第八讲 动态规划与最短路径(3)_538106033

用动态规划法实现有向图的最短路径问题。

动态规划法实现有向图的最短路径实验 实验题目: 设计一个求解有向图,单源最短路径的算法 实验目的: 1)了解,并掌握分支限界算法思想 2)会编写常见算法。 实验要求: 1.编写实验代码 2.分析算法时间和空间复杂度 实验主要步骤: 1 算法代码 package suanfa; publicclass ShortPath{ privatestatic Integer M = Integer.MAX_VALUE; publicstaticvoid main(String[]args){ int[][]c={{M,4,2,3,M,M,M,M,M,M}, {M,M,M,M,9,8,M,M,M,M}, {M,M,M,M,6,7,8,M,M,M}, {M,M,M,M,M,4,7,M,M,M}, {M,M,M,M,M,M,M,5,6,M}, {M,M,M,M,M,M,M,8,6,M}, {M,M,M,M,M,M,M,6,5,M}, {M,M,M,M,M,M,M,M,M,7}, {M,M,M,M,M,M,M,M,M,3}, {M,M,M,M,M,M,M,M,M,M}}; shortPath(10,c); } publicstaticvoid shortPath(int n,int[][]c){ int[] cost=newint[n];//cost[i]存储i到n-1的子问题的最短路径值 int[] path=newint[n];//path[i]存储状态,使cij+cost[i]最小的j值 //对数组cost[n]和path[n]进行初始化 for(int i=0;i=0;i--){

最短路径规划实验报告

电子科技大学计算机学院标准实验报告 (实验)课程名称最短路径规划 电子科技大学教务处制表

实验报告 学生姓名:李彦博学号:2902107035 指导教师:陈昆 一、实验项目名称:最短路径规划 二、实验学时:32学时 三、实验原理:Dijkstra算法思想。 四、实验目的:实现最短路径的寻找。 五、实验内容: 1、图的基本概念及实现。 一、图的定义和术语 图是一种数据结构。 ADT Graph{ 数据对象V :V是据有相同特性的数据元素的集合,称为顶点集。 数据关系R : R={VR} VR={|v,w∈V且P(v,w), 表示从v到w的弧,P(v,w)定义了弧的意义或信息} 图中的数据元素通常称为顶点,V是顶点的有穷非空集合;VR是两个顶点之间的关系的集合,若顶点间是以有向的弧连接的,则该图称为有向图,若是以无向的边连接的则称为无向图。弧或边有权值的称为网,无权值的称为图。 二、图的存储结构 邻接表、邻接多重表、十字链表和数组。这里我们只介绍数组表示法。 图的数组表示法: 用两个数组分别存储数据元素(顶点)的信息和数据元素之间的关系(边或弧)的信息。其形式描述如下: //---------图的数组(邻接矩阵)存储表示---------- #define INFINITY INT_MAX //最大值 #define MAX_VERTEX_NUM 20 //最大顶点个数 Typedef enum{DG,DN,UDG,UDN} GraphKind; //有向图,有向网,无向图,无向网Typedef struct ArcCell{ VRType adj; //顶点关系类型,对无权图,有1或0表示是否相邻; //对带权图,则为权值类型。 InfoType *info; //弧相关信息的指针

运用动态规划模型解决最短路径问题

运用动态规划模型解决物流配送中的最短路径问题 王嘉俊 (盐城师范学院数学科学学院09(1)班) 摘要:随着现代社会的高速发展,物流配送成为了连接各个生产基地的枢纽,运输的成本问题也成为了企业发展的关键。运费不但与运量有关,而且与运输行走的线路相关。传统的运输问题没有考虑交通网络,在已知运价的条件下仅求出最优调运方案,没有求出最优行走路径。文中提出“网络上的物流配送问题“,在未知运价,运量确定的情况下,将运输过程在每阶段中选取最优策略,最后找到整个过程的总体最优目标,节省企业开支。 关键词:动态规划,数学模型,物流配送,最优路径 1 引言 物流配送是现代化物流系统的一个重要环节。它是指按用户的订货要求, 在配送中心进行分货、配货, 并将配好的货物及时送交收货人的活动。在物流配送业务中, 合理选择配送径路, 对加快配送速度、提高服务质量、降低配送成本及增加经济效益都有较大影响。物流配送最短径路是指物品由供给地向需求地的移动过程中, 所经过的距离最短(或运输的时间最少, 或运输费用最低) , 因此, 选定最短径路是提高物品时空价值的重要环节。[1] 经典的Dijkstra 算法和Floyd 算法思路清楚,方法简便,但随着配送点数的增加,计算的复杂性以配送点数的平方增加,并具有一定的主观性。我国学者用模糊偏好解试图改善经典方法[]5,取得了较好的效果。遗憾的是,模糊偏好解本身就不完全是客观的。文献[]6详细分析了经典方法的利弊之后,提出将邻接矩阵上三角和下三角复制从而使每条边成为双通路径,既适用于有向图也适用于无向图, 但复杂性增加了。为了避免上述方法存在的不足,本文以动态规划为理论,选择合理的最优值函数,用于解决物流配送最短路径问题。 动态规划是解决多阶段决策过程最优化问题的一种数学方法。1951年美国数学家Bellman(贝尔曼)等人根据一类多阶段决策问题的特性,提出了解决这类问题的“最优性原理”,并研究了许多实际问题,从而创建了最优化问题的一种新方法——动态规划。 动态规划在工程技术、管理、经济、工业生产、军事及现代控制工程等方面都有广泛的应用,而且由于动态规划方法有其独特之处,在解决某些实际问题时,显得更加方便有效。由于决策过程的时间参数有离散的和连续的情况,故决

最短路径规划

习题课内容 同学主导 ? 例2-09(信计101两个同学:常现杰陈少华) 211两个同学付乾乾? 例2-11(信计101两个同学:付乾乾桂大龙) ? 例2-12(信计102两个同学:蔡中华陈恒)214两个同学邓金勇?例2-14(信计102两个同学:邓金勇邓小龙) ?看得见的数学 有趣的小实验 系统最短路径规划专题

系统最短路径规划专题 1有趣的小试验、有趣的小试验An interesting experiment 2、物理可视化原理Visualization Principle 3、最短路径可视化仪及应用 Visualization instrument for system shortest path programming 4、社会评价Social evaluation 5、发明与机遇并存案例、发遇 Case studies for Invention and Chance

系统最短路径规划专题 1、有趣的小试验 测试板放入溶液 取出测试板得到薄膜轨迹系统全局最短路径

系统最短路径规划专题 1有趣的小试验、有趣的小试验An interesting experiment 2、物理可视化原理Visualization Principle 3、最短路径可视化仪及应用 Visualization instrument for system shortest path programming 4、社会评价Social evaluation 5、发明与机遇并存案例、发遇 Case studies for Invention and Chance

多机器人路径规划研究方法

多机器人路径规划研究方法 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝 摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 Abstract:This paper analyzed and concluded the main method and current research of the path planning research for multi robot.Then discussed the criterion of path planning research for multi robot based large of literature.Meanwhile,it expounded the bottleneck of the path planning research for multi robot,forecasted the future development of multi robot path planning. Key words:multi robot;path planning;reinforcement learning;evaluating criteria 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI研究大致可以分为DPS(distributed problem solving)和MAS(multi agent system)两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术界研究的热点,而路径规划研究又是其核心部分。 机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果[1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi图法、自由空间法、栅格法、拓扑法、链接图法、Dempster Shafer 证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划

最短路径问题的0-1规划模型,lingo直接求解

解:对于无向图的最短路问题,可以这样理解,从点到点和点到点的边看成有向弧,其他各条边均看成有不同方向的双弧,因此,可以按照前面介绍有向图的最短路问题来编程序,但按照这种方法编写LINGO程序相当于边(弧)增加了一倍.这里选择邻接矩阵和赋权矩阵的方法编写LINGO程序. MODEL: 1] sets: 2] cities/1..11/; 3] roads(cities, cities): p, w, x; 4] endsets 5] data: 6] p = 0 1 1 1 0 0 0 0 0 0 0 7] 0 0 1 0 1 0 0 0 0 0 0 8] 0 1 0 1 1 1 1 0 0 0 0 9] 0 0 1 0 0 0 1 0 0 0 0 10] 0 1 1 0 0 1 0 1 1 0 0 11] 0 0 1 0 1 0 1 0 1 0 0 12] 0 0 1 1 0 1 0 0 1 1 0 13] 0 0 0 0 1 0 0 0 1 0 1 14] 0 0 0 0 1 1 1 1 0 1 1 15] 0 0 0 0 0 0 1 0 1 0 1 16] 0 0 0 0 0 0 0 0 0 0 0; 17] w = 0 2 8 1 0 0 0 0 0 0 0 18] 2 0 6 0 1 0 0 0 0 0 0 19] 8 6 0 7 5 1 2 0 0 0 0 20] 1 0 7 0 0 0 9 0 0 0 0 21] 0 1 5 0 0 3 0 2 9 0 0 22] 0 0 1 0 3 0 4 0 6 0 0 23] 0 0 2 9 0 4 0 0 3 1 0 24] 0 0 0 0 2 0 0 0 7 0 9 25] 0 0 0 0 9 6 3 7 0 1 2 26] 0 0 0 0 0 0 1 0 1 0 4 27] 0 0 0 0 0 0 0 9 2 4 0; 28] enddata 29]n=@size(cities); 30]min=@sum(roads:w*x); 31]@for(cities(i) | i #ne# 1 #and# i #ne# n: 32] @sum(cities(j): p(i,j)*x(i,j)) 33] =@sum(cities(j): p(j,i)*x(j,i))); 34]@sum(cities(j): p(1,j)*x(1,j))=1; END 在上述程序中,第6]行到第16]行给出了图的邻接矩阵,到和到的边按单向计算,其余边双向计算.第17]行到第27]行给出了图的赋权矩阵, 注意:由于有了邻接矩阵,两点无道路连接时,权值可以定义为0. 其它的处理方法基本上与有向图相同. 用LINGO软件求解,得到(仅保留非零变量)

例:动态规划解最短路径问题:

● 例:动态规划解最短路径问题: 步骤(1)、(2)已实现。 最优子结构:从起点到终点的最短路径包含了该路径 上各点到终点的最短路径。 递归公式:设v 为图中一个顶点,v 1, v 2,…, v m 为v 的 直接后继,cost(v)表示v 到终点的最短路径 长度,c[u, w]表示边上的权,t 为终点, 则cost 满足如下递归公式: ??? ????≠∞=≠+=≤≤无后继且有后继且v t v , t v , 0v t v , )}cost(v ] v {c[v,min cost(v)i i m i 1 步骤(3) 计算最优值(求最短路径长度):

设有向网G含n个顶点,用邻接矩阵c[1..n, 1..n]表示,起点为s,终点为t 。 有关信息的保存: 数组cost[1..n]: 存储子问题的解。 (cost[i]表示从顶点i到终点t的最短路径长 度。) 数组succ[1..n]: 存储最短路径的有关信息。 (succ[i]表示顶点i到终点t的最短路径上顶 点i的直接后继。) 原问题的最优值为cost[s]。 (1) 自底向上的迭代算法 关键:根据递归公式确定迭代顺序(即子问题的求解顺序)。 原则:计算cost[i]时,顶点i的所有后继的cost值应先计算。 计算顺序:按图G的逆拓扑排序顺序。 算法SHORTEST_ROUTE_LEN1 输入:有向网G的顶点数n, 邻接矩阵c[1..n, 1..n], 起点s和终点t , 1<=s, t<=n。

输出:G的从起点s到终点t的最短路径长度cost[s]和最短路径有关信息的数组succ[1..n]。 //对图G拓扑排序,结果存于数组a[1..n] 中。 toposort(c, n, a) j=n while a[j]< >t j=j-1 //找出j使得a[j]=t 。 for i=j+1 to n cost[a[j]]=∞//排除无关的顶 点。 cost[t]=0 //从终点开始迭代。 while a[j]< >s j=j-1; k=a[j]; i0=0 ; min=∞ for i=1 to n if c[k, i]+cost[i]

关于动态规划方法的最优消费路径

关于动态规划方法的最优消费路径有些学者从微观经济理论的角度探索消费和投资的最优比率。例如,Phelps构建了不确定收入下的最优消费率[2 ]。基于这一模型,Me r t o n以布朗运动模拟不确定收益,利用动态规划建模的方式,求出在连续时间假设下获得最大消费效用的消费和资产投资组合[3 ]。然而M e r t o n的模型采用了P r a t t的绝对风险厌恶度(absolute risk aversion)[4], 即假设投资者的风险偏好是和年龄、财富无关的常数,从而把家庭总财富比率设计成常数。为了改进过于严格的常系数风险厌恶假设,F a r h i和Pan — ageas假设投资者可以通过控制退休时间来调整劳动供给,从而实现最优消费和投资[5]。另外有些学者拓展了M e F t o n等人的模型,如Ilakansso n和Ri c h a r d研究了存在保险时的生命周期最优消费[6 ][ 7 ]; Karat z a s使用鞅方法研究了个人如何选择消费率来实现消费和财富效用最大化[8 ]; B o d i e等人探讨了退休期间的最优消费投资问题[9]。有些学者则从宏观经济学的角度阐述消费和投资对消费效用最大化的影响。李嘉图的古典消费理论强调了消费对经济的刺激。凯恩斯绝对收入假说认为消费主要取决于当期绝对收入,平均消费倾向(APC)随收入增加而减少。按此假说,一战后,美国人民收入增加,储蓄应随之增加。但是,K u z n e t s实证研究发现战后储蓄并未增加,长期A P C稳定[10]。为解析上述矛盾现象,D u esenberr y提出相对收入假说,家庭会比较其他家庭的收入, 即相对水平,来决定自己的消费水平[1 1 ] ( P 3 )。相对收入假说的缺陷在于家庭的消费是短视行为,没有考虑未来收入。

路径规划论文:路径识别与路径规划方法的研究

路径规划论文:路径识别与路径规划方法的研究 【中文摘要】随着科学技术的发展,各种各样的机器人陆续出现,机器人越来越受到人们的重视,而中国大学生机器人大赛暨Robocup 公开赛更是吸引了很多爱好者。机器人游中国可看成迷你的旅游,这跟目前假期短,如何能够合理安排,多参观几个景点的问题相吻合,故也大大引起大家的兴趣。本文以游中国机器人为研究对象,研究路径规划和路径识别的方法。基本思想是:首先根据比赛要求,建立大赛的基本界面平台,对图像进行数据存储,为遍历做准备。然后根据经典的遍历方法,通过改进来实现景点的遍历,比较得到一条较理想的旅游 路线。另一方面机器人在前进时要根据看到的路况来控制速度,因此对道路情况进行提取,并通过一系列方法去由环境等引起除噪声及冗余信息,得到较好的道路目标。然后对前方路况的几种情况进行提取分析,利用角点检测的方法来确定分支数,使机器人能够更好的选择 路线。具体实现过程如下:1.地图的存储。首先建立大赛涉及的基本界面平台,分析比较了几种常用的图存储方法的优劣。2.遍历算法。首先介绍了人工智能中常用的几种遍历算法,并对各个算法的复杂性和适用情况进行分析比较。根据该项目中的需要加以改进,得到不同的遍历路线。再... 【英文摘要】With the development of science and technology, a variety of robots showed up, that’s the reason that more and more people pay attention to the robot. However, Robot

贪心、分支限界、动态规划解决最短路径问题

算法综合实验报告 学号: 1004111107 姓名:黄琼莹 一、实验内容: 分别用动态规划、贪心及分支限界法实现对TSP问题(无向图)的求解,并至少用两个测试用例对所完成的代码进行正确性及效率关系上的验证。 二、程序设计的基本思想、原理和算法描述: (包括程序的数据结构、函数组成、输入/输出设计、符号名说明等) 1、动态规划法 (1)数据结构: 利用二进制来表示集合,则集合S可由一个十进制数x相对应,此x所 对应的二进制数为y,如果y的第k位为1,则表示k存在集合S中。 例如: 集合S={0,1}(其子集合为{}{0}{1}{01}),我们用二进制数11(所对应 十进制数为3)表示S,11中右手边第1个数为1表示0在集合S中, 右手边第二个数为1表示1在集合S中,其他位为0表示其它数字不在 集合S中;同理, 集合S={0,2}(其子集合为{}{0}{2}{02}可用二进制数101(所对应十进制 数为5)表示(右手边第1个数为1表示0在集合S中,右手边第二个 数为0表示1不在集合S中,右手边第3个数为1表示2在集合S中, 则说明0,2在集合中,1不在集合中。 (2)函数组成 getmin():获得该数组的最小值; getJ():根据2进制j和j中1的个数找下一个j getnextj():返回下一个j的十进制数 (3)输入/输出设计 本题通过键盘进行输入,通过屏幕进行输出

由于题目的输入要求是:第一行输入一个整数n(2<=n<=10),接下来的n行,每行输入n-1个整数,表示i与除了自己之外的所有点之间的距离,按点的编号从小到大顺序输入 可以设计两个for循环来实现数据的输入,外层for循环实现一行一行地输入,内层for循环实现某一行中数据的输入 5 3 1 5 8 3 6 7 9 1 6 4 2 5 7 4 3 8 9 2 3 (4)符号名说明 N:节点数,即城市的数目 matr[20][20]:存邻接矩阵 d[20][40000]={0}:存动态填表数据 min:花费的最小值,即答案 jlist[20]:存放j的二进制数组 V[20]:标记节点是不是被访问过 tmpres[20]:存放结果的数组 (5)算法描述 假设从顶点i出发,令d(i,V’)表示从顶点i出发经过V’中各个顶点一次且仅一次,最后回到出发点i的最短路径的长度,开始时,V’=V-{i},于是,旅行商问题的动态规划函数为: d(i,V’) = min{c ik + d(k,V’-{k})} (k∈V’) 1) d(k,{}) = c ki (k ≠ i) 2) 简单来说,就是用递归表达:从出发点0到1号点,假设1是第一个,则剩下的路程就是从1经过剩下的点最后回到0点的最短路径. 所以当V’为空的时候, d(k,{}) = c ki (k ≠ i), 找的是最后一个点到0点的距离.递归求解1之后,再继续求V’之中剩下的点,最后找出min. 如果按照这个思想直接做,对于每一个i都要递归剩下的V中所有的点,所以这样的时间复杂度就近似于N!,其中有很多重复的工作. 可以从小的集合到大的集合算,并存入一个二维数组,这样当加入一个节点时,就可以用到之前的结果,如四个点的情况: 邻接矩阵: node 0 1 2 3 0 5 3 2

动态规划中的最长路径问题

动态规划中的最长路径问题 题目:设图G=(V, E)是一个带权有向连通图,如果把顶点集合V 划分成k个互不相交的子集Vi(2≤k≤n, 1≤i≤k),使得E中的任何一条边(u, v),必有u∈Vi,v∈Vi+m(1≤i<k,1<i+m≤k),则称图G为多段图,称s∈V1为源点,t∈Vk为终点。多段图的最长路径问题是求从源点到终点的最大代价路径 由于多段图将顶点划分为k个互不相交的子集,所以,多段图划分为k段,每一段包含顶点的一个子集。不失一般性,将多段图的顶点按照段的顺序进行编号,同一段内顶点的相互顺序无关紧要。假设图中的顶点个数为n,则源点s的编号为0,终点t的编号为n-1,并且,对图中的任何一条边(u, v),顶点u的编号小于顶点v的编号。 一个多段图 用c(u,v)表示边上的权值,将从源点s到终点t的最长路径记

为d(s, t),则从源点0到终点9的最长路径d(0, 9)由下式确定:d(0, 9)=max{c01+d(1, 9), c02+d(2, 9), c03+d(3, 9)}这是最后一个阶段的决策,它依赖于d(1, 9)、d(2, 9)和d(3, 9) d(1, 9)=max{c14+d(4, 9), c15+d(5, 9) } d(2, 9) =max{c24+d(4, 9), c25+d(5, 9) , c26+d(6, 9) } d(3, 9) =max{c35+d(5, 9), c26+d(6, 9) } 这是倒数第二阶段的式子它分别依赖于d(4, 9),d(5, 9),d(6, 9) d(4, 9)= max{c47+d(7, 9), c48+d(8, 9) } d(5, 9)= max{c57+d(7, 9), c58+d(8, 9) } d(6, 9)= max{c67+d(7, 9), c68+d(8, 9) } 这是倒数第三阶段的式子它们依赖于d(7, 9),d(8, 9) d(7, 9)= c79=7 d(8, 9)= c89=3 再往前推 d(6, 9)=max{c67+d(7, 9), c68+d(8, 9)} = max {6+7, 5+3}=13(6→8) d(5, 9)= max {c57+d(7, 9), c58+d(8, 9)} = max {8+7, 6+3}=15(5→8) d(4, 9)= max {c47+d(7, 9), c48+d(8, 9)} = max {5+7, 6+3}=12(4→7) d(3, 9)= max {c35+d(5, 9), c36+d(6, 9)} = max {4+15, 7+13}=20(3→6)

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号 一.实验要求 1. 理解最优子结构的问题。 有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。这类问题的解决是多阶段的决策过程。在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。 对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。 最优子结构性质:原问题的最优解包含了其子问题的最优解。 子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。 2.理解分段决策Bellman 方程。 每一点最优都是上一点最优加上这段长度。即当前最优只与上一步有关。 U s 初始值,u j 第j 段的最优值。 ? ????+==≠}.{min , 0ij i j i j s w u u u

3.一般方法 1)找出最优解的性质,并刻画其结构特征;2)递归地定义最优值(写出动态规划方程);3)以自底向上的方式计算出最优值; 4)根据计算最优值时得到的信息,构造一个 最优解。 步骤1-3是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。 二.实验内容 1.编程实现多段图的最短路径问题的动态规 划算法。 2.图的数据结构采用邻接表。 3.要求用文件装入5个多段图数据,编写从文件到邻接表的函数。 4.验证算法的时间复杂性。 三.程序算法 多段图算法: Procedure FGRAPH(E,k,n,P) //输入是按段的顺序给结点编号的,有n个结点的k段图。E是边集,c(i,j)是边的成本。P(1:k)是最小成本路径。// real COST(n),integer(n-1),P(k),r,j,k,n COST(n)<-0 for j<-n-1 to 1 by -1 do //计算COST(j)// 设r是一个这样的结点,(j,r) E且使c(j,

动态规划-最短路径问题

最短路径问题 下图给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路长度。 现在,我们想从城市a到达城市E。怎样走才能使得路径最短,最短路径的长度是多少?设DiS[x]为城市x到城市E的最短路径长度(x表示任意一个城市); map[i,j]表示i,j两个城市间的距离,若map[i,j]=0,则两个城市不通; 我们可以使用回溯法来计算DiS[x]: var S:未访问的城市集合; function search(who{x}):integer; {求城市who与城市E的最短距离} begin if Who=E Then Search←0 {找到目标城市} Else begin min←maxint;{初始化最短路径为最大} for i 取遍所有城市 Do if(map[Who,i]>0{有路})and(i S{未访问}) then begin S←S-[i];{置访问标志} j←map[Who,i]+ search(i); {累加城市E至城市Who的路径长度} S←S+[i]; {回溯后,恢复城市i未访问状态} if j<min Then min←j; {如果最短则记下} end;{then} search←min;{返回最短路径长度} End;{else} End;{search} begin S←除E外的所有城市; Dis[a]←search(a);{计算最短路径长度} 输出Dis[a]; end.{main} 这个程序的效率如何呢?我们可以看到,每次除了已经访问过的城市外,其他城市都要访问,所以时间复杂度为O(n!),这是一个“指数级”的算法。那么,还有没有效率更高的解题方法呢?

最短路径Floyd算法动态规划问题及其程序设计样本

最短路径动态规划问题及其程序设计 林旭东 (深圳大学管理学院,广东深圳518060) [摘要]本文以最短路径问题为例,在给出佛洛伊德算法的基础上,设计了求解该算法的计算程序,这样可大大提高最短路径计算的效率。 [关键词]最短路径; 动态规划; 程序设计 1 佛洛伊德算法 已知有n个顶点的有向图,佛洛伊德算法能够求解出每一对顶点之间的最短路径。假设使用邻接矩阵d ( i, j)来对图进行存储, d ( i, j)表示υi 到υj 之间的距离,可是该距离不一定是最短距离。佛洛伊德算法的基本思想是:为求顶点υi→υj 之间的最短距离,需要进行n次试探。首先将υ0 加入路[收稿日期] - 12 - 22[作者简介]林旭东(1972 - ) ,男, 湖北武汉人,深圳大学管理学院副教授,博士后,主要研究方向:数量模型与决策分析。径,考虑路径υi →υ0 →υj 是否存在,如果存在,则比较υi →υj和υi →υ0 →υj 的路径长度,取长度短的路径作为υi →υj 的路径,记作(υi ,υj ) 。接着在路径上再增加一个顶点υ1 ,比较υi→υ1 →υj 和(υi ,υj )的路径长度, 取长度短的路径作为(υi ,υj) 。不断将顶点υ2 ,υ3 , .,υn - 1加入进行试探, 最后得到的(υi ,υj )必定为υi →υj 的最短路径。若使用数组dk ( i, j)表示加入顶点k后,最短路径长度的变化情况,使用数组pk ( i, j)表示加入顶点k后,最短路径上顶点的变化情况,这样佛洛伊德算法就会产生一组d 0 ( i, j) ,d1 ( i, j) , ., dn - 1 ( i, j)和一组p0 ( i, j) , p1 ( i, j) , ., pn - 1 ( i, j) 。 R2 = 01314 014 01286 0 01197 01263 01394 01146

GIS环境下的最短路径规划算法

GIS 环境下的最短路径规划算法 ―――此处最短路理解为路径长度最小的路径 02计算机1班刘继忠 学号:2002374117 1.整体算法说明: 将图的信息用一个邻接矩阵来表达,通过对邻接矩阵的操作来查找最短路进,最短路径的查找采用迪杰斯特拉算法,根据用户给出的必经结点序列、起点、终点进行分段查找。 2.各函数功能及函数调用说明。 1).void Welcome() 程序初始化界面,介绍程序的功能、特点及相关提示 2) void CreatGraph(MGraph *G,char buf[]) 把图用邻接矩阵的形式表示,并进行 初始化。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[],int ShPath[])根据用户给出的起点、终点、必经结点、避开结点进行最短路径的分段查找。 4).void Print(int jump,int end,int Dist[],int ShPath[]) 输出找到的最短路径所经的 结点和路径长度。 函数调用图: 3.各函数传入参数及返回值说明: 1).void Welcome() 无传入和返回值 2) void CreatGraph(MGraph *G,char buf[ ]) MGraph *G为主函数中定义的指向存放图的信息的指针变量。 char buf[ ]为主函数中定义的用来存放在图的相关信息录入时的界面信息的数组,以便以后调用查看各结点的信息。

无返回值。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[ ],int ShPath[ ]) MGraph *G指向存放图的信息的指针变量。 int jump起点,int end终点,int avoid[ ] 避开结点序列。 int P[MAXSIZE][MAXSIZE]用来记录各点当前找到的最短路径所经过 的结点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 返回最短路径查找是否成功的信息。(return SUCCEED;return ERROR)4).void Print(int jump,int end,int Dist[],int ShPath[]) int jump起点,int end终点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 无返回值。 4.用户说明: ①源程序经编译连接后运行,出现程序的初始化界面,其内容为介绍程序的 功能、特点及相关提示。如下: Welcome to shortest path searching system. Instructions Function: 1. Personal travelling route choosing. 2. Assistan helper in city's traffic design. 3. Shortes path choose in the comlicated traffic net of the city. Characteristic: It is convient,you could set vital point you must travel,and the point you must avoid. Prompt: If the condition is too secret ,maybe there will have no path available. Designer: Liu jizhong. Complate-data: 2004. 3. 21 CopyRight: Shared program,welcome to improve it. Press anykey to enter the program... ②按任意键进入图的信息录入界面根据提示即可完成图的信息的录入。

路径规划算法

[选取日期] NUAA未知环境的动态路径规划 [键入文档副标题] | 刘绍翰

度量距离 灰度化 四连通和8连通。 第一章、静态搜索与A*算法 很多时候,我们需要在一个图中寻找一条从源点到目标节点的最短路径,我们称之为路径规划。搜索算法主要分为,盲目搜索和启发式搜索,它们的一个作用是能够从解空间中需找一条从源点到目标节点的最短路径。启发式搜索是在搜索的过程中,参考一定的指标函数来决定搜索的策略。 迪杰斯特拉算法,类似于广度优先遍历,利用源点到当前节点的代价值作为指标,其一定可以获得从原点到目标节点的最短路,但是其访问的节点数很多。 而最好优先搜索,采用离标节点的距离作为搜索的代价参考值,贪心选择最小的扩展节点,也可以获得最短路径,而且其搜索的节点数目大大减少。 图1 迪杰斯特拉算法图2 最好优先搜索算法当地图中包含障碍物时,迪杰斯特拉算法,仍然可以获得最短路径的路径,最好优先搜索的节点尽管少,但是其不能获得最优解。 图3 迪杰斯特拉算法图4 最好优先搜索算法而A*算法,参考了从原点到当前节点的代价值和当前节点到目标节点启发值,综合了迪杰斯特拉算法和做好优先搜索算法优点,在有障碍物和无障碍物的地图上,可以像迪杰斯特拉算法一样求得最短路径同时,同时能够像最好优先搜索一样减少搜索范围,减少搜索节点的数目。

图5 无障碍物时A*路径规划 图6 有障碍物时A*路径规划算法 经典的迪杰斯特拉算法可以求得最短的路径,而启发式搜索A* 算法,不但可以求得最短路,而且可以使得搜索的范围大大减少,上述算法是传统的静态路径规划算法,其规划的前提条件是已经知地图的结构。A*算法属于离线事先规划,在规划完毕之后,可以沿着最优路径移动,不是在线规划,不能一边规划一边移动。 A*算法的基本理论 A*算法又叫做启发式搜索算法,具有悠久的历史,其启发函数f=g+h 。其中g 表示从原点到当前节点已经付出的代价,好表示从当前节点到目标节点的启发值。 1) A*算法必须满足h(x)<=h*(x),其中h*(x)是实际的启发值,h*(x)在实际中通常是无 法事先得知的,但是这个条件是很容易满足,只要满足该条件,一定能够获得最优解。 2) 如果最短路径长度为C*, 则在算法结束前,open 表中至少有一个节点n, 满足 f(n) <= C*. 这个性质可以这样理解, 因为最短路径存在, 我们不妨设它为: source->a->b->c->...->n->.....->goal. 且在当前时刻,路径中在节点n 前的节点都在closed 表中,即已经扩展了,而节点n 自己在open 表中(注意:算法结束前任意时刻都有这样的节点n 存在)。 则由于该条路劲是最短路径,我们可以知道此时在open 表中的n 的 g(n)值已经是准确值, 即最小值了。而 f(n) = g(n) + h(n) = g*(n) + h(n) <= g*(n) + h*(n) = C* . (最后一个式子取等号是由于n 在最短路径上) 有了这个性质,我们就知道,当A*算法扩展到目标节点时,必有f(goal) = g(goal) <= C* (即 = C*)。否则, 如果f(goal) > C*,由于目标节点是被扩展节点, 则open 表中其他任意其他节点t, 都有f(t) >= f(goal) > C*, 和性质1 矛盾。 3) 扩展新节点时很容易出现重复节点的问题,从上面的伪代码可以看出, 如果新 扩展节点已经存在于closed 表中, 且f 值比表中节点的f 值还要小的话,则除了更新该节点f 值,还需要重新扩展该节点,这简直就是把人从棺材里拖出来。 但是如果h 函数满足相容性,这一步就可以省掉了。所谓相容性就是指对任意节点s1,都满足: h(s1) <= h(s2) + c(s1,s2) (其中c(s1,s2)是指从s1转移到s2的代价)有这个性质我们在不等号两边加上g(s1), 则有 g(s1) + h(s1) <= h(s2) + g(s1) + c(s1,s2)。 如果我们此时扩展s1, 而s2又是能被s1扩展的节点,则由这个式子我们得到 f(s1) <= f'(s2). (若s2之前就已经被扩展出了,则当前的f(s2)可能比f'(s2)小) 这个式子的意义在于由当前节点进行扩展这个方案下得到的节点的f 值总比当前扩展节点的f 值大(子节点总比父节点

最短路径问题设计

目录 第1章绪论 (1) 1.1 问题描述 (1) 1.2 问题分析 (1) 1.3 相关标识(名词定义) (1) 1.4 本文主要研究内容 (2) 第2章算法设计与实现 (3) 2.1 穷举法 (3) 2.1.1穷举法描述 (3) 2.1.2穷举法设计 (3) 2.1.3 穷举法分析 (6) 2.2 回溯法 (6) 2.2.1 回溯法描述 (6) 2.2.2 回溯法设计 (6) 2.2.3 回溯法分析 (9) 2.3 贪心法 (10) 2.3.1 贪心法描述 (10) 2.3.2 贪心法设计 (10) 2.3.3 贪心法分析 (12) 2.4 动态规划法 (12) 2.4.1 动态规划法描述 (12) 2.4.2 动态规划法设计 (12) 2.4.3 动态规划法分析 (14) 第3章实验结果分析与算法对比 (15) 3.1 输入数据 (15) 3.2 实验结果与分析 (15) 3.3 算法分析与对比 (17) 第4章总结与展望 (18) 参考文献 (19)

第1章 绪论 1.1 问题描述 最短路径问题是图论理论的一个经典问题。寻找最短路径就是在指定网络中两结点间找一条距离最小的路。最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。 最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。 本文主要解决的问题是:给定带权有向图G =(V , E),对任意顶点i v ,j v ∈V (i ≠j ),求顶点i v 到顶点j v 的最短路径。即给定一个有向图,再给出任意2个不相邻的顶点,求2个顶点之间的最短距离。 1.2 问题分析 给定一个带权有向图G =(V , E )中的各个顶点之间的权值,对任意输入2个顶点 i v ,j v ∈V (i ≠j ),求出从i v 到j v 的最短路径。 输入:节点数目N ,邻接矩阵VR[N][N] 约束条件:i k m j v v v v --… 其中,,,,(i k m )i k m j v v v v V j ∈≠≠≠ 输出(目标函数):min{ Dist(i v ,j v ) } 1.3 相关标识(名词定义) (1)时间复杂度 算法的时间复杂性是指执行算法所需要的时间。一般来说,计算机算法是问题规模

最短路径算法及其在路径规划中的应用

最短路径算法及其路径规划中的应用 摘要: 这篇文章把徒步运动的路径规划问题转化为求解图中任意两点间的最短路径问题,进而针对此问题介绍了Floyd算法,对该算法的时间花费进行分析,并介绍了在实际问题中如何灵活运用该算法解决路径决策中遇到的问题。 关键词:路径规划、最短路径、决策、Floyd算法 将实际地图的转化为有向图 在策划一次徒步旅行时,设计正确的旅行的线路特别重要,首先我们必须先要得到那个地区的地图,以便进行后续的线路规划。当我们拿到某一地区的地图时,我们可以把地图上的每一条线路用线段表示,用顶点表示地图上的岔路口,即多条线段的交点,这样就形成了一个由点和线段组成的图。我们可以在每条线段上标上数字,表示两点之间的实际距离,或者表示通过这条路径所需的时间。当然,如果两点之间没有线段相连,我们可以认为距离为无穷大,用∞表示。有时候某些线路是单向的,即只能从一个方向到另一个方向,不能逆行。这种情况在具体的路径设计中非常常见,比如,在繁华的都市内会有一些单行道,在山区景点中,常会出现一些上山索道,这些都是单向线路的常见例子。有时候,沿某条线路的两个方向所需的时间不同,这种例子更为常见,比如上山与下山,顺风与逆风等等。对于这两种情况,我们可以在表示路径的线段上加上箭头表示该路径的方向,形成有向图。 到达v2的距离为8,而从v2到v1的距离为3。 从点v1到v0的距离为5,而从v0到v1的距离 为∞。这种带有箭头的有向图,比不带箭头的无 向图能够表示更一般的情形,可以说无向图只是 有向图的一种特殊情况。 如果我们知道任意两点间的最短路径,这对 我们进行路径规划将会有很大的帮助,但当地图 较为复杂时,凭直觉估计最短路径的方法往往不 可靠,这时就必须借助计算机的强大计算能力,寻找最短路径。下面,我们就以 这种有向图为工具,来探究寻找最短路径的方法。

相关文档
最新文档