用安全关系到百姓的生命健康,检测淀粉质量指标又是必备手段。马铃薯

变性淀粉的用处更多,尤其体现在速冻食品要求淀粉具有优异的冻融稳定性、良好的弹性和透明度,以解决淀粉团黏弹性差、溶出率较高、烹煮时间较长、缺乏良好的口感的缺点。 鉴别诊断的主要方面是:水份≤18~20%,细度≥99.6(100目通过),蛋白质≤0.1%,白度≥90%(475mn,反射率),化学物SO2≤30PPM,灰分≤0.25,斑点≤3个。扫描电镜和稳定碳同位素比质谱法鉴别马铃薯淀粉中的掺假玉 米淀粉是最常用的检测方法,具体鉴定方法为: (1)扫描电镜鉴别诊断方法。百合淀粉、葛根淀粉、桄榔淀粉、绿豆淀粉及马蹄淀粉,在扫描电镜下分贝呈现出它们、各自的形态分别为扁平三角形、粘连多面体型、梨形、肾形及卵圆形;日常食用淀粉如红薯淀粉、马铃薯淀粉、木薯淀粉、豌豆淀粉、小麦淀粉和玉米淀粉的形态及大小在扫描电镜下观察能较直观地反映出差别和区别。 (2)碳同位素比质谱法。通过扫描电镜观察,当玉米淀粉的掺假量大于10%时,碳同位素的稳定性和自然性差异,对定性鉴定定性鉴别马铃薯淀粉中的玉米淀粉掺假行为,而且依照给出的公式可以估算出掺假玉米淀粉的含量。 马铃薯淀粉去杂方法 干红薯淀粉(颗粒状的)杂质取出方法。在淀粉制备环节,首先进行除杂工艺。以振动筛专门筛选颗粒物质,可以在当地的粮食加工场租取,也可以应用清水稀释后重新沉

西点基础知识1

西点基础知识与西点制作基本问题 分类目录 一淀粉类 二米粉类 三小麦粉类 四其他粉类 五膨大剂 六胶质类 七油脂类 八异国香料 奶制品类目 一牛奶 二淡奶 三炼乳 四鲜奶油 五黄油 六酸奶 七奶油奶酪 八马斯卡彭奶酪 九马苏里拉奶酪 一、淀粉类 1、玉米淀粉Corn Starch ( 绿湖、家乐) 又叫玉米粉、粟米淀粉、粟粉、生粉, 还有的地方管它叫豆粉(这个的确少见),是从玉米粒中提炼出的淀粉。包括玉米淀粉在内的淀粉类(很多其他类谷物也可以提炼出淀粉)在烹饪中是作为稠化剂使用的,用来帮助材料质地软滑以及汤汁勾芡之用。而在糕点制作过程中,在调制糕点面糊时,有时需要在面粉中掺入一定量的玉米淀粉。玉米淀粉所具有的凝胶作用,在做派馅时也会用到,如克林姆酱。另外,如在《面粉全知道》那篇帖子里说到的,玉米淀粉按比例与中筋粉相混合是蛋糕面粉的最佳替代品,用以降低面粉筋度,增加蛋糕松软口感。 2、太白粉Potato Starch 即生的马铃薯淀粉,加水遇热会凝结成透明的粘稠状,在中式烹调(尤其是台菜)上经常将太白粉加冷水调匀后加入煮好的菜肴中做勾茨,使汤汁看起来浓稠,同时使食物外表看起来有光泽。港菜茨汁一般则惯用生粉(玉米粉)。但是,太白粉勾芡的汤汁在放凉后会变得较稀,而玉米淀粉勾芡的汤汁在放凉后不会有变化。 太白粉不能直接加热水调匀或放入热食中,它会立即凝结成块而无法煮散。加了太白粉水煮后的食物放凉之后,茨汁会变得较稀,称为“还水”,因此一般在西点制作上多利用玉米淀粉来使材料达到粘稠的特性而不使用太白粉。 PS:注意与马铃薯粉Potato Flour(又叫“土豆粉”)相区别,可加热水调煮后还原变成马铃薯泥。此外,也经常用于西式面包或蛋糕中,可增加产品的湿润感。 3、木薯粉Tapioca Flour 又称菱粉、泰国生粉(因为泰国是世界上第三大木薯生产国,仅次于尼日利亚和巴西,在泰国一般用它做淀粉)。它在加水遇热煮熟后会呈透明状,口感QQ的带有弹性。

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

马铃薯淀粉的几种使用方法

烹调淀粉的几种使用方法 马铃薯淀粉淀粉 马铃薯淀粉是一种最适宜于烹调中使用的优质淀粉,可用于原料上浆、挂糊、勾芡,以及原料的粘裹及定型。其作用是提高分散原料的粘性及持水性,保持原料的水份、质感、温度,使菜肴鲜嫩酥脆,光亮润滑。在目前使用于烹调中的各种淀粉中,马铃薯淀粉具有最佳的特性: 1)粘度最好,胀性大,达到同样效果时用量最少。 2)色泽洁白无味,调制成的淀粉糊晶莹剔透,光泽好。 3)淀粉糊的老化速度较慢,且其粘度较少受各种调味品的影响。 勾芡 勾芡是烹调中的重要工艺环节,在菜肴接近成熟时,将调好的粉汁淋入锅内使卤汁浓稠,增加卤汁对原料的附着力。 但使用时须注意:勾芡须在菜肴即将成熟时进行,过或过迟都会影响到菜肴的质量;勾芡时锅中的汤汁必须适量;若用纯淀粉汁勾芡,须先对菜肴的口味颜色进行调整后进行,如在勾芡后调味调色,较难溶解渗透到原料中;勾芡时菜肴卤汁中的油量需适宜,否则芡汁下锅后,部分淀粉颗粒被油包裹,影响淀粉糊化;淋明油最好在淀粉糊化过程中进行,即勾芡后马上进行,以增加菜肴光亮润滑的感觉。 上浆、挂糊 上浆、挂糊是指将水与淀粉调制成水粉糊,将原料在糊中上浆、挂糊,然后进行油炸或过油,使成品表面光滑、不易回软、酥脆适口。 但使用时须注意:调制水粉糊时,应先将淀粉用水浸泡一段时间,让淀粉颗粒充分吸水,然后用已沉淀下来的淀粉进行调制,如此挂糊均匀,过油时不会出现脱糊和溅油;在调制全蛋糊和蛋清糊时,宜采用湿淀粉,使淀粉颗粒充分吸收水分,在蛋液中散开,起到最佳上浆、挂糊作用 方便面的神奇配料 面条是一种典型的东方食品,是东方饮食文化的重要组成部分,但传统的面条需经烧煮才能食用,也不方便携带。方便面不但继承了面条的传统风味,而且方便、快捷,更加适应现代人的生活节奏。工业生产的方便面,以油炸类为主,可分为速泡面、干脆面和煮面等。

马铃薯中淀粉含量的测定-精选.

ANYANG INSTITUTE OF TECHNOLOGY 马铃薯中淀粉含量的测定Determination of starch content in potato 系(院)名称:生物与食品工程学院 专业班级:07食品质量与安全1班 学生姓名:马天顺马帅 指导教师姓名:田萍 指导教师职称:副教授 2010年6月

录 …………………………………………………………………… 英文摘要、关键词…………………………………………………………………… 引言……………………………………………………………………………………… 第1章 ×××××××××××××………………………………………… 1.1 ×××××××××××××……………………………………………… 1.1.1 ××××××××××××× …………………………………………… 1.1.2 ××××××××××××× …………………………………………… 1.2 ××××××××××××× ……………………………………………… 1.3 ××××××××××××× ……………………………………………… 第2章 ××××××××××××××× ………………………………… 2.1 ×××××××××××××……………………………………………… 2.1.1×××××××××××××……………………………………………… 2.1.2×××××××××××××……………………………………………… 2.2 ××××××××××××× ……………………………………………… 2.3 ××××××××××××× ……………………………………………… 第3章××××××××××××……………………………………………… 3.1 ××××××××××××× ……………………………………………… 3.2 ××××××××××××× ……………………………………………… 第4章××××××××××××× ………………………………………… 结论 …………………………………………………………………………………… 致谢 …………………………………………………………………………………… 参考文献 ………………………………………………………………………………

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

玉米淀粉的生产工艺流程介绍

玉米淀粉生产技术 玉米是从玉蜀黍穗上剥离下的玉米粒, 玉米粒含水分12-16%、淀粉70- 7 2%、蛋白质8 — 11%、脂肪4 — 6%、灰分1.2 — 1.6%、纤维5 — 7%。玉米淀粉用途很广,既可用于食品工 业,也能用于造纸、纺织、化工、医药等部门。 以玉米为原料制造淀粉的方法很多,基本工艺流程如下: 玉米一>清理一>浸泡一>粗碎一 >胚的分离一>磨碎一>分离纤维一>分离蛋白质—>清洗一>离心分离一>干燥一>淀粉。? 具体生产流程如下: (1) 清理 清除玉米原粮中的杂质,通常用筛选、风选、比重分选等。 (2) 浸泡 玉米子粒坚硬,有胚,需经浸泡工序处理后,才能进行破碎。玉米通过浸泡,第一,可 浄化 二氧址碣亚硫毀一浸泡>浸泡水—菲汀(玉米架卜) 破碎胚芽併 胚芽分离洗涤 研磨 ?干燥"榨油 玉米油 稀蛋白-质?闻 + 液縮 干燥… 蛋白粉卩玉米淀紺- 硫谶 燃晓 玉米 *杂挪

软化子粒,增加皮层和胚的韧性。因为玉米在浸泡过程中大量吸收水分,使子粒软化,降低结构强度,有利于胚乳的破碎,从而节约动力消耗,降低生产成本。另外胚和皮层的吸水量大大超过胚乳,增强了胚和皮层的韧性,不易破裂。浸泡良好的玉米,如用手指压挤,胚即可脱落。第二,水分通过胚和皮层向胚乳内部渗透,溶出水溶性物质。这些物质被溶解出来后,有利于以后的分离操作。第三,在浸泡过程中,使粘附在玉米表面上的泥沙脱落。能借助玉米与杂质在水中的沉降速度不同,有效地分离各种轻重杂质,把玉米清洗干净,有利于玉米的破碎和提取淀粉。浸泡玉米的方法,目前普遍用管道将几只或几十只金属罐连接起来,用水泵使浸泡水在各罐之间循环流动,进行逆流浸泡,浸泡水中通常加二氧化硫,以分散和破坏玉米子粒细胞中蛋白质网状组织,促使淀粉游离出来,同时还能抑制微生物的繁殖活动,但是二氧化硫的浓度最高不得超过0.4%,否则酸性过大,会降低淀粉的粘度。温度对二氧化硫的浸泡作用具有重要影响,提高浸泡水温度,能促进二氧化硫的浸泡效果。但温度过高,会使淀粉糊化,造成不良后果,一般以50—55C为宜。浸泡时间的长短对浸泡作用有密切关系。浸泡时间短,蛋白质网状组织不能分散和破坏,淀粉颗粒不能游离出来。一般需要浸泡48 小时以上。浸泡条件:浸泡水的二氧化硫浓度为0.15%一0.2%,pH 值为3.5。在浸泡过程中,二氧化硫被玉米吸收,浓度逐渐降低,最后 放出的浸泡水含二氧化硫约为0.01%一0.02%,pH 值为3.9—4.1。浸泡水温度为50—55C,浸泡时间为40—60小时。浸泡条件应根据玉米的品质决定。通常储存较久的老玉米和硬质玉米,要求二氧化硫浓度较高,温度也较高,浸泡时间较长。玉米经过浸泡以后,水分应在40%以上。 (3) 粗碎 粗碎目的主要是将浸泡后的玉米粒破碎成10块以上的小块,以便将胚分离出来。玉米粗碎大都使用盘式破碎机。粗碎分两次进行。第一次把玉米粒破碎到4—6块,进行胚的分离;第二次再破碎到10块以上,使胚全部脱落。 (4) 胚的分离 目前国内用来分离胚的设备主要是分离槽。分离槽是一个U 形的木制或铸铁制的长槽,槽内装有刮板、溢流口和搅拌器。将粗碎后的玉米碎粒与波美9 度( 相当于比重1.06) 的淀粉乳混合,从分离槽的一端引入,缓缓地流向另一端。胚的比重小,飘浮在液面上,被移动的刮板从液面上刮向溢流口。碎粒胚乳较重,沉向槽底,经转速较慢(约6转/分)的横式搅拌器推向另一端的底部出口,排出槽外,从而达到分离胚的目的。

蛋白质提取与制备的原理和方法

蛋白质提取与制备的原理和方法 蛋白质提取与制备蛋白质种类很多,性质上的差异很大,既或是同类蛋白质,因选用材料不同,使用方法差别也很大,且又处于不同的体系中,因此不可能有一个固定的程序适用各类蛋白质的分离。但多数分离工作中的关键部分基本手段还是共同的,大部分蛋白质均可溶于水、稀盐、稀酸或稀碱溶液中,少数与脂类结合的蛋白质溶于乙醇、丙酮及丁醇等有机溶剂中。因此可采用不同溶剂提取、分离及纯化蛋白质和酶。 蛋白质与酶在不同溶剂中溶解度的差异,主要取决于蛋白分子中非极性疏水基团与极性亲水基团的比例,其次取决于这些基团的排列和偶极矩。故分子结构性质是不同蛋白质溶解差异的内因。温度、pH、离子强度等是影响蛋白质溶解度的外界条件。提取蛋白质时常根据这些内外因素综合加以利用。将细胞内蛋白质提取出来。并与其它不需要的物质分开。但动物材料中的蛋白质有些可溶性的形式存在于体液(如血浆、消化硫等)中,可以不必经过提取直接进行分离。蛋白质中的角蛋白、胶原及丝蛋白等不溶性蛋白质,只需要适当的溶剂洗去可溶性的伴随物,如脂类、糖类以及其他可溶性蛋白质,最后剩下的就是不溶性蛋白质。这些蛋白质经细胞破碎后,用水、稀盐酸及缓冲液等适当溶剂,将蛋白质溶解出来,再用离心法除去不溶物,即得粗提取液。水适用于白蛋白类蛋白质的抽提。如果抽提物的pH用适当缓冲液控制时,共稳定性及溶解度均能增加。如球蛋白 类能溶于稀盐溶液中,脂蛋白可用 稀的去垢剂溶液如十二烷基硫酸钠、洋地黄皂苷(Digitonin)溶液或有机溶剂来抽提。其它不溶于水的蛋白质通常用稀碱溶液抽提。 蛋白质类别和溶解性质 白蛋白和球蛋白: 溶于水及稀盐、稀酸、稀碱溶液,可被50%饱和度硫酸铵析出。 真球蛋白: 一般在等电点时不溶于水,但加入少量的盐、酸、碱则可溶解。 拟球蛋白: 溶于水,可为50%饱和度硫酸铵析出 醇溶蛋白: 溶于70~80%乙醇中,不溶于水及无水乙醇 壳蛋白: 在等电点不溶于水,也不溶于稀盐酸,易溶于稀酸、稀碱溶液 精蛋白: 溶于水和稀酸,易在稀氨水中沉淀 组蛋白: 溶于水和稀酸,易在稀氨水中沉淀 硬蛋白质: 不溶于水、盐、稀酸及稀碱 缀合蛋白(包括磷蛋白、粘蛋白、糖蛋白、核蛋白、脂蛋白、血红蛋白、金属蛋白、黄素蛋白和氮苯蛋白等) : 此类蛋白质溶解性质随蛋白质与非蛋白质结合部分的不同而异,除脂蛋白外,一般可溶于稀酸、稀碱及盐溶液中,脂蛋白如

玉米淀粉胶配方和生产工艺教学提纲

玉米淀粉胶配方和生 产工艺

玉米淀粉胶配方和生产工艺 1. 用途 本剂是以玉米淀粉为主要原料,添加氢氧化钠、焦锑酸钾、硼砂等辅料组成的玉米淀粉粘合剂。主要用于纸箱、瓦楞纸板等行业。本剂可以代替沿用已久的碱性泡花碱(即水玻璃)粘合剂,其优点是:生产设备简单,制作方便,投产快,粘合强度高,防潮性也比泡花碱好,而且涂布量和成本却比泡花碱粘合剂低。 2. 原料 (1)玉米淀粉:将玉米粒经过加工达到下列质量要求: 外观白色或微黄色粉末 水分(%)≤14 蛋白质(%)≤0.5 灰分(%)≤0.05 酸度(每100克干淀粉消耗0.1摩尔氢氧化钠)≤15 细度(通过100自筛)(%)≥99

斑点(个/厘米2) 1 气味正常 (2)氢氧化钠:亦称苛性钠、烧碱。白色固体,呈粒状、片状、棒状或块状。是强碱,对 皮肤、织物、纸张等有强腐蚀性。吸湿性较强,在空气中易吸收水分和二氧化碳逐渐变成碳酸钠。易溶于水,同时强烈放热,广泛用于造纸、人造丝、染色、肥皂、石油和其它化学工业。用作pH值调节剂。选用工业品。 (3)硼砂:学名十水四硼酸钠、焦硼酸钠。分子式Na2B4O7·10H2O。无色半透明晶体或结晶粉末。无臭,味甜涩。在空气中风化,晶体表面常被白色粉末覆盖。16毫升冷水、0.6毫升沸水或1毫升甘油可溶解1克硼砂,不溶于乙醇。水溶液呈碱性反应。主要用于玻璃和搪瓷工业,在医疗上用作防腐剂和消毒剂。本剂中用作防腐剂。选用工业品。 (4)焦锑酸钾:白色颗粒或结晶粉末。溶于热水,微溶于冷水,不溶于乙醇。本剂中起氧化作用和稳定作用。选用工业品。 3. 配方(重量份) 玉米淀粉 50 焦锑酸钾 1

马铃薯淀粉生产工艺及马铃薯淀粉设备介绍

马铃薯淀粉生产工艺及马铃薯淀粉设备介绍 关键词:马铃薯淀粉设备马铃薯加工设备土豆淀粉2018.8.2 一、原材料概况: 马铃薯块茎呈鹅卵石状,不同品种,其块茎数量及粗细差异很大。马铃薯块茎含淀粉量高,而含蛋白质、脂肪少,淀粉含量为15~25%。马铃薯淀粉的一些独特性能是其它淀粉无法代替的,所以广泛应用于食品工业。 二、工艺流程: 马铃薯-水力输送-清洗输送-二级清洗-清洗去石提升-粉碎、分离(曲网挤压型制粉机)-除砂-浓缩精制-真空脱水-气流干燥-成品包装 三、工艺介绍:下面以固德威薯业机械的马铃薯淀粉生产工艺流程及设备为例做简单介绍: 1、清洗工艺及设备 主要是清除物料外表皮层沾带的泥沙, 并洗除去物料块根的表皮,去石清洗机是要去除物料中的硬质杂。对作为生产淀粉的原料进行清洗, 是保证淀粉质量的基础,清洗的越净,淀粉的质量

就越好。输送是将物料传递至下一工序,往往输送的同时也有清洗功能。常用的输送、清洗、去石设备有:水力流槽、螺旋清洗机、斜鼠笼式清洗机、浆叶式清洗机、去石上料清洗机、(平)鼠笼式清洗机、转筒式清洗机、刮板输送机等。根据土壤和物料特性可选择其中的一些进行组合,达到清洗净度高,输送方便的要求。 2、原料粉碎及设备 粉碎的目的就是破坏物料的组织结构,使微小的淀粉颗粒能够顺利地从块根中解体分离出来。粉碎的要求在于: 1. 尽可能的使物料的细胞破裂,释放出更多的游离淀粉颗粒; 2. 易于分离。并不希望皮渣过细,皮渣过细不利于淀粉与其他成份分离,又增加了分离细渣的难度。固得威薯业国内外领先的分拣式粉碎。经第一级刨丝粉碎后的物料立即进行过滤,减小阻滞性,不符合要求的物料才进行第二次粉碎,达到要求不再粉碎,从而使细度均匀,降低动力,并且粉碎细度具有可控性,可根据物料性质不同进行调整,是目前淀粉加工中理想的粉碎方式。 3、筛分工艺及设备 淀粉提取,也称为浆渣分离或分离,是淀粉加工中的关键环节,直接影响到淀粉提取率和淀粉质量。粉碎后的物料是细小的纤维,体积大于淀粉颗粒,膨胀系数也大于淀粉颗粒,比重又轻于淀粉颗粒, 将粉碎后的物料,以水为介质,使淀粉和纤维分离开来。固得威薯业采用充分淘洗--无压渗滤—挤压依次多级循环的工艺(国家专利).充分淘洗使淀粉从纤维上游离出来;无压渗滤使浆水通过筛网孔而细渣留在网上;挤干使纤维中含的淀粉浆水进一步滤出,可以用较小的动力和快捷过程完成淀粉的提取。 4、洗涤工艺及设备 淀粉的洗涤和浓缩是依靠淀粉旋流器来完成的,旋流器分为浓缩旋流器和洗涤精制旋流器。通过筛分以后的淀粉浆先经过浓缩旋流器,底流进入洗涤精制旋流器,最后达到产品质量要求。

马铃薯基础知识入门

马铃薯入门基础知识 1.名称渊源 2.历史起源 传入中国 传播世界 3.马铃薯形态特征 (1)根 (2)茎 (3)叶 (4)花 (5)果实与种子

1.名称渊源 根据科学考证,马铃薯栽培种的起源中心为秘鲁和玻利维亚交界处的“的的喀喀湖”盆地中心地区,南美洲的哥伦比亚、秘鲁及沿安第斯山麓智利海岸以及玻利维亚、乌拉圭等地区都是马铃薯的故乡。野生种的起源中心则是中美洲及墨西哥,在那里分布着系列倍性的野生多倍体种。即2n=24,2n=36,2n=48,2n=60和2n=72等种。栽培品种为四倍体2n=48马铃薯品种。 2.历史起源 传入中国 马铃薯原产于南美洲的秘鲁和玻利维亚等国的安第斯山区和中美洲的墨西哥,如今已有2000多年的历史。约在1570年被西班牙人带回本国,而后传遍欧洲各地。约在16世纪末至17世纪初(明朝末年)有外国传教士把马铃薯带入我国,在中国约有400多年的栽培历史。现已遍布全国,由于其分布广泛,除了马铃薯学名外,各地还有许多土命,如北方的土豆、地蛋、山药、山药蛋等,南方的荷兰薯、洋芋、番芋、洋山芋等。 传播世界 马铃薯原产于南美洲安第斯山区,人工栽培史最早可追溯到公元前8000年到5000年的秘鲁南部地区。安第斯山脉海拔3800米之上的的的喀喀湖区可能是最早栽培马铃薯的地方。在距今大约7000年前,一支印第安部落由东部迁徙到高寒的安第斯山脉,在的的喀喀湖区附近安营扎寨,以狩猎和采集为生,是他们最早发现并食用了野

生的马铃薯。 最重要的马铃薯栽培种是四倍体种。四倍体栽培种马铃薯向世界各地传播,最初是于1570年从南美的哥伦比亚将短日照类型引入欧洲的西班牙,经人工选择,成为长日照类型。 十六世纪中期,马铃薯被一个西班牙殖民者从南美洲带到欧洲。那时人们总是欣赏它的花朵美丽,把它当作装饰品。 1586年英国人在加勒比海击败西班牙人,从南美搜集烟草等植物种子,把马铃薯带到英国,英国的气候适合马铃薯的生长,比其他谷物产量高且易于管理。 后来一位法国农学家——安·奥巴曼奇在长期观察和亲身实践中,发现马铃薯不仅能吃,还可以做面包等。从此,法国农民便开始大面积种植马铃薯。 1650年马铃薯已经成为爱尔兰的主要粮食作物,并开始在欧洲普及。 17世纪时,马铃薯已经成为欧洲的重要粮食作物并且已经传播到中国,由于马铃薯非常适合在原来粮食产量极低,只能生长莜麦(裸燕麦)的高寒地区生长,很快在内蒙、河北、山西、陕西北部普及,马铃薯和玉米、番薯等从美洲传入的高产作物成为贫苦阶层的主要食品,对维持中国人口的迅速增加起到了重要作用。 1719年由爱尔兰移民带回美国,开始在美国种植。 十八世纪初期,俄国彼得大帝游历欧洲时,以重金买了一袋马铃薯,种在宫廷花园里,后来逐渐发展到民间种植。

淀粉知识

淀粉知识 在农作物籽粒、根、块根重点分是经光合作用合成,具有颗粒结构与蛋白质、纤维、油脂、糖、矿物质等共同存在。淀粉颗粒不溶于水,工业上便是利用这种性质,采用水磨法工艺,将非淀粉杂质除去,得到纯度高的淀粉产品。1、化学组成 淀粉生产工艺和设备发展很快,已达到和高的技术水平,但还不能将淀粉无完全份除去,产品仍含有很少两杂质。 淀粉是在水介质中光合作用合成,颗粒含有水分,一般在10-20%,淀粉颗粒水分是与周围空气中水分呈平衡状态存在的,空气干燥会散出水分,空气潮湿会吸收水分。水分的吸收和散失是可逆的。 表一淀粉化学组成 脂类化合物与链淀粉分子结合成络合结构存在,对淀粉颗粒糊化、膨胀和溶解有强抑制作用。 2、淀粉颗粒 在光学显微镜,篇光显微镜和扫描电子显微镜下观察,玉米淀粉颗粒较小,呈多三角形;马铃薯淀粉颗粒较大,呈椭圆形;木薯淀粉颗粒有的呈凹形。表二不同淀粉颗粒大小 淀粉颗粒具有结晶性结构。颗粒的一部分具有结晶性结构,分子间具有规律性排列。另一部分为无定形结构,分子间排列杂乱,没有规律性。 淀粉分子具有众多的羟基,亲水性很强,但淀粉颗粒球不溶于水,这是因为羟基之间通过清廉结合的缘故。颗粒中水分也参与氢链的结合。 淀粉颗粒具有渗透性,水和水溶液能自由渗入颗粒内部。淀粉与稀碘溶液接触很快便蓝色,表明点溶液和块渗入颗粒内部与其中链淀粉起反应呈现蓝色,蓝色的淀粉颗粒在于硫代硫酸钠溶液相遇时,蓝色有同样很快消失,表明溶液很快渗入颗粒内部。起了反应。这种快速的颜色变化表明,淀粉颗粒具有很高渗透性。工业上采用化学方法生产变性淀粉便是利用颗粒的渗透性,水起到载体作用。淀粉颗粒内部有结合无定形区域,后者具有较高的渗透性,化学反应主要发生在此区域。 3、直链和支链淀粉 淀粉是有葡萄糖组成的多糖高分子化合物,有直链状和支链状两种分子。

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

相关文档
最新文档