数值分析作业答案.doc

数值分析作业答案.doc
数值分析作业答案.doc

第2章 插值法

1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。

(2)用Lagrange 插值基底。 (3)用Newton 基底。

证明三种方法得到的多项式是相同的。 解:(1)用单项式基底

设多项式为:2

210)(x a x a a x P ++=,

所以:64

211111

1111122

2

211

200

-=-==x x x x x x A 3

76144

211111114241

13110111)()

()(22

221120

022

2

22

11

120

00-=-=

---==x x x x x x x x x f x x x f x x x f a 2

3694211111114411

31101111)(1)(1

)(122

221120

02

2

22112

001=--=

--==x x x x x x x x f x x f x x f a 6

5654

2

1

1111114

2

1

3

11011111)

(1)(1)(122

2

21120

022

11

00

2=--=

---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:26

52337)(x x x P ++-= (2)用Lagrange 插值基底

)21)(11()

2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l

)21)(11()

2)(1())(())(()(2101201------=----=x x x x x x x x x x x l

)

12)(12()

1)(1())(())(()(1202102+-+-=----=

x x x x x x x x x x x l

Lagrange 插值多项式为:

3

72365)1)(1(3

1

4)2)(1(61)3(0)()()()()()()(22211002-+=+-?+--?-+=++=x x x x x x x l x f x l x f x l x f x L

所以f(x)的二次插值多项式为:226

52337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:

Newton 3

72365)

1)(1(65

)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N

所以f(x)的二次插值多项式为:2

2

6

52337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。

6、在44≤≤-x 上给出x

e x

f =)(的等距节点函数表,若用二次插值求e x 的近似

值,要使截断误差不超过10-6,问使用函数表的步长h 应取多少? 解:以x i-1,x i ,x i+1为插值节点多项式的截断误差,则有

),(),)()()((!

31

)(11112+-+-∈---'''=i i i i i x x x x x x x x f x R ξξ

式中.,11h x x h x x i i +=-=+-

3

43411423

9313261))()((max 61)(11h e h e x x x x x x e x R i i i x x x i i =≤---=+-≤≤+-

634103

9-≤h e 得00658.0≤h

插值点个数

12178.12161

)

4(41≤=---+

N 是奇数,故实际可采用的函数值表步长

006579.01216

81)4(4≈=---=N h

8、13)(47+++=x x x x f ,求]2,,2,2[710 f 及]2,,2,2[810 f 。 解:由均差的性质可知,均差与导数有如下关系:

],[,!

)

(],,,[)

(10b a n f

x x x f n n ∈=

ξξ 所以有:1!

7!

7!7)(]2,,2,2[)7(7

1

===

ξf f 0!

80

!8)(]2,,2,2[)8(8

1

===ξf f

15、证明两点三次Hermite 插值余项是

),(,!4/)())(()(1212)

4(3++∈--=k k k k x x x x x x f

x R ξξ

并由此求出分段三次Hermite 插值的误差限。 证明:利用[x k ,x k+1]上两点三次Hermite 插值条件

)

()(),()()

()(),()(11331133++++'='

'='==k k k k k k k k x f x H x f x H x f x H x f x H 知)()()(33x H x f x R -=有二重零点x k 和k+1。设

2123)())(()(+--=k k x x x x x k x R

确定函数k(x):

当k x x =或x k+1时k(x)取任何有限值均可;

当1,+≠k k x x x 时,),(1+∈k k x x x ,构造关于变量t 的函数

2123)())(()()()(+----=k k x x x x x k t H t f t g

显然有

)(,0)(0

)(,0)(,0)(11='='===++k k k k x g x g x g x g x g

在[x k ,x][x,x k+1]上对g(x)使用Rolle 定理,存在),(1x x k ∈η及),(12+∈k x x η使得

0)(,0)(21='='ηηg g

在),(1ηk x ,),(21ηη,),(12+k x η上对)(x g '使用Rolle 定理,存在),(11ηηk k x ∈,

),(212ηηη∈k 和),(123+∈k k x ηη使得

0)()()(321=''=''=''k k k g g g ηηη

再依次对)(t g ''和)(t g '''使用Rolle 定理,知至少存在),(1+∈k k x x ξ使得

0)()4(=ξg

而!4)()()()4()4()4(t k t f t g -=,将ξ代入,得到

)(),(!

41)(1,)

4(+∈=

k k x x f t k ξξ 推导过程表明ξ依赖于1,+k k x x 及x

综合以上过程有:!4/)())(()(212)4(3+--=k k x x x x f x R ξ 确定误差限:

记)(x I h 为f(x)在[a,b]上基于等距节点的分段三次Hermite 插值函数。

n

a

b h n k kh a x k -==+=),,1,0(, 在区间[x k ,x k+1]上有

2

12)4(212)4()()(max )(max !41

!4/)())(()()(1+≤≤≤≤+--≤--=-+k k x x x b

x a k k h x x x x x f x x x x f x I x f l k ξ

而最值)(,16

1)1(max )()(max 4

4221

02121

sh x x h h s s x x x x k s k k x x x l k +==

-=--≤≤+≤≤+ 进而得误差估计:)(max 3841)()()4(4

x f h x I x f b

x a h ≤≤≤-

16、求一个次数不高于4次的多项式)(x p ,使它满足0)0()0(='=p p ,

0)1()1(='=p p ,1)2(=p 。

解:满足0)0()0(33='=H H ,1)1()1(33='=H H 的Hermite 插值多项式为)1,0(10==x x

3

22

21

3

332010)1(01001121)]()()()([)(x x x x x x x x H x a x H x H j j j j j -=???

???---+??????--??????---='+=∑=β

设223)1()()(-+=x Ax x H x P ,令1)2(=P 得4

1=A 于是

222232)3(4

1

)1(412)(-=-+

-=x x x x x x x P 第3章 曲线拟合的最小二乘法

解:经描图发现t 和s 近似服从线性规律。故做线性模型{

}t span bt a s ,1,=Φ+=,计算离散内积有:

()61

1,15

02

==∑=j ,()7.140.59.30.39.19.00,15

=+++++==∑=j j t t

()63.530.59.30.39.19.00,2222225

02=+++++==∑=j j t t t

()280110805030100,15

0=+++++==∑=j j

s s

()10781100.5809.3500.3309.1109.000,5

=?+?+?+?+?+?==∑=j

j j s t s t

求解方程组得:

???? ??=???? ?????? ??107828063.537.147.146

b a 855048.7-=a ,253761.22=b

运动方程为:t s 253761

.22855048.7+-= 平方误差:[]

22

5

2

101.2)(?≈-=

∑=j j j

t s s

δ

用最小二乘法求形如2

bx a y +=的经验公式,并计算均方差。

解: {}

2

,1x span =Φ,计算离散内积有:

()51

1,14

2

==∑=j ,()

53274438312519,12

22224

22

=++++==∑=j j x x

()

72776994438312519,4

44444

42

2

=++++==∑=j j

x x x

()4.2718.973.730.493.320.19,14

=++++==∑=j j

y y

()5

.3693218.97443.73380.49313.32250.1919,222224

2

2

=?+?+?+?+?==∑=j j j

y x

y x

求解方程组得:

???? ??=???? ?????? ??5.3693214.2717277699532753275

b a 972579.0≈a ,05035.0=b

所求公式为:205035.0972579.0x y

+=

均方误差:[]

1226.0)(2

12

4

≈???????

?

??-=∑=j j

j y x y δ 第4章 数值积分与数值微分

1、确定下列求积分公式中的待定参数,使其代数精度尽量高,并其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:

(1)101()()(0)()h

h f x dx A f h A f A f h --≈-++?;

(2)21012()()(0)()h

h f x dx A f h A f A f h --≈-++?

(3)1

121()[(1)2()3()]/3f x dx f f x f x -≈-++?;

(4)20

()[(0)()]/2[(0)()]h

f x dx h f f h ah f f h ''≈++-?。

解:(1)101()()(0)()h

h

f x dx A f h A f A f h --≈-++?;

将2()1,,f x x x =分别代入公式两端并令其左右相等,得

1011012223

1011200203h h

h h h h A A A dx h hA A hA xdx h A A h A x dx h ------?

++==???

-+?+==??

?+?+==??

??? 解得。所求公式至少具有2次代数精确度。又由于

故4()()(0)()333

h

h h h h f x dx f h f f h -≈

-++?具有3次代数精确度。 (2)21012()()(0)()h h

f x dx A f h A f A f h --≈-++?

2()1,,f x x x =分别代入公式两端并令其左右相等,得

210122*********

33101221400

116()033h

h h h h

h h

h A A A dx h

hA A hA xdx h A A h A x dx x h -------??++==?

?

-+?+==?????-+?+===??????

??? 解得:11084,33h h A A A -==

=-

令3()f x x =,得23332880()033h h h h

x dx h h -==-+?=?

令4()f x x =,得2555244

422648816()55333h

h

h h

x h h h h x dx h h --??==≠-+?=?????

故求积分公式具有3次精确度。

(3)1

121

()[(1)2()3()]/3f x dx f f x f x -≈-++?

当()1f x =时,易知有

1

121

()[(1)2()3()]/3f x dx f f x f x -≈-++?

令求积分公式对2(),f x x x =准确成立,即

()1

12

122

1

122

1012312323

3xdx x x x x x dx --==-++-++==?

?

则解得120.28989790.5265986x x =-??=?或120.68989790.1265986x x =??=-?

将3()f x x =代入已确定的积分公式,则

1

121

()[(1)2()3()]/3f x dx f f x f x -≠-++?

故所求积分式具有2次代数精确度。

(4)20()[(0)()]/2[(0)()]h

f x dx h f f h ah f f h ''≈++-?

当()1,f x x =时,有

201[11]/2[00]h

dx h ah ≈++-?

20

[0]/2[11]h

xdx h h ah ≈++-?

故令2()f x x =时求积公式准确成立,即

2220

[0]/2[02]h x dx h h ah h ≈++-?

解得112

a =

。 将34(),f x x x =代入上述确定的求积分公式,有

43

3220

01[0]/2[03]412h

h

x x dx h h h h ??==++-?????

54

4240

1[0]/2[04]512h

h

x x dx h h h h ??=≠++-?????

故所求积公式具有3次代数精确度。

2、分别用梯形公式和辛普森公式计算下列积分:

(1)120,8;4x

dx n x =+?

(2

)1

,4;n =?

(3

)6

,6n πθ=?

解(1)复化梯形公式,1

8

h =

7

81(0)2()(1)0.11140242k k h T f f x f =??

=++=????

复化辛普森公式,18

h =

77

81012(0)4()4()(1)0.11157186k k k k h S f f x f x f +==?

?=+++=????

∑∑

(2)2h =,341(1)2()(9)17.30600052k k h T f f x f =??

=++=????∑

33

41012(1)4()4()(9)16.72375056k k k k h S f f x f x f +==?

?=+++=????

∑∑

(3)36h π

=,561

(0)2()() 1.035684126k k h T f f x f π=??

=++=????∑

55

61012

(0)4()4()() 1.035763966k k k k h S f f x f x f π+==??

=+++=????∑∑

5、推导下列三种矩形求积公式:

2

()()()()()2

b a

f f x dx b a f a b a η'=-+-?; 2()()()()()2

b a

f f x dx b a f a b a η'=---?; 3()()()()()224

b a

a b f f x dx b a f b a η''+=-+-?。 解:(1)左矩形公式,将f(x)在a 处展开,得

()()()(),(,)f x f a f x a a x ξξ'=+-∈

两边在[a,b]上积分,得

()()()()()()()()b

b b

a

a

a

b a

f x dx f a dx f x a dx

b a f a f x a dx

ξξ'=+-'=-+-?

???

由于x-a 在[a,b]上不变号,故由积分第二中值定理,有(,)a b η∈

()()()()()b

b

a

a

f x dx b a f a f x a dx η'=-+-?

?

从而有

2

1()()()()(),(,)2

b

a

f x dx b a f a f b a a b ηη'=-+

-∈? (2)右矩形公式,同(1),将f (x )在b 点处展开并积分,得 2

1()()()()(),(,)2

b a

f x dx b a f a f b a a b ηη'=---∈? (3)中矩形分式,将()f x 在2

a b

+处展开,得

2

()()()()()(),(,)2222

a b a b a b a b f x f f x f x a b ξξ++++'''=+-+-∈

两边积分并用积分中值定理,得 2

1()()()()()()()22222

b b b a a a a b a b a b a b f x f b a f x dx f x dx ξ++++'''=-+-+-??? 2

()()()()22

b a a b a b

f b a f x dx η++''=-+-?

31

(

)()()(),(,)224

a b f b a f b a a b ηη+''=-+-∈

6、若分别使用复合梯形公式和复合辛普森公式计算积分1

0x I e dx =?,问区间[]

0,1应分多少等份才能使截断误差不超过51

102-?。

解:由于(4)()()(),1x f x e f x f x b a ''===-= 由复合梯形公式的余项有:

[]2

25111

()1012122n b a R f h f e n ξ--??''=-≤≤? ???

解得212.85n ≥可取213n =

由辛普森公公式的余项有:

[]4(4)45111

()()10288028802

n b a R f h f n ξ--=≤≤?

解得 3.707n ≥可取4n =

8、用龙贝格求积方法计算下列积分,使误差不超过510- (11

x e dx ?

(2)20sin x xdx π

?

(3

)3

?。

解:(1)1

01()

(1)(1)21()()2(),024,1,2,3,4

n n n i i k k k k k n n k h T f x f x f x k T T T k -=---???=++=??????=?-?

=??

18、用三点公式求2

1

()(1)f x x =+在 1.0,1.1,1.2x =处的导数值,并估计误差。的

解:三点求导公式为

[]2

001201()3()4()()()23h f x f x f x f x f h ε''''=-+-+

[]2

10111()()()()26h f x f x f x f h ε''''=-+-

[]2

201221()()4()3()()23

h f x f x f x f x f h ε''''=-++

02(,),0,1,2i x x i ε∈=

取表中 1.0,1.1,1.2x =,分别将有关数值代入上面三式,即可得导数近似值。 由于()

5

51.0 1.2

1.0 1.2

4!

4!

()max ()max

0.752

1i x x f f x x ε≤≤≤≤''''''≤==

=+

数值积分法,令()()x f x ?'=,由

1

1()()()k k

x k k x f x f x x dx ?++=+?

对积分采用梯形公式,得

[]3

11111()()()()()(),(,)212

k k k k k k k k k k k k x x x x f x f x x x x x ???ηη+++++--''=++-

∈ 令k=0,1,得

[]01102

()()()()x x f x f x h ??+≈

- []12212

()()()()x x f x f x h

??+≈-

同样对

1

1

11()()()k k x k k x f x f x x dx ?+-+-=+?

[]3

1111111111()()()()()(),(,)212

k k k k k k k k k k k k x x x x f x f x x x x x ???ηη+-+-+--+-+--''=++-

∈ 从而有

[]02201

()()()()x x f x f x h

??+≈

- 代入数值,解方程,即得(),0,1,2k x k ?=如下

第5章 解线性方程的直接方法

7、用列主元消去法解线性方程组

123123123123315183156x x x x x x x x x -+=??

-+-=-??++=?

并求出系数矩阵A 的行列式的值。

[]18311518311512

33

1577173118

3115015036186

11

1622667173100

0776186A b ??

?

?

????

-------??????

???

?

??

=----??

??????

????

?

?????

??

?

?

??

722

186667A =-??=-

3213,2,1x x x ===

8、用直接三角分解求线性方程组的解。

12312312311194561

1183

451

282x x x x x x x x x ?++=??

?++=???++=??

解:由公式111111(1,2,

,),/,2,3,

,i i i i u a i n l a u i n ====

1

1,,1,

,;r ri ri rk ki k u a l u i r r n -==-=+∑

1

1

()/,1,

,;r ir ir ik kr rr k l a l u u i r n r n -==-=+≠∑知

1

1110045

64

111003604523611300

15A LU ??

???????????

?==-

-?????

???-????????

10

094

108382361b LY Y ??

????

???

?===????

??????-?

? 94154Y ??

??=-????-??

1

1

14569110

460451541300

15UX X Y ????????????=--===-????

??-??????

???

?

123227.08,476.92,177.69x x x =-==-

12、设0.60.50.10.3A ??

= ???,计算A 的行范数,列范数,2-范数及F-范数。

解:11

1.1max n

ij i n

j A

a ∞

≤≤===∑

111

0.8max n

ij j n

i A a ≤≤===∑

2

2,10.8426150n ij F

i j A

a =??

=== ???

∑ 0.60.10.60.50.370.330.50.30.10.30.330.34T

A A ??????==????????????

max ()0.6853407T A A λ=

13、求证:(1)1x

x n x ∞

∞≤≤;(2

2F

F A A A ≤≤

证明:(1)由定义知

1111

1

1

max max n n i i i i n

i n

i i i x

x x x x x

n x

≤≤≤≤===∞

=≤=≤==∑∑∑

1x

x n x ∞

∞≤≤

(2)由范数定义,有

2

max 122()()()()T T T T n A A A A A A A A A λλλλ=≤++

+

2

2

2

222

1

2

21

1

1

11

n

n

n

n

n

i i in

ij F i i i j i A a a a a A ======++

+==∑∑∑∑∑ ()()()2

2

1221

1max()T T T N F A ATA A A A A A A A n n

λλλλ??=≥

++++=

?

?

2F

F A A A ≤≤

第6章 解线性方程的迭代法

1、设线性方程组

1231231

235212422023106

x x x x x x x x x ++=-??

-++=??-+=? (1) 考察用雅可比迭代法,高斯-塞德迭代法解此方程组的收敛性;

(2) 用雅可比迭代法,高斯-塞德迭代法解此方程组,要求当

(1)()

410k k x x +-∞

-<时迭代终止。

解:(1)因系数矩阵按行严格对角占优,故雅可比迭代法与高斯-塞德迭代法均收敛。

(2)雅可比迭代法格式为

(1)

()()1

23(1)()()

213(1)

()()3

122112555

1154213351010k k k k k k k k k x x x x x x x x x +++?=---??

?=-+??

?=-++??

取(0)(1,1,1)T x =,迭代到17次达到精度要求

(0)( 4.0000186,2.9999915,2.0000012)T x =-

高斯-塞德迭代格式为

(1)

()()1

23(1)()()

213(1)

()()3

122112555

1154213351010k k k k k k k k k x x x x x x x x x +++?=---??

?=-+??

?=-++??

取(0)(1,1,1)T x =,迭代到8次达到精度要求

(0)( 4.0000186,2.9999915,2.0000012)T x =-

第七章

第八章

数值分析_数值计算小论文

Runge-Kutta 法的历史发展与应用 摘要Runge-Kutta 法是极其重要的常微分方程数值解法,本文仅就其起源及发展脉络加以简要研究。对Runge 、Heun 以及Kutta 等人的贡献做出适当评述,指出Runge-Kutta 方法起源于Euler 折线法。同时对Runge-Kutta 法的应用做简要研究。 关键词 Euler 折线法 标准四阶Runge-Kutta 法 应用 一、发展历史[1] 1.1 Euler 折线法 在微分方程研究之初,瑞士数学家L.Euler(1707.4—1783.9)做出了开创性的工作。他和其他一些数学家在解决力学、物理学问题的过程中创立了微分方程这门学科。在常微分方程方面,Euler 在1743年发表的论文中,用代换kx y e =给出了任意阶常系数线性微分方程的古典解法,最早引入了“通解”和“特解”的概念。 1768年,Euler 在其有关月球运行理论的著作中,创立了广泛用于求初值问题 00 (,), (1.1)() (1.2)y f x y x x X y x a '=<≤??=? 的数值解的方法,次年又把它推广到二阶方程。欧拉的想法如下:我们选择0h >,然后在00x x x h ≤≤+情况下用解函数的切线 0000()()(,)l x y x x f x y =+- 代替解函数。这样对于点 10x x h =+ 就得到 1000(,)y y hf x y =+。 在11(,)x y 重复如上的程序再次计算新的方向就会得到所谓的递推公式: 11, (,),m m m m m m x x h y y hf x y ++=+=+

大一现代汉语期末考试答案参考

现代汉语试题库 现代汉语试题库(绪论·试题) 一、填空题. 1.“现代汉语”通常有两种解释,狭义的解释指的是现代汉民族共同语——(),广义的解释还兼指现代汉民族使用的()和(),我们这里讲述的是()。 2.汉语做为一种语言,具有一切语言共有的性质。即从结构上说,它是一种();从功能上说,它是()。 3.现代汉语有()和()两种不同的形式。()是民族共同语的高级形式。 4.现代汉语民族共同语又叫(),它是以()为(),以()为(),以()为()的。 5.民族共同语是在一种()的基础上形成的。汉族早在先秦时代就存在着古代民族共同语,在春秋时代,这种共同语被称为(),从汉代起被称为(),明代改称为()。到了现代,即辛亥革命后又称为(),新中国成立以后则称为()。 6.现代汉语的地域分支是()。 7.共同语是()的语言,方言是()的语言。 8.现代汉民族共同语是在()的基础上形成的。在形成过程中,()有着特殊的地位。 9.汉语方言可以分为七大方言区,即()、()、()、()、()、()()和()。 10.我们了解和研究汉语方言,其目的之一就是要找出方言与普通话的(),有效地()。 11.现代汉语的特点:语音方面(1)()(2)()(3)();词汇方面(1)()(2)()(3)();语法方面(1)()(2)()(3)()(4)()。 12.()语、()语、()语同汉语关系尤为特殊,它们都吸收过汉语大量的词,甚至在汉语的基础上产生了很多新词。 13.汉语是联合国的六种工作语言之一,另外五种是()语、()语、()语、()语和()语。汉语在国际交往中发挥着日益重要的作用。 14.在当前语言文字工作的主要任务中,最重要的两项工作是()和()。 15.现代汉语规范化的标准是:语音方面以()为(),词汇方面以()为(),语法方面以()为()。 16.推广普通话并不是要人为地消灭(),主要是为了消除(),以利社会交际。 17.50年代初制定的推广普通话的工作方针是:(),(),()。这个方针是正确的,今后仍然适用。 18.新时期推普工作应努力做好以下四点:第一,各级各类学校使用普通话进行教学,使之成为()。第二,各级各类机关工作时一般使用普通话,使之成为。第三,广播、电视、电影、话剧使用普通话,使之成为()。第四,不同方言区的人在公众场合交往时,基本使用普通话,使之成为()。 19.现代汉语课程的主体由(),(),(),()和()几部分构成, 二、单项选择题(将正确答案的序号填在题后的括号里) 1.现代汉民族共同语和方言的关系是() A.互相排斥 B.互相依存,方言从属于汉民族共同语 C.方言是从民族共同语中分化出来的 2.对普通话而言,汉语方言是一种() A.地域分支 B.并立的独立语言 C.民族共同语的高级形式 D.对立的独立语言 3.汉语方言之间的差异,突出表现在()方面。 A.语音 B.词汇 C.语法 D.词汇和语法 4.现代汉语书面形式的源头是() A.文言文

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析小论文 董安

数值分析作业 课题名称代数插值法-拉格朗日插值法班级Y110201 研究生姓名董安 学号S2******* 学科、专业机械制造及其自动化 所在院、系机械工程及自动化学院2011 年12 月26日

代数插值法---拉格朗日插值法 数值分析中的插值法是一种古老的数学方法,它来自生产实践。利用计算机解决工程问题与常规手工计算的差异就在于它特别的计算方法.电机设计中常常需要通过查曲线、表格或通过作图来确定某一参量,如查磁化曲线、查异步电动机饱和系数曲线等.手工设计时,设计者是通过寻找坐标的方法来实现.用计算机来完成上述工作时,采用数值插值法来完成。因此学好数值分析的插值法很重要。 插值法是函数逼近的重要方法之一,有着广泛的应用 。在生产和实验中,函数f(x)或者其表达式不便于计算复杂或者无表达式而只有函数在给定点的函数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的函数 (x),使其近似的代替f(x),有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值.本文着重介绍拉格朗日(Lagrange)插值法。 1.一元函数插值概念 定义 设有m+1个互异的实数1x ,2x ,···,m x 和n+1 个实值函数()0 x j , ()1 x j , ···()n x j ,其中n £m 。若向量组 k f =(()0k x j ,()1k x j ,···,() k m x j )T (k=0,1,,n ) 线性无关,则称函数组{()k x j (k=0,1, ,n )}在点集{i x (i=0,1, ,m)}上线性无关;否 则称为线性相关。 例如,函数组{2+x ,1-x ,x+2 x }在点集{1,2,3,4}上线性无关。 又如,函数组{sin x ,n2x ,sin 3x }在点集{0, 3p ,2 3 p ,p }上线性相关。 给点n+1个互异的实数0x ,1x ,···,n x ,实值函数() f x 在包含0x ,1x ,···,n x 的某个区间[] ,a b 内有定义。设函数组 {()k x j (k=0,1, ,n )} 是次数不高于n 的多项式组,且在点集{0x ,1x ,···,n x }上线性无关。

数值分析小论文

“数值分析”课程 第一次小论文 郑维珍2015210459 制研15班(精密仪器系)内容:数值分析在你所在研究领域的应用。 要求:1)字数2500以上;2)要有摘要和参考文献;3)截至10.17,网络学堂提交,过期不能提交! 数值分析在微流控芯片研究领域的应用 摘要: 作者在硕士期间即将参与的课题是微流控芯片的研制。当前,微流控芯片发展十分迅猛,而其中涉及到诸多材料学、电子学、光学、流体力学等领域的问题,加上微纳尺度上的尺寸效应,理论研究和数值计算都显得困难重重。发展该领域的数值计算,成为重中之重。本文从微流体力学、微传热学、微电磁学、微结构力学等分支入手,简要分析一下数值分析方法在该领域的应用。 微流控芯片(Microfluidic Chip)通常又称芯片实验室(Lab-On-a-Chip ),它是20世纪90年代初由瑞士的Manz和Widmer提出的[1-2],它通过微细加工技术,将微管道、微泵、微阀、微电极、微检测元件等功能元件集成在芯片材料(基片)上,完成整个生化实验室的分析功能,具有减少样品的消耗量、节省反应和分析的时间、高通量和便携性等优点。 通常一个微流控芯片系统都会执行一个到多个微流体功能,如泵、混合、热循环、扩散和分离等,精确地操纵这些流体过程是微流控芯片的关键。因此它的研究不仅需要生命科学、MEMS、材料学、电子学、光学、流体力学等多学科领域的基础理论的支持,还需要很多数学计算。

1)微流体力学计算[3]: 对微管里的流体动力的研究主要包含了以下几个方面:(1)微管内流体的粘滞力的研究;(2)微管内气流液流的传热活动;(3)在绝热或传热的微管内两相流的流动和能量转换。这三方面的研究涵盖了在绝热、传热和多相转换条件下,可压缩和不可压缩流体在规则或不规则的微管内的流动特性研究。 由此,再结合不同的初值条件和边界条件,我们可以得到各种常微分方程或偏微分方程,而求解这些方程,就是需要很多数值分析的知识。例如,文献[4]里就针对特定的初值和边界条件,由软件求解了Navier-Stodes方程: 文献[4]专门有一章节讨论了该方程的离散化和数值求解。 微流体力学主要向两个方面发展:一方面是研究流动非定常稳定特性、分叉解及微尺寸效应下的湍流流动的机理,更为复杂的非定常、多尺度的流动特征,高精度、高分辨率的计算方法和并行算法;另一方面是将宏观流体力学的基本模型,结合微纳效应,直接用于模拟各种实际流动,解决微纳芯片生产制造中提出来的各种问题。 2)微传热方程计算: 常微分、偏微分方程的数值求解应用较为广泛的另一问题就是微流体传热问题。由传热学的相关知识,我们可以达到如下的传热学基本方程: 该方程在二维情况下经过简化和离散,可以得到如教材第三章所讲的“五点差分格式”的方程组,从而采取数值方法求解[5]。 除此之外,微结构芯片在加工和制造过程中也会有很多热学方面的问题,例如文献[6]所反映的注塑成型工艺中,就有大量的类似问题的解决。 3)微电磁学计算: 由于外加电场的作用,电渗流道中会产生焦耳热效应。许多研究者对电渗流道中的焦耳热效应进行了数值模拟研究。新加坡南洋理工大学的G. Y. Tang等在电渗流模型的基础上,考虑了与温度有关的物理系数,在固一液祸合区域内利用

大一现代汉语试题

大一现代汉语试题 一、填空题(每题1分,共10分) 1.现代汉民族共同语是(1.以北京语音为标准音,以北方话为基础方言,以典范的现代白话文著作为语法规范的普通话。。.)。2.据阻碍方式普通话声母可以分为(2.塞音、擦音、塞擦音、鼻音、边音。)。 3.后鼻韵母有( 3.iɑ、ie、uɑ、uo、üe。 )。4.普通话声调的四种调值是( 4.55、35、214、51)5.传统的“六书”是指(5.象形、指事、会意、形声、转注和假借。)。6.汉字标准化的四定是指(6. 定量、定形、定音、定序。)。7.合成词是由(7.合成词是由两个或两个以上语素构成的词。)的词,包括(复合式、附加式、重叠式。)三类。8.语义场的类型有(8.类属义场、顺序义场、关系义场、同义义场、反义义场。)。9.成语的特征是(9意义的整体性,结构的凝固性。)。10.词汇的发展变化主要表现在10.新词不断地产生,旧词的逐渐消失和变化,词的语义内容和语音形式也不断地发生变化。 。 二、名词解释(每题1分,共6分) 1.音素:音素是构成音节的最小单位。 2.单元音:发音时舌位、唇形及开口度始终不变的元音。 3.音位:一个语音系统中能够区别意义的最小语音单位。 4.词:词是最小的能够独立运用的语言单位。 5.义项:是词的理性意义的分项说明。 6.歇后语:是由近乎谜面和谜底两部分组成的带有隐语性质的口头用语。 三、语音题(共20分) 1.写出声母的发音部位和发音方法。(每题1分,共5分) 1)m 双唇、浊、鼻音(2)b 双唇、不送气、清、塞音 (3)ch 舌尖后、送气、清、塞擦音(4)k 舌根(舌面后)、送气、清、塞音 (5)x 舌面(前)、清、擦音 2.比较各组声母、韵母发音上的异同。(每题2分,共10分) (1)1)z — zh 相同点:发音方法相同都是不送气、清、塞擦音。不同点:发音部位不同,z 舌尖前音,zh舌尖后音。 (2)f—h 相同点:发音方法相同都清、擦音。不同点:发音部位不同,f唇齿音,h舌根(舌面后)。 (3)ɑo — iɑ相同点:都是复韵母。不同点:ɑo 前响复韵母,iɑ后响复韵母。 (4)onɡ—ionɡ相同点:都是后鼻韵母。不同点:韵腹不同(onɡ是u,ionɡ是ü)。(5)en — in 相同点:都是前鼻韵母。不同点:韵腹不同en是e,in是i。四、分析题(共20分) 1.分析词的结构类型。(每题1分,共10分) 倾销、利害、房间、老乡、吩咐、年轻、仅仅、皑皑、提高、地震、 倾销(偏正)利害(联合)房间(补充)老乡(附加) 吩咐(联绵)年轻(主谓)仅仅(重叠)皑皑(叠音) 提高(补充)地震(主谓) 2.辨析下列各组同义词(共10分) (1)持续——继续(2分)(2)愿望——希望(2分)

数值分析论文 (8)

牛顿迭代法及其应用 [摘要]本文研究应用泰勒展开式构造出牛顿迭代法,论证了它的局部收敛性和收敛阶。分别讨论了单根情形和重根情形,给出了实例应用。最后给出了离散牛顿法的具体做法。 [关键词] 关键词:泰勒展开式,牛顿迭代法及其收敛性,重根,离散牛顿法。 1.牛顿法及其收敛性 求方程f(x)=0的根,如果已知它的一个近似,可利用Taylor展开式求出f(x)在附近的线性近似,即 ,ξ在x与之间 忽略余项,则得方程的近似 右端为x的线性方程,若,则解,记作,它可作为的解的新近似,即 (2.4.1) 称为解方程的牛顿法.在几何上求方程的解,即求曲线y=f(x)与x轴交点.若已知的一个近似,通过点(,f())作曲线y=f(x)的切线,它与 x轴交点为,作为的新近似,如图1所示

图1 关于牛顿法收敛性有以下的局部收敛定理. 定理1设是f(x)=0的一个根,f(x)在附近二阶导数连续,且,则牛顿法(2.4.1)具有二阶收敛,且 (2.4.2) 证明由式(2.4.1)知迭代函数,, ,而,由定理可知,牛顿迭代(2.4.1)具有二阶收敛,由式可得到式(2.4.2).证毕. 定理表明牛顿法收敛很快,但在附近时才能保证迭代序列收敛.有关牛顿法半局部收敛性与全局收敛定理.此处不再讨论. 例1用牛顿法求方程的根. ,牛顿迭代为 取即为根的近似,它表明牛顿法收敛很快.

例2设>0,求平方根的过程可化为解方程.若用牛顿法求解,由式(2.4.1)得 (2.4.3) 这是在计算机上作开方运算的一个实际有效的方法,它每步迭代只做一次除法和一次加法再做一次移位即可,计算量少,又收敛很快,对牛顿法我们已证明了它 的局部收敛性,对式(2.4.3)可证明对任何迭代法都是收敛的,因为当 时有 即,而对任意,也可验证,即从k=1开始,且 所以{}从k=1起是一个单调递减有下界的序列,{}有极限.在式(2.4.3) 中令k→∞可得,这就说明了只要,迭代(2.4.3)总收敛到,且是二阶收敛. 在例2.4的迭代法(3)中,用式(2.4.3)求只迭代3次就得到 =1.732 051,具有7位有效数字. 求非线性方程f(x)=0的根x*,几何上就是求曲线y=f(x)与x轴交点x*,若已知曲线上一点过此点作它的切线。方程为 此切线与x轴交点记作,它就是(2,4,1)给出的牛顿迭代法,由图2-3 看到牛顿法求根就是用切线近似曲线,切线与x轴交点xk+1作为方程f(x)=0 根x*的新近似。 根据定理2.3可以证明牛顿法是二阶收敛的,这就是定理4.1给出的结果,牛顿法由于收敛快,它是方程求根最常用和最重要的方法,在计算机上用牛顿法解方程的计算步骤: 算法如下:(牛顿法) 步0: 给初始近似,计算精度最大迭代步数N,0→k.

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

现代汉语期末试卷

一、选择题(共计40分,每小题2.5分) 1、下列有关声母的选项中,哪一个说法是错误的? ________。 A、声母是音节开头的辅音 B、“包(bāo)”这个音节,辅音“b”就是它的声母 C、辅音中有21个可以在音节中充当声母 D、声母指音节开头的元音 2、语素是________。 A、最小的语音单位 B、最小的意义单位 C、最小的语音语义结合单位 D、能独立运用的最小的意义单位 3、下列各组词中全部是连绵词的是________。 A、仓促、唐突、栏杆、苗条、蝙蝠 B、坎坷、蟋蟀、枇杷、卢布、拮据 C、详细、伶俐、逍遥、葫芦、蒙胧 D、游弋、叮咛、摩托、喽罗、吩咐 4、下列哪个是虚词________。 A、名词 B、动词 C、形容词 D、叹词 5、“用”一词的韵母是________。 A、y B、o C、on D、ong 6、现代汉语书面形式的源头是_________。 A、文言文 B、官话 C、白话 D、近代汉语 7、下列哪项属于动词________。 A、跑 B、华罗庚 C、他们 D、聪明 8、下列属于多音节语素的是________。 A、书店 B、树 C、琵琶 D、奥林匹克 9、下列属于复指短语的是________。 A、最满意的解决方案 B、来送两本书 ___ ___ __ __ ___ __ __ _学院__ ___ __ __ _级__ __ ___ __ __ 班 姓名__ __ ___ __ __ ___ _ 学号_ __ ___ __ __ ___ __ ……… … … … … … … … … … ( 密 ) … … … … … … … … … … … … ( 封 )… … … … … … … … … … … … ( 线 ) … … … … … … … … … … … … 密 封 线 内 答 题 无 效

数值分析论文

插值方法总结 摘 要:本文是对学过的插值方法进行了总结使我们更清楚的知道那一种方法适合那一种型。 关键词:插值;函数;多项式;余项 (一)Lagrange 插值 1.Lagrange 插值基函数 n+1个n 次多项式 ∏≠=--= n k j j j k j k x x x x x l 0)( n k ,,1,0 = 称为Lagrange 插值基函数 2.Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0 = 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0)1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商

i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 2.Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为 0f ,1f ,…,n f ,导数值为'0f ,' 1f ,…,' n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(' '1212 ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα 称为Hermite 插值基函数,)(x l j 是Lagrange 插值基函数,若],[22b a C f n +∈,插值误差为 220) 22(12)()()! 22() ()()(n x n n x x x x n f x H x f --+= -++ ξ,),()(b a x x ∈=ξξ (四)分段插值 设在区间],[b a 上给定n+1个插值节点 b x x x a n =<<<= 10 和相应的函数值0y ,1y ,…,n y ,求作一个插值函数)(x ?,具有性质

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

中北大学数值分析小论文

中北大学 《数值分析》 常微分方程初值问题的数值解法 专业: 班级: 学号: 姓名: 日期: 2012.12.26

常微分方程初值问题的数值解法 摘 要 微分方程的数值解法在科学技术及生产实践等多方面应用广泛. 文章分析了构造常微分方程初值问题数值解法的三种常用基本方法,差商代替导数法,数值积分法及待定系数法,推导出了Euler 系列公式及三阶龙格-库塔公式,指出了各公式的优劣性及适用条件,并对Euler 公式的收敛性、稳定性进行了分析。 Abstract The numerical solution of differential equations is widely used in science, technology, production practices and many other fields. This paper analyzed three kinds of basic methods for constructing numerical solutions for initial value problem of ordinary differential equations :difference quotient instead of derivative method, numerical integral method and undetermined coefficients method. At the same time, the paper deduces the Euler series formula and the classical third order Runge-Kutta formula. In addition, the paper pointed out the advantages and disadvantages of each formula and application condition, it also analyzed the convergence and stability of the Euler formula. 1.引言 科学技术及实际生产实践中的许多问题都可归结为微分方程的求解问题,使用较多的是常微分方程初值问题的求解。对于一阶常微分方程的初值问题 000dy /dx f (x,y),y(x )y ,x x b ==<<,其中f 为已知函数,0y 是初始值。如 果函数f 关于变量y 满足Lipschitz 条件,则初值问题有唯一解。只有当f 是一些特殊类型的函数时,才能求出问题的解析解,但一般情况下都满足不了生产实践与科学技术发展的需要,因此通常求其数值解法。 2.主要算法 数值解法是一种离散化的方法,可以求出函数的精确解在自变量一系列离散点处的近似值。基本思想是离散化,首先要将连续区间离散化,对连续区域[]0x ,b 进行剖分01n 1n x x x x b -<<Λ<<=,n n 1n h x x +=-为步长;其次将其函离散

现代汉语期末考试试题(二)及答案

现代汉语期末考试试题(二) 一, 填空题(每小题1分,共10分) 1 ?语音具有()三种属性.2?声母的发音部位可分为()七类?3?后响复韵母有(). 4?汉语普通话共有()个音素,()个音位?5?音位变体可分为()两类?6?汉 字的形体演变经历了()几个阶段,其中()是两次大的变化.7.现行汉字的结构叮 以从()三个方面进行研究8?实词都有与()相联系的()义此外还可以() 义?9?词汇的发展变化主要表现在().10.成语来源于 以下几个方面(). 二, 名词解释(每小题2分,共10分) 1.现代汉语 2.音节 3.单纯词 4.语义场 5.歇后语 三, 语音题(共19分) 1.写出声母的发音部位和发音方法.(每题1分,共5 分)

(l)h (2)zh (3)n (4)g (5) j 2?比较各组声母,韵母发音上的异同.(每题2分,共8 分) (1) s -------- sh (2) j ---------- q (3) ---------- an ------------------- ang (4)ai ei 3?给下列汉字注音并列表分析音节的结构特点.(共6 分) 优秀,语言,明月, 威望,军队,论文 四,分析题(共20分) 1.分析下列各词的构词的类型.(每题1分,共10分) 花朵,地震,领袖,崎岖,密植 老师,体验,潺潺,绿化,压缩 2.辨析下列各组同义词.(共10分) ⑴骄傲一一自豪(2分) (2)商量一一商榷(2分)

(3团结)一一结合一一结勾(3分) (4)希望一一盼望一一渴望(3 五,简答题(共21分) 1.举例说明韵母与元音的关系.(4分) 2?共同语和方言是什么关系(4分) 3?怎样理解汉字有一定的超时空性(5分) 4.举例分析基本词汇与一般词汇的关系.(4分) 5?举例分析成语与惯用语有什么区别(4分) 现代汉语期末考试试题上答案(三) 一, 填空题(每题1分,共10分) 1.物理,生理,社会. 2.双唇,唇齿,舌尖前,舌尖中,舌尖后,舌面,舌根. 3. ia, ie, ua., uo, ue. 4. 32, 32. 5.条件变体,自由变体.6.甲骨文,金文,篆书,隶书, 楷书,篆变,隶变7.结构单位,书写顺序,造字法.8.概念,理性义,色彩义?9?新词

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

《现代汉语(一)》期末试卷A

▆■■■■■■■■■■■■ 福建师范大学网络与继续教育学院 《现代汉语(一)》期末考试A卷 姓名:黄维国 专业:小学教育 学号: 191201812855801 学习中心:安徽含山奥鹏学习中心[22] 一、归类题(20分) (1)刃火川渴休上江磊 答:象形字火川;指事字上刃;会意字休磊;形声字渴江。 (2)把部位相同的字归为一类: 辽刚忝固裨匣思旬 答:左右结构刚裨;上下结构思忝;内外结构辽匣固旬。 (3)把形旁和声旁组合方式相同的形声字归为一类: 花把阔问切盒娩战裳府辨零 答:左形右声把娩;右形左声战切辨;上形下声花零;下形上声盒裳;外形内声府阔;内形外声问。二、分析题(50分) 1.分析下列音节结构(18分) 音节声母 韵母 声调 韵头韵腹韵尾 月y u e 去声 光g u a ng 阴平 球q i o u 阳平 蹦 b e ng 去声 轮l u n 阳平 水sh u i 上声 2.分析下列合成词的结构类型:(12分) 肉麻:偏正云集:联合动员:动宾扩大:补充 船只:偏正月亮:偏正放牧:动宾面熟:主谓 3.分析下列各几组句子中划线的词之间的意义关系,并指出哪些 是多义词,哪些是同音词。(10分) (1)A、他胸前别着校徽。 B、过马路别乱跑。 (2)A、他说话的神气特别认真。 B、少先队员戴着鲜红的领帽,显得很神气。 C、他神气活现。 答:(1)别是多义词 (2)神气是多义词 4.通过下列句子来分析儿化的作用:(10分) (1)我们的头儿不停地摇着自己的头。 (2)校长画了一幅画儿。 (3)人活着就得做活儿。 (4)他瞪大眼盯着那个眼儿。 (5)他在信中给我透了个信儿。 (6)小孩儿长着苹果脸儿,骑着小马儿,拿着鲜花儿。 答:(1 )我们的头儿不停地摇着自己的头:“ 头” 是人体最上部或动 物最前部长着口、鼻、眼等器官的部分,“ 头儿” 是头目、领导,儿化 有区别词义的作用。 (2 )校长画了一幅画儿:“ 画” 是动词,“ 画儿” 是名词,儿化有 区别词性的作用。 (3 )人活着就得做活儿:“ 活” 是动词,“ 活儿” 是名词,儿化起 到区别词性的作用。 (4 )他瞪大眼盯那个眼儿:“ 眼” 是眼睛,“ 眼儿” 是小孔,儿化 起到区别词义的作用。 (5 )他在信中给我透了个信儿:“ 信” 是书信,“ 信儿” 是消息, 儿化具有区别词义的作用。 (6 )小孩儿长着苹果脸儿、骑着小马儿、拿着鲜花儿;这里的儿化有表 示细小、可爱、亲切的修辞效果。

数值分析小论文

基于MATLAB曲线拟合对离散数据的处理和研究 摘要:曲线拟合是数值分析中的一种普遍且重要的方法,求解拟合曲线的方法也有很多,这里主要介绍利用MATLAB曲线拟合工具箱对离散数据点做你和处理,并与利用最小二乘法求相应的拟合曲线的方法做对比,突出MATLAB曲线拟合工具箱的优点,并阐述了其适用的范围,最后通过利用MATLAB曲线拟合工具箱对实例中离散数据点的拟合来具体说明它的使用方法和优点。 关键字:数值分析;MATLAB;曲线拟合;最小二乘法 一问题探究 在很多的实际情况中,两个变量之间的关系往往很难用具体的表达式把它表示出来,通常只能通过实际测量得到一些互不相同的离散数据点,需需要利用这些已知的数据点估计出两个变量的关系或工件的具体轮廓,并要得到任意未知数据点的具体数据,这个过程就需要用到拟合或差值方法来实现,这里主要讨论拟合的方法。 曲线拟合可以通过MATLAB编程来完成,通常为了达到更好的讷河效果需要做多次重复修改,对于非线性曲线拟合还需要编写复杂的M-文件,运用MATLAB曲线拟合工具箱来实现离散数据点的曲线拟合是一种直观并且简洁的方法。 二曲线拟合的最小二乘法理论 假设给定了一些数据点(Xi,Yi),人们总希望找到这样的近似的函数,它既能反映所给数据的一般趋势,又不会出现较大的偏差,并且要使构造的函数与被逼近函数在一个给定区间上的偏差满足某种要求。这种思想就是所谓的“曲线拟合”的思想。 曲线拟合和差值不同,若要求通过所有给定的数据点是差值问题,若不要求曲线通过所有给定的数据点,而只要求反映对象整体的变化趋势,拟合问题,曲线拟合问题最常用的解决方法是线性最小二乘法[1],步骤如下: 第一步:先选定一组函数r1(x),r2(x),…,rm(x),m

《现代汉语》期末考试试卷及答案

《现代汉语》考试试卷( A 卷、闭卷) 题号一二三四五六七八九总分 得分 阅卷人 一、填空题(每空 1.5 分,共 30 分) 1 .语法具有、、等性质。 2.汉语中词类划分的主要依据是词的。 3.“漓江的水真绿啊!”此句属于主谓句中的句。 4.“尚且??何况??”是关系复句使用的关联词语。 5.把“你只要一听,你就会明白”改为紧缩句:。 6.双重否定句在语气上往往比一般肯定句更。 7.疑问句根据表示疑问的结构形式上的特点和语义情况,可以分为 、、、 四类。 8.量词可以分为和两类。“走了两趟” 中的量词属于动量词。 9.比喻一般由、、三部分组成。 比喻的种类,一般根据三种成分是否同时出现,分为、 、三种。 二、判断题(正确的打“√”,错误的打“×”。每题 0.5 分,共 5 分) 1.形容词都能受程度副词修饰。() 2.“能看懂印度文学原著,才谈得上对中印文学作真正的比较研究。” 属于条件复句。() 3.不及物动词都不能带宾语。() 4.说话和写作中积极调整语言的行动属于修辞活动。() 5.连动短语也可以由动词和形容词构成。() 6.好的修辞可以创造适合的语言环境。() 7.联合复句呈雁行式排列,顺承复句呈鱼贯式排列。() 8.“上得来”中的“得”是补语的标志。() 9.修辞充分利用语言的审美价值来满足人们的美感需求,审美原则 是修辞的基本原则。() 10. 定语中心语有时可以由动词和形容词充当。() 三、选择题(每题 1 分,共 15 分) 1.“我就不明白你怎么连什么也没学会。”中的“什么”表示的是() A 、表疑问的代词B、表示任指的代词

C、表示指示的代词 D、表示虚指的代词 2.“在”是动词的是() A、我在家。 B 、我在家看电视。 C、我正躺在床上看电视。 D、我在看电视。 3.“我跟老张协商了一下,感觉还是稳妥一点好。”中的划浪线的“跟” 字是() A、连词 B 、副词 C、介词D、助词 4. “激动得掉下了眼泪”属于() A、中补短语 B 、动宾短语C、偏正短语 D 、连谓短语 5.“他真是的,怎么连这个也不知道?”中的“真是的”属于() A、谓语 B 、独立语C、定语 D 、补语6.“这些水果我们谁都不吃。”的语义关系是() A、大主语是施事,小主语是受事。 B、大主语是受事,小主语是施事。 C、大主语和小主语之间有领属关系。 D、大小主语是整体和部分的关系。 7.“他的身体逐渐好起来。”中的“起来”属于() A、判断动词 B 、助动词 C 、能愿动词 D 、趋向动词 8.下面的句子使用比喻修辞格的是() A、他长得太像他爸爸了。 B 、他手里就是大团结多。 C、乡愁是一枚小小的邮票。 D、柏油路好像也要晒化。 9.“咱们俩,谁也离不开谁。”中的语义关系是() A、大主语和小主语有领属关系。 B、大主语是施事,小主语是受事。 C、大主语是受事,小主语是施事。 D、谓语里有复指大主语的复指成分。 10.下列各句中加点的词,属于词类活用的是() A、他是一名翻译,翻译了很多文章。 B、他比专家还专家。 C、他花了三块钱买了一盆花。 D、这位代表代表大家发了言。 11.下列各组中,短语的结构关系相同的是() A、格外美好幸福美好 B、有人发言有权发言 C、爱唱歌去唱歌 D 、仔细核对分别对待 12. 下列各组中,都属于偏正短语的是() A、整顿市场经济市场 B、改革开放改革体制 C、经验丰富刚刚拿走 D、极力推荐热情接待 13. 下列句中划线部分的结构不同于其他三句的是( ) A、夕阳把草原映得辉煌灿烂。 B、他的事迹博得一致好评。 C、这次访问取得圆满成功。 D、她的演唱赢得热烈掌声。

相关文档
最新文档