09洪涝灾害雷达遥感监测方法

09洪涝灾害雷达遥感监测方法
09洪涝灾害雷达遥感监测方法

09洪涝灾害雷达遥感监测方法

洪涝灾害遥感监测方法:光学遥感方法使用最多的是美国NOAA气象卫星和陆地资源卫星,也使用风云气象卫星开展洪涝灾害的监测;微波遥感的方法主要是利用主动成像的雷达遥感方法进行洪涝灾害的监测。

水体光谱特征,CH3小于图像平均值为洪水期,反之为非洪水期;CH1相对减小,CH2相对增加,有向陆地逐渐过渡的趋势,往往该部分水体被陆地包围或覆盖在陆地上。

水体空间特征,水体相对于陆地或云层等呈现出较为均一的图斑,无明显纹理特征;水体图斑边界相对云层较稳定,河流的现状特征(湖泊、海洋的面状特征)较明显。气象卫星高时间分辨率、成像范围大等特征使其成为大范围洪涝动态监测的重要手段。

洪涝灾害雷达遥感监测:雷达遥感具有全天候、全天时的数据获取能力和对一些地物穿透的能力,成为监测洪涝灾害最为有效的遥感技术之一。多颗在轨运行的航天雷达卫星在时相互补,可对同一地区形成连续观测。灵活、机动的机载雷达系统可用于特殊时期的快速监测,这些从技术上保证了采用雷达监测洪涝灾害的可能性与有效性。水体由于镜面反射回波强度较小,在图像上呈现出暗色或黑色,而陆地的回波强度较大,呈现灰白色或黑灰色,故在雷达图像上水陆界线分明,可以清晰地看到洪水到达地段及其淹没范围,利用雷达孔径图像能很快地监测受灾地区的情况。发展SAR图像与其他图像的融合势在必行,受灾中的SAR 图像和灾前的TM或ETM、SPOT等多光谱光学图像数据具有很强的互补性。基于DEM的SAR图像洪水水体的提取,在地形数据的支持下,实现星载SAR图像洪水水体的半自动提取。

洪涝灾害SAR图像斑点滤波方法:斑点滤波方法的主要目的是从含有斑点的SAR图像中恢复SAR图像;进行反演工作需要图像像元值的可信度,感兴趣的信息是面目标,如果还考虑边缘保持的情况则没有多少意义;而如果进行边缘信息提取等工作,主要考虑的是边缘信息,这种情况下考虑其他标准是不必要的。

基于半变异函数的SAR图像地表淹没程度分析:SAR由于具有一定的穿透性,在一定条件下能穿透植被冠层,在植被冠层和水面之间形成双向散射,因而能监测到植被覆盖下的水体,从而在一定程度上获取植被覆盖下的淹没范围。完全被淹没的水域呈镜面反射,植被覆盖的半淹没区呈双向散射,而未被淹没的区域呈漫散射。空间自相关特性,在SAR图像上的表现就是图像灰度值之间的空间自相关性和图像的纹理特征。不同淹没程度下的地表在图像表现出不同空间自相关性和纹理特征,而半变异函数能充分反映图像数据的随机性和结构性,即充分反映了图像数据的空间自相关性和纹理特征。

半变异函数理论:变程,描述了当观测变量的空间依赖性达到最大时的地面距离,它和图像中地物的大小有关,反映随机变量的影响范围。基值,定义了从数据中获取到的最大的半变异值,和被地物覆盖的区域范围有关。基台值,表征了观测数据之间的随机方差或者是空间独立变量,不受位置改变的影响。

基于纹理与成像知识的高分辨率SAR图像水体检测:由于SAR侧视成像,根据像素灰度值很难将地物阴影和水体分开,采用DEM来模拟雷达图像,从中获取山体阴影,将水体和山体阴影分开,实现水体检测,也可以对光学图像和SAR图像融合来提取水体,小目标往往以纯像元形式存在,能够反映小目标的散射特征、位置特征和结构特征等复杂信息。基于知识的目标检测是根据目标成像机理、拓扑关系、几何形状与结构信息、目标纹理特征等进行检测。

试验结果分析:面向对象方法,不再以单独像元为研究对象,而是以地物对象为研究对象,可以灵活地利用地物本身的光谱、形状等信息,从而可以大大提高分类精度。通过多尺度分割技术将图像分割成代表图像信息的对象,再利用对象本身所包含的信息(光谱、形状等)对对象进行分类。其采用模糊分类法,对类进行描述时采用了隶属度函数的方法,代替

了传统的是非方法。其整体过程模拟再现了人眼对图像进行分类的过程,快速而准确。

洪涝灾害遥感监测流程:

从边缘提取和斑点滤波的角度,探讨了洪涝灾害雷达图像的前期处理方法,提出利用半变异函数方法和面向对象方法,进行极化雷达图像洪涝淹没范围的自动探测。

半变异函数方法能提取到植被覆盖下的淹没范围,而面向对象方法不再以单独像元为研究对象,而是以地物对象为研究对象,对多极化雷达图像的淹没程度进行有效提取。

基于纹理和雷达成像知识,高分辨率雷达图像水体检测方法能区分出雷达图像上的建筑物阴影与水体,达到检测水体的目的。

一种雷达方位角检测方法

第28卷第12期 兵工自动化 Vol. 28, No. 12 2009年12月 Ordnance Industry Automation Dec. 2009 · 82· doi: 10.3969/j.issn.1006-1576.2009.12.028 一种雷达方位角检测方法 胡定军,王玮,冯玉龙 (镇江船艇学院 指挥系,江苏 镇江 212003) 摘要:介绍了一种雷达方位角测量的方法,该方法采用旋转变压器/轴角转换器AD2S80BD ,将旋转变压器输出的模拟信号通过AD2S80BD 轴角转换电路转换成数字量信号,再利用单片机MSP430F123进行解算,得出雷达角位置信号,实时供雷达终端显示或转发。该系统接口电路简单可靠,工作稳定,在雷达测量系统中有较高的应用价值。 关键词:旋转变压器;雷达;方位角;AD2S80BD 中图分类号:TP206+.1; TN956 文献标识码:A Study on Measuring Radar Azimuth HU Ding-jun, WANG Wei, FENG Yu-long (Dept. of Watercraft Commanding, Zhenjiang Watercraft College, Zhenjiang 212003, China) Abstract: Introduce the method of radar azimuth detection. The method adopts resolver and angle converter AD2S80BD, The analog signals of resolver were transformed into the digital signal by AD2S80BD axis angle circuit. Then the radar angle position can be disposed by simple chip MSP430F123, and it can be shown and transmitted on the radar terminator. The system interface circuit is simple, reliable and stable, with high application value in radar measurement system. Keywords: Resolver; Radar; Azimuth; AD2S80BD 0 引言 角位置测量装置是工业控制设备的重要组成部分,在飞行器姿态控制和检测、导弹控制、雷达天线跟踪等角位置测量控制系统中有着广泛应用。为精密测量雷达系统各轴角,在雷达角位置检测系统中采用旋转变压器,它具有耐高温、耐湿度、抗冲击、抗干扰等特点,但其输出信号为模拟量,故采用AD 公司的数字转换器芯片AD2S80BD ,将旋转变压器产生的模拟信号快速转换为二进制数字信号,实现对角位置的数字化分析。 1 雷达方位角测量系统组成 雷达方位角测量系统由方位轴、旋转变压器、 AD2S80BD 组成的轴角/数字转换电路等部分组成。将旋转变压器安装在雷达方位轴的方位铰链上,雷达转盘转动时带动方位轴的方位铰链的活动,旋转变压器也随之活动,产生的两相正、余弦信号[1]输入到由AD2S80BD 组成的轴角/数字转换电路,转换后的16位二进制数字信号,输入到雷达终端处理显示或转发,其系统组成如图1[2]。 图1 雷达方位角测量系统组成 2 旋转变压器的工作原理 旋转变压器是一种单相激励双相输出(幅度调制型)无刷旋转变压器,如图2。旋转变压器初级 励磁绕组(R1—R2) 和二相正交的次级感应绕组(S1—S3,S2—S4)同在定子侧,转子侧是与初级绕组和次级绕组磁通耦合的特殊结构的线圈绕组[3]。 图2 旋转变压器原理图 当旋转变压器转子随雷达方位轴同步旋转、初级励磁绕组(R1-R2)外加交流励磁电压后,次级两输出绕组(S1-S3,S2-S4)中会产生感应电动势,大小为励磁与转子旋转角的正、余弦值的乘积。旋转变压器输入输出关系如下: 120sin R R E E t ??= 1312sin S S R R E KE θ??= 2412cos S S R R E KE θ??= 这里的θ是转子旋转的角度,E 0是励磁最大幅值,?是励磁角频率,K 是旋转变压器变比。 3 AD2S80BD 的轴角/数字硬件电路 收稿日期:2009-06-10;修回日期:2009-07-15 作者简介:胡定军(1977-),男,江苏人,硕士,工程师,从事信号采集与模拟控制、电子自动化研究。

洪涝灾害形成的原因与防治措施

洪涝灾害形成的原因与防治措施 山洪灾害基本概念 山洪灾害 山洪灾害是指由于降雨在山丘区引发的洪水灾害及由山洪诱发的泥石流、山体滑坡等对国民经济和人民生命财产造成损失的自然灾害。 山洪灾害的成因 地质地貌因素 山洪灾害易发地区的地形往往是山高、坡陡、谷深,切割深度大,侵蚀沟谷发育,其地质大部分是渗透强度不大的土壤,遇水易软化、易崩解,极有利于强降雨后地表径流迅速汇集,从而形成山洪灾害。 降雨因素 山丘区不稳定的气候系统,往往造成持续或集中的高强度降雨。发生山洪灾害主要是由于受灾地区前期降雨持续偏多,使土壤水份饱和,遇局地短时强降雨后,降雨迅速汇聚成地表径流而引发溪沟水位暴涨、泥石流、崩塌、山体滑坡。从整体发生、发展的物理过程可知,发生山洪灾害主要还是持续的降雨和短时强降雨而引发的。此外,气温升高导致冰雪融化加快或因拦洪工程设施溃决也是形成山洪的主要因素之一。 人类活动因素 具体来讲,人类的不当行为有以下几种: ①、毁林开荒。毁林开荒致使暴雨后不能蓄水于山,加大和加快了地表径流的形成,使灾情加重。同时毁林开荒又加重了水土流失,使水库淤积,河床抬升,降低了水库、河道的调洪和行洪能力。 ②、城市化。随着城市化进程的加快,小城镇面积扩大后,不透水地面积增加,暴雨后地表汇流速度加快,洪峰流量成倍增长。另外,新增城镇多向低洼处发展,由于必要的防洪排涝设计跟不上,行洪河道演变成排水沟,必然加重洪涝灾害的损失。 ③、违背自然规律的盲目开发。由于不顾地质条件,不合理的开挖,弃土弃

渣和盲目与河争地,挤占行洪河道,造成山洪泛滥,诱发滑坡、泥石流等,从而加重山洪危害。 山洪灾害发生的前兆 强降雨的前兆 早晨天气闷热,甚至感到呼吸困难,一般是低气压天气系统临近的征兆,午后往往有强降雨发生;早晨见到远处有宝塔状墨云隆起,一般午后会有强雷雨发生;多日天气晴朗无云,天气特别炎热,忽见山岭迎风坡上隆起小云团,一般午夜或凌晨会有强雷雨发生;炎热的夜晚,听到不远处有沉闷的雷声忽东忽西,一般是暴雨即将来临的征兆;看到天边有漏斗状云或龙尾巴云时,表明天气极不稳定,随时都有雷雨大风来临的可能。 山洪灾害的危害性 山洪灾害来势猛,成灾快,一旦发生往往会造成河流改道、基础设施毁坏、耕地冲淹、房屋倒塌、人畜伤亡等危害。 避灾躲灾常识 1.防范 每个人在平时应尽可能多学习了解一些山洪灾害防御的基本知识,掌握自救逃生的本领;建房、修路要远离河滩、沟谷、低洼地带和不稳定山体; 无论是在居住场所还是在野外活动场所,都必须首先观察、熟悉周围环境,预先选定好紧急情况下躲灾避灾的安全路线和地点;要多留心注意山洪可能发生的前兆和广播、电视等媒体提供的洪水预警信息,动员家人做好随时安全转移的思想准备; 严禁涉水行走,更不要乘交通工具涉水过河;不要在山崖、涵洞、沟道、危房、低洼地里,危墙、高墙、高压线下避雨;一旦认定情况危急时,除及时向相关责任人和邻里报警外,应先将家中的老人和小孩及贵重物品提前转移到安全地带。 2.报警 一旦险情来临或山洪初发,监测责任人或第一个发现的村民,要采取喊话、

心得体会:遥感技术在防汛抗旱中的应用

心得体会:遥感技术在防汛抗旱中的应用 遥感技术作为现代地球空间信息的重要手段,在水利行业具有广泛的应用前景,特别是能为防汛抗旱减灾提供有效的空间信息与技术支持。与常规信息获取手段相比,遥感具有监测范围大、监测周期短、获取资料及时、可全天候工作以及经济、客观等优势。不受地域、灾害和恶劣天气限制的特点使其有能力进行连续不断的动态监测。随着航天技术和地球空间数据获取手段的不断发展,遥感技术正在进入一个全新的飞速发展阶段,已具备全方位为防汛抗旱提供动态、快速、多平台、多时相、高分辨率监测的平台基础和技术条件。 遥感技术在防洪减灾中的应用 洪涝灾害监测评估 洪涝灾害的监测在本质上是对水体面积的监测,灾害发生时水体面积与水体本底面积(正常状态时的面积)之差就是受淹面积。水体提取是基于水体在可见

光波段的反射率随着波长的增大而急剧下降,在红外波段反射率降到最低,在微波段则是由于水面镜面反射导致后向反射少的电磁波响应特征,这是遥感影像提取水体的主要依据。本底水体主要用可见光影像提取,而灾害发生时的水体主要依靠可全天候全天时监测的微波影像提取。目前,可供水体提取的遥感卫星数据有很多种,空间分辨率从几百米到米级甚至亚米级,可视实际需要选用。航空遥感,尤其是无人机具有更高的自主性,是实时监测的重要手段。 由于遥感数据,尤其是国产数据源的不断丰富,实现洪涝灾害全过程监测是可行和必要的,以利于防洪救灾的决策。 目前洪涝灾害评估的主要内容是各行政单元内受淹总面积和各类土地利用的面积,特别是耕地和居民地面积,重要工矿企业、大型商场、医院、学校、受淹历时、水深、影响人口、受淹铁路和公路的长度。 洪涝灾害评估一个很重要的基础是空间展布的社会经济数据库,受淹范围与行政界线是不一致的,以行政单位统计的社会经济数据必须展布到空间上。受淹范围内的耕地、交通、重要工矿企业等一般比较明显,可直接提取。但受淹房屋间数和受影响人口要通过受淹居民地面积估算。同样的居民地面积上,居住的人

遥感变化监测 流程

多时相土地利用/覆盖变化监测研究 方法及数据选取 土地是一个综合的自然地理概念,它处于地圈-生物圈-大气圈相互作用的界面,是各种自然过程和人类活动最为活跃的场所。地球表层系统最突出的景观标志就是土地利用和土地覆盖( Land Use and Land Cover)。由于土地利用和土地覆盖与人类的生活、生产息息相关,而人类活动正以空前的速度、幅度和空前规模改变着陆地环境。人类对土地资源的利用引起的土地利用和土地覆盖的变化是全球环境变化的重要因素之一,也是地球表面科学研究领域中的一个重要分支。因此,土地利用和土地覆盖的动态监测(Land Use and Land Cover Monitoring)是国内外研究的热点,也是当前全球变化研究计划的重要组成部分。 由多时相遥感数据分析地表变化过程需要进行一系列图像处理工作,大致包括:一、数据源选择,二、几何配准处理,三、辐射处理与归一化,四、变化监测算法及应用等。 一、遥感数据源的选取 不同遥感系统的时间分辨率、空间分辨率、光谱分辨率和辐射分辨率不同,选择合适的遥感数据是变化监测能否成功的前提。因此,在变化监测之前需要对监测区域内的主要问题进行调查,分析监测对象的空间分布特点、光谱特性及时相变化的情况,目的是为分析任务选择合适的遥感数据。同时,考虑到环境因素的影响,用于变化监测的图像最好是由同一个遥感系统获得,如果由于某种原因无法获得同一种遥感系统在不同时段的数据,则需要选择俯视角与光谱波段相近的遥感系统数据。 1时间分辨率 这里需要根据监测对象的时相变化特点来确定遥感监测的频率,如需要一年一次、一季度一次还是一月一次等。同时,在选择多时相遥感数据进行变化监测时需要考虑两个时间条件。首先,应当尽可能选择用每天同一时刻或者相近时间的遥感图像,以消除因太阳高度角不同引起的图像反射特性差异;其次,应尽可能选用年间同一季节,甚至同一日期的遥感数据,以消除因季节性太阳高度角不同和植物物候差异的影响。 2空间分辨率 首先要考虑监测对象的空间尺度及空间变异的情况,以确定其对于遥感数据的空间分辨率的要求。变化监测还要求保证不同时段遥感图像之间的精确配准。因此,最好是采用具有相同瞬时视场(IFOV)的遥感数据,如具有同样空间分辨率的TM图像之间就比较容易配准在一起。当然也可以使用不同瞬时视场遥感系统获取的数据,如某一日期的TM图像(30m ×30m)与另一日期的SPOT图像(20m×20m),来进行变化监测,在这种情况下需要确定一个最小制图单元20m×20m,并对这两个图像数据重采样使之具有一致的像元大小。 一些遥感系统按不同的视场角拍摄地面图像,如SPOT的视场角能达到±27°,在变化监测中如果简单采用俯视角明显不同的两幅遥感图像,就有可能导致错误的分析结果。例如,对一个林区,不均匀地分布着一些大树,以观测天顶角0°拍摄的SPOT图像是直接从上向下观测到树冠顶,而对于一幅以20°观测角拍摄的SPOT图像所记录的是树冠侧面的光谱反射信息。因此,在变化监测分析中必须考虑到所用遥感图像观测角度的影响,而且应当尽可能采用具有相同或相近的俯视角的数据。 3光谱分辨率 应当根据监测对象的类型与相应的光谱特性选择合适的遥感数据类型及相应波段。变化监测分析的一个基本假设是,如果在两个不同时段之间瞬时视场内地面物质发生了变化,则不同时段图像对应像元的光谱响应也就会存在差别。所选择的遥感系统的光谱分辨率应当足

基于GIS的洪涝灾害遥感评估系统_冯锐

基于GIS的洪涝灾害遥感评估系统 冯锐 张玉书 陈鹏狮 张淑杰 纪瑞鹏  (中国气象局沈阳大气环境研究所 沈阳 110016) 摘 要 利用NOAA/AVHRR气象卫星实时监测到的洪涝灾害数据与GIS技术相结合,以地理信息系统软件ArcView3.1为依托建立洪涝灾害遥感评估系统。系统可提供洪涝区域内居民区的受淹数据,并进行受淹区域的比例系数计算,提供水田、旱田、林地、灌丛、果树和草地等淹没面积的信息。 关键词 洪涝灾害 遥感数据 评估系统 洪涝灾害是辽宁省的主要自然灾害之一,对工农业生产和人民生命财产影响严重,其发生频率高,造成的损失严重。因此,在洪涝灾害发生后能迅速对灾害损失做出评估,为政府及有关部门提供及时准确的信息,具有十分重要的意义。目前卫星遥感和地理信息系统技术在洪涝灾害遥感监测、评估领域的应用越来越广泛。辽宁省洪涝灾害遥感评估系统应用NOAA气象卫星重复周期短、时间分辨率高的优点,将其与G IS技术结合,可在洪涝灾害发生后快速、准确地提供淹没区的空间及属性信息,并利用新开发的应用程序,可以在短时间内对大范围地区进行相关研究,为宏观决策提供科学依据。 1 系统设计 1.1 系统开发目标 系统开发目标是将监测到的洪涝区域显示结果与地理信息叠加显示,在此基础之上实现这些结果与地理信息之间在空间上的相关查询和分析功能。 1.2 系统结构 1.2.1 数据库的建立 1.2.1.1 地理信息数据库 根据洪涝评估所需的地理信息,归纳整理成一定结构的数据库[1]。系统的数据兼容性好,不仅可利用其他软件生成的空间、属性数据,同时系统生成的数据也同样可被其他软件使用。 1.2.1.2 灾情实时监测数据库 灾情实时监测为DBASE数据格式数据,利用N OAA气象卫星数据转换的洪涝区域数据[2]。 1.2.2 系统功能规划 虽然ArcView具备地理信息的显示、查询和分析功能,但发生洪涝灾害后,对财产损失的评估属于一些特殊功能的组合,这样就必须利用A rcV iew提供的Avenue编程语言进行再开发。系统调用ArcView库函数开发了应用程序。程序提供了系统与用户之间的界面,可以根据用户使用菜单、对话框等形式给出指令完成上述功能。 2 系统数据库 2.1 地理信息数据库 地理信息数据库是地理信息系统的基础部分。一般来说,在GIS数据库中的数据为两类,即描述研究对象空间位置的空间数据以及反映研究对象特征的属性数据。 系统开发过程中选择在进行财产损失评估时所需要的地理信息建立数据库。各有关部门现状信息以数据专题层的形式进行存储,包括图形数据库和属性数据库。如表1。 表1 财产损失评估地理信息背景数据库 数据库类型空间数据形式包含的主要属性数据信息 居民区数据库面状名称、范围 水田数据库面状面积 旱田数据库面状面积 林地数据库面状面积 果树数据库面状面积 灌丛数据库面状面积 草地数据库面状面积 行政区划数据库面状面积、各市名称 2.2 实时监测灾害数据库 转换的图形数据与属性数据,在进行财产损失评估时用于叠加、显示。 3 系统损失评估功能的开发 在及时监测到洪涝灾害发生区域后,如果能快速、准确地统计出洪涝灾区的居民区、水田、旱田等淹没情况,对有关部门实施救灾决策具有重要意义。 在进行系统开发时,将财产损失评估分为全省范围内的财产损失评估和各市的财产损失评估。在调用此功能模块时,首先显示全省范围内的地理信息背景数据,包括显示辽宁省行政区划,居民区、水田、旱田分布等图层;其次调入洪涝灾害实时监测图层,并可根据所需评估的区域不同,在视窗内显示全省或者各市的数据图层,在此之后即可对有关区域进行财产损失评估。在进行财产损失评估时,通过对弹出式对话框的调用,对要评估的项目(居民区,水田、旱田、林地、灌丛、果树和草地等)进行选择后,即可对有关区域内所选择的各个项目受淹数据进行统计分析。 在进行受淹数据统计时,一个重要的内容就是进行各个项目受淹区域的比例系数计算。进行比例系数计算是由于发生洪涝灾害时,如果某一旱田或水田面积较大,那么落在洪涝区域内的并不是此块旱田或水田的全部,这时需要将落在洪涝区域内的面积与此块旱田或水田的全部面积的比值计算,以便精确洪涝区域内的受淹项目的面积。这一部分通过链接V isual C++编程语言实现[3]。 (下转第43页) 收稿日期:2003-12-03;修订日期:2004-03-18

倒车雷达的检测方法

Date 日 期 2007-8-31 上海大众现在生产的Polo 劲情劲取和Passat 领驭的倒车雷达取消了CAN-BUS,用VAS505x 无法进 入76地址词(老状态零件可以)。新状态倒车雷达的故障是通过倒车雷达自检时的报警声来诊断的,具体方法如下: 在车后2 米内无障碍物的条件下,将倒车挡挂入后,仔细分辨倒车雷达模块通电后的自检提示: 1、全部功能正常:自检提示音为“嘀”一声后进入正常工作模式。 2、左外传感器故障:自检后出现约4-6秒的长鸣音,长鸣音后出现 “嘀”一声报警,此提示为左外 传感器故障。 3、左中传感器故障:自检后出现约4-6秒的长鸣音,长鸣音后出现 “嘀、嘀”两声报警,此提示为 左中传感器故障。 4、右中传感器故障:自检后出现约4-6秒的长鸣音,长鸣音后出现 “嘀、嘀、嘀”三声报警,此提 示为右中传感器故障。 5、右外传感器故障:自检后出现约4-6秒的长鸣音,长鸣音后出现 “嘀、嘀、嘀、嘀”四声报警, 此提示为右外传感器故障。 6、2个以上传感器故障:自检后出现约4-6秒的长鸣音,依照左、中、右的顺序,优先提示第一颗传 感器故障位置(每次自检后只提示一个故障位置)。例:当左中、右外两颗同时出现故障时,自检出现约4-6秒的长鸣音后,发出 “嘀、嘀”两声报警。更换左中传感器后再次通电自检,自检出现约4-6秒的长鸣音后,发出 “嘀、嘀、嘀、嘀”四声报警,更换左外传感器后再通电才出现自检提示音为“嘀”一声的正常提示音,而后进入正常工作模式。(即主机的自检每次通电后只能提示一个传感器异常,如有多个传感器异常需要更换后多次进行通电确认)。 7、当倒车雷达主机在通电后,自检出现约4-6秒的长鸣音后,发出 “嘀、嘀、嘀、嘀、嘀”五声报 警时,提示为倒车雷达主机出现故障。如倒车雷达主机在通电后,没有任何的提示反应,请先确认倒车雷达主机端子的安装状态,是否为线束脱落或断路造成。 8、以上异常报警同样适用在工作中的传感器,即在正常工作状态下,出现异常报警方式同上。 From 发自: 技术支持股 Department 部门:技术支持科 涉及车型: Polo 劲情劲取、Passat 领驭编号: Subject 主题 Polo 劲情劲取、Passat 领驭倒车雷达故障诊断

隆安县洪涝灾害原因分析及对策

隆安县洪涝灾害发生成因分析及防御对策背景 摘要:该论文通过对广西隆安县的地理位置,气候环境进行相关介绍,并通过对其发生的自然灾害进行简单小结,分析发生灾害的原因,并对广西隆安县的洪涝灾害防御措施提出相关建议。 关键词:隆安县洪涝灾害发生成因分析防御对策 一、隆安县基本概况 (一)地理位置 隆安县位于广西西南部,南宁市西部,地处东经107°21′—108°06′,北纬22°51′—23°21′,隶属南宁市管辖,东部与南宁市西乡塘区、武鸣县相连,南部与崇左市扶绥县、江洲区交界,西部与崇左市大新县、天等县接壤,北部与百色市平果县毗邻。东西长77.5km,南北宽56.2km。县城距南宁市区80km。 (二)地形地貌 隆安县地势由东北和西南向中部右江线倾斜。主要地貌类型有台地、丘陵、低山和岩溶地貌。县境内最高点为西大明山系脉的小明山最高,海拔973米,最低点为白马河口,海拔81米,据统计,低山丘陵地貌占全县土地面积的49.1%,岩溶地貌占31.2%, 平原台地貌占17.7%。 (三)山系水系 隆安县西南部以峰林、峰丛石山(喀斯特地貌)为主,南部边缘山地为西大明山系脉,属低山、丘陵。主要山脉有小明山,海拔973米,为全县最高点,地要山海拔807米,平付山海拔726米,空林山海拨715米。东北部土山丘陵和石峰兼而有之,海拔多在200-700米,其间敏阳乡三宝山海拔721米,六暖山海拔742米,为东部最高点。中部右江沿岸以平原、阶地、低丘为主,并有一些石灰岩孤峰和残丘点缀其间,其海拔多在200米以下。

全县主要河流有右江、绿水江、罗兴江、丁当河、驮玉河、百朝河、大滕河、布泉河等8条,共有地表水11.08亿立方米,全县有地下水源12个,地下河18条,集中分布在都结、布泉、屏山、杨湾、乔建等乡镇,共有地下水3.94亿立方米。全县有中型水库3处,总库容量为5758.3万立方米,有效库容为4263万立方米;有小型水库55处,总库容3183.4万立方米,有效库容2392.8万立方米;小型塘库251处,总库容3806万立方米,有效库容3763万立方米。 (四)气候 隆安县位于北回归线以南,属南亚热带季风区,气候温和,雨量充沛,光、热、水同季,干湿季节明显,多雨期与高温期一致。全县年平均降雨量在1300毫米左右,受地形影响较明显,气温分布特点是由东北和西南向中部右江递增,雨量分布特点是由东南和向西北逐渐增高。降雨量年际变化大,年内分配极不均匀,汛期五月至九月为主要降雨期,一般可占全年降雨量的70.0%~85%左右,十二月至次年三月为少雨期,降雨量占全年的10%左右。 二、洪涝灾害的发生及对国民生产的影响 隆安县洪涝灾害发生频繁,特别是山洪灾害,每年都有不同程度的灾害出现。由于我县都属亚热带季风区,地形地貌类型多样,全县的河流都是典型的山区河流,河床陡,洪峰形成时间短,持续时间也短,经常发生山洪暴发,几乎年年都有不同程度的出现。从洪涝灾害统计中,每年汛期各乡镇均有不同程度的洪涝灾害发生,给我县的人民群众生命财产安全和国民生产造成了极大的危害。2001年7月我市受当年三号台风“榴莲”的影响,从7月2日晚上开始,全县局部出现降雨,后扩大成全县大面积降雨,造成山洪暴发,全县江河水位暴涨,至使右江发生八十年一遇的特大洪水,隆安县水文站出现了自1937年建站以来的最高洪水位和最大流量,从7月3日4时起,隆安县水文站水位从111.40米涨起到4日23时30分达到最高洪水位123.86米,超警戒水位9.45米,洪峰流量8270立方米/秒。右江沿岸的一些地势较低的村庄被淹。“7.4”洪灾,是我县有史以来淹没面积最大,淹没损毁民房最多,持续时间最长,经济损失最大的一次洪涝

遥感在环境检测中的应用.docx

文档来源为 :从网络收集整理.word 版本可编辑 .欢迎下载支持. 遥感在环境检测中的应用 班级:测绘C111 姓名:郑广震 学号: 117568

文档来源为 :从网络收集整理.word 版本可编辑 .欢迎下载支持. 遥感在环境检测中的应用 摘要:现阶段,由于多方面因素的影响,使得我国的城市环境污染日益严重,各类突发性环 境污染事故比比皆是,从而导致生态环境失衡。环境监测作为控制环境污染的主要途径之一, 其作用得以彰显。然而,我国幅员辽阔,仅凭现有的环境监测工作站及监测技术很难实现全 方位监测,而且及时性和准确性也难以保证。遥感技术以其自身诸多优点,被广泛应用于各 个领域当中,该技术在环境监测方面的效果也比较明显。基于此点,本文就城市环境监测中 遥感技术的应用进行浅谈。 关键词:环境监测;遥感技术;红外遥感 一、遥感技术概述 遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。它是 60年代在航空摄影和判读的基础上随航天技术和电子计算机技术的 发展而逐渐形成的综合性感测技术。任何物体都有不同的电磁波反射或辐射特征。航空航天遥感就是利用安装在飞行器上的遥感器感测地物目标的电磁辐射特征,并将特征记录下来, 供识别和判断。把遥感器放在高空气球、飞机等航空器上进行遥感,称为航空遥感。把遥感 器装在航天器上进行遥感,称为航天遥感。完成遥感任务的整套仪器设备称为遥感系统。航空和航天遥感能从不同高度、大范围、快速和多谱段地进行感测,获取大量信息。航天遥感还能周期性地得到实时地物信息。因此航空和航天遥感技术在国民经济和军事的很多方面获 得广泛的应用。例如应用于气象观测、资源考察、地图测绘和军事侦察等。 遥感技术是从远距离感知目标反射或自身辐射的电磁波、可见光、红外线,对目标进行探测和识别的技术。例如航空摄影就是一种遥感技术。人造地球卫星发射成功,大大推动了遥感技术的发展。现代遥感技术主要包括信息的获取、传输、存储和处理等环节。完成上 述功能的全套系统称为遥感系统,其核心组成部分是获取信息的遥感器。遥感器的种类很多,主要有照相机、电视摄像机、多光谱扫描仪、成象光谱仪、微波辐射计、合成孔径雷达等。 传输设备用于将遥感信息从远距离平台( 如卫星 ) 传回地面站。信息处理设备包括彩色合成 仪、图像判读仪和数字图像处理机等。 遥感( RS)与地理信息系统(GIS)技术的发展及其在地理学研究中越来越广泛和深入的应用,已经导致这一学科研究方法,特别是地理学研究中空间对象的观测与信息获取方法 产生了根本性的变化,极大地提高了对地观测能力和丰富了观测内容,深化了人们对地理现 象的认识。 (一)遥感技术分类 遥感技术主要是指通过物体对电磁波的辐射或反射,不与物体进行直接接触,远距离辨识及测量目标对象的一种监测技术。按照所使用的监测波段不同,该技术可分为以下几种类型:热红外 遥感技术、可见光反射红外遥感技术和微波遥感技术。 (二)遥感技术的特点和作用 遥感技术的特点如下:监测速度快、范围广、能够进行长时间动态监测、投入成本低、回报高、无需现场采集样本、可以发现常规法无法监测到的污染源;其较为明显的作用是可 对指定区域进行跟踪测量,并且能够快速获取与污染有关的全方面信息,如污染源位置、污 染范围、污染物分布及扩散情况、大气生态效应等等。 (三 )遥感技术的优越性 探测范围大:航摄飞机高度可达 10km 左右;陆地卫星轨道高度达到 910km 左右。一张陆地卫星图像覆盖的地面范围达到 3万多平方千米,约相当于我国海南岛的面积。我国只要 600 多张左右的陆地卫星图像就可以全部覆盖。

遥感监测技术方案(特选参考)

农业生态遥感监测的内容为2014年北京市1期冬小麦面积监测,2014年北京市2期玉米(春、夏玉米)面积监测,2014年北京市4期设施农业占地面积,2014年秋季露地菜面积监测。具体的生产流程如下: 1、专题信息获取 专题信息主要指北京市冬小麦、玉米、设施农业、秋季菜田四类专题,具体监测方法和生产流程如下: 1.1专题监测方法 (1)小麦、玉米监测 小麦监测北京市2014年冬小麦数据,以2014年4-5月遥感影像为主;玉米监测2014年北京市玉米,以2014年6-9月遥感影像为主,具体的技术方法如下:在综合考虑北京市地形特点,小麦、玉米种植结构特点的基础上,经过对小麦、玉米种植物候,遥感生产的经验总结和对多种数据的对比、分析,提出一套基于“分目标、分区域、分数据、分技术”的“四分”技术方法,融生产标准规范、质量控制体系和用户响应机制为一体的小麦、玉米播种面积统计统计遥感调查方法。该方法按照一定的分层指标将北京市行政村进行划分,再对不同层级的村执行不同的数据计划和技术对策,最后采取分层抽样法评估信息提取结果的精度,并对未满足精度要求的区域进行成果修订(图1-1)。

业务需求与 统计制度 基于行政村成果的分层抽样 数据 采集 及预 处理 综合信息数据库 基于行政村的种植规模分区 分区现势影像数据采集与处理 信息 提取 及修 订 基于种植规模的不同提取方法 外业调查和内业修订 满足内业信息提取精度 成果 精度 评估外业调查及精度评估 成果 整理 矢量数据和统计报表标准化 分析反推修订 达标 未达标 分 目 标 , 分 区 域 , 分 数 据 , 分 技 术 标 准 规 范 与 质 量 控 制图1-1 总体技术路线图 为提高小麦、玉米播种面积统计遥感调查精度,充分发挥多源数据及人机交互解译的能力,研究出基于“四分”总体技术方法的小麦、玉米专题统计遥感生产流程。“四分”技术:指“分目标、分区域、分数据、分技术”。四分技术是对按照一定标准划分的区域,分别采取不同的目标、数据和技术策略,使信息提取更具有针对性、有效性,达到提高精度的目的。具体包括两大关键技术:解译分区技术体系和精度评估技术。 1)人机解译分层技术 根据北京市小麦、玉米分布范围,结合北京市地形特点和小麦、玉米种植特点,将分布区分为三大带:“山区带、丘陵带、平原带”。继而根据所分的三大区域,进一步研究小麦、玉米的种植特点和光谱纹理特征,结合地形地势、分布趋势、地块破碎程度、地块大小、占耕地面积以及解译难易程度等多方面指标,通过定性定量相结合将北京市小麦、玉米种植区域进一步细化区分,针对不同区域采用不同的目标、数据和技术策略,抓住重点、难点,优化目前提取方法,提高小麦、玉米统计遥感调查精度。

地表雷达检测技术方案

贵州道兴建设工程检测有限责任公司 贵阳市轨道交通2号线兴筑西路站-水井坡站区间地表雷达探测技术方案 方案编制: 技术审核: 方案批准: 贵州道兴建设工程建设工程检测有限责任公司 2016年3月15日 目录

1 工程概况 (1) 2 探测项目和方法 (1) 3 编制依据 (1) 4 雷达探测的基本原理 (2) 5 探测流程 (3) 6 检测仪器和设备 (3) 7 需有关单位配合的事项 (3) 7 质量和安全保证措施 (4) 8 预期成果 (4) 9 本工程项目安排 (4)

1 工程概况 贵阳市轨道交通2号线兴筑西路站-水井坡站区间长1234.974m,其中水井坡站(长189.6m),为本一站一区间的土建工程施工。 水井坡站是贵阳市轨道交通2号线的一个中间站,位于主干道金阳南路的下方,周围交通较为繁忙。车站起止里程YDK19+978.193~YDK20+167.819,总长189.6m,为地下两层岛式车站,车站结构为明挖地下两层单柱双跨矩形结构。标准段宽19.9m,基坑深约15-21m,主体建筑面积7941.8m2,总建筑面积11936m2。顶板覆土约3.6m,轨面埋深15.35m。本站共设4个出入口、2组风亭。1、4号出入口过街段采用暗挖外其余均为明挖法施工。车站两端均为矿山法区间。 兴筑西路站-水井坡站区间,本区间线路出兴筑西路站后,穿过诚信南路东侧的一个小山包及金阳客站公交停车场(侧穿加气站),再穿过翠柳路后,进入喀斯特公园内,在公园内线路继续往东南,穿出公园东南角、石村东路后,到达金阳南路水井坡站,区间设计里程为:YDK18+741.914~YDK19+976.888,区间隧道全长1234.974m。采用矿山法施工。隧道拱顶埋深14.5~39.6m,线间距为12m~17m。 本工程项目为城市交通通道,工程地质条件复杂,为了保证施工安全,必须须对开挖段落的工程地质地质条件弄清楚,防止工安全施工大发生,故根据贵阳市城市轨道交通有限公司文件“筑轨道〔2015〕96号”“贵阳市城市轨道交通有限公司关于印发《贵阳市城市轨道交通工程地表地质雷达探测管理办法(试行)》的通知”的要求,根据本段的具体情况,对该标段的开挖站台和暗挖区间隧道地表进行了雷达探测,雷达测线布置严格按办法进行。其具体探测方案如下: 2 探测项目和方法 根据本工程的实际和相关规范要求,采用技术成熟地质雷达法,对施工站台的周围,以及暗挖区间的地表的空洞、脱空、水囊、疏松堆积体等进行探测,防止施工过程中的坍塌、涌泥、涌水等事故发生。 3 编制依据 《铁路隧道超前地质预报技术指南》(铁建设【2008】105); 《铁路隧道工程施工技术指南》(TZ 204-2008); 《铁路隧道设计施工有关标准补充规定》(铁建设【2007】88);

水资源环境遥感监测

贵州大学环境监测学题目:水资源环境遥感监测姓名:颜兴奎

2011年12月12日 水资源环境遥感监测 前言 水资源是人类赖以生存和社会发展不可替代的战略资源。随着人口的急剧增加、社会经济的迅速发展,以资源匮乏和污染为主要特征的水资源安全日益成为全球性问题,亦是我国生态环境改善和社会可持深发展的主要制约因素。如何建立有效的方法,科学、准确、快速地对水资源环境进行监测,适时掌握水资源环境的变化信息,进而采取相应的措施,已成为对水资源的有效利用、合理规划及保护的关键问题。 一、水污染的现状 中国是一个水资源短缺、水灾害频繁的国家,水资源总量居世界第六位,人均占有量只有2500立方米,约为世界人均水量的1/4,在世界排第110位,已被联合国列为13个贫水国家之一。中国有82%的人饮用浅井和江河水,其中水质污染严惩细菌超过卫生标准的占75%,受到有机物污染的饮用水人口约1.6亿。据最新资料透露,目前中国主要大城市只有23%的居民饮用水符合卫生标准,小城镇和农

村饮用水合格率更低。多年来,中国水资源质量不断下降,水环境持续恶化,由于污染所导致的缺水和事故不断发生,不仅使工厂停产、农业减产甚至绝收,而且造成了不良的社会影响和较大的经济损失,严重地威胁了社会的可持续发展,威胁了人类的生存。所以,我们必须采取相应措施处理水污染,而有效的水环境监测技术就显得很有必要,因而将遥感技术运用到水环境监测中,产生了一门新技术——水环境遥感监测技术。 二、“3S”技术 “3S”是指遥感技术(RS)、地理信息系统(GIS)、全球定位系统(GPS)三种空间信息技术的简称。 一、遥感是一种以非直接接触方法对远距离目标性质进行探测的技术。遥感技术系统由遥感平台、传感器、遥感介质、数据处理和应用五部分组成。 二、地理信息系统是一个具有多种功能的计算机软、硬件系统,是一个具有空间数据的采集、储存、检索、分析和可视化的数据库管理系统。 三、全球定位系统是一个高精度、全天候和全球性的无线电导航、定位和定时的多功能系统。其由GPS卫星星座、地面监控系统和GPS信号接收机三部分组成。 二、水环境遥感监测技术 一、遥感监测的机理 水污染遥感监测的主要机理是被污染水体具有独特的有别于清

雷达原理及测试方案

雷达原理及测试方案 1 雷达组成和测量原理 雷达(Radar)是Radio Detection and Ranging的缩写,原意“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。现代雷达的任务不仅是测量目标的距离、方位和仰角,而且还包括测量目标速度,以及从目标回波中获取更多有关目标的信息。 1.1 雷达组成 图1 雷达简单组成框图 图2 雷达主要组成框图 雷达主要由天线、发射机、接收机、信号处理和显示设备组成,基本组成框图如图1所示。通常雷达工作频率范围为2MHz~35GHz,其中超视距雷达工作频率为2~30MHz,工作频率为100~1000MHz范围一般为远程警戒雷达,工作频率为1~4GHz范围一般为中程雷达,工作频率在4GHz以上一般为近程雷达。 老式雷达发射波形简单,通常为脉冲宽度为τ、重复频率为Tτ的高频脉冲串。天线采

用机械天线,接收信号处理非常简单。这种雷达存在的问题是抗干扰能力非常差,无法在复杂环境下使用。 由于航空、航天技术的飞速发展,飞机、导弹、人造卫星及宇宙飞船等采用雷达作为探测和控制手段,对雷达提出了高精度、远距离、高分辨力及多目标测量要求,新一代雷达对雷达原有技术作了相当大的改进,其中频率捷变和线性相位信号、采用编码扩频的低截获概率雷达技术、动态目标显示和脉冲多普勒技术是非常重要的新技术。 1.2 雷达测量原理 1) 目标斜距的测量 图3 雷达接收时域波形 在雷达系统测试中需要测试雷达到目标的距离和目标速度,雷达到目标的距离是由电磁波从发射到接收所需的时间来确定,雷达接收波形参见图3,雷达到达目标的距离R为:R=0.5×c×t r式(2)式中c=3×108m/s,t r为来回传播时间 2) 目标角位置的测量 目标角指方位角或仰角,这两个角位置基本上是利用天线的方向性来实现。雷达天线将电磁能汇集在窄波束内,当天线对准目标时,回波信号最强。

我国洪涝灾害基本特征及成因分析

我国洪涝灾害基本特征及成因分析

中文摘要: 中国人口庞大,领土面积广大,河湖众多。特别是中国处于亚欧大陆和太平洋之间,季风气候盛行,降雨时程分布不均。自古以来,洪涝灾害不断,而且往往比较严重。解放以后,人民政府高度重视水灾的防治,先后修建了许多防洪除涝工程,大大减少了洪涝灾害的损失。但我国幅员辽阔,洪涝灾害的损失仍很大,还有不少河流需要进一步治理,全国彻底防洪涝还需要更多的工程和采取有效的运筹措施,另外,中国的持续快速发展,对防洪必然提出更多更高的要求。因此,今后的防洪任务还很重。

Abstract: China, with a very large population and broad land area,has numerous lakes and rivers.Since China is between the Eurasis and the Pacific ,where monsoon pervades,the season of precipitation in China distributed unevenly.From of old the disasters caused by government paid much mention to the defense of the flood ,and loss caused by the flood had been decreased .however ,there are a great many of rivers need to be reformed. Besides,the sustainable development of China requires the higher standards for counteracting the flood, so the task of fighting against the flood is a long rough road to go.

安捷伦雷达测试解决方案

?雷达信号的模拟 大功率信号,低相噪信号 宽带信号, 相参信号 ?雷达信号的分析 ?矢量分析 ?脉冲参数分析 ?脉冲相噪测试 ?脉冲器件寄生相噪测试 ?数字相控阵系统测试 ?模块级(T/R组件)测试 ? Agilent Technologies, Inc. 2009 2

对目标方位的确定多卜勒频移效应 f d= 2 * v r/ λc 对目标速度的确定 相控阵雷达 ?功率合成,实现大的功率孔径乘积 ?系统效率高,可获得很高的发射信号功率 ?简化复杂的馈线系统设计,改善了发射天线的体积和重量 ?通过电扫描完成波束扫描,波束扫描速度快 ?波束的成形控制 ?系统的多功能,实现频谱共享阵面和综合化电子系统 ?提高电子对抗能力 ?稳定性提高,T/R组件5%损坏时,系统仍能工作。

全数字式相控阵雷达 ?数字T/R模块:包含微波电路,数字电路,时钟电路和光电路的复杂系统?数字波束合成 ?大容量高速数据传输技术 ?高性能信号处理机 ?雷达信号的模拟 ?雷达信号的分析 ?模块级(T/R组件)测试 ? Agilent Technologies, Inc. 2009 6

替换 信号类型测试应用技术要求 正弦波信号替代系统本振,ADC等电路性能测试功率,频率精度,相位噪声 调制信号测试接收机或关键部件性能功率,频率精度,调制带宽,调制能力,调制精度失真信号测试接收机或关键处理器性能信号带宽,失真处理能力,信号幅度精度 基带信号测试模拟或数字基带电路性能模拟IQ,数字IQ 信号输出能力。数字接口形式,速率 备注 具有一定相关性的两路信号同时发射。两路信号的 双路信号具有定相关性的两路信号同时发射。两路信号的 PRI和载波频率可以相同也可不同。 用户反侦察积抗干扰信号 脉冲压缩信号具备很大的时宽带宽积。包含线性调频,非线性调频 信号,二相编码信号,多相编码信号和频率编码信号。用于预警雷达和高分辨力雷达

09洪涝灾害雷达遥感监测方法

09洪涝灾害雷达遥感监测方法 洪涝灾害遥感监测方法:光学遥感方法使用最多的是美国NOAA气象卫星和陆地资源卫星,也使用风云气象卫星开展洪涝灾害的监测;微波遥感的方法主要是利用主动成像的雷达遥感方法进行洪涝灾害的监测。 水体光谱特征,CH3小于图像平均值为洪水期,反之为非洪水期;CH1相对减小,CH2相对增加,有向陆地逐渐过渡的趋势,往往该部分水体被陆地包围或覆盖在陆地上。 水体空间特征,水体相对于陆地或云层等呈现出较为均一的图斑,无明显纹理特征;水体图斑边界相对云层较稳定,河流的现状特征(湖泊、海洋的面状特征)较明显。气象卫星高时间分辨率、成像范围大等特征使其成为大范围洪涝动态监测的重要手段。 洪涝灾害雷达遥感监测:雷达遥感具有全天候、全天时的数据获取能力和对一些地物穿透的能力,成为监测洪涝灾害最为有效的遥感技术之一。多颗在轨运行的航天雷达卫星在时相互补,可对同一地区形成连续观测。灵活、机动的机载雷达系统可用于特殊时期的快速监测,这些从技术上保证了采用雷达监测洪涝灾害的可能性与有效性。水体由于镜面反射回波强度较小,在图像上呈现出暗色或黑色,而陆地的回波强度较大,呈现灰白色或黑灰色,故在雷达图像上水陆界线分明,可以清晰地看到洪水到达地段及其淹没范围,利用雷达孔径图像能很快地监测受灾地区的情况。发展SAR图像与其他图像的融合势在必行,受灾中的SAR 图像和灾前的TM或ETM、SPOT等多光谱光学图像数据具有很强的互补性。基于DEM的SAR图像洪水水体的提取,在地形数据的支持下,实现星载SAR图像洪水水体的半自动提取。 洪涝灾害SAR图像斑点滤波方法:斑点滤波方法的主要目的是从含有斑点的SAR图像中恢复SAR图像;进行反演工作需要图像像元值的可信度,感兴趣的信息是面目标,如果还考虑边缘保持的情况则没有多少意义;而如果进行边缘信息提取等工作,主要考虑的是边缘信息,这种情况下考虑其他标准是不必要的。 基于半变异函数的SAR图像地表淹没程度分析:SAR由于具有一定的穿透性,在一定条件下能穿透植被冠层,在植被冠层和水面之间形成双向散射,因而能监测到植被覆盖下的水体,从而在一定程度上获取植被覆盖下的淹没范围。完全被淹没的水域呈镜面反射,植被覆盖的半淹没区呈双向散射,而未被淹没的区域呈漫散射。空间自相关特性,在SAR图像上的表现就是图像灰度值之间的空间自相关性和图像的纹理特征。不同淹没程度下的地表在图像表现出不同空间自相关性和纹理特征,而半变异函数能充分反映图像数据的随机性和结构性,即充分反映了图像数据的空间自相关性和纹理特征。 半变异函数理论:变程,描述了当观测变量的空间依赖性达到最大时的地面距离,它和图像中地物的大小有关,反映随机变量的影响范围。基值,定义了从数据中获取到的最大的半变异值,和被地物覆盖的区域范围有关。基台值,表征了观测数据之间的随机方差或者是空间独立变量,不受位置改变的影响。 基于纹理与成像知识的高分辨率SAR图像水体检测:由于SAR侧视成像,根据像素灰度值很难将地物阴影和水体分开,采用DEM来模拟雷达图像,从中获取山体阴影,将水体和山体阴影分开,实现水体检测,也可以对光学图像和SAR图像融合来提取水体,小目标往往以纯像元形式存在,能够反映小目标的散射特征、位置特征和结构特征等复杂信息。基于知识的目标检测是根据目标成像机理、拓扑关系、几何形状与结构信息、目标纹理特征等进行检测。 试验结果分析:面向对象方法,不再以单独像元为研究对象,而是以地物对象为研究对象,可以灵活地利用地物本身的光谱、形状等信息,从而可以大大提高分类精度。通过多尺度分割技术将图像分割成代表图像信息的对象,再利用对象本身所包含的信息(光谱、形状等)对对象进行分类。其采用模糊分类法,对类进行描述时采用了隶属度函数的方法,代替

相关文档
最新文档