实验二十六示波器的原理和使用

实验二十六示波器的原理和使用
实验二十六示波器的原理和使用

实验十示波器的原理和使用

示波器是电工、电子、计算机等设备设计、调试和维修中使用得最广泛、功能最强大的电子测量仪器之一,它可以把原来肉眼看不见的变化电压变换成可见的图像,使人们可以直接观察电信号波形高速变化的情况,研究它们的瞬间变化过程。在科学研究和工农业生产中,示波器被广泛地用来测定电信号的幅度、周期、频率和位相等各种参数。通过各种传感器,示波器还可用来观察各种物理量、化学量、生物量等高速变化的过程,成为科学研究和生产活动中强有力的检测工具。

【实验目的】

(1)了解示波器的基本结构和工作原理,掌握使用示波器和信号发生器的基本方法。

(2)学会使用示波器观测电信号波形和电压幅值以及频率。

(3)学会使用示波器观察李萨如图并测频率。

【实验原理】

不论何种型号和规格的示波器都包括了如图1所示的几个基本组成部分:示波管(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号发生电路(锯齿波发生器)、自检标准信号发生电路(自检信号)、触发同步电路、电源等。

Y

X轴输入

图1 示波器基本组成框图

1. 示波管的基本结构

示波管的基本结构如图2所示。主要由电子枪、偏转系统和荧光屏三部分组成,全都密封在玻璃壳体内,里面抽成高真空。

(1)电子枪由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。灯丝通电后加热阴极。阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是一个顶端有小孔的圆筒,套在阴极外面。它的电位比阴极低,对阴极发射出来的电子起控制作用,只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下射向荧光屏。示波器面板上的“辉度”调整就是通过调节栅极电位以控制射向荧光屏的电子流密度,从而改变了荧光屏上的光斑亮度。阳极电位比阴极电位高很多,电子被它们之间的电场加速形成射线。当控制栅极、第一阳极与第二阳极电位之间电位调节合适时,电子枪内的电场对电子射线有聚焦作用,所以,第一阳极也称聚焦阳极。第二阳极电位更高,又称加速阳极。面板上的“聚焦”调节,就是调第一阳极电位,使荧光屏上的光斑成为明亮、清晰的小圆点。有的示波器还有“辅助聚焦”,实际是调节第二阳极电位。

(2)偏转系统:它由两对互相垂直的偏转板组成,一对竖直偏转板,一对水平偏转板。在偏转板上加以适当电压,电子束通过时,其运动方向发生偏转,从而使电子束在荧光屏上产生的光斑位置也发生改变。

(3)荧光屏:荧光屏上涂有荧光粉,电子打上去它就发光,形成光斑。不同材料的荧光粉发光的颜色不同,发光过程的延续时间(一般称为余辉时间)也不同。荧光屏前有一块透明的、带刻度的坐标板,供测定光点的位置用。在性能较好的示波管中,将刻度线直接刻在荧光屏玻璃内表面上,使之与荧光粉紧贴在一起以消除视差,光点位置可测得更准。

图2 示波管结构图

H-灯丝K-阴极G1,G2- 控制栅极A1-第一阳极A2-第二阳极Y-竖直偏转板X-水平偏转板

2. 波形显示原理

(1)仅在垂直偏转板(Y偏转板)加一正弦交变电压:如果仅在Y偏转板加一正弦交变电压,则电子束所产生的亮点随电压的变化在y方向来回运动,如果电压频率较高,由于人眼的视觉暂留现象,则看到的是一条竖直亮线,其长度与正弦信号电压的峰-峰值成正比,如图3所示。

(2)仅在水平偏转板加一扫描(锯齿)电压:为了能使y方向所加的随时间t变化的信号电压U y(t)在空间展开,需在水平方向形成一时间轴。这一t轴可通过在水平偏转板加一如图4所示的锯齿电压U x(t),由于该电压在0~1时间内电压随时间成线性关系达到最大值,使电子束在荧光屏上产生的亮点随时间线性水平移动,最后到达荧光屏的最右端。在1~2时间内(最理想情况是该时间为零)U x(t)突然回到起点(即亮点回到荧光屏的最左端)。如此重复变化,若频率足够高的话,则在荧光屏上形成了一条如图4所示的水平亮线,即t轴。

常规显示波形:如果在Y偏转板加一正电压(实际上任何所想观察的波形均可)同时在X偏转板加一锯齿电压,电子束受竖直、水平两个方向的力的作用下,电子的运动是两相互垂直运动的合成。当两电压周期具有合适的关系时,在荧光屏上将能显示出所加正弦电压完整周期的波形图。如图5所示。

图3 在垂直偏转板加一正弦交变电压 图4 在水平偏转板加一扫描(锯齿)电压

3.同步原理

(1)同步的概念:为了显示如图5所示的稳定图形,只有保证正弦波到I y

点时,锯齿波正好到i 点,从而亮点扫完了一个周期的正弦曲线。由于锯齿波这时马上复原,所以亮点又回到A 点,再次重复这一过程。光点所画的轨迹和

第一周期的完全重合,所以在荧光屏上显示出一个稳定的波形,这就是所谓的同步。 由此可知同步的一般条件为: T x = nT y ,n = 1,2,3… 其中T x 为锯齿波周期,T y 为正弦周期。若n = 3,则能在荧光屏上显示出三个完

整周期的波形。 如果正弦波和锯齿波电压的周期稍微不同,荧光屏上出现的是一移动着的不稳定图形。这情形可用图6说明。设锯齿

波形电压的周期T x 比正弦波电压周期T y

稍小,比如T x = nT y ,

n =7/8。在第一扫描周期内,荧光屏上显示正弦信号0~4点

之间的曲线段;在第

二周期内,显示4~8

点之间的曲线段,起

点在4处;第三周期内,显示8~11点之

间曲线段,起点在8

处。这样,荧光屏上

显示的波形每次都不

U x

x

亮点在轴方向的位移

y )

U

图26-6 T X =(7/8)T Y 时的波形

重叠,好像波形在向右移动。同理,如果T x 比T y 稍大,则好像在向左移动。以上描述的情况在示波器使用过程中经常会出现。其原因是扫描电压的周期与被测信号的周期不相等或不成整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。

(2)手动同步的调节:为了获得一定数量的稳定波形,示波器设有“扫描周期”、“扫描微调”旋钮,用来调节锯齿波电压的周期T x (或频率f x ),使之与被测信号的周期T Y (或频率f Y )成整数倍关系,从而,在示波器荧光屏上得到所需数目的完整被测波形。

(3)自动触发同步调节:输入Y 轴的被测信号与示波器内部的锯齿波电压是相互独立的。由于环境或其它因素的影响,它们的周期(或频率)可能发生微小的改变。这时虽通过调节扫描旋钮使它们之间的周期满足整数倍关系,但过了一会可能又会变,使波形无法稳定下来。这在观察高频信号时就尤其明显。为此,示波器内设有触发同步电路,它从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。操作时,首先使示波器水平扫描处于待触发状态,然后使用“电平”(LEVEL )旋钮,改变触发电压大小,当待测信号电压上升到触发电平时,扫描发生器才开始扫描。若同步信号是从仪器外部输入时,则称“外同步”。

4. 李萨如图形的原理

如果示波器的X 和 Y 输入是频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。图7所示的为f Y :f x = 2 :1的李萨如图形。频率比不同的输入将形成不同的李萨如图形。图8所示的是频率比成简单整数比值的几组李萨如图形。从中可总结出如下规律:如果作一个限制光点x 、y 方向变化范围的假想方框,则图形与此框相切时,横边上切点数n x 与竖边上的切点数n y 之比恰好等于Y 和X 输入的两正弦信号的频率之比,即f y :f x =n x :n y 。但若出现图(b )或(f )所示的图形,有端点与假想边框相接时,应把一个端点计为1/2个切点。所以利用李萨如图形能方便地比较两正弦信号的频率。若已知其中一个信号的频率,数出图上的切点数n x 和n y ,便可算出另一待测信号的频率。

5. 整流滤波原理

整流电路的任务是将交流电变换成直流。完成这一任务是靠二极管的单向导电作用,常见的是半波、全波、桥式整流电路。为简单起见,二极管用理想模型来处理,并以桥式整流电路图9为例分析,交流电压2U ,L R 是要求支流供电的负载电阻。在电压2U 的正、负半周

U 1

5

0 2 3 7

6 8() a () b () c f f y =

1f f y =

2f f y =

1

(设a 端为正,b 端为负是正半周)内电流通路分别用图10中的实线和虚线箭头表示。

通过负载L R 的电流L i 以及电压L v 的波形如图10所示。显然,它们是单方向的全波脉动波形,单个二极管的导通角为π。加一滤波电容C ,并联的电容C 在电源供给电压升高时,能把部分能量存储起来,而当电源电压降低时,就把能量释放出来,使负载电压比较平滑,即C 具有平波的作用,降低纹波。

【实验仪器】

(1)XJ4321示波器(面板分布图及功能请参见附录1)。

(2)DF-1010超低频信号发生器(面板分布图及功能请参见附录2)。 (3)EM1643信号发生器(面板分布图及功能请参见附录3)。

【实验内容】

1. 观测信号波形并测量峰-峰电压值和频率 (1)DF-1010超低频信号发生器的调节

打开电源开关,调节波形选择1在“~”正弦波位置。倍乘为“1ms”, 周期挡4为“2” 位置,周期挡3为“5” 位置,周期挡2为“0” 位置,衰减挡6为“15V ”, 幅度挡7为“6V ”, 输出8接“0,+A ”。此时从DF-1010超低频信号发生器输出V PP =6V ,频率为400H Z 的正弦波。

(2)示波器的使用

仪器使用时面板控制件位置(以CH1输入为例),其它按键为弹出位置,见表1。

通过CH1输入从DF-1010超低频信号发生器输出V PP =6V ,频率为400Hz 的正弦波。 调节TRIG LEVEL (17)使波形稳定, 调节POSITION ,读出测量值。根据探头上的衰减比(×10,×1),计算V P -P 和周期。

a

b

C

图9 桥式整流电路图

图26-10 负载的电流以及电压的波形

R i U L L L

V P -P = A ×V/div T = B ×time/div

式中A 为波形在荧光屏上所占垂直格数,B 为一个波形周期在荧光屏上所占水平格数。 在读A和B 时,注意还要估读小格,旋钮每一级对应一大格,每一大格分为5小格,例如3.3大格。

2. 观察并绘出李萨如图形 (1)X 轴输入正弦波

从DF-1010超低频信号发生器输出频率为500H Z 的正弦波作为标准信号,从CH1(X )输入。

(2)Y 轴输入正弦波

EM1643信号发生器:按下电源开关,按下FUNCTION 开关2选“~” 正弦波,根据信号频率选“RANGE ”挡位,从“OUTPUT ”输出信号,若信号太强,改变“AMPLITUDE ” 旋钮,注意面板上所有二极管不亮。改变“FREQ V AR ”旋钮,得到所需频率。信号从CH2(Y )输入。

(3)按下示波器的X-Y11键,观察并绘出李萨如图形。

【数据与结果】

1. 观察波形及对电压和频率的测量

(1)在坐标纸上将所观察到的正弦波形用曲线板按1 : 1的比例绘出。 (2)电压和频率测量数据记录见表2。

P-P P-P P-P 误差。

2. 绘出所观察到的各种频率比的李萨如图形

若x f =500Hz 为约定真值,依次求出EM1643信号发生器的输出频率y f ,并与该信号发生器读数值y f ' 进行比较,一一求出它们的相对误差,并讨论之。数据表参考表26-3。

(1)观察半波整流的波形

通过CH1输入端观察从DF-1010超低频信号发生器正端和地之间输出的VP-P=6V,频率为400Hz的正弦波(以示波器为准)。然后将信号发生器正端的信号接到测试盒的A端,地线接测试盒的D端,将V L两端的信号接CH1,输入示波器,观察半波整流的波形(示波器的面板位置见图26-11)。在测试盒电容位置处分别插入一个4.7u F和1u F的电解电容(注意极性)进行滤波,测量交流纹波的V P-P(必要时VOL TS/DIV33可以换到0.5V/div),记下读数。

(2)观察全波整流的波形

通过CH1输入端观察从DF-1010超低频信号发生器正端、负端与地之间输出的VP-P=6V,频率为400Hz的正弦波(以示波器为准)。然后将信号发生器正端的信号接到测试盒的A 端,负端接C端,地线接测试盒的D端,将V L两端的信号接CH1,输入示波器,观察全波整流的波形(示波器的面板位置见图26-11)。在测试盒电容位置处分别插入一个4.7u F和1u F 的电解电容(注意极性)进行滤波,测量交流纹波的V P-P(必要时VOL TS/DIV33可以换到0.5V/ div),记下读数。

(3)观察桥式整流的波形

通过CH1输入端观察从DF-1010超低频信号发生器正端、地之间输出的VP-P=6V,频率为400Hz的正弦波(以示波器为准)。然后将信号发生器正端的信号接到测试盒的A端,地线接接C端,将V L两端的信号接CH1,输入示波器,观察桥式整流的波形(示波器的面板位置见图26-11)。在测试盒电容位置分别插入一个4.7u F和1u F的电解电容(注意极性)进行滤波,测量交流纹波的V P-P(必要时VOL TS/DIV33可以换到0.5V/ div),记下读数。【思考题】

(1)如果被观测的图形不稳定,出现向左移或向右移的原因是什么?该如何使之稳定?

(2)观察李萨如图形时,能否用示波器的“同步”把图形稳定下来?李萨如图形为什么一般都在动?主要原因是什么?

(3)什么是同步?实现同步有几种调整方法?如何操作?

(4)若被测信号幅度太大(在不引起仪器损坏的前提下),则在示波器上看到什么图形?要完整地显示图形,应如何调节?

(5)示波器能否用来测量直流电压?如果能测,应如何进行?

【附录】

1. XJ4321示波器面板分布图及功能(图11)

图11 示波器面板分布图

面板控制键作用:

(1)主机电源

①电源开关(POWER):将电源开关按键弹出即为“关”位置,将电源接入,按电源开关,以接通电源。

②电源指示灯:电源接通时指示灯亮。

③亮度旋钮(INTENSITY):顺时针方向旋转旋钮,亮度增强。接通电源之前将该旋钮逆时针方向旋转到底。

④聚焦旋钮(FOCUS):用亮度控制钮将亮度调节至合适的标准,然后调节聚焦控制钮直至轨迹达到最清晰的程度,虽然调节亮度时聚焦可自动调节,但聚焦有时也会轻微变化。如果出现这种情况,需重新调节聚焦。

⑤光迹旋转旋钮(TRACE ROTA TION):由于磁场的作用,当光迹在水平方向轻微倾斜时,该旋钮用于调节光迹与水平刻度线平行。

⑥刻度照明控制钮(SCALE ILLUM):该旋钮用于调节屏幕刻度的亮度。如果该旋钮顺时针方向旋转,亮度将增加。

(2)垂直方向部分

○30通道1输入端[CH1 INPUT(X)]:该输入端用于垂直方向的输入。在X-Y方式时输入端的信号成为X轴信号。

○24通道2输入端[CH2 INPUT(Y)]:和通道1一样,但在X-Y方式时输入端的信号仍为Y轴信号。

○22、○29交流—接地—直流耦合选择开关(AC-GND-DC):选择垂直放大器的耦合方式。

交流(AC):垂直输入端由电容器来耦合。

接地(GND):放大器的输入端接地。

直流(DC):垂直放大器的输入端与信号直接耦合。

○26、○33衰减器开关(VOL T/DIV):用于选择垂直偏转灵敏度的调节。如果使用的是10:1的探头,计算时将幅度×10。

○25、○32垂直微调旋钮(V ARIBLE):垂直微调用于连续改变电压偏转灵敏度,此旋钮在正常情况下应位于顺时针方向旋转到底的位置。将旋钮逆时针方向旋转到底,垂直方向的灵敏度下降到2.5倍以下。

○20、○36CH1×5扩展、CH2×5扩展(CH1×5MAG、CH2×5MAG):按下×5扩展按键,垂直方向的信号扩大5倍,最高灵敏度变为1mV/div。

○23、○35垂直移位(POSITION):调节光迹在屏幕中的垂直位置。垂直方式工作按钮,选择垂直方向的工作方式。

○34通道1选择(CH1):屏幕上仅显示CH1的信号。

○28通道2选择(CH2):屏幕上仅显示CH2的信号。

○34、○28双踪选择(DUAL):同时按下CH1和CH2按钮,屏幕上会出现双踪并自动以断续或交替方式同时显示CH1和CH2上的信号。

○31叠加(ADD):显示CH1和CH2输入电压的代数和。

○21CH2极性开关(INVERT):按此开关时CH2显示反相电压值。

(3)水平方向部分

○15扫描时间因数选择开关(TIME/DIV):共20挡在0.1μs/div∽0.2s/div范围选择扫描速率。

○11X-Y控制键:如X-Y工作方式时,垂直偏转信号接入CH2输入端,水平偏转信号接入CH1输入端。

○23通道2垂直移位键(POSITION):控制通道2在屏幕中的垂直位置,当工作在X-Y 方式时,该键用于Y方向的移位。

○12扫描微调控制键(V ARIBLE):此旋钮以顺时针方向旋转到底时处于校准位置,扫描由Time/div开关指示。该旋钮逆时针方向旋转到底,扫描减慢2.5倍以上。正常工作时,该旋钮位于校准位置。

○14水平移位(POSITION):用于调节轨迹在水平方向移动。顺时针方向旋转该旋钮向右移动光迹,逆时针方向旋转向左移动光迹。

○9扩展控制键(MAG×5)、(MAG×10,仅YB4360):按下去时,扫描因数×5扩展或×10扩展。扫描时间是Time/div开关指示数值的1/5或1/10。例如:×5扩展时,100μs/div 为20μs/div。部分波形的扩展:将波形的尖端移到水平尺寸的中心,按下×5或×10扩展按钮,波形将扩展5倍或10倍。

○13AL T扩展按钮(AL T-MAG):按下此键,扫描因数×1、×5或×10同时显示。此时要把放大部分移到屏幕中心,按下AL T-MAG键。扩展以后的光迹可由光迹分离控制键○13移位距×1光迹1.5div或更远的地方。同时使用垂直双踪方式和水平AL T-MAG可在屏幕上同时显示四条光迹。

(4)触发(TRIG)

○18触发源选择开关(SOURCE):选择触发信号源。

内触发(INT):CH1或CH2上的输入信号是触发信号。

通道2触发(CH2):CH2上的输入信号是触发信号。

电源触发(LINE):电源频率成为触发信号。

外触发(EXT):触发输入上的触发信号是外部信号,用于特殊信号的触发。

○43交替触发(AL T TRIG):在双踪示波器交替显示时,触发信号交替来自于两个Y通道,此方式可用于同时观察两路不相关信号。

○19外触发输入插座(EXT INPUT):用于外部触发信号的输入。

○17触发电平旋钮(TRIG LEVEL):用于调节被测信号在某地电平触发同步。

○10触发极性按钮(SLOPE):触发极性选择。用于选择信号的上升沿或下降沿触发。

○16触发方式选择(TRIG MODE):

自动(AUTO):在自动扫描方式时扫描电路自动进行扫描。在没有信号输入或输入信号没有被触发同时,屏幕上仍然可以显示扫描基线。常态(NORM):有触发信号才能扫描,否则屏幕上无扫描显示。当输入信号的频率低于20Hz时,请用常态触发方式。

TV-H:用于观察电视信号中行信号波形。

TV-V:用于观察电视信号中场信号波形。

(注意:仅在触发信号为负同步信号时,TV-V和TV-H同步。)

○7校准信号(CAL):电压幅度为0.5V P-P,频率为1kHz的方波信号。

○27接地柱┴:接地端。

2.DF-1010超低频信号发生器

图12为DF-1010超低频信号发生器面板图,其各部分功能如下: (1)波形选择开关:可选择输出信号的波形。

(2)输出周期选择旋钮:2为×0.01挡,3为×0.1挡,4×为1挡。

1

2

3

4

5

6

7

8

9

10

输出

15V

15V 30V PP

衰减

幅度 电源

DF1010

图12 DF-1010超低频信号发生器

1-波形选择工关 2、3、4-输出周期选择 5-输出频率选择 6-输出衰减选择 7-输出幅度调节按钮 8-信号输出接线柱 9-电源指示灯 10-电源开关

(3)输出频率倍乘选择:输出频率(周期)调节举例:若要输出一频率为 f =400Hz (T =0.00250s=2.50ms )的信号,则1/f =(4所示的值+3所示的值+2所示的值) ×5所示的值=2.50ms 。

(4)输出衰减选择:可选定最大输出电压。

(5)输出幅度调节旋钮:可在最大输出电压与零输出之间连续调节输出电压大小。 (6)信号输出接线柱:可用+A 与接地或-A 与接地输出信号。 (7)电源指示灯。 (8)电源开关。

3.EM1643信号发生器面板分布图及功能(图13)

图13 EM1643信号发生器面板图 1-电源开关 2-功能开关 3-频率微调 4-分挡开关 5-衰减器

6-幅度 7-直流偏移调节 8-占空比调节 9-输出 10-TTL 电平

面板控制键作用:

(1)电源开关(ON/OFF):按入开。

(2)功能开关(FUNCTION):波形选择。

∽:正弦波。

:方波和脉冲波(具有占空比可变)。

:三角波和锯齿波(具有占空比可变)。

(3)频率微调FREQV AR:频率覆盖范围10倍。

(4)分挡开关(RANGE-Hz):20Hz~2MHz,分六挡选择。

(5)衰减器(ATT):开关按入时,衰减20dB,30 dB。

(6)幅度(AMPLITUDE):幅度可调。

(7)直流偏移调节(DC OFF SET):

当开关按入时,直流电平为-10V~+10V连续可调。

当开关弹出时,直流电平为零。

(8)占空比调节(RAMP/PULSE):

当开关弹出时,占空比为50%。

当开关按入时,占空比在10%~90%内连续可调。

实际频率为指示值÷10

(9)输出(OUT PUT):波形输出端。

(10)TTL电平(TTL OUT):只有TTL电平输出端。幅度3.5V P-P。

操作步骤:

(1)将仪器接入AC电源,按下电源开关。

(2)根据需要选择波形的功能开关。

(3)当需要脉冲波和锯齿波时,转动FREQ V AR ,调节频率,按下RAMP/PULSE 开关,调节占空比,此时频率显示值÷10,其它状态时关掉。如果选定正弦波,关掉RAMP/PULSE开关。

(4)当需小信号输出时,按入衰减器。

(5)调节幅度至需要的输出幅度。

(6)调节直流电平偏移至需要设置的电平值,其它状态时关掉,直流电平将为零。

(7)当需要TTL信号时,从脉冲输出端输出,此电平将不随功能开关改变。

示波器原理及其应用分析解析

示波器原理及其应用 示波器介绍 示波器的作用 示波器属于通用的仪器,任一个硬件工程师都应该了解示波器的工作原理并能够熟练使用示波器,掌握示波器是对每个硬件工程师的基本要求。 示波器是用来显示波形的仪器,显示的是信号电压随时间的变化。因此,示波器可以用来测量信号的频率,周期,信号的上升沿/下降沿,信号的过冲,信号的噪声,信号间的时序关系等等。 在示波器显示屏上,横坐标(X)代表时间,纵坐标(Y)代表电压,(注,如果示波器有测量电流的功能,纵坐标还代表电流。)还有就是比较少被关注的-亮度(Z),在TEK的DPO示波器中,亮度还表示了出现概率(它用16阶灰度来表示出现概率)。 1.1.示波器的分类 示波器一般分为模拟示波器和数字示波器;在很多情况下,模拟示波器和数字示波器都可以用来测试,不过我们一般使用模拟示波器测试那些要求实时显示并且变化很快的信号,或者很复杂的信号。而使用数字示波器来显示周期性相对来说比较强的信号,另外由于是数字信号,数字示波器内置的CPU或者专门的数字信号处理器可以处理分析信号,并可以保存波形等,对分析处理有很大的方便。

1.2.1 模拟示波器 模拟示波器使用电子枪扫描示波器的屏幕,偏转电压使电子束从上到下均匀扫描,将波形显示到屏幕上,它的优点在于实时显示图像。 模拟示波器的原理框图如下: 见上图所示,被测试信号经过垂直系统处理(比如衰减或放大,即我们拧垂直按钮-volts/div),然后送到垂直偏转控制中去。而触发系统会根据触发设置情况,控制产生水平扫描电压(锯齿波),送到水平偏转控制中。 信号到达触发系统,开始或者触发“水平扫描”,水平扫描是一个是锯齿波,使亮点在水平方向扫描。触发水平系统产生一个水平时基,使亮点在一个精确的时间内从屏幕的左边扫描到右边。在快速扫描过程中,将会使亮点的运动看起来

模拟示波器的基本工作原理

模拟示波器的基本工作原理 1. 回顾中学的沙漏实验——随时间变化的信号如何在平面展示 物理学理论可以证明,一端通过细绳固定的重物在作摆动时,与中心垂线的距离满足正弦波规律。沙漏实验可以清晰地显示这个随时间变化的波形:用沙漏充当重物,并且在沙漏底下的桌面上平铺一张纸,当沙漏开始摆动时,让纸匀速移动。这样,沙漏中流出的细沙,就在纸上留下了一个正弦波痕迹,如图所示。利用这种设计思想,可以完成波形在平面上(对应于时间的流动)的展开。这种设计思想在波形记录、显示中被广泛采用,比如心电图机,就是用原地摆动的电热针,在匀速移动的记录纸带上描记出心电波形。 利用心电图机的结构,已经可以记录电压信号,但是,示波器在大量的应用中,并不需要通过消耗纸张来记录波形,而仅仅是观察波形。因此,可以重复使用的荧光屏,被应用到示波器的设计中。 在示波器上描绘一条曲线——电子枪和荧光屏 在一个封闭玻璃管显示屏的内壁涂上荧光粉,当荧光粉被大量电子形成的电子束轰击时,会发出荧光。可以发出电子束的设备称为电子枪,它可以连续地发出集束性很强的电子。这些电子束在飞行过程中,如果遇到电场的作用,会因电场形成的力而改变运行方向,导致最终电子束落到荧光屏上的位置发生改变,也就是光点改变。根据这个原理制造的示波管,其结构如图所示。图中电子枪发出的电子束,经过两个偏转板的作用,会在X 、Y 两个方向上发生偏转。 当在Y 偏转板上加入被测信号,而在X 偏转板上不加电压,可以在示波管的荧光屏上看到光点随着被测电压的变化而发生位置变化——电压越大,光点位置越靠上方。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上不加电压,可以看到光点从荧光屏左边出现,匀速移动到右边,然后又迅速在左边重复出现。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上加入一个正弦波,则可以看到,光点在匀速左移的同时,其Y 方向位置出现了正弦变化的规律,也就是说,光点的移动轨迹是一个正弦波。 怎样将周期性电压信号稳定地显示于荧光屏 图 沙漏摆动留下的正弦波 图 示波管的结构示意图

示波器的使用实验报告

实验一通用模拟与数字双踪示波器的使用及测量 一、实验目的和要求 1.根据已学的示波器理论知识学习正确使用通用双踪示波器,并利用示波器进行各种电信号的测量,熟练掌握模拟示波器的使用。 2.学习数字式通用示波器的使用,了解其在测量上的强大功能,并与模拟示波器进行比较,体会各自在测量上的特点。 3.认真按实验内容的要求进行实验,记录有关的数据和波形,回答实验内容中提出的有关问题,并按时提交实验报告。 二、实验原理 在时域信号测量中,电子示波器无疑是最具代表性的典型测量仪器。它可以精确复现作为时间函数的电压波形(横轴为时间轴,纵轴为幅度轴),不仅可以观察相对于时间的连续信号,也可以观察某一时刻的瞬间信号,这是电压表所做不到的。我们不仅可以从示波器上观察电压的波形,也可以读出电压信号的幅度、频率及相位等参数。 电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的,如果在示波管的X偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在Y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。 若水平偏转板上无扫描信号,则从荧光屏上什么也看不见或只能看到一条垂直的直线。因此,只有当X偏转板加上锯齿电压后才有可能将波形展开,看到信号的时间波形。 一般说来,Y偏转板上所加的待观测信号的周期与X偏转板上所加的扫描锯齿电压的周期是不相同的,也不一定是整数倍,因而每次扫描的起点对待观测信号来说将不固定,则显示波形便会不断向左或向右移动,波形将一片模糊。这就有一个同步问题,即怎样使每次扫描都在待观测信号不同周期的相同相位点开始。近代电子示波器通常是采用等待触发扫描的工作方式来实现同步的。只要选择不同的触发电平和极性,扫描便可稳定在待观测信号的某一相应相位点开始,从而使显示波形稳定、清晰。 在现代电子示波器中,为了便于同时观测两个信号(如比较两个信号的相位关系),采用了双踪显示的办法,即在荧光屏上可以同时有两条光迹出现,这样,两个待测的信号便可同时显示在荧光屏上,双踪显示时,有交替、断续两种工作方式。交替、断续工作时,扫描电压均为一种,只是把显示时间进行了相应的划分而已。 由于双踪显示时两个通道都有信号输入,因此还可以工作于叠加方式,这时是将两个信号逐点相加起来后送到Y偏转板的。这种工作方式可模拟谐波叠加,波形失真等问题。同时,如果改变其中一个的极性,也可以实现相减的显示功能。这相当于两个函数的相加减。 示波器除了用于观测信号的时间波形外,还可将两个相同或不同的信号分别加于垂直和水平系统,以观测两信号在X-Y平面上正交叠加所组成的图形,如李沙育图形。它可用于观测两个信号之间的幅度、相位和频率关系。 三、实验仪器设备 1.模拟双踪示波器CS-4135A 一台 2.数字双踪示波器TDS-1002B 一台 3.DDS函数信号发生器DG1022 一台

示波器的基础学习知识原理和使用

示波器的原理和使用 示波器是一种用途广泛的基本电子测量仪器,用它能观察电信号的波形、幅度和频率等电参数。用双踪示波器还可以测量两个信号之间的时间差,一些性能较好的示波器甚至可以将输入的电信号存储起来以备分析和比较。在实际应用中凡是能转化为电压信号的电学量和非电学量都可以用示波器来观测。 【实验目的】 1.了解示波器的基本结构和工作原理,掌握使用示波器和信号发生器的基本方法。2.学会使用示波器观测电信号波形和电压幅值以及频率。 3.学会使用示波器观察李萨如图并测频率。 图1-1 示波器结构图 【实验原理】 不论何种型号和规格的示波器都包括了如图1-1所示的几个基本组成部分:示波管(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号发生电路(锯齿波发生器)、自检标准信号发生电路(自检信号)、触发同步电路、电源等。 1.示波管的基本结构

示波管的基本结构如图1-2所示。主要由电子枪、偏转系统和荧光屏三部分组成,全都密封在玻璃壳体内,里面抽成高真空。 (1)电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。灯丝通电后加热阴极。阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是一个顶端有小孔的圆筒,套在阴极外面。它的电位比阴极低,对阴极发射出来的电子起控制作用,只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下奔向荧光屏。示波器面板上的“辉度”调整就是通过调节电位以控制射向荧光屏的电子流密度,从而改变了屏上的光斑亮度。阳极电位比阴极电位高很多,电子被它们之间的电场加速形成射线。当控制栅极、第一阳极与第二阳极电位之间电位调节合适时,电子枪内的电场对电子射线有聚集作用,所以, H-灯丝;K-阴极;G1,G2- 控制栅极;A1-第一阳极;A2-第二阳极;Y-竖直偏转板;X-水平偏转板 图1-2 示波管结构图 第一阳极也称聚集阳极。第二阳极电位更高,又称加速阳极。面板上的“聚集”调节,就是调第一阳极电位,使荧光屏上的光斑成为明亮、清晰的小圆点。有的示波器还有“辅助聚集”,实际是调节第二阳极电位。 (2)偏转系统:它由两对互相垂直的偏转板组成,一对竖直偏转板,一对水平偏转板。在偏转板上加以适当电压,电子束通过时,其运动方向发生偏转,从而使电子束在荧光屏上产生的光斑位置也发生改变。 (3)荧光屏:屏上涂有荧光粉,电子打上去它就发光,形成光斑。不同材料的荧光粉发光的颜色不同,发光过程的延续时间(一般称为余辉时间)也不同。荧光屏前有一块透明的、带刻度的坐标板,供测定光点的位置用。在性能较好的示波管中,将刻度线直接刻在荧光屏玻璃内表面上,使之与荧光粉紧贴在一起以消除视差,光点位置可测得更准。2.波形显示原理

示波器的原理与使用

实验七示波器的使用 【目的与任务】 1、了解低频信号发生器、交流毫伏表和示波器的结构和工作原理; 2、学会用示波器,观测电信号的波形并测量其电压、频率和周期; 3、学习用共振干涉法(即驻波法)测定声速。 【仪器与设备】 双踪示波器,声速测量仪,低频信号发生器(其上带有数字频率计),交流毫伏表,温度计等。 1、示波器 GOS—620型双踪示波器:频带宽度为0~20 MHz。有两垂直输入通道"CHl”和"CH2'’,可同时显示两个不同的电压信号波形以便进行分析比较,也可以把两个信号相加或相减后显示出来,还可以任选一个通道单独工作。可以从荧光屏上直接测出信号电压的幅度、频率(周期)。具有“X—Y工作方式”,将"CHI"作为水平通道、“CH2"作为垂直通道,可以观察由两通道输入的水平和垂直信号的合成图样,测出信号的频率和位相差。面板及各控制器件的作用简介见附录一。 2、低频信号发生器 MDl643/4函数信号发生器是一种小型便携式通用函数信号发生器,内部采用大规模精密函数信号发生集成电路,单片机控制,具有正弦波、三角波、方波、锯齿波、脉冲波等多种波形输出、频率范围0.2Hz~2MHz(7档调节)以及外部测频功能。它的结构和使用方法见附录二 3、交流毫伏表 现以GB—9B型电子管毫伏表说明交流毫伏表的使用方法。它可以测定正弦波电压的有效值,还可用来对无线电接收机、放大器和其它设备的电路进行测量。仪器带有分贝标尺,可用来作电平指示。 使用时,将两个输入接线柱短路。在核对仪器电源正确后,接通电源,待2-3分钟,此时电表指针将稍微偏转,看它是否回到零点,若指针不返回零点,则调节面板上的“零点校准”旋钮,调到零位,随后将面板上量程转换开关扳至所需的测量范围。再过十分钟后重调零点一次,即可进行测量。为降低测量误差和干扰,连接导线时应可靠地使毫伏表的地线接线柱与被测电路的零电位点相连。 4、声速测量仪 声速测量仪如图6所示,其上装有两个压电换能器S1、S2和螺旋测微器,转动手轮可以改变S1和S2的位置,它们之间的距离可由标尺读出。 【原理与方法】 示波器是一种用途广泛的电子测量仪器,用它能直接观察电压信号的波形,测定电压信号的幅度、频率等参数。一切能转化为电压信号的电学量(如电流、电功率、阻抗等)、非电学量(如温度、位移、速度、压力、光强、磁场、频率等)以及它们随时间的变化过程,都可用示波器进行观察和研究。由于电子射线的惯性小,又能在荧光屏上显示可见的图像,所以示波器特别适合于观察与测量瞬时变化过程。 示波器的种类型号很多,一般分为单踪示波器和双踪示波器,功能也各不相同,但都是由电子示波管、衰减电路、放大电路、扫描与整步电路、触发器选择逻辑电路、电源等部分

大学物理实验实验报告——示波器的使用

大学物理实验实验报告——示波器的使用 篇一:大物实验示波器的使用实验报告 实验二十三示波器的使用 班级自动化153班 姓名廖俊智 学号 6215073 日期 2021 3.21 指导老师代国红 【实验目的】 1、了解示波器的基本结构和工作原理,学会正确使用示波器。 2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。 3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。 【实验仪器】 固纬GOS-620型双踪示波器一台,GFG-809型信号发生器两台,连线若干。 【实验原理】

示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。在各行各业与各个研究领域都有着广泛的应用。其基本结构与工作原理如下 1、示波器的基本结构与显示波形的基本原理 本次实验使用的是台湾固纬公司生产的通用双踪示波器。基本结构大致可分为示波管(CRT)、扫描同步系统、放大与衰减系统、电源系统四个部分。“示波管(CRT)”是示波器的核心部件如图1所示的。可细分为电子枪,偏转系统和荧光屏三部分。 1)电子枪 电子枪包括灯丝F,阴极K,控制栅极G,第一阳极A1,第二阳极A2等。阴极被灯丝加热后,可沿轴向发射电子。并在荧光屏上显现一个清晰的小圆点。 2)偏转系统 偏转系统由两对互相垂直的金属偏转板x和y组成,分别控制电子束在水平方向和竖直方向的偏转。 从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏的中心呈现静止的光点。若受到横向电场的作用,电子束的运动方向就会偏离轴线, F灯丝,K阴极,G控制栅极,A1、A2第一、第二阳极,Y、X竖直、水平偏转板 图1示波管结构简图 屏上光点的位置就会移动。x偏转板之间的横向电场用来控制光点在水平方向的位移,y偏转板用来控制光点在竖直方向的位

示波器的使用实验报告

示波器的使用实验报告 一、实验目的 二、1. 了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法; 三、2. 学会利用双踪示波器观测电信号波形; 四、3. 学会利用双踪示波器观察李萨如图形,并利用其测量正弦信号的频率。 五、二、实验仪器 六、EE1642B型函数信号发生器、GDS-2062型双踪示波器、导线。 七、三、实验原理 双踪示波器包括两部分:示波管和控制示波管工作的电路。 1. 示波管 如下图所示,示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏。高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。X偏转板是垂直放置的两块电极。在Y 偏转板和X偏转板上分别加电压,可以在荧光屏上得到相应的图形。 2. 双踪示波器的原理

双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 电子开关将两个待测的电压信号Y CH1和Y CH2周期性的轮流作用在Y偏转板上。由于视觉滞留效应,能在荧光屏上看到两个波形。 由示波器的原理功能方框图可见,被测信号电压加到示波器的Y轴输入端,经垂直放大电路加于示波管的垂直偏转板。示波管的水平偏转电压,虽然多数情况都采用锯齿电压(用于观察波形时),但有时也采用其它的外加电压(用于测量频率、相位差等时),因此在水平放大电路输入端有一个水平信号选择开关,以便按照需要选用示波器内部的锯齿波电压,或选用外加在X轴输入端上的其它电压来作为水平偏转电压。 此外,为了使荧光屏上显示的图形保持稳定,要求锯齿波电压信号的频率和被测信号的频率保持同步。这样,不仅要求锯齿波电压的频率能连续调节,而且在产生锯齿波的电路上还要输入一个同步信号。这样,对于只能产生连续扫描(即产生周而复始、连续不断的锯齿波)一种状态的简易示波器(如国产SB10型等示波器)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,以牵制锯齿波的振荡频率。对于具有等待扫描功能(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波,进行一次扫描)功能的示波器(如国产ST-16型示波器、SR-8型双踪示波器等而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。为了适应各种需要,同步(或触发)信号可通过同步或触发信号选择开关来选择,通常来源有3个:①从垂直放大电路引来被测信号作为同步(或触发)信号,此信号称为“内同步”(或“内触发”)信号;②引入某种相关的外加信号为同步(或触发)信号,此信号称为“外同步”(或“外触发”)

示波器的原理和使用

示波器的原理和使用 实验目的 (1) 了解示波器的主要结构和显示波形的基本原理; (2) 掌握模拟示波器和函数信号发生器的使用方法; (3) 观察正弦、矩形、三角波等信号发生器的使用方法; (4) 通过示波器观察李萨如图形,学会一种测量正弦振动频率的方法,并加深对互相垂直振动合成理论的理解。 实验方法原理 (1) 模拟示波器的基本构造 示波器主要由示波管、垂直放大器、水平放大器、扫描信号放大器、触发同步等几个基本部分组成。 (2) 示波器显示波形原理 如果只在垂直偏转板上加一交变正弦电压,则电子束的亮点随电压的变化在竖直方向上按正弦规律变化。要想显示波形,必须同时在水平偏转板上加一扫描电压,使电子束所产生的亮点沿水平方向拉开。 (3) 扫描同步 当扫描电压的周期T x 是被观察周期信号的整数倍时,扫描的后一个周期扫绘的波形与前一个周期完全一样,荧光屏上得到清晰而稳定的波形,这叫做信号与扫描电压同步。 (4) 多踪显示 根据开关信号的转换频率不同,有两种不同的时间分割方式,即“交替”和“断续”方式。 (5) 观察李萨如图形并测频率 x y y x f f N Y N X =数方向切线对图形的切点数方向切线对图形的切点 实验步骤 (1) 熟悉示波器各控制开关的作用,进行使用前的检查和校准。 (2) 将信号发生器的输出信号连接到示波器的CH1或CH2,观察信号波形。 (3) 用示波器测量信号的周期T 、频率f 、幅值U 、峰-峰值Up-p 、有效值Urms,频率和幅值任选。 (4) 观察李萨如图形和“拍”。 (5) 利用多波形显示法和李萨如图形判别法观测两信号的相位差 ① 多波形显示法观测相位差。 ② 李萨如图形判别法观测相位差。 数据处理 0p p u p p =-= --显显U U U E 000=-=T T T E T π 2 4 44 2 4 π2 0 频率相同位相不同时的李萨如图形

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

示波器的工作原理与使用

河南科技大学实验教学教案 课程名称大学物理实验A 指导教师李海生

河南科技大学实验教学教案首页

预习及实验课前提问: 1.示波器中第一阳极和第二阳极的作用分别是什么? 解答:第二阳极电位比第一阳极高,当第一阳极与第二阳极间电位差调节合适时,电子枪内的电场对电子射线有聚焦作用,使屏上光斑成为明亮、清晰的小圆点,面板上的“聚焦”旋钮是用来调节第一阳极电位的,所以,第一阳极又称为聚焦阳极。第二阳极称为加速阳极。有些示波器还有“辅助聚焦”旋钮,是用来调节第二阳极电位的。 2.锯齿波如何形成? 解答:如果只在竖直偏转板上加一交变的正弦电压,则电子束的亮点将随电压的变化在竖直方向来回运动,如果电压频率较高,则看到的将是一条竖直亮线。要显示出波形,必须同时在水平偏转板上加一个扫描电压,使电子束的亮点同时沿着水平方向拉开。这种扫描电压的特点是电压随时间成线性关系增加到最大值,然后突然回到最小,此后再重复地变化。扫描电压随时间变化的关系曲线形同“锯齿”,故称“锯齿波”。 3.扫描图形在荧光屏上显示向左或向右移动的波形,为什么?如何使其稳定? 解答:要在示波器荧屏上获得稳定的波形,被测信号的频率Y f 必须为扫描电压(锯齿波)频率X f 的整数(N )倍,即有 X Y Nf f ,如果被测信号与锯齿波两者频率不满足上述整倍数的关系,每次扫描显示的图形就不能重合,结果荧光屏上呈现向左或向右移动的波形,这样就难以对信号进行观察和测量。必须设法调节使两者频率自动保持整数比。 实验原理: 示波器的结构主要由示波管、垂直放大器、水平放大器、扫描发生器、触发同步电路等组成。示波管是示波器的心脏部分,它是由电子枪、偏转系统、荧光屏构成。从电子枪发射出的电子束,经过加速电极和聚焦电极打到荧光屏上,形成一亮点。在偏转板上加适当电压,电子束的运动方向将发生偏转。当在y 板上加一交变信号时,在屏上将看到一条竖直亮线。若要观察交变信号的波形,需在x 板上加一锯齿波(扫描)电压,此电压由示波器内部提供。由于采用触发扫描方式,使得每一次扫描的起点位置都相同,因而得到的波形是稳定的。若在x 板和y 板上分别加上正弦信号,当他们的频率比为整数比时,屏上显示的稳定波形称为李萨如图形。频率比不同,李萨如图形的形状也不同。该图形在水平方向的切点数x n 和图形在垂直方向的切点数y n 与频率之间存在下列规律:

示波器的原理与使用实验报告

大学物理实验报告 实验名称示波器的原理与使用 实验目的与要求: (1)了解示波器的工作原理 (2)学习使用示波器观察各种信号波形 (3)用示波器测量信号的电压、频率和相位差 主要仪器设备: YB4320G 双踪示波器,EE1641B型函数信号发生器 实验原理和内容: 1.示波器基本结构 示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成,其中示波管是核心部分。 示波管的基本结构如下图所示,主要由电子枪、偏转系统和荧光屏三个部分组成,由外部玻璃外壳密封在真空环境中。 电子枪的作用是释放并加速电子束。其中第一阳极称为聚焦阳极,第二阳极称为加速阳极。通过调节两者的共同作用,可以使电子束打到荧光屏上产生明亮清晰的圆点。 偏转系统由X、Y两对偏转板组成,通过在板上加电压来使电子束偏转,从而对应地改变屏上亮点的位置。 荧光屏上涂有荧光粉,电子打上去时能够发光形成光斑。不同荧光粉的

发光颜色与余辉时间都不同。 放大和衰减系统用于对不同大小的输入信号进行适当的缩放, 使其幅度适合于观测。 扫描系统的作用是产生锯齿波扫描电压(如左上图所示), 使电子束在其作用下匀速地在荧光屏周期性地自左向右运动, 这一过程称为扫描。 扫描开始的时间由触发系统控制。 2. 示波器的显示波形的原理 如果只在竖直偏转板加上交变电压而X 偏转板上五点也是, 电子束在竖直方向上来回运动而形成一条亮线, 如左图所示: 如果在Y 偏转板和X 偏转板上同时分别加载正弦电压和锯齿波电压, 电子受水平竖直两个方向的合理作用下, 进行正弦震荡和水平扫描的合成运动, 在两电压周期相等时, 荧光屏上能够显示出完整周期的正弦电压波形, 显像原理如右图所示: 3. 扫描同步 为了完整地显示外界输入信号的周期波形, 需要调节扫描周期使其与外界信号周期相同或成合适的关系。 当某些因素改变致使周期发生变化时,使用扫描同步功能, 能够使扫描起点自动跟踪外界信号变化, 从而稳定地显示波形。 步骤与操作方法: 1. 示波器测量信号的电压和频率 对于一个稳定显示的正弦电压波形, 电压和频率可以由以下方法读出 h a U p p ?=-, 1)(-?=l b f 其中a 为垂直偏转因数(电压偏转因数)(从示波器面板的衰减器开关上可以直接读出)单位为V/div 或mV/div ; h 为输入信号的峰-峰高度, 单位div ; b 为扫描时间系数, 从主扫描时间系数选择开关上可以直接读出, 单位s/div 、ms/div 或μs/div ; l 为输入信号的单个周期宽度, 单位div 。 (1) 打开电源开关并切换到DC 档, 拨动垂直工作方式开关,选择未知信号所在的通道。 (2) 通过调节“扫描时间系数选择开关”和“垂直偏转系数开关”, 以及它们对应的微调开

模拟示波器的基本工作原理

模拟示波器的基本工作原理 1.回顾中学的沙漏实验——随时间变化的信号如何在平面展示 利用心电图机的结构,已经可以记录电压信号,但是,示波器在大量的应用中,并不需要通过消耗纸张来记录波形,而仅仅是观察波形。因此,可以重复使 用的荧光屏,被应用到示波器的设计中。 2.在示波器上描绘一条曲线——电子枪 和 荧光屏 当在Y 偏转板上加入被测信号,而在X 偏转板上不加电压,可以在示波管的荧光屏上看到光点随着被 测电压的变化而发生位置变化——电压越大,光点位 置越靠上方。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上不加电压,可以看到光点从荧光屏左边出现,匀速移动到右边,然后又迅速在左边重复出现。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上加入一个正弦波,则可以看到,光点在匀速左移的同时,其Y 方向位置出现了正弦变化的规律,也就是说,光点的移动轨迹是一个正弦波。 3 .怎样将周期性电压信号稳定地显示于荧光屏? ○ 1~○6时刻,具有相同的特征:都是以上升的方式经过0V 电压。示波器内部,用微分电路可以区分被测信号上升或者下降,用比较器配合外部的电压设置,可以判断被测信号是否经过这个比较电压(比如图中的0V )。这样,再经过一套逻辑电路,可以在被测信号具有相同初相角的时刻,控制X 轴偏转板,发 出一个锯齿 波。这种利用被测信号的周期性,在相 同 初相角时刻,触发X 轴锯齿波扫描信号,使得波形被重叠、稳定地显示于示波器荧光屏的技术,称为同步触发扫描。图中, 锯齿波在○ 1~○6时刻满足触发条件,但仅在○1、○3、○5时刻被触发,是因为在○2、○4、○6时刻,此前的锯齿波尚未扫描结束。 因此,在 示波器外部面板上,有控制被测信号在电压多大时触发锯 齿波产生的电 平旋钮,英文标识为Level ,这个电压称为触发电平。有控制被测信号是上升或者下降经过Level 电压的选择开关,英文标识为Slope 图1.1.3 沙漏摆动留下的正弦波 图1.1.4 示波管的结构示意图 Y 轴偏转板 被测信号 X 轴偏转板 锯齿波 Y 轴偏转板 被测信号 X 轴偏转板 锯齿波

示波器的使用实验报告

物理实验报告 一、【实验名称】 示波器的使用 二、【实验目的】 1.了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法 2.掌握用示波器观察电信号波形的方法 3.学会使用双踪示波器观察李萨如图形和控制示波管工作的电路 三、【实验原理】 双踪示波器包括两部分,由示波管和控制示波管的控制电路构成 1.示波管示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两队相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏,高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。在Y偏转板上和X偏转板上分别加上电压,可以在荧光屏上得到相应的图形。 双踪示波器原理 2.双踪示波器的原理 双踪示波器控制电路主要包括:电子开关,垂直放大电路,水平放大电路,扫描发生器,同步电路,电源等; 其中,电子开关使两个待测电压信号Y CH1和Y CH2周期性的轮流作用在Y偏转板,这样在荧光屏上忽而显示Y CH1信号波形,忽而显示Y CH2信号波形,由于荧光屏荧光物质的余晖及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上呈现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的

起点均不一样所造成的,为了获得一定数量的完整周期波形,示波器上设有“Time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波性。(看到稳定波形的条件:只有一个信号同步) 当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”;反之则为“外同步”。操作时,使用“电平旋钮”,改变触发电势高度,当待测电压达到触发电平时,开始扫描,直到一个扫描周期结束。但如果触发电势超出所显示波形最高点或最低点的范围,则扫描电压消失,扫描停止。 3.示波器显示波形原理 如果在示波器的Y CH1或Y CH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期相等时,则在荧光屏上显示出完整的正弦波形。 4.李萨如图形的基本原理 如果在示波器的Y偏转板上加上正弦波,在X偏转板上加上另一正弦波,则当两正弦波信号的频率比为简单整数比时,在荧光屏上将得到李萨如图形。 四、【仪器用具】: 信号发生器、双踪示波头、探头 五、【实验内容】 几种李萨如图形 n x n y分别代表图形在水平或垂直方向的切点数量 =3/4 nx/n y=1/2 n x/n y=1/3 n x/n y=2/3 n x/n y 1.观察正弦波形 a.打开示波器 b.开通CH1及相应信号发生器fx=100Hz c.得到大小合适稳定的正弦波 2.测正弦波电压,测正弦波的周期 a.调节波形上下移动键,使得fx=100Hz,改变一次v/div,再记录dy b.调整波形左右移动键,使得改变一次t/div,再记录dx

数字示波器及其简单原理图

数字示波器及其简单原理图 数字示波器可以分为数字存储示波器(DSO)数字荧光示波器(DP09、混合信 号示波器(MSO9和米样示波器。 数字式存储示波器与传统的模拟示波器相比,其利用数字电路和微处理器来增强对信号的处理能力、显示能力以及模拟示波器没有的存储能力。数字示波器的基本工 作原理如上图所示当信号通过垂直输入衰减和放大器后,到达模-数转换器(ADC。ADC 将模拟输入信号的电平转换成数字量,并将其放到存贮器中。存储该值得速度由触发电路和石英晶振时基信号来决定。数字处理器可以在固定的时间间隔内进行离散信号的幅值采样。接下来,数字示波器的微处理器将存储的信号读出并同时对其进行数字信号处理,并将处理过的信号送到数-模转换器(DAC、,然后DAC的输出信号去驱动垂直偏转放大器。DAC也需要一个数字信号存储的时钟,并用此驱动水平偏转放大器。与模拟示波器类似的,在垂直放大器和水平放大器两个信号的共同驱动下,完成待测波形的测量结果显示。数字存储示波器显示的是上一次触发后采集的存储在示波器内存中的波形,这种示波器不能实时显示波形信息。其他几种数字示波器的特点,请参考相关书籍。

Agile nt DSO-X 2002A 型数字示波器面板介绍 Rm — "P SiD (l#~j a o o o a 二 Mr 强 ; A T ef kiLol&£i^ li^fiiu]\'ioan Svaixli | Analiif] PnOi 伽 Fui£ Dto-X :ua ;A [*■4■討心十!?山皿町 p . * 3 ? ? ? 山唤附■血品 1 lnlensity(^fe ) 2 Entry HW 3 LCD^TF ◎IWI 控制 S

示波器的原理和使用

清华大学实验报告 系别:机械工程系班号:机械72班姓名:车德梦(同组姓名:)作实验日期2008年11月19日教师评定: 实验3.12 示波器的原理和使用 一、示波器的原理 示波器的规格和型号很多,就其显示方式来说主要有阴极射线示波管和液晶显示两种。阴极射线示波器一般都包括示波管(阴极射线管,CRT)、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。 1.示波管的基本结构 示波管主要包括电子枪、偏转系统和荧光屏三个部分,全都密封在玻璃外壳内,里面抽成高真空。 (1)电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。灯丝通电后加热阴极,阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是野鸽顶端有小孔的圆筒,套在阴极外面。它的电位比阴极低,对阴极发射出来的电子起控制

作用,只有初速度较大的电子才能穿过其顶端的小孔然后在阳极加速下奔向荧光屏。可以通过调节札记电位来控制射向荧光屏的电子流密度从而改变荧光屏的光斑亮度。当控制栅极、第一阳极和第二阳极三者的电位调节合适时,电子枪内的电场对电子射线有聚焦的作用,所以第一阳极也称聚焦阳极,第二阳极电位更高,又称加速阳极。 (2)偏转系统:它有两队互相垂直的偏转板组成,一对竖直偏转板和一对水平偏转板,加以适当电压可以使电子束运动方向发生偏转,从而使电子束在荧光屏上产生的光斑位置发生改变。 (3)荧光屏:屏上涂有荧光粉,电子打上去它就发光,形成光斑。不同材料的荧光粉发光的颜色不同,发光过程的延续时间(一般成为余辉时间)也不同。在性能好的示波管中,荧光屏玻璃内表面上直接刻有坐标刻度,供测定光点位置用。荧光粉紧贴坐标刻度以消除视差,光点位置可测得准确。 2.示波器显示波形的原理 如果在竖直偏转板上加一交变的正弦电压,同时在水平偏转板上加一扫描电压(锯齿波电压),电子受竖直、水平两个方向的力的作用,电子的运动是相互垂直的运动的合成。当锯齿波电压与正弦电压的变化周期相等时,在荧光屏上将能显示出完整周期的所加正弦电压的波形图。 3.同步的概念 如果正弦波和锯齿波电压的周期稍不同,屏上出现的将是一移动着的不稳定图形。如果T x稍小于T y,屏上显示的波形每次都不重叠,好像波形在向右移动。同理,如果T x比T y稍大,则好像在向左移动。以上描述的情况在示波器使用过程中经常会出现。其原因是扫描电压的周期与被测信号的周期不相等或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。 为了获得一定数量的完整周期波形,示波器上设有“TIME/DIV”(时间分度)调解旋钮,用来调节锯齿波电压的周期T x(或频率f x),使之与被侧信号的周期T y(或频率f y)呈合适的关系,从而,在示波器屏上得到所需数目的完整的被测波形。 输入Y轴的被测信号与示波器内部的锯齿波电压是互相独立的。由于环境或其它因素的影响,它们的周期会发生微小的改变。为此示波期内装有扫描同步装置,在适当调节后,让锯齿波电压的扫描起点自动跟着被测信号改变,这就称为整步(或同步)。调节示波器面板上的“TRIG LEVER(触发电平)”一般能使波形稳定下来。 4.利萨如图形的基本原理 如果示波器的X和Y输入时频率相同或者简单整数比的两个正弦电压,则屏上的光点将呈现特殊形状的轨迹,这种轨迹图形称为利萨如图形。如果做一个限制光点x、y方向变化范围的假象方框,则图形与此框相切时,横边上的切点数n x与竖边上的切点数n y 之比恰好是Y和X输入的两正弦信号的频率之比。若出现有端点与假想边框相接时,,应把一个端点计为半个切点。所以利用利萨如图形可以方便地比较出两个正弦信号的频率。若已知其中一个信号的频率,数出图上的切点数n x和n y,便可算出另一待测信号的频率。

示波器基本原理

目录 第一章示波器基本原理 (2) 1、1 模拟示波器 (2) 1、1、1示波管 (2) 1、1、2模拟示波器方框图 (3) 1、2 数字存储示波器(DSO) (4) 第二章示波器的使用 (5) 2、1示波器的各个系统和控制 (5) 2、2示波器的正确使用 (7) 第三章模拟示波器的校准 (9) 第四章数字存储示波器的使用和校准 (13) 4、1 TDS220的结构 (13) 4、2 TDS220的常规检查 (14) 4、3 TDS220的校准过程 (16)

第一章 示波器基本原理 示波器是一种图形显示设备,它能够直接观测和真实显示被测信号,是观察电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器,它可分为模拟和数字类型。下面就分模拟和数字部分对示波器的基本原理进行简单介绍。 1、1 模拟示波器 模拟示波器是第一代示波器产品,拥有极佳的"波形更新率"(约每秒超过二十万次),它仅仅在扫描的回扫时间及闭锁(Hold off )时间内不显示信号,因此又称为模拟实时示波器(Analog Real Time Oscilloscope )。由于模拟示波器是数字示波器在的基础,我们先来看模拟示波器的工作原理。 1、1、1示波管 模拟示波器的心脏是阴极射线管(CRT ),示波管由电子枪、偏转系统和荧光屏组成,它们被密封在真空的玻璃壳内,如图1-1所示。 电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打在荧光屏上,荧光屏的内表面涂有荧光物质,这样电子束打中的点就发出光来。 电子在从电子枪到屏幕的途中要经过

偏转系统,在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X )偏转板和垂直(Y )偏转板组成。这种偏转方式称为静电偏转。 将输入信号加到Y 轴偏转板上,而示波器自己使电子束沿X 轴方向扫描。这样就使得光点在屏幕上描绘出输入信号的波形。这样扫出的信号波形称为波形轨迹 1、1、2模拟示波器方框图 从上一小节可以看出,只要控制X 轴偏转板和Y 轴偏转板上的电压,就能控制示波管显示的图形形状。因此,只要在示波管的X 轴偏转板上加一个与时间变量成正比的电压,在y 轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。因此,往往给X 轴加上锯齿波。 示波器的基本组成框图如图1-2所示,它主要由示波管、Y 轴系统、X 轴系统三部分组成。此外还包括电源电路,它产生电路中需要的多种电源。示波器中还往往有一个精确稳定的方波信号发生器,供校验示波器用。 被测信号通过探头到达示波器的垂直系统,经衰减器适当衰减后送至垂直放大器,放大后产生足够大的信号,加到示波管的Y 轴偏转板上,控制亮点在屏幕中的上下移动。为了在屏幕上显示出完整的稳定波形,将Y 轴的被测信号引入X 轴系统的触发系统,启动或触

实验13模拟示波器的使用

实验13 模拟示波器的使用 一.引言 示波器是一种常用的电子学仪器。可以观察电压随时间变化的波形,并能测量电压、周 期等电学量的数值。因此示波器在科研、教学及应用技术等很多领域用途极为广泛。 本实验的目的在于使同学们对示波器的工作原理有初步了解,并能正确使用它,以给今 后经常应用打下基础。 示波器的工作原理比较复杂,这里不予介绍,请同学们查阅相关书籍资料。 四.仪器用具 双通道模拟示波器一台;信号发生器;电阻箱(0.1级);电容(0.1μF ,0.2级) 五.实验内容 1.观察电压波形 将信号发生器的正弦波和方波电压(调为4.00V ,1KHz)先后输入示波器的Y 通道(Y 1或 Y 2)。连接时注意把示波器和信号发生器的“地”(均为黑色鱼夹)相联,它们的非地端(红色鱼夹)联起来,不得交错联接。要求在屏上调出2~3个周期的波形,并注意“输入选择”、“触发选择”键的选取及观察“电平调节”钮的作用。 2.测电压、频率 用示波器验证1KHz 、4.00V (有效值)交流电压的峰—峰值和频率f 。 3.观察市电小电压信号波形 市电即指50Hz 、220V 的日常用电,通过变压器降压后仅有几伏。将此电压接入示波器Y 通道,观察其波形。 4.用李萨如图法测量频率 若示波管内X 、Y 偏转板均加上正弦波电压,当两电压信号频率成简单整数比时,屏上则 显示出一系列不同的李萨如图形。令f X 、f Y 分别为X 、Y 偏转板所加电压的频率,n X 、n Y 分别表示李萨如图形与任一水平线和任一竖直线的交点数,不难证明有: X Y Y X n n f f = (4.1) 若已知f Y ,由李萨如图及上式可求出f X 。 本实验将测量市电频率。将市电小电压信号u X 接入1通道,信号发生器中的正弦波电压 信号u Y 接入2通道,且其频率范围选定为20Hz ~200Hz 。 调节信号发生器的频率f Y ,使屏上的波形相对简单而稳定,由此可式求出f X 。要求调出 四个以上不同形状的李萨如图形,分别求出f X ,最后取其平均值X f 。 5.测相位差 (1)椭圆法。将两频率相同、不同相位的正弦信号分别输入1(改为X 通道)和2通道,一般屏上将呈现一椭圆。根据椭圆的形状可确定两信号间的相位差。设屏上光点在水平方向的振动方程为:X =Asin ωt (5.1) 在垂直方向的振动方程为: Y =Bsin(ωt +?) (5.2)

示波器的调节与使用

数字示波器的调节与使用 一、实验目的 1.了解示波器的结构与示波原理 2.掌握示波器的使用方法,学会用示波器观测各种电信号的波形 3.学会用示波器测正弦交流信号的电压幅值及频率 4.学会用李萨如图法,测量正弦信号频率 二、实验仪器 RIGOL DS1000E型数字存储示波器,DG1022函数波形发生器 三、实验原理 1、双踪示波器的原理: 双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 Y CH1 Y CH2 图1. 双踪示波器原理方框图 其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波形。

当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。如果同步电路信号从仪器外部输入,则称为“外同步”。 2.示波器显示波形原理: 如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。 图2.示波器显示正弦波形的原理 3、数字存储示波器的基本原理 数字存储示波器的基本原理框图如图3所示: 图3.数字存储示波器的基本原理框图 数字示波器是按照采样原理,利用A/D变换,将连续的模拟信号转变成离散的数字序列,然后进行恢复重建波形,从而达到测量波形的目的。 输入缓冲器放大器(AMP)将输入的信号作缓冲变换,起到将被测体与示波器隔离的作用,示波器工作状态的变换不会影响输入信号,同时将信号的幅值切换至适当的电平范围(示波器可以处理的范围),也就是说不同幅值的信号在通过输入缓冲放大器后都会转变成相同电压范围内的信号。 A/D单元的作用是将连续的模拟信号转变为离散的数字序列,然后按照数字序列的先后顺序重建波形。所以A/D单元起到一个采样的作用,它在采样时钟的作用下,将采样脉冲到来时刻的信号幅值的大小转化为数字表示的数值。这个点我们称为采样点。A/D转换器是波形采集的关键部件。 多路选通器(DEMUX)将数据按照顺序排列,即将A/D变换的数据按照其在模拟波形上的先后顺序存入存储器,也就是给数据安排地址,其地址的顺序就是采样点在波形上的顺序,采样点相邻数据之间的时间间隔就是采样间隔。 数据采集存储器(Acquisition Memory)是将采样点存储下来的存储单元,他将

相关文档
最新文档