网络的最短路径算法研究

网络的最短路径算法研究
网络的最短路径算法研究

最短路径学年论文

摘要:主要介绍最短路径问题中的经典算法——迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd)算法,以及在实际生活中的运用。 关键字:Dijkstra算法、Floyd算法、赋权图、最优路径、Matlab 目录 摘要 (1) 1引言 (1) 2最短路 (2) 2.1 最短路的定义 (2) 2.2最短路问题常见算法 (2) 3 Dijkstra算法 (2) 3.1Dijkstra算法描述 (2) 3.2 Dijkstra算法举例 (3) 3.3算法的正确性和计算复杂性 (5) 3.3.1贪心选择性质 (5) 3.3.2最优子结构性质 (6) 3.3.3 计算复杂性 (7) 4 Floyd算法 (7) 4.1Floyd算法描述 (8) 4.2 Floyd算法步骤 (11) 4.3 Floyd算法举例 (11) 5 Dijkstra算法和Floyd算法在求最短路的异同 (11) 6 利用计算机程序模拟算法 (11) 7 附录 (11) 8 论文总结 (13) 9 参考文献 (13)

1 引言 最短路问题是图论理论的一个经典问题。寻找最短路径就是在指定网络中两结点间找一条距离最小的路。最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。 最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。 2 最短路 2.1 最短路的定义 对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图 的有效算法是由荷兰著名计算机专家E.W.Dijkstra 在1959年首次提出的,该算法能够解决两指定点间的最短路,也可以求解图G 中一特定点到其它各顶点的最短路。后来海斯在Dijkstra 算法的基础之上提出了海斯算法。但这两种算法都不能解决含有负权的图的最短路问题。因此由Ford 提出了Ford 算法,它能有效地解决含有负权的最短路问题。但在现实生活中,我们所遇到的问题大都不含负权,所以我们在的() 0ij w ≥的情况下选择Dijkstra 算法。 定义1若图G=G(V,E)中各边e 都赋有一个实数W(e),称为边e 的权,则称这种图为赋权图,记为G=G(V,E,W)。 定义2若图G=G(V,E)是赋权图且()0W e ≥,()e E G ∈,假设[i,j] 的权记为()i j W ,,若i 与j 之间没有边相连接,那么()i j =W ∞,。路径P 的定义为路径中各边的长度之和,记W (P )。图G 的结点u 到结点v 距离记为d(u,v),则u 、v 间的最短路径可定义为 { ()min P 0d(u,v)=,u v W =∞(),不可达时 。 2.2 最短路问题常见算法 在求解网络图上节点间最短路径的方法中,目前国内外一致公认的较好算法有迪杰斯特拉(Dijkstra)及弗罗伊德(Floyd)算法。这两种算法中,网络被抽象为一个图论中定义的有向或无向图,并利用图的节点邻接矩阵记录点间的关联信息。在进行图的遍历以搜索最短路径时,以该矩阵为基础不断进行目标值的最小性判别,直到获得最后的优化路径。 Dijkstra 算法是图论中确定最短路的基本方法,也是其它算法的基础。为了求出赋权图中任意两结点之间的最短路径,通常采用两种方法。一种方法是每次以一个结点为源点,重复执行Dijkstra 算法n 次。另一种方法是由Floyd 于1962年提出的Floyd 算法,其时间复杂度为 ()3O n ,虽然与重复执行Dijkstra 算法n 次的时间复杂度相同,但其形式上略为简单,且实际运 算效果要好于前者。 3 Dijkstra 算法 3.1 Dijkstra 算法描述

最短路径算法—dijkstra总结

最短路径算法—D i j k s t r a 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Dijkstra 算法解释 本文引用三篇文章:分别是谢光新-Dijkstra 算法, zx770424 -Dijkstra 算法, 中华儿女英雄 -Dijkstra 算法 有兴趣的朋友请引用原文,由于分类很不相同难以查找,此处仅作汇总。 谢光新的文章浅显易懂,无需深入的数学功力,每一步都有图示,很适合初学者了解。 zx770424将每一步过程,都用图示方式和公式代码\伪代码对应也有助于,代码的理解。 中华儿女英雄从大面上总结了Dijkstra 的思想,并将演路图描叙出来了。起到总结的效果。 希望这篇汇总有助于大家对Dijkstra 算法的理解。

Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。 算法描述 (这里描述的是从节点1开始到各点的dijkstra算法,其中Wa->b表示a->b的边的权值,d(i)即为最短路径值) 1.置集合S={2,3,...n}, 数组d(1)=0, d(i)=W1->i(1,i之间存在边) or +无穷大(1.i之间不存在边) 2.在S中,令d(j)=min{d(i),i属于S},令S=S-{j},若S为空集则算法结束,否则转3 3.对全部i属于S,如果存在边j->i,那么置d(i)=min{d(i), d(j)+Wj->i},转2 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 算法具体步骤 (1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。 (2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 (3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k 的距离加上边上的权。 (4)重复步骤(2)和(3)直到所有顶点都包含在S中。 复杂度分析 Dijkstra 算法的时间复杂度为O(n^2) 空间复杂度取决于存储方式,邻接矩阵为O(n^2)

最短路径的Dijkstra算法及Matlab程序

两个指定顶点之间的最短路径 问题如下:给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线。 以各城镇为图G 的顶点,两城镇间的直通铁路为图G 相应两顶点间的边,得图G 。对G 的每一边e ,赋以一个实数)(e w —直通铁路的长度,称为e 的权,得到赋权图G 。G 的子图的权是指子图的各边的权和。问题就是求赋权图G 中指定的两个顶点00,v u 间的具最小权的轨。这条轨叫做00,v u 间的最短路,它的权叫做00,v u 间的距离,亦记作),(00v u d 。 求最短路已有成熟的算法:迪克斯特拉(Dijkstra )算法,其基本思想是按距0u 从近到远为顺序,依次求得0u 到G 的各顶点的最短路和距离,直至0v (或直至G 的所有顶点),算法结束。为避免重复并保留每一步的计算信息,采用了标号算法。下面是该算法。 (i) 令0)(0=u l ,对0u v ≠,令∞=)(v l ,}{00u S =,0=i 。 (ii) 对每个i S v ∈(i i S V S \=),用 )}()(),({min uv w u l v l i S u +∈ 代替)(v l 。计算)}({min v l i S v ∈,把达到这个最小值的一个顶点记为1+i u ,令}{11++=i i i u S S 。 (iii). 若1||-=V i ,停止;若1||-

gis计算最短路径的Dijkstra算法详细讲解

最短路径之Dijkstra算法详细讲解 1最短路径算法 在日常生活中,我们如果需要常常往返A地区和B 地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括: (1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。 (2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。 (3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。 (4)全局最短路径问题:求图中所有的最短路径。 用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法

有:Dijkstra算法、A*算法、Bellman-Ford算法、Floyd-Warshall算法、Johnson算法。 本文主要研究Dijkstra算法的单源算法。 2Dijkstra算法 2.1 Dijkstra算法 Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。 2.2 Dijkstra算法思想 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S 中的顶点为中间顶点的当前最短路径长度。 2.3 Dijkstra算法具体步骤 (1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。 (2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 (3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u 的距离值,修改后的距离值的顶点k的距离加上边上的权。 (4)重复步骤(2)和(3)直到所有顶点都包含在S中。 2.4 Dijkstra算法举例说明 如下图,设A为源点,求A到其他各顶点(B、C、D、E、F)的最短路径。线上所标注为相邻线段之间的距离,即权值。(注:此图为随意所画,其相邻顶点间的距离与图中的目视长度不能一一对等)

最短路径流程图及算法详解

:算法的设计思想 本算法采用分支定界算法实现。构造解空间树为:第一个城市为根结点,与第一个城市相邻的城市为根节点的第一层子节点,依此类推;每个父节点的子节点均是和它相邻的城市;并且从第一个根节点到当前节点的路径上不能出现重复的城市。 本算法将具有最佳路线下界的节点作为最有希望的节点来展开解空间树,用优先队列实现。算法的流程如下:从第一个城市出发,找出和它相邻的所有城市,计算它们的路线下界和费用,若路线下界或费用不满足要求,将该节点代表的子树剪去,否则将它们保存到优先队列中,并选择具有最短路线下界的节点作为最有希望的节点,并保证路径上没有回路。当找到一个可行解时,就和以前的可行解比较,选择一个较小的解作为当前的较优解,当优先队列为空时,当前的较优解就是最优解。算法中首先用Dijkstra算法算出所有点到代表乙城市的点的最短距离。算法采用的下界一个是关于路径长度的下界,它的值为从甲城市到当前城市的路线的长度与用Dijkstra算法算出的当前城市到乙城市的最短路线长度的和;另一个是总耗费要小于1500。 伪代码 算法AlgBB() 读文件m1和m2中的数据到矩阵length和cost中 Dijkstra(length) Dijkstra(cost) while true do for i←1 to 50 do //选择和node节点相邻的城市节点 if shortestlength>optimal or mincost>1500 pruning else if i=50 optimal=min(optimal,tmpopt)//选当前可行解和最优解的 较小值做最优解 else if looped //如果出现回路 pruning //剪枝 else 将城市i插入到优先队列中 end for while true do if 优先队列为空 输出结果 else 取优先队列中的最小节点 if 这个最小节点node的路径下界大于当前的较优解 continue

Dijkstra算法

5.3.4 附录E 最短路径算法——Dijkstra 算法 在路由选择算法中都要用到求最短路径算法。最出名的求最短路径算法有两个,即Bellman-Ford 算法和Dijkstra 算法。这两种算法的思路不同,但得出的结果是相同的。我们在下面只介绍Dijkstra 算法,它的已知条件是整个网络拓扑和各链路的长度。 应注意到,若将已知的各链路长度改为链路时延或费用,这就相当于求任意两结点之间具有最小时延或最小费用的路径。因此,求最短路径的算法具有普遍的应用价值。 令v 部分: 不直接相连与结点若结点 1 v ? ?∞在用计算机进行求解时,可以用一个比任何路径长度大得多的数值代替∞。对于上述例子, 可以使D (v ) = 99。 (2) 寻找一个不在N 中的结点w ,其D (w )值为最小。把w 加入到N 中。然后对所有不在N 中的结点v ,用[D (v ), D (w ) + l (w , v )]中的较小的值去更新原有的D (v )值,即: D (v )←Min[D (v ), D (w ) + l (w , v )] (E-1) (3) 重复步骤(2),直到所有的网络结点都在N 中为止。 表E-1是对图E-1的网络进行求解的详细步骤。可以看出,上述的步骤(2)共执行了5次。表中带圆圈的数字是在每一次执行步骤(2)时所寻找的具有最小值的D (w ) 值。当第5次执行步骤(2)并得出了结果后,所有网络结点都已包含在N 之中,整个算法即告结束。 表E-1 计算图E-1的网络的最短路径

现在我们对以上的最短路径树的找出过程进行一些解释。 因为选择了结点1为源结点,因此一开始在集合N中只有结点1。结点1只和结点2, 3和4直接相连,因此在初始化时,在D(2),D(3)和D(4)下面就填入结点1到这些结点相应的距离,而在D(5)和D(6)下面填入∞。 下面执行步骤1。在结点1以外的结点中,找出一个距结点1最近的结点w,这应当是w = 4,因为在D(2),D(3)和D(4)中,D(4) = 1,它的之值最小。于是将结点4加入到结点集合N中。这时,我们在步骤1这一行和D(4)这一列下面写入①,数字1表示结点4到结点1的距离,数字1的圆圈表示结点4在这个步骤加入到结点集合N中了。 接着就要对所有不在集合N中的结点(即结点2, 3, 5和6)逐个执行(E-1)式。 对于结点2,原来的D(2) = 2。现在D(w) + l(w, v) = D(4) + l(4, 2) = 1 + 2 = 3 > D(2)。因此结点2到结点1距离不变,仍为2。 对于结点3,原来的D(3) = 5。现在D(w) + l(w, v) = D(4) + l(4, 3) = 1 + 3 = 4 < D(3)。因此结点3到结点1的距离要更新,从5减小到4。 对于结点5,原来的D(5) = ∞。现在D(w) + l(w, v) = D(4) + l(4, 5) = 1 + 1 = 2 < D(5)。因此结点5到结点1的距离要更新,从∞减小到2。 对于结点6,现在到结点1的距离仍为∞。 步骤1的计算到此就结束了。 下面执行步骤2。在结点1和4以外的结点中,找出一个距结点1最近的结点w。现在有两个结点(结点2和5)到结点1的距离一样,都是2。我们选择结点5(当然也可以选择结点2,最后得出的结果还是一样的)。以后的详细步骤这里就省略了,读者可以自行完 1的路由表。此路由表指出对于发往某个目的结点的分组,从结点1发出后的下一跳结点(在算法中常称为“后继结点”)和距离。当然,像这样的路由表,在所有其他各结点中都有一个。但这就需要分别以这些结点为源结点,重新执行算法,然后才能找出以这个结点为根的最短路径树和相应的路由表。

前N条最短路径问题的算法及应用

第36卷第5期2002年9月 浙 江 大 学 学 报(工学版) Jo ur nal o f Zhejiang U niv ersity(Eng ineer ing Science) Vol.36No.5Sep.2002 收稿日期:2001-10-24. 作者简介:柴登峰(1974-),男,浙江江山人,博士生,从事遥感图像处理、地理信息系统方面研究.E-mail:chaidf@z https://www.360docs.net/doc/567986426.html, 前N 条最短路径问题的算法及应用 柴登峰,张登荣 (浙江大学空间信息技术研究所,杭州浙江310027) 摘 要:现有最短路径问题指的是狭义最短路径问题,针对该问题而设计的算法只能求得最短的一条路径.前N 条最短路径拓宽了最短路径问题的内涵(即不仅要求得最短路径,还要求得次短、再次短…第N 短路径),是广义最短路径问题.在图论理论基础上分析问题之后,设计了一个递归调用Dijkstr a 算法的新算法,该算法可以求取前N 条最短路径,而且时间、空间复杂度都为多项式阶.该算法已经成功应用于一个交通咨询系统中,自然满足实时应用需要. 关键词:最短路径;N 条最短路径;网络分析;地理信息系统;交通咨询系统 中图分类号:P 208;O 22 文献标识码:A 文章编号:1008-973X (2002)05-0531-04 Algorithm and its application to N shortest paths problem CHAI Deng-f eng,ZHAN G Deng-rong (I nstitute of Sp ace and I n f ormation T echnical ,Zhej iang U niv er sity ,H angz hou 310027,China ) Abstract :As the shor test path denotes one path ,algorithms designed for shor test path problem can g et only one path .N shortest paths are N paths including the shortest one ,the one inferior to the shortest one,eto.After reviewing the application of shortest poth pro blem ,an N shortest paths problem w as put fo rw ard and described.Gr aph theo ry w as used to analy ze the problem and results in fo ur theoretical con-clusions .T hen ,algo rithm recursively calling the Dijkstra algor ithm was desig ned and analy zed .Bath time co nplexity and space conplex ity are poly nom ial order.The algo rithm w as tested by ex periment and applied to a traffic consultatio n system of Guang zhou City ,it can meet the need of r eal-time application.Key words :sho rtest path;N shor test paths;netw ork analysis;tr affic consultation system ;GIS 20世纪中后期,随着计算机的出现和发展,图论的理论和应用研究得到广泛重视,图论作为一个数学分支的地位真正得到了确立.现在,图论的应用已经深入到众多领域,GIS 网络分析就是图论在地理信息领域的重要应用[3] ,此外,还有城市规划、电子导航、交通咨询等等. 最短路径问题是图论中的一个典范问题[1],主要研究成果有Dijkstra 、Floy d 等优秀算法[1,2],Dijk-stra 还被认为是图论中的好算法[1] .目前的研究工作主要集中于算法实现的优化改进与应用方面[3,4].最短路径问题通常有两类[2]:一类是求取从某一源点到其余各点的最短路径;另一类是求取每一对顶 点之间的最短路径.它们从不同的角度描述问题,但有一个共同的缺陷:这里的最短路径指两点之间最 短的那一条路径,不包括次短、再次短等等路径.在此不妨称以上两类问题为狭义最短路径问题,为此设计的算法只能求得最短的一条路径,而不能得到次短、再次短等等路径. 实际上,用户在使用咨询系统或决策支持系统时,希望得到最优的决策参考外,还希望得到次优、再次优等决策参考,这同样反映在最短路径问题上.因此,有必要将最短路径问题予以扩充,成为N 条最短路径问题,即不但要求得到最短路径,还要得到次短、再次短等路径.这称之为广义最短路径问题.

计算最短路径的Dijkstra算法的编程实现

计算最短路径的Dijkstra算法的编程实现 实验环境: C++ 为了进行网络最短路径路径分析,需将网络转换成有向图。如果要计算最短路径,则权重设置为两个节点的实际距离,Dijkstra算法可以用于计算从有向图中任意一个节点到其他节点的最短路径。 算法描述: 1)用带权的邻接矩阵来表示带权的n个节点的有向图,road[i][j]表示弧< vertex i, vertex j>的权值,如果从vertex i到vertex j不连通,则road road[i][j]=无穷大=9999。引进一个辅助向量Distance,每个Distance[i]表示从起始点到终点vertex i的最短路径长度。设起始点为first,则Distance[i]= road[first][i]。令S为已经找到的从起点出发的最短路径的终点的集合。 2)选择vertex j使得Distance[j]=Min{ Distance[i]| vertexi∈V-S},vertex j就是当前求得的一条从起始点出的的最短路径的终点的,令S=S∪{ vertex j} 3)修改从起始点到集合V-S中任意一个顶点vertex k的最短路径长度。如果Distance[j]+ road[j][k]< Distance[k],则修改Distance[k]为:Distance[k]= Distance[j]+ road[j][k]。 4)重复2,3步骤操作共n-1次,由此求得从起始点出发到图上各个顶点的最短路径长度递增的序列。 算法复杂度为O(n2)。 程序代码如下: #include #include "Dijkstra.h" int main() { int Graph_list_search[max][max]={{0,3,2,5,9999,9999}, {9999,0,9999,2,9999,9999}, {9999,9999,0,1,9999,9999}, {9999,9999,9999,0,9999,5}, {9999,9999,5,3,0,1}, {9999,9999,9999,9999,9999,0}}; printf_edge(Graph_list_search); Dijkstra(Graph_list_search,0,5); return 0; }

第20讲-关键路径与最短路径

数据结构第20次课

(续表)

思考.题 作业题试对下图所示的AOE网络,解答下列问题。 (1) 这个工程最早可能在什么时间结束。 (2) 求每个事件的最早开始时间Ve[i]和最迟开始时间Vl[I]。 (3) 求每个活动的最早开始时间e( )和最迟开始时间l( )。 (4) 确定哪些活动是关键活动。画出由所有关键活动构成的图,指出哪些活动加速可使整个工程提前完成。 *参考资料《数据结构辅导与提高》,徐孝凯编著,清华大学出版社 《数据结构习题解答与考试指导》,梁作娟等编著,清华大学出版社

授课内容 关键路径 对整个工程和系统,人们关心的是两个方面的问题: 一)工程能否顺利进行(对AOV网进行拓扑排序) 二)估算整个工程的完成所必须的最短时间(对AOE网求关键路径) 1. AOE-网 } 与AOV-网相对应的是AOE-网(Activity On Edge),即边表示活动的网。 AOE-网是一个带权的有向无环图,其中,顶点表示事件(Event),弧表示活 动,权表示活动持续的时间。通常,AOE-网可用来估算工程的完成时间。 例:下图是一个假想的有11项活动的AOE-网。其中有9个事件v 1 , v 2 ,…,v 9 ,每个事件表示在它之前的活动已经完成,在它之后的活动可以 开始。如v 1 表示整个工程开始,v 9 表示整个工程结束,v 5 表示a 4 和a 5 已经 完成,a 7 和a 8 可以开始。与每个活动相联系的数是执行该活动所需的时间。 比如,活动a 1 需要6天,a 2 需要4天等。 和AOV-网不同,对AOE-网有待研究的问题是: (1)完成整项工程至少需要多少时间 (2)哪些活动是影响工程进度的关键 2. 关键路径 由于在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间 是从开始点到完成点的最长路径的长度(这里所说的路径长度是指路径上 各活动持续时间之和,不是路径上弧的数目)。路径长度最长的路径叫做关 备注: 回顾

地图中最短路径的搜索算法研究综述 (1)

地图中最短路径的搜索算法研究 学生:李小坤导师:董峦 摘要:目前为止, 国内外大量专家学者对“最短路径问题”进行了深入的研究。本文通过理论分析, 结合实际应用,从各个方面较系统的比较广度优先搜索算法(BFS)、深度优先搜索算法(DFS)、A* 算法的优缺点。 关键词:最短路径算法;广度优先算法;深度优先算法;A*算法; The shortest path of map's search algorithm Abstract:So far, a large number of domestic and foreign experts and scholars on the" shortest path problem" in-depth study. In this paper, through theoretical analysis and practical application, comprise with the breadth-first search algorithm ( BFS ), depth-first search algorithm ( DFS ) and the A * algorithms from any aspects of systematic. Key words: shortest path algorithm; breadth-first algorithm; algorithm; A * algorithm; 前言: 最短路径问题是地理信息系统(GIS)网络分析的重要内容之一,而且在图论中也有着重要的意义。实际生活中许多问题都与“最短路径问题”有关, 比如: 网络路由选择, 集成电路设计、布线问题、电子导航、交通旅游等。本文应用深度优先算法,广度优先算法和A*算法,对一具体问题进行讨论和分析,比较三种算的的优缺点。 在地图中最短路径的搜索算法研究中,每种算法的优劣的比较原则主要遵循以下三点:[1] (1)算法的完全性:提出一个问题,该问题存在答案,该算法能够保证找到相应的答案。算法的完全性强是算法性能优秀的指标之一。 (2)算法的时间复杂性: 提出一个问题,该算法需要多长时间可以找到相应的答案。算法速度的快慢是算法优劣的重要体现。 (3)算法的空间复杂性:算法在执行搜索问题答案的同时,需要多少存储空间。算法占用资源越少,算法的性能越好。 地图中最短路径的搜索算法: 1、广度优先算法 广度优先算法(Breadth-First-Search),又称作宽度优先搜索,或横向优先搜索,是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型,Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽

数据结构课程设计报告Dijkstra算法求最短路径

中南大学 《数据结构》课程设计 题目第9题 Dijkstra算法求最短路径 学生姓名 XXXX 指导教师 XXXX 学院信息科学与工程学院 专业班级 XXXXXXX 完成时间 XXXXXXX

目录 第一章问题分析与任务定义---------------------------------------------------------------------3 1.1 课程设计题目-----------------------------------------------------------------------------3 1.2 原始数据的输入格式--------------------------------------------------------------------3 1.3 实现功能-----------------------------------------------------------------------------------3 1.4 测试用例-----------------------------------------------------------------------------------3 1.5 问题分析-----------------------------------------------------------------------------------3 第二章数据结构的选择和概要设计------------------------------------------------------------4 2.1 数据结构的选择--------------------------------------------------------------------------4 2.2 概要设计-----------------------------------------------------------------------------------4 第三章详细设计与编码-----------------------------------------------------------------------------6 3.1 框架的建立---------------------------------------------------------------------------------6 3.2 点结构体的定义---------------------------------------------------------------------------7 3.3 创立带权值有向图------------------------------------------------------------------------8 3.4 邻接矩阵的显示---------------------------------------------------------------------------9 3.5 递归函数的应用---------------------------------------------------------------------------10 3.6 Dijkstra算法实现最短路径--------------------------------------------------------------10 第四章上机调试------------------------------------------------------------------------------------11 4.1 记录调试过程中错误和问题的处理---------------------------------------------------11 4.2 算法的时间课空间性能分析------------------------------------------------------------11 4.3 算法的设计、调试经验和体会---------------------------------------------------------11 第五章测试结果-----------------------------------------------------------------------------------12 第六章学习心得体会-----------------------------------------------------------------------------12 第七章参考文献-----------------------------------------------------------------------------------12 附录------------------------------------------------------------------------------------------------------12

数据结构与算法第6章图答案

第 6 章图 课后习题讲解 1. 填空题 ⑴设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。 【解答】0,n(n-1)/2,0,n(n-1) 【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。 ⑵任何连通图的连通分量只有一个,即是()。 【解答】其自身 ⑶图的存储结构主要有两种,分别是()和()。 【解答】邻接矩阵,邻接表 【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。 ⑷已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。 【解答】O(n+e) 【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。 ⑸已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。 【解答】求第j列的所有元素之和 ⑹有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。 【解答】出度 ⑺图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。 【解答】前序,栈,层序,队列 ⑻对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。 【解答】O(n2),O(elog2e) 【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。 ⑼如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。 【解答】回路

单源最短路径的Dijkstra算法

单源最短路径的Dijkstra算法: 问题描述: 给定一个带权有向图G=(V,E),其中每条边的权是非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到所有其他各顶点的最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。算法描述: Dijkstra算法是解单源最短路径的一个贪心算法。基本思想是:设置顶点集合S并不断地做贪心选择来扩充这个集合。一个顶点属于S当且仅当从源到该顶点的最短路径长度已知。初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist做必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其他顶点之间的最短路径长度。 源代码: #include #define MAX 1000 #define LEN 100 int k=0, b[LEN]; using namespace std;

//-------------------------------------数据声明------------------------------------------------//c[i][j]表示边(i,j)的权 //dist[i]表示当前从源到顶点i的最短特殊路径长度 //prev[i]记录从源到顶点i的最短路径上的i的前一个顶点 //--------------------------------------------------------------------------------------------- void Dijkstra(int n, int v, int dist[], int prev[], int c[][LEN]) { bool s[LEN]; // 判断是否已存入该点到S集合中 for (int i = 1; i <= n; i++) { dist[i] = c[v][i]; s[i] = false; //初始都未用过该点 if (dist[i] == MAX) prev[i] = 0; //表示v到i前一顶点不存在 else prev[i] = v; } dist[v] = 0; s[v] = true; for (int i = 1; i < n; i++)

Dijkstra最短路径算法

5.3.4 附录E 最短路径算法——Dijkstra算法 在路由选择算法中都要用到求最短路径算法。最出名的求最短路径算法有两个,即Bellman-Ford算法和Dijkstra算法。这两种算法的思路不同,但得出的结果是相同的。我们在下面只介绍Dijkstra算法,它的已知条件是整个网络拓扑和各链路的长度。 应注意到,若将已知的各链路长度改为链路时延或费用,这就相当于求任意两结点之间具有最小时延或最小费用的路径。因此,求最短路径的算法具有普遍的应用价值。 下面以图E-1的网络为例来讨论这种算法,即寻找从源结点到网络中其他各结点的最短路径。为方便起见,设源结点为结点1。然后一步一步地寻找,每次找一个结点到源结点的最短路径,直到把所有 点1, j)为结点i (1) 初始化 令N表示网络结点的集合。先令N = {1}。对所有不在N中的结点v,写出

不直接相连与结点若结点直接相连 与结点若结点 1 1 ),1()(v v v l v D ? ? ?∞= 在用计算机进行求解时,可以用一个比任何路径长度大得多的数值代替∞。对于上述例子,可以使D (v ) = 99。 (2) 寻找一个不在N 中的结点w ,其D (w )值为最小。把w 加入到N 中。然后对所有不在N 中的结点v ,用[D (v ), D (w ) + l (w , v )]中的较小的值去更新原有的D (v )值,即: D (v )←Min[D (v ), D (w ) + l (w , v )] (E-1) (3) 重复步骤(2),直到所有的网络结点都在N 中为止。 表E-1是对图E-1的网络进行求解的详细步骤。可以看出,上述的步骤(2)共执行了5次。表中带圆圈的数字是在每一次执行步骤(2)时所寻找的具有最小值的D (w ) 值。当第5次执行步骤(2)并得出了结果后,所有网络结点都已包含在N 之中,整个算法即告结束。 表E-1 计算图E-1的网络的最短路径

最短路径算法在物流运输中的应用

最短路径算法在物流运输 中的应用 Last revision date: 13 December 2020.

本科生毕业设计(论文)题目:线性表的设计和实现 学生姓名:张三 学号: 1153 院系:基础科学学院信息技术系 专业年级: 2012级信息与计算科学专业 指导教师:李四 年月日

摘要 随着现代物流业的发展,如何优化和配置物流的运输路径成为了一个热点的问题。其中,最具代表性的问题就是如何在一个道路网络中选择两点之间的合适路径,使其距离最短。为了解决这个问题,本文介绍了两种最常用的最短路径求解方法——DIJKSTRA算法与FLOYD算法,分析了它们的适用范围以及时间复杂度。最后,对一个具体的航空公司物流配送问题进行了求解,得到了理论最优路径。 关键词:最短路径问题;DIJKSTRA算法;物流运输

ABSTRACT With the development of modern logistics industry, how to optimize and configure the transport path of logistics has become a hot issue. Among them, the most representative problem is how to select the appropriate path between two points in a road network to minimize the distance. In order to solve this problem, this paper introduces two most common shortest path solutions —— Dijkstra algorithm and Floyd algorithm, and analyzes their application range and time complexity. Finally, a specific airline logistics distribution problem is solved, and the theoretical optimal path is obtained. Keywords:Minimum path problem;Dijkstra algorithm;Logistics transportation

相关文档
最新文档