泛函分析习题标准答案.doc

合集下载

刘炳初等 《泛函分析》第二版课后习题答案

刘炳初等 《泛函分析》第二版课后习题答案

刘炳初等 《泛函分析》第二版课后习题答案习题二1.设(,)X 是赋范空间. 对于,,x y X ∈令10,,1,,x y d x y x y =⎧=⎨-+≠⎩证明:1d 是X 上的距离但不是由范数诱导的距离.证明:显然1d 满足距离公理1)、2). 若x y =,显然有111(,)0(,)(,)d x y d x z d z y =≤+; 若x y ≠,则当,x z z y ≠≠时,111(,)112(,)(,)d x y x y x z z y x z z y d x z d z y =-+≤-+-+≤-+-+≤+; 当,x z z y =≠时,1111(,)11(,)(,)(,)d x y x y z y d z y d x z d z y =-+=-+==+; 当,x z z y ≠=时,1111(,)11(,)(,)(,)d x y x y x z d x z d x z d z y =-+=-+==+; 因此,1(,)d x y 满足距离公理3).但10,,(,)1,,x d x x x θθθ=⎧=⎨+≠⎩显然不满足11(,)(,)d x d x αθαθ=,因此1d 不是由范数诱导的距离.2.在l ∞中,按坐标定义线性运算且对,k x l x ξ∞∈=定义sup n nx ξ=,证明l ∞是一个赋范空间.证明:显然这是一个范数.3.设M 是空间l ∞中除有穷个坐标之外为0的元之全体构成的子空间. 证明M 不是闭子空间.证明:令01111111,,,,,0,0,,1,,,,,2323n x x n n ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ ,则显然我们有n x M ∈,且01110,0,,,,0()121n x x n n n n ⎛⎫-==→→∞ ⎪+++⎝⎭ ,但0x M ∉,因此M 不是l ∞得闭子空间.4.试举例说明,在赋范空间中,由1n n x ∞=<∞∑,一般地不能推出1n n x ∞=∑收敛.例:5. 设(,)X 是赋范空间,0X 是X 中的稠密子集,证明:对于每一x X ∈,存在{}0n x X ⊂,使得1n n x x ∞==∑,并且1n n x ∞=<∞∑.证明:取10x X ∈,使得112x x -<,则112x x ≤+;0X X = ,∴可取20x X ∈,使得12212x x x --<,则2121211122x x x x x x ≤--+-<+<;同理可取30x X ∈,使得123312x x x x ---<,则31231223111222x x x x x x x x ≤---+--<+<;继续此法,可得{}0n x X ⊂,使得112ni ni x x =-<∑,且21(2,3,)2nn x n -<= ,由此知1n n x x ∞==∑,并且1n n x ∞=<∞∑11112n n x ∞-=⎛⎫≤++ ⎪⎝⎭∑.6. 设(,)X 是赋范空间,{}0X ≠,证明:X 是Banach 空间,当且仅当,X 中的单位球面{}:1S x X x =∈=是完备的.证明:必要性是显然的(S 为X 中闭集),下证充分性.若S 是完备的,设{}n x 为X 中的Cauchy 列,由于m n m n x x x x -≤-,从而lim n n x →∞存在,不妨设lim n n x a →∞=. 若0a =,则显然0()n x n →→∞.若0a ≠,不妨设0n x ≠,则n n x S x ⎧⎫⎪⎪⊂⎨⎬⎪⎪⎩⎭,因为11()0m n n m m n n m n m nn m nm nm nx xx x x x x x x x x x x x x x x x -=-≤-+-→也即n n x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭为S 中的Cauchy 列,由S 的完备性,lim n n n x x →∞存在,不妨设limn n n x x S x →∞=∈,从而有1lim0n n n nn n x a ax ax x x x x x x a →∞-=-→-=,故 lim 0n n x ax →∞-=,即{}n x 收敛,从而证得X 是Banach 空间.7. 证明0c 是可分的Banach 空间. 证明:分以下三步来证明:1). 证明0c 是l ∞的线性子空间. 事实上收敛列必有界,从而显然0c l ∞∈,且设()()12120,,,,,,,,,n n x y c ξξξηηη==∈ ,则()1122,,,,n n x y αβαξβηαξβηαξβη+=+++ ,由于lim 0n x y αβ→∞+=,从而我们有0x y c αβ+∈,即0c 是l ∞的线性子空间.2). 证明0c 是l ∞的闭子空间. 事实上,设()()()()120,,,,,k k k k n x c ξξξ=∈()(0)(0)(0)012,,,,n x ξξξ= ,并且()(0)0sup 0()k k n n nx x k ξξ-=-→→∞,因此0ε∀>,1N ∃,使得当1k N >时,()(0)0sup 2k k n n nx x εξξ-=-<. 由于(0)()()(0)()1()2k k k n n n n n k N εξξξξξ≤+-<+>,又因0k x c ∈,()0()k n n ξ→→∞,故存在()1N N ≥,使得当n N >时恒有()2k n εξ<,从而(0)n ξε<,n N ∀>,即00x c ∈,由此知0c 是l ∞的闭子空间.3). 由于l ∞为Banach 空间,而0c 是l ∞的闭子空间,从而0c 是Banach 空间,下证0c 是可分的. 设M 为一切有限有理数列全体,即()12,,,,n n x M ξξξξ=∈⇔ 全为有理数,且存在x N ,使得当x n N >时,0n ξ=. 显然1n n M Q ∞= ,可知M 可数.()1200,,,,,n y c εηηη∀>=∈ ,由于0n η→,故存在N ,使得当n N >时,n ηε<. 对()12,,,N N R ηηη∈ ,存在()12,,,N N Q ξξξ∈ ,使得1sup n n n Nηξε≤≤-<,从而存在()012,,,,0,0,N x M ξξξ=∈ ,使得0y x ε-<,即M 在0c 中稠密. 综上可知0c 是可分的Banach 空间.8. 设(,)n n X 是一列赋范空间,{}(),1,2,n n n x x x X n =∈= 且满足条件1pkk x ∞=<∞∑,用X 表示所有x 的全体,按坐标定义线性运算构成的线性空间,在X 中定义11(1)ppkk x x p ∞=⎛⎫=≥ ⎪⎝⎭∑,证明(,)X 是一个赋范空间.证明:只需证明 是一个范数即可. 事实上,显然0x ≥,且0x =,即10pkk x ∞==∑,从而有0(1,2,)kkx k == ,又k X 是赋范空间,故(1,2,k x k θ== ,从而可得x θ=,即证明了范数公理的条件1)成立,而条件2)显然成立,下证条件3)成立. 设{}{}(),,,1,2,n n n n n x x y y x y X n ==∈= ,由离散情形的Minkowski 不等式,我们有111111ppppp p kk kk k k k x y x yx y x y ∞∞∞===⎛⎫⎛⎫⎛⎫+=+≤+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑,从而证得 是一个范数,从而(,)X 是一个赋范空间.9. 证明:1) 离散情形的Hölder 不等式与Minkowski 不等式;2) ()1p l p ≥是可分的Banach 空间.证明:1). 首先证明离散情形的Hölder 不等式,即证明下列不等式成立:11111pqp q k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑,其中111,1p p q ≥+=. 令11,pqp q k kk k A B ξη∞∞====∑∑,由不等式pqa b ab p q ≤+可得11p qk k k k AB p A q Bξηξη≤+ 从而有1111111111pqpq pqk kk kkk k k k k k A B AB p A q Bpqp qξηξηξη--∞∞∞∞∞=====≤+=+=+=∑∑∑∑∑,所以11111pqp q k k k k k k k AB ξηξη∞∞∞===⎛⎫⎛⎫≤= ⎪ ⎪⎝⎭⎝⎭∑∑∑. 由离散情形的Hölder 不等式,我们可以推导相应的Minkowski 不等式:111111pppp p p k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫⎛⎫+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑事实上,由Hölder 不等式,我们得到111111111(1)(1)1111111111,pp p k k k k kk k kk k k pqpqp q p p q p k k k k k k k k k k qp p p p p k k k k k k k ξηξξηηξηξξηηξηξηξη∞∞∞--===∞∞∞∞--====∞∞∞===+≤+++⎛⎫⎛⎫⎛⎫⎛⎫≤+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑由此即可得到111111pppp p p k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫⎛⎫+≤+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑.2). 首先,由于(){}12,,,,,1,2,,n n i Q r r r r r Q i n ==∈= 为n R 中全体有理点集,它是n R 中稠密的可数集,因此n R 是可分空间.令(){}12,,,,;,,1,2,,n i M r r r r n N r Q i n ==∈∈= ,易知M 为p l 的可数子集,下证p M l =. 事实上,设()12,,,,,0,p n x l ξξξε=∈∀> 存在()N ε,使得12ppi i N εξ∞=+<∑,从而有()12,,,,0,N y r r r M =∈ ,使得111122p ppNpp p i i i pi i N x yr εεξξε∞==+⎛⎫⎛⎫-=-+<+= ⎪⎪⎝⎭⎝⎭∑∑,因此p M l =,即()1p l p ≥是可分的Banach 空间.10. 证明任意线性空间中存在Hamel 基.证明:设E 是线性空间X 中的线性无关集,令集合M 为包含E 的所有线性无关集全体,在M 上定义偏序关系为''''⊂,显然M 的全序子集都有上界(所有集合的并集),由Zorn 引理,M 有极大元,不妨设为B ,下证B 即为X 的Hamel 基,如若不然,则存在y X ∈,但y B ∉,即y 与B 中任何元素都线性无关,从而{}y B M ∈ ,这与B 的极大性矛盾.11. 设A 是线性空间X 中的子集. 证明:111():,01.nn n k k k k Co A x x X n x A αααα=⎧⎫=++∈∈≥=⎨⎬⎩⎭∑ 是任意自然数,且证明:若令S 表示上式右端,则A S ⊂而且S 是凸集,从而()Co A S ⊂. 反之,设F 是包含A 的任一凸集,那么(1,2,,)i x F i n ∈= ,从而1ni i i x F α=∈∑,即得S F ⊂,从而()S Co A ⊂.12. 设E 是直线上的Lebesgue 可测集,且mE <∞,用p 表示()(1)p L E p ≥的范数,∞ 表示()L E ∞的范数. 证明:对于每一()x L E ∞∈,lim pp xx ∞→∞=.证明:设x M ∞=,若0mE =或0M =,显然成立,下设0,0mE M ≠≠:i). 根据本性上确界的可达性,即存在0E E ⊂,使得00mE =,并且0\sup ()E E M x t =,所以0\\()d ()d d ppp pEE E E E x t t x t t M t M mE =≤=*⎰⎰⎰,所以()1ppx M mE ≤*. 因为当p →∞时,()11pmE →,即lim pp xM x ∞→∞≤=;ii). 对任意的0ε>,令{}1:()E t E x t M ε=∈>-,由上确界定义易知10mE >,从而11()d ()d ()p pp EE x t t x t t M mE ε≥≥-*⎰⎰,令p →∞,则lim pp xM ω→∞≥-,由ε的任意性,知lim pp xM →∞≥.从而lim pp xM x ∞→∞==.13. 设()11,X ,()22,X 是赋范空间,在乘积线性空间12X X ⨯中定义()1212112212,max ,z x x zx x =+=,其中()1212,,z X X z x x ∈⨯=.证明1z ,2z 是12X X ⨯上的等价范数.证明:显然2122z z z ≤≤,从而它们是等价范数.14.设X 是区间[],a b 上所有连续函数全体按通常方式定义线性运算所成的线性空间,对于x X ∈定义1sup ();()d ba a t bx x t x x t t ≤≤==⎰.证明: 和1 是X 上两个不等价的范数.证明:显然 和1 是X 上的两个范数,且1()x b a x ≤-,要证两个范数不等价,则只需证明不存在0c >,使得1x c x ≥,即证明存在[]C ,n x a b ∈,使得1n n x x →∞.令()()(),,2()2,,20,,n b aa n t a a t a nb a nbb ax t a b a t a b a n nb a a t b n-⎧+-≤≤+⎪⎪--⎪=--++≤≤+⎨-⎪⎪-+≤≤⎪⎩则()()12,,2n n b a b a x x b n-+==()()122n nx nx b b a b a =→∞-+.15. 设Banach 空间(,)X 具有Schauder 基{}n e ,用M 表示所有使得1k k k e ξ∞=∑在X中收敛的数列{}k ξ的全体,按通常方式定义线性运算构成的线性空间,对于每一{}k x M ξ=∈,定义11supnk knk x eξ==∑,证明(,)M 是Banach 空间.证明:首先易知1 是范数.设{}()m x M ∈是Cauchy 列,()()()()()12,,,,m m m m n x ξξξ=16. 设(,)X 是赋范空间,Y 是X 的子空间,对于x X ∈,令(),inf y Yd x Y x y δ∈==-.如果存在0y Y ∈,使得0x y δ-=,称0y 是x 的最佳逼近.1) 证明:如果Y 是X 的有穷维子空间,则对每一x X ∈,存在最佳逼近. 2) 试举例说明,当Y 不是有穷维空间时,1)的结论不成立. 3) 试举例说明,一般地,最佳逼近不惟一.4) 证明对于每一点x X ∈,x 关于子空间Y 的最佳逼近点集是凸集.证明:1).有下确界定义,0,n y Y ε∀>∃∈,使得n x y δδε≤-<+.因为Y 是有穷维子空间,从而存在子列{}{}k n n y y ⊂,使得0k n y y →,将上面不等式中的n 改为k n ,并令k →∞,便有0x y δδε≤-<+,由ε的任意性即可得到0x y δ-=,即0y 就是x 的最佳逼近元.2).例:在0c 空间中,令{}011:02n n nn n M x c ξξ∞∞==⎧⎫==∈=⎨⎬⎩⎭∑,则易证M 是0c 的闭子空间. 设()02,0,,0,x = ,下面说明对此0x ,M 中不存在最佳逼近元. 事实上,N m ∀∈,令()111,1,,1,0,0,2m m m x M -⎛⎫⎪=---∈ ⎪ ⎪⎝⎭个,则()00111(,)12m m m x x d x M →∞--=+⇒≤.下证0,1y M x y ∀∈->.用反证法.假设存在()12,,,,k y M ξξξ=∈ ,使得01x y -≤,则()0122,,,,k x y ξξξ-=--- ,011,2,12 1.k k x y ξξ⎧≤≥-≤⇒⎨-≤⎩又由()12211,21222kkk kkk k k ξξξξ∞∞==≤≥⇒≤<⇒<∑∑.这与121ξ-≤矛盾.所以0,1y M x y ∀∈->.两边取下确界,得到0(,)1d x M ≥,从而我们可以得到0(,)1d x M =,即在M 上找不到一点,使得该点是0x 的最佳逼近. 3).例:在2R 中,对()212,x x x R ∀=∈,定义范数12max(,)x x x =,并设()00,1x =,()11,0e =,a R ∈,则(){}01,1max ,1x ae a a -=-=,从而01min 1a Rx ae ∈-=,但最佳逼近元{}11a ae ≤不惟一.4).设M 为x 关于子空间Y 的最佳逼近点集,则对[]12,,0,1y y M λ∀∈∈,12(,)x y x y d x Y -=-=,从而()()()121212(1)(1)(1)(,)x y y x y x y x y x y d x Y λλλλλλ-+-=-+--≤-+--=又显然()12(1)(,)x y y d x Y λλ-+-≥,从而()12(1)(,)x y y d x Y λλ-+-=,即12(1)y y M λ+-∈,所以M 是凸集.17. 设(,)X 是赋范空间,如果对任意,,x y X x y ∈≠且1x y ==必有2x y +<,称(,)X 是严格凸赋范空间.1) 证明赋范空间(,)X 是严格凸的,当且仅当,对任意,x y X ∈,x y x y +=+必有(0)x y αα=>.2) 证明在严格凸赋范空间中,对于每一个x X ∈,x 关于任意子空间Y 的最佳逼近是惟一的.证明:1). 必要性. 设x y x y +=+,则11x y x y xy x y x y x x yy +=⇒+=+++,由严格凸性,x yc x y=,即c x x y y=,令c x yα=,即可得到x y α=.充分性.用反证法,如果存在,,x y X x y ∈≠且1x y ==,使得(1)1x y ββ+-=,即(1)(1)x y x y ββββ+-=+-,由假设,必存在α,使得(1)x y βαβ=-,又因为1x y ==,从而可得x y =,矛盾.2).用反证法.事实上,若(),0d x Y >,并有12(,)x y x y d x Y -=-=,则对[]0,1α∀∈,由严格凸性有()()()12121211(1)(1)(,)(,)(1)1(,)(,)x y y x y x y d x Y d x Y x y x y d x Y d x Y αααααα-+-=-+--⎛⎫⎛⎫--=+-< ⎪ ⎪⎝⎭⎝⎭即()12(1)(,)x y y d x Y αα-+-<,这显然与(,)d x Y 的定义矛盾.但若(),0d x Y =,12,y y 是相应的最佳逼近元,则必有12y x y ==,从而最佳逼近元必是惟一的. 18.设(,)X 是赋范空间,如果对任意0ε>,存在0δ>,当x y ε-≥,1x y ==时必有2x y δ-≤-,称(,)X 是一致凸的. 证明: 1) 一致凸赋范空间必是严格凸的. 2) [],C a b 不是一致凸的. 3) []1,L a b 不是一致凸的.证明:设X 是一致凸的赋范空间,,,x y X x y ∈≠且1x y ==,则必存在00ε>,使得0x y ε-≥(若不然,对0ε∀>,都有x y x y ε-<⇒=,矛盾). 由一致凸性,对此00ε>,必存在0δ>,使得22x y δ-≤-<,从而X 是严格凸的. 2). 由1),只需证明[],C a b 不是严格凸的即可.以[]0,1C 为例.取()1,()x t y t t ≡= 都满足1x y ==,但2x y +=.从而不是严格凸的.3). 同理. 取()1,()2x t y t t ≡=,都满足1x y ==,但2x y +=.从而不是严格凸的.习题三1. 设1sup n n α≥<∞,在1l 上定义算子:T y Tx =,其中{}{},k k x y ξη==,k k k ηαξ=(1,2,)k = . 证明T 是1l 上的有界线性算子并且1sup n n T α≥=.证明:111,sup k k k k k k k k k k x ηαξηαξα∞∞≥====≤∑∑ ,()112,,,,,k x l ξξξ∀=∈()112,,,,k y l ηηη∴=∈ ,且1sup k k Tx x α≥≤ ,1sup k k T α≥∴≤.另一方面,由上确界定义,对任意的n ,存在k n ,使得11sup k n k k n αα≥>-. 取()010,0,,1,0,k n x = 第项为,则显然01x =,且00k n Tx T x T α=≤=,从而11sup k k T nα≥-<. 令n →∞,则有1sup k k T α≥≤. 所以1sup k k T α≥=.3. 证明Banach 空间X 是自反的,当且仅当*X 是自反的.证明:必要性. 设X 是自反的,:**()J X X J X →=为典型映射,现证*X 也自反. 任取****:x x J X =→ k ,显然**x X ∈. 因为()****()()(*)x Jx x x Jx x ==,及X 的自反性得()**R J X =,因此对任意的****x X ∈,()*******(*)x x x x =,由此知1****J x x =,其中1:****J X X →为典型映射,且()1***R J X =,从而*X 是自反的.充分性. 设*X 自反,假设X 不是自反的,即0()J X X =为**X 的真闭子空间(因为J 是X 到0X 上的等距同构映射,且X 完备),由Hann —Banach 定理,存在0******x X ∈,满足0***1x =,且()**x J X ∀∈,()0*****0x x =. 因为()1****J X X =,故存在*0*x X ∈,使得********001001,()x x J x x ===,********001001,()x x J x x ===,因而对任意的****x X ∈,()****00(**)**x x x x =,但()()*****000()0,x x x x Jx x X ===∀∈,因此*0*x X θ=∈,这与*01x =矛盾,从而设X 是自反的. 20. 设X 是一致凸赋范空间,()0,1,2,n x x X n ∈= . 证明如果()0Wn x x n −−→→∞且()0n x x n →→∞,则()0n x x n →→∞.证明:不妨设00,n x x θ≠≠,用反证法. 为简单起见,设01n x x ==,且n x 不按范数收敛于0,那么可设00ε∃>,使得00n x x ε-≥,由空间的一致凸性,0δ∃>,使得02n x x δ+≤-. 由于0Wn x x −−→,故*f X ∀∈,且1f =有()()0n f x f x →,从而有()()002n f x x f x +→. 由于()002n n f x x f x x δ+≤+≤-及()()0001112sup sup lim22n n f fx f x f x x δ→∞==-==+≤知01x <,这与01x =矛盾,从而必有()0n x x n →→∞.22. 证明空间(1)pl p <<∞上的有界线性泛函的一般形式为()1k kk f x αξ∞==∑,其中{}pk x l ξ=∈,{}111qk y l p q α⎛⎫=∈+= ⎪⎝⎭并且11q k k f q α∞=⎛⎫= ⎪⎝⎭∑,()*p q l l =.证明:令()0,,0,1,0,n e = ,显然()12,,,,pn x l ξξξ∀=∈ ,有1i ii x eξ∞==∑. 设()1i i i f x ξη∞==∑,其中()12,,,,qn y l ηηη=∈ ,则由Hölder 不等式,我们可以得到 ()11111qpqpi i i i i i i f x y x ξηηξ∞∞∞===⎛⎫⎛⎫=≤= ⎪ ⎪⎝⎭⎝⎭∑∑∑,从而可知()*pf l ∈,且f y ≤.反之,对任一()*p f l ∈,()()1,2,i i f e i η== ,()12,,,,n y ηηη= ,下证q y l ∈且()1i i i f x ξη∞==∑及f y =. 事实上,令11sgn nq p n ii i i x e l ηη-==∈∑,则()()111sgn nnq qn ii i i n i i f x f e f x ηηη-====≤∑∑. 由于()11111nnppp q q n ii i i x ηη-==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑,因此()111,2,nqq i i fn η=⎛⎫≤= ⎪⎝⎭∑ ,令n →∞得11nqq i i y fη=⎛⎫=≤ ⎪⎝⎭∑,令(),:*p q Tf y T l l =→,则y T f f =≤,从而y T f f ==. 又显然T 是线性算子,且为满射,故为()*p l 到q l 上的等距同构映射,从而()*p q l l =.习题四1. 设12,,,,n H H H 是一列内积空间,令{}21:,.n n n nn H x x H x ∞=⎧⎫=∈<∞⎨⎬⎩⎭∑对于{}{},n n x y H ∈,定义{}{}{}(,)n n n n x y x y αβαβαβ+=+∈k ,{}{}(),n n x y ()1,n n n x y ∞==∑.证明H 是内积空间,并且当每一个n H 都是Hilbert 空间时,H 是Hilbert 空间. 证明:先证H 是内积空间. 因为()()11222211111,,n n n n n n n n n n n n n x y x y x y x y ∞∞∞∞∞=====⎛⎫⎛⎫≤≤≤<∞ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑,故定义{}{}(),nnx y ()1,nnn x y ∞==∑是有意义的. 又由{}{}{}()()()(){}{}(){}{}()111,,,,,,nnnnn n n n n n n n n n n n n x y z xy z x z y z x z y z αβαβαβαβ∞∞∞===+=+=+=+∑∑∑及{}{}()()()(){}{}()111,,,,,nnnnnnnnnnn n n x y x y y x y x y x ∞∞∞=======∑∑∑,而且{}{}()()1,,0nnnnn x x x x ∞==≥∑及{}{}()()(),0,01,2,n n n n x x x x n =⇔==⇔(){}1,2,n n x n x θθ==⇔= ,由内积定义可知H 是内积空间.再证H 是完备的. 设{}()1i i x ∞=是H 中的Cauchy 列,其中()()()()()12,,,,i i i i n x x x x = .由定义00,i ε∀>∃,使得当0,i j i >时,有()()i j x x ε-<,即122()()1i jn nn x x ε∞=⎛⎫-< ⎪⎝⎭∑,于是()()i j n n x x ε-<,所以{}()1i n n x ∞=是n H 中的Cauchy 列(n 固定),设()(0)i n n x x →,并令()(0)(0)(0)12,,,,n x x x x = ,由前证122()()1i j n n n x x ε∞=⎛⎫-< ⎪⎝⎭∑,0,i j i ∀>,故对固定的k 使得2()()21ki j n nn x x ε=-<∑. 令j →∞,则2()(0)21ki n nn x x ε=-≤∑,再令k →∞,就有2()(0)21i n nn x x ε∞=-≤<∞∑,即()i x x H -∈. 因为H 是线性空间,于是有()()()i i x x x x H =--∈,故点列()()1,2,i x i = 按H 中范数收敛于x ,于是H 是完备的,即是Hilbert 空间.2. 设H 是Hilbert 空间,M 是H 的闭子空间. 证明M 是H 上某个非零连续线性泛函的零空间,当且仅当M ⊥是一维子空间.证明:必要性. 若M 是H 上某个非零连续线性泛函的零空间,由Riesz 表示定理知存在f y H ∈,使得()(),,f f x x y x H =∀∈,于是()(){}{}:,0,f f f M x f x x y y H y ⊥===∈=,由本节题4知.{}(){}span f f M y y ⊥⊥⊥==是一维子空间.充分性. 若M ⊥是非零元y 生成的一维子空间,,x H ∀∈令()(),f x x y =,则显然有()0f x x y =⇔⊥,即()x M M ⊥⊥∈=,所以M 是非零连续线性泛函f 的零空间.4. 设M 是Hilbert 空间H 上的非空子集,证明()M ⊥⊥是包含M 的最小闭子空间.证明:记span Y M =,则Y 是包含M 的最小闭子空间,故只需证()M Y ⊥⊥=.事实上,x Y ∀∈,有s p a n n x M ∈,使得n x x →. y M ⊥∀∈有()(),lim ,0n n x y x y →∞==,故()x M ⊥⊥∈,即有()Y M ⊥⊥⊂. 又因为Y 是闭子空间,故有()Y Y ⊥⊥=(证明见指南P63例5). 于是由M Y ⊂可得Y M ⊥⊥⊂,进而可得()()M Y Y ⊥⊥⊥⊥⊂=,所以可得()span M Y M ⊥⊥==.5. 设H 是内积空间,M 是H 的线性子空间. 证明如果对于每一个x H ∈,它在M 上的正交投影存在,则M 必是闭子空间.证明:x M ∀∈,存在{}n x M ⊂,使得lim n n x x →∞=. 由条件0101,,x x x x M x M ⊥=+∈∈, 于是001n x x x x x M ⊥-→-=∈. 注意到0n x x M -∈,故有()()1101,lim ,0n n x x x x x →∞=-=即1x θ=,从而0x x M =∈,从而M 是闭子空间.6. 证明在可分内积空间中,任一标准正交系最多为一可数集.证明:设H 为可分的内积空间,{}1n n x ∞=为H 的可数稠密子集,又设{}:e λλ∈Λ为H 中任意一簇标准正交系,则,n x λ∀∈Λ∃,使得2n x e λ-<. 若Λ不可数,则必有{}1k n n x x ∞=∈以及,','λλλλ∈Λ≠,使得',22k k x e x e λλ-<-<,于是''k k e e x e x e λλλλ-≤-+-<但由勾股定理,有222''2e e e e λλλλ-=+=,即'e e λλ-=H 中的任一标准正交系最多为可数集. 7. 设{}e I αα∈是内积空间H 中的标准正交系. 证明对于每一个x H ∈,x 关于这个标准正交系的Fourier 系数(){},:x e I αα∈中最多有可数个不为零.证明:记{}:F e I αα=∈,由Bessel 不等式, x X ∀∈,若取n 个F 中元素e λ排成一列,不妨设为12,,,n e e e ,则有()221,ni i x e x =≤∑,于是在F 中使(),x e λ≥得e λ只能为有限个,记():,,n F e x e λλλ⎧=∈Λ≥⎨⎩及1ˆnn F F ∞== . 显然ˆF 为可数集,且当ˆe F F λ∈-时,(),0x e λ=,即x 的Fourier 系数(){},:x e I αα∈中最多有可数个不为零.8. 设H 为Hilbert 空间,()0,1,2,n x x H n ∈= .当n →∞时,0Wn x x −−→,且0n x x →,证明()0n x x n →→∞.证明:由()()()()()2,,,,,n n n n n n n x x x x x x x x x x x x x x -=--=--+,故当n →∞时,()2222,0n x x x x x -→-=,即()0n x x n →→∞.11. 设T 是Hilbert 空间H 上的线性算子且对所有,x y H ∈,()(),,Tx y x Ty =.证明T 是有界算子.证明:只需证明T 是H 上的闭线性算子. 设n x H ∈,且满足00,n n x x Tx y →→,则y H ∀∈,由条件()(),,n n Tx y x Ty =. 令n →∞,则有()()()000,,,y y x Ty Tx y ==,故00y Tx =,即T 是闭线性算子,从而由闭图像定理可知T 有界.13. 设H 是Hilbert 空间,(),x y ϕ是定义在H H ⨯上的泛函且关于x 是线性的,关于y 是共轭线性的并且存在常数C ,使得()(),,x y C x y x y H ϕ≤∈.证明:存在惟一算子()A B H ∈,使得对所有,x y H ∈,()(),,x y Ax y ϕ=且A ϕ=,其中()11sup ,x y x y ϕϕ===.证明:因(),x y ϕ关于y 是共轭线性的,故(),x y ϕ关于y 是线性的,固定x H ∈,则(),x y ϕ为H 上的有界线性泛函,由Riesz 表示定理,存在惟一*x H ∈,使得()(),,*x y y x ϕ=,即()(),*,x y x y ϕ=. 作映射:*A x x ,有()()(),*,,x y x y Ax y ϕ==由于()()()()()()()()1212121212,,,,,,,A x x y x x y x y x y Ax y Ax y Ax Ax y αβϕαβαϕβϕαβαβ+=+=+=+=+,即()1212A x x Ax Ax αβαβ+=+又因为()()2,,Ax Ax Ax x Ax x y ϕϕ==≤,即A ϕ≤,所以()A B H ∈.再由Schwartz 不等式,有()(),,x y Ax y Ax y A x y ϕ=≤≤,故A ϕ≤,于是 A ϕ=. 若设()T B H ∈,且满足()(),,x y Tx y ϕ=,则()(),,,,A xy T x y xy H =∀∈,即()(),0,,A T x y x y H -=∀∈. 特别地,令()y A T x =-,得()20A T x -=,因此(),A T x x H θ-=∀∈,故0A T -=,所以A T =.14. 设{}n T 是Hilbert 空间H 上的有界自共轭算子列且()0n T T n -→→∞. 证明T 也是自共轭的.证明:由()()***0n n n T T T T T T n -=-=-→→∞,即可得**n T T →,由n T 的自共轭性即可得T 也是自共轭的.2011年博士研究生第二次公开招考报考须知发布时间:2011-02-24 08:37 来源:本站点击量:303一、报名2011博士研究生第二次公开招考网上报名时间:2011年3月4日-13日,网址:/hityzb/zs.jsp?cla=2。

泛函分析习题解答

泛函分析习题解答

第一章 练习题1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-∀∈⎰,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么?答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =L ,定义,01,():1,1 2.n n x x f x x ⎧≤<=⎨≤≤⎩ 则{()}([0,2])n f x C ⊂在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++⎰⎰⎰另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈⎧→=⎨∈⎩因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dxx dx x dx n ρ=-=-==→+⎰⎰⎰但()([0,2])g x C ∉.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密子集. 事实上, 任意取定一个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-<⎰.事实上, 首先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ⊂, 只要mE δ<, 就有|()|3Ef x dx ε<⎰.因为()f x (Lebesque)可积, 故几乎处处有限, 即10N N m E ∞==I ,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个自然数N , 使得N mE δ<且|()|3NE f x dx ε<⎰,因此有|()|f x N ≤,[,]\N x a b E ∈.引入一个新函数定义为(),[,]\():0,,NNf x x a b E f x E ∈⎧=⎨⎩% 显然对于[,]x a b ∈恒有|()|f x N ≤%. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ⊂, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进而()()g x f x ≡%,x F ∈.则()g x 限制在[,]a b 即为所求, 因为: [,](,)|()()|a b f g f x g x dx ρ=-⎰([,]\)|()()|a b F Ff xg x dx ⋃=-⎰[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-⎰⎰%[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx⋂≤++-+-⎰⎰⎰%%[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+⎰\|()|0NNF E F E f x dx dx ⋂++⎰⎰333εεεε<++=.(ii) 1(([,]),)L a b ρ是完备的空间.2. 设(,)X ρ是距离空间,A 是X 的子集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2) 若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三角不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+.即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满足Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =L , 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=→; 但显然{}n x 不是Cauchy 列. 这里的原因就在于(,)x A ρ不是点到点之间的距离, 而是点到集合的距离, 当这个集合A 含有不止一个点时, (,)x A ρ不再具有点点之间距离的性质.3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法一:记为方便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈⎧==⎨∈⎩显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞⊂.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是ℵ.进而有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b E mE E a b x a b E mE a a E a b x a b E mE E a b x a b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ⊂∈=⊂∈=⊂∈=⊂∈==-=-=-==我们用反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g L L , 因此至少有一个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.而由三角不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=这是一个矛盾. 因此([,])L a b ∞不可能是可分的.证法二:既然E 是正测度集,存在0R >使得((0,))0m S R E ⋂>. 不难验证, 存在一列正数1{}i i R ∞=满足:120i R R R R <<<<<<L L ;且1([(0,)\(0,)])0i i m E S R S R +⋂>.对于每一个12(,,,,)i λλλλ=L L ,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈⋂,1,2,i =L . 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N表示具有上述性质的λ的全体. 则()A L E ∞⊂.既然对于不同的,λμ∈{0,1}N, (不妨设1(,,,)i λλλ=L L , 1(,,,)i μμμ=L L 且对于某个i ,0i λ=1i μ=)f λ与f μ不同的部分至少是正测度集1[(0,)\(0,)]i i E S R S R +⋂, 容易看出A 的势与{0,1}N的势都是连续统的势ℵ.进而有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λμλμλμρλμ++⊂∈=⊂∈⋂=⊂∈⋂=≥=-≥-=-= 我们用反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g L L , 因此至少有一个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f μ.而由三角不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λμλμρρρ=≤+≤+这是一个矛盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记{}[,]()a t K x a t b χ=<<,其中[,]1,,():0,.a t a x t x t x b χ≤≤⎧=⎨<≤⎩显然[,]K L a b ∞⊂, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=-1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, 而K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有一个可数的稠密子集合{()|1,2,}k A f x k ==L , 且11(,)3kk S f K ∞=⊇U . 但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以至少有K 中的两个不同的12[,][,],a t a t χχ属于同一个开球01(,)3k S f , 由此得到矛盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此矛盾表明[,]L a b ∞不可能是可分的.4. 设([,])kC a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义||||(,0)f f ρ=,则(([,]),||||)kC a b ⋅是Banach 空间.证:(1) 这里只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每一个0,1,,i k =L , ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x −−→−−→,,0,1,,n i n →∞=L , 其中“−−→−−→”表示是一致收敛. 如果我们记0()()f x f x =利用数学分析中函数序列一致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''===L (*)例如, 因为1()()n f x f x −−→−−→', 故 1()()xxn aaf t dt f t dt −−→−−→'⎰⎰, 即1()()()xn n af x f a f t dt −−→−−→-⎰, 又0()()n f x f x −−→−−→及0()()nf a f a −−→−−→, 故 001()()()xaf x f a f t dt -=⎰.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间.(2)证略.7. 证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ⋅是完备的. 记E 中的一组基为:12,,,n v v v L .因此对于任意的x E ∈, 存在唯一一组实数12,,,n x x x L , 使得1122n n x x x x =+++v v v L , 反之亦然.(i) 我们断言存在一个与x 无关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =L .(*)首先定义一个映射:nf ¡→¡为: 对于任意的12(,,,)n x x x L n ∈¡,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v L L .则对于任意的,x y E ∈(1122n n y y y y =+++v v v L )有1122||||(,,,)n n x y f x y x y x y -=---L 111||||||||||||n n n x y x y ≤-⋅++-⋅v v L≤由此容易知道f 是n R 上的连续函数. 记1B ∂是nR 中的单位球面, 即21121{(,,,)|1}nn k k B x x x x =∂==∑L . 则对于任意的11(,,)n x x B ∈∂L , 有1(,,)0n f x x >L .(事实上, 若有1(,,)0n f x x =L 则111(,,)||||0n n n f x x x x =++=v v L L ,因此110n n x x ++=v v L , 但12,,,n v v v L 线性无关, 故必有120n x x x ====L , 此与11(,,)n x x B ∈∂L 相矛盾. )注意到1B ∂是n R 中的有界闭集(紧子集), 连续函数f 必可在其上达到正的最小值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯一的一组实数12,,,n x x x L , 使得1122n n x x x x =+++v v v L , 不失一般性, 可设0x ≠因此, 12,,,n x x x L 不全为零, 注意到1y B ⎛⎫ ⎪=∈∂L , 故12()1,n f y f K +++=⎛⎫ ⎪=≥v L L或1122||||n n x x x x =+++≥v v v L 由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这里()()()()1122k k k k n n x x x x =+++v v v L ,即()()||||0k l x x -→, 当,k l →∞.利用(*)式便可以得到对于每一个1,2,,i n =L , 成立()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1¡中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =L ).记(0)()(0)(0)1122k n n xx x x =+++v v v L , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ⋅是完备的.9. 设X 为线性赋范空间, 0X 是X 的线性闭子空间. 在X 中定义等价关系:为0x y x y X ⇔-∈:. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是一个线性赋范空间.证:(一) 0/X X 按照所定义的线性运算是线性空间 (证明略).(二) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每一个 0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是一个确定的数, 因此00||||:/X X ⋅→R 是映射.(i) (非负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每一个自然数1,2,k =L , 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到一个序列0{}k y X ⊂且||||0k y x ⋅−−−→-.因为0X 是闭子空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y 取遍0X 中的所有元时,yλ也取遍0X 中的所有元, 反之亦然, 因此 00||[]||inf ||||inf ||||||y X y X yx x y x λλλλ∈∈=+=⋅+||inf ||||||inf ||||yy X X yyx x λλλλλ∈∈=+=+||inf ||||||||[]||z X x z x λλ∈=+=⋅,(iii) (三角不等式) 设,x y X ∈. 设0,u v X ∈, 当,u v 取遍0X 中的所有元时, u v +也取遍0X 中的所有元, 反之亦然, 进而, ,u v 的取法是相互独立的, 因此0||[]||inf ||||u X x y x y u ∈+=++,inf ||||u v X x y u v ∈=+++()0,inf ||||||||u v X x u y v ∈≤+++inf ||||inf ||||u X v X x u y v ∈∈=+++00||[]||||||x y =+.也可用下面的证明方法: 对于任意的0ε>, 由下确界的定义, 存在0,u v X εε∈使得0||||||[]||x u x εε+<+, 0||||||[]||y v y εε+<+,因此可以得到0||[]||inf ||||||||u X x y x y u x y u v εε∈+=++≤+++||||||||x u y v εε≤+++ 00||[]||||[]||2x y ε<++.因为0ε>的任意性, 可得0||[]||x y +00||[]||||[]||x y ≤+.10. 设X 为线性赋范空间,1nn x∞=∑收敛, 即1kk nn S x==∑按X 中的范数收敛, 则11nn n n xx ∞∞==≤∑∑.证:记1kk n n S x ==∑.对于有限项之和, 利用三角不等式, 成立111||||kk k nn n n n n S xx x ∞====≤≤∑∑∑. (*)又因为1kk nn S x==∑在范数意义下收敛, 其极限自然可以记为1nn x∞=∑, 即1k n n S x ∞=→∑,再一次利用三角不等式, 可以得到当k →∞时11||||0k nk n n n S xS x ∞∞==-≤-→∑∑,即1||||k nn S x∞=→∑, 因此在(*)式中令k →∞, 可得11nn n n xx ∞∞==≤∑∑.11. 设{0}X ≠为线性赋范空间, 试证X 是Banach 空间当且仅当{|||||1}x X x ∈=是完备的.证:记{|||||1}T x X x =∈=.(必要性) 设X 是Banach 空间, {}n x T ⊂是T 中的Cauchy 列, 即||||1n x =且||||0m n x x -→(当,m n →∞).因为X 是Banach 空间, 故{}n x 收敛, 即存在0x X ∈, 使得||||0n x x ⋅−−→, 由三角不等式容易得到:||||||||||||x y x y -≤-,因此00||||||||||||0n n x x x x -≤-→,知0||||||||n x x →, 故0||||1x =因此0x T ∈, 即T 完备.(充分性) 设T 是完备的, 并设{}n x X ⊂是X 中的Cauchy 列, 即||||0m n x x -→当,m n →∞. 由||||||||||||0m n m n x x x x -≤-→,知{||||}n x 是1¡中的Cauchy 数列, 因此收敛, 即存在某个数A ∈¡使得||||n x A →.如果0A =, 显然{}n x 收敛于X 中的零元, 故不妨设0A >. 由此知当n 充分大时, 总有||||0n x >, 不失一般性, 可设对所有的n , 都有||||0n x >. 考虑新的点列:||||nn n x y x =, 显然n y T ∈. 进而 ||||||||||||m n m n m n x xy y x x -=- ||||||||||||||||m m m n m n n n x x x xx x x x ≤-+- 111||||||||||||||||m m n m n n x x x x x x =-+-, 由此易知{}n y T ⊂是T 中的Cauchy 列. 因为T 作为距离空间是完备的, 故{}n y 收敛, 即存在0y T ∈, 使得||||0n y y ⋅−−→. 最后我们断言: ||||0n x Ay ⋅−−→.事实上,0||||||||||||||||n n n n n x Ay x Ay x x x -=- 0||||||||n n n Ay x y x =-000||||||||n n n Ay x y y y x ⎛⎫≤-+- ⎪⎝⎭00||||1||||n n n A x y y y x ⎛⎫=-+-⎪⎝⎭0→.综上可得X 是Banach 空间.15.试证定理4中(f)式定义的(,)x y 的确满足内积分的定义.证明: 即要证明: 对于赋范线性空间(,||||)X ⋅, 如果范数满足平行四边形法则:2222||||||||2(||||||||)x y x y x y ++-=+(*)则由221(,):[||||||||]4x y x y x y =+--R (K =R 时) (f ’)或221(,):[||||||||4x y x y x y =+--C22||||||||]i x iy i x iy ++-- (K =C 时) (f)所定义的确实是内积. (i) 对于x X ∈,221(,)[||||||||4x x x x x x =+--C22||||||||]i x ix i x ix ++--2||||0x =≥,因为|1||1|i i +=-, 并且根据范数的性质2(,)00(,)||||0x x x x x x =⇔==⇔=C C .同理可证(,)0x x ≥R 且(,)00x x x =⇔=R . (ii)首先考虑K =R 时的情形, 对于,,x y z X ∈, 可将(,)(,)x z y z +R R 表示为如下形式: (,)(,)x z y z +R R221[||||||||4x z x z =+--22||||||||]y z y z ++-- ()()22221||||||||||||||||4x z y z x z y z ⎡⎤=+++--+-⎣⎦ 22142222x y x yx y x yz z ⎛⎫+-+-=++++-⎪ ⎪⎝⎭22142222x y x y x y x y z z ⎛⎫+-+---++--⎪ ⎪⎝⎭, 再由平行四边形法则222222x y x y x y x yz z +-+-++++-22222x y x y z ⎛⎫+-=++ ⎪ ⎪⎝⎭; 222222x y x y x y x yz z +-+--++--22222x y x y z ⎛⎫+-=-+ ⎪ ⎪⎝⎭. 因此(,)(,)x z y z +R R 221222x y x yz z⎛⎫++=+-- ⎪ ⎪⎝⎭2,2x y z +⎛⎫= ⎪⎝⎭R.进而, 令0y =可以得到(,)x z R 2,2x z ⎛⎫= ⎪⎝⎭R,这里利用了(0,)0z =R . 因为x 是任意的, 故可将x 换为x y +, 即可得到(,)x y z +R 2,2x y z +⎛⎫= ⎪⎝⎭R. 对照上述二式, 即有(,)(,)x z y z +R R =(,)x y z +R .(**)至于K =C 时的情形, 注意到从形式上看(,)=(,)(,)x y x y i x iy +C R R ,利用上述已经证明了的等式(**)不难得到(,)(,)x z y z +C C =(,)x y z +C .(iii) 首先考虑K =R 时的情形, 对于,x z X ∈和任意实数,s t ∈R , 由已经证明的(**)式有(,)(,)sx z tx z +R R =((),)s t x z +R ,可知函数():(,)f t tx z =R 满足如下的函数方程:()()()f s f t f s t +=+.(***)又():(,)f t tx z =R 关于t 是连续的, 因此必有()(1)(,)f t f t t x z ==R .(事实上, 由(***)式对于任意的正整数n 和m , 利用数学归纳法有()()f ns f s s s =+++L ()()()()f s f s f s nf s =+++=L ;进而取1s n =, 有11()(1)f f n n=, 因此 1()()(1)n nf nf f m m m==. 又(***)中取0s t ==可得(0)0f =, 取s t =-可得()()f s f s -=-. 因此对于所有的有理数, 均成立()(1)f s sf =.利用()f s 的连续性, 可知对所有的实数也成立. ) 因此得到(,)()(1)(,)tx z f t f t t x z ===R R .至于K =C 时的情形, 注意到由(f)221(,)[||||||||4ix y ix y ix y =+--C 22||||||||]i ix iy i ix iy ++--221[||||||||4ix y ix y =+--22||||||||]i x y i x y ++-- 22221[||||||||4i ix y i ix y =-++-22||||||||]i x y i x y ++-- 22[||||||||4ii x iy i x iy =--++22||||||||]x y x y ++-- (,)i x y =C .由此也容易得到, 对于t ∈C(,)(,)tx z t x z =C C .(iv) 当K =R 时, 容易知道221(,)[||||||||](,)4x y x y x y y x =+--=R R ;而当K =C 时, 直接计算也可得到221(,)[||||||||4x y x y x y =+--C 22||||||||]i x iy i x iy -++-221[||||||||4y x y x =+--22||||||||]i y ix i y ix --++ (,)y x =C .16.设D 是C 中单位开圆盘, 即{|||1}D z z =∈<C . dA 是D 上的面积测度, 2()a L D 定义为22(){|()|}a L D f f Df z dz =<∞⎰在中解析且|. (见课本第六页例4)在2()a L D 中定义内积为,()()Df g f z g z dA =⎰.试证(1)1()n n z ϕ-=(1,2,n =L )构成2()a L D 的正交基.(2) 若2()af L D ∈的Taylor 展开式是0()kk k f z a z ∞==∑, 则201kk a k∞=<∞+∑;(3) 若2()ag L D ∈的展开式是0()kk k g z b z∞==∑, 则,1k kk a b f g k π∞==+∑. 证:先给出一个预备性结果: 对于2()a f L D ∈,因为()f z 是解析函数, 因此可以展开为幂级数: 0()kk k f z a z∞==∑.由此可以断言:(),()n f z z ϕ=n a - (*)事实上,因为()f z 是解析函数,幂级数kk k a z∞=∑在D 中内闭一致收敛, 即对于D 的任意闭子集F ,kk k a z∞=∑在F 上一致收敛. 对于01ε<<, 以下取闭子集F 为:{|||1}D z D z εε=∈≤-.容易知道D ε是D 中的闭子集.对于每一个1,2,n =L ,注意到级数10k k a z -=∑在ε中仍旧一致收敛, 以下的积分号和求和号可以交换顺序:(),()()()n n Df z z f z z dA ϕϕ=⎰lim ()()n D f z z dA εεϕ→=⎰100lim k D k a z dA εε∞-→==∑⎰10k n k D a z z dA εε∞-→==⎰10(cos sin )(cos(1)sin(1))k n k D a r k i k n i n dAεεθθθθ∞+-→==+⋅⋅---⎰2110(cos sin )(cos(1)sin(1))k n k a d r k i k n i n rdrπεεθθθθθ∞-+-→==+⋅⋅---⎰⎰1210(cos sin )(cos(1)sin(1))k n k a r rdr k i k n i n d επεθθθθθ∞-+-→==+⋅⋅---⎰⎰12110n n a r dr εεπ---→=⎰210(1)2nn a nεεπ-→-=n a -=因此(*)式得证.(1) 首先证明{}111()n n n n z ϕ∞∞-==⎫⎪=⎬⎪⎭是正交集. 事实上, 对于复数(cos sin )z r i θθ=+,根据所给的定义112(),()sin)sin)mm nm n n mz z dAi i r dAϕϕθθθθ----+-==+-⎰⎰2(cos(1)sin(1))(cos(1)sin(1))n mDr m i mn i n dAθθθθ+-=-+-⋅⋅---21200(cos(1)sin(1))(cos(1)sin(1))n md r m i mn i n rdrπθθθπθθ+-=-+-⋅⋅---⎰⎰12200(cos(1)(1)sin)(cos(1)sin(1))n mr rdr m i mn i n dπθθθθθ+-=-+-⋅---⎰11,,20,.m nmm nππ==⎪=⎨⎪≠⎩因此{}1()n nzϕ∞=是正交集. 因为2()aL D是完备的空间, 故只需再证{}1()n nzϕ∞=是完备的即可得知其也是正交基. 设有2()af L D∈且{}1()()n nf z zϕ∞=⊥. 因为()f z是解析函数, 因此可以展开为幂级数:()kkkf z a z∞==∑.根据(*)式,可以得到,对于每一个1,2,n=L,0(),()nf z zϕ=na-=由此即得1na-=, (1,2,n=L). 所以()0f z≡. 即{}1()n nzϕ∞=是完备的, 因此是2()aL D中的正交基.(2) 既然{}1()n nzϕ∞=是基,由Parseval等式可以得到221(),()||||nnf z z fϕ∞==<∞∑.利用(*)式,上式的左端可以表示为:21221110(),().1nnn nnn n nf z za aan nϕππ∞=∞∞∞--======+∑∑∑∑由此可得所预期的结论.(3) 对于()kkkf z a z∞==∑和()kkkg z b z∞==∑, 有1()()kkf z a z∞+==∑和1()()kkg z b z∞+==∑,利用内积的连续性和(*)式,1,(),()kkf g a z g z∞+==∑1(),()kka z g z∞+==∑ka∞==∑kka∞==∑.1k kka bkπ∞==+∑18.设H是内积空间,{}n e是H中的正交集, 求证:1(,)(,)||||||||n nnx e y e x y∞=≤⋅∑, (,x y H∀∈).证:对于任意的正整数k, 由Cauchy不等式和Bessel不等式可以得到1(,)(,)kn nnx e y e=≤∑≤||||||||x y≤⋅,由k的任意性, 知正项级数1(,)(,)n nnx e y e∞=∑收敛, 因此级数1(,)(,)n nnx e y e∞=∑绝对收敛,并且11(,)(,)(,)(,)||||||||nnnnn n x e y e x e y e x y ∞∞==≤≤⋅∑∑.19.试证nt ⎫⎪⎬⎪⎭构成2([0,])L π的正交基, 但不是2([,])L ππ-的正交基. 证:(1) 首先证明{}11()n n n t nt ϕ∞∞==⎫⎪=⎬⎪⎭是2([0,])L π中的正交集. 事实上,[]0(),()2cos()cos()2m n t t ntdtm n t m n t dtππϕϕπ==-+--⎰1()1,,0,.m n m n ππ⎧--==⎪=⎨⎪≠⎩因此{}1()n n t ϕ∞=是2([0,])L π中的正交集. 同理, 也容易证明{}1()n n t ϕ∞=还是2([,])L ππ-中的正交集.(2) 因为2([0,])L π是完备的空间, 故只需再证{}1()n n t ϕ∞=是完备的即可得知其也是正交基. 设有2([0,])f L π∈且{}1()()n n f t t ϕ∞=⊥. 将()f t 做奇延拓成为°()f t : °(),[0,],():(),[,0).f t t f t f t t ππ∈⎧=⎨--∈-⎩则°()f t ∈2([,])L ππ-. 注意到对于1,2,n =L , 利用{}1()()n n f t t ϕ∞=⊥,°°,()sin n f f t ntdt ππϕ-=⋅⎰ °°0()sin ()sin f t ntdt f t ntdt ππ-=⋅+⋅⎰⎰ 00()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰00()sin ()()sin f s n s ds f t ntdt ππ=-⋅-+⋅⎰⎰2()sin 0f t ntdt π=⋅=⎰.设{}{}00()cos n n n t nt ψ∞∞===,对于0,1,2,n =L ,利用()f t 是奇函数, 可得°°,()cos 0n f f t ntdt ππψ-=⋅=⎰. 因此°{}{}()10()()()n n n n f t t t ϕψ∞∞==⊥⋃.进而也容易得到°()f t ⊥⎫⎬⎭L L .又已经知道与{}{}{}{}1010()()sin )cos n n n n n n t t t nt ϕψ∞∞∞∞====⋃=⋃仅相差一个常数因子的三角函数系⎫⎬⎭L L 是2([,])L ππ-中的正交基, 因此°()0f t =, a.e. [,]t ππ∈-,即有()0f t =, a.e. [0,]t π∈.因此{}1()n n t ϕ∞=是2([0,])L π中的正交基.(3) 注意到nt ⎫⎪⎬⎪⎭在2([,])L ππ-中不是完备的, 例如对于恒等于常数1的函数2()1([,])f t L ππ≡∈-是非零元, 但对于1,2,n =L ,,1sin 0n f ntdt ππϕ-=⋅=⎰.因此, nt ⎫⎪⎬⎪⎭虽然是2([,])L ππ-的正交集, 但不是正交基.24. 试给出1([,])C a b 中列紧集的判别条件. 证:设子集1([,])A C a b ⊂且0x 是[,]a b 中一个数. 记{()|()}A f x f x A ''=∈及0{()|()}B f x f x A =∈.则A 是1([,])C a b 中的列紧集的充分必要条件是 (i) A '在([,])C a b 中有界; (ii) B 是R 中的有界集;(iii) A '是([,])C a b 中等度连续的集合.[充分性] 设1([,])A C a b ⊂满足条件(i), (ii)和(iii). 根据1([,])C a b 中范数的定义: 对于1([,])f C a b ∈,1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+,容易看出,1([,])([,])C a b C a b k k f f f f −−−−→⇔−−−−→且([,])C a b k f f ''−−−−→ 因此只需证明A 和A '分别是([,])C a b 中的列紧集即可, 根据Arzela-Ascoli 定理, 这也只需证明A 和A '分别在([,])C a b 中有界且等度连续即可. 事实上, A '在([,])C a b 中有界性和等度连续已由所给条件得到保证(即(i)和(iii)). 还需证明A 在([,])C a b 中的有界性和等度连续性. 记A '在([,])C a b 中的一个界为A M ',B 作为R 中的有界集, 一个界纪为B M .对于任意的[,]x a b ∈, 利用中值定理, 有0000|()||()()||()||()()||()|().A B f x f x f x f x f x x f x M b a M ξ'≤-+'=-+≤-+ 此即表明[,]max |()|()A B x a b f x M b a M '∈≤-+, 所以A 在([,])C a b 中有界,且界为()A B M b a M '-+. 进而对于,[,]x y a b ∈|()()||()()|||.A f x f y f x y M x y ξ''-=-≤-由此易知A 具有等度连续性.[必要性] 设A 是1([,])C a b 中的列紧集, 即对于A 的任何点列1{()}n n f x ∞=, 1{()}n n f x ∞=在1([,])C a b 中的范数(距离)1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+意义下都有收敛的子列1{()}k n k f x ∞=. 因此,1{()}n n f x ∞=和1{()}n n f x ∞='分别在([,])C a b 中有收敛的子列的1{()}k n k f x ∞=和1{()}k n k f x ∞='. 这表明, 根据Arzela- Ascoli 定理, A 和A '均是([,])C a b 中的列紧集, 因此A 和A '均在([,])C a b 中有界且等度连续, 因此得到(i)和(iii). 由A 的有界性, 可以知道集合0{()|()}B f x f x A =∈对于任意的0x [,]a b ∈都是R 中的有界集, 因此得到(ii). 26. 设(,)X ρ是紧距离空间,映射:f X X →满足1212((),())(,)f x f x x x ρρ<. (12x x ≠)则(1) f 是否有唯一的不动点? (2) f 是否为压缩映射?解答: (1) f 存在唯一的不动点, 证明如下: (存在性) 定义映射:h X →R 为()(,())h x x f x ρ=.由所给条件知此映射是连续的, 而X 是紧空间表明此映射能在X 中取得上下确界. 因此存在y X ∈, 使得()(,())inf ()x Xh y y f y h x ρ∈==.断言()inf ()0x Xh y h x ∈==,则y 是f 的不动点:()y f y =. 若不然, ()0h y >, 则在所给的条件中取()x f y =有(())((),(()))(,())()h f y f y f f y y f y h y ρρ=<=,此与y 达到()h x 的下确界相矛盾.(唯一性) 若还有z X ∈使得()z f z =但z y ≠. 仍由所给的条件, 有0(,)((),())(,)z y f z f y z y ρρρ<=<.这是个矛盾. 故必有z y =.(2) f 可以不是压缩映射. 反例如下:[反例1] 记[0,1]X =, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈,(,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,():1x T x x=+. 显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 则,x y 中至少有一个不为零, 由此容易得到||(,)11(1)(1)x y x y Tx Ty x y x y ρ-=-=++++ ||x y <-(,)x y ρ=.所以T 满足所需的条件, 但T 不是压缩映射, 因为,[0,1],[0,1](,)1supsup 1(,)(1)(1)x y x y x yx yTx Ty x y x y ρρ∈∈≠≠==++.因此不存在常数[0,1)α∈, 使得对于所有的,x y X ∈,(,)(,)Tx Ty x y ραρ≤.[反例2] 记1{0}1,2,X n n ⎧⎫=⋃=⎨⎬⎩⎭L , 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈, (,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,11,,():10,0,x T x n n x ⎧=⎪=+⎨⎪=⎩显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 如果,\{0}x y X ∈, 则有正整数,m n , m n ≠, 使得11,x y n m==,且11||(,)11(1)(1)m n Tx Ty n m n m ρ-=-=++++ ||m n nm-<11(,)x y n m ρ=-=; 如果,x y 中有一个为零, 例如0x =, 也有11(,)011Tx Ty m m ρ=-=++1m<(,)x y ρ=. 所以T 满足所需的条件, 但T 不是压缩映射, 因为例如对于 11,x y n m==, 当,m n →∞时, 成立11(,)11111(,)(1)(1)Tx Ty mnn m x y n m n mρρ-++==→++-,即不存在[0,1)α∈, 使得(,)(,)Tx Ty x y ραρ≤..补充题. 设二元函数(,)([,][,])g x y C a b a b ∈⨯,A 是([,])C a b 中的一个有界集, 记():(,)()()ba A F x g x y f y dy f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰%. (i) 证明A%是([,])C a b 中的列紧集; (ii) 问当A 还是([,])C a b 中的闭集时, A%是不是紧集? 证:(i) 因为(,)([,][,])g x y C a b a b ∈⨯, 不难得知A⊆% ([,])C a b . 根据Arzela-Ascoli 定理, 只需再证明A%在([,])C a b 中有界且等度连续即可. (a) A%在([,])C a b 中有界, 即A %作为由连续函数组成的集合是一致有界的. 事实上, 如果记A 的一个界为M , |(,)|g x y 在[,][,]a b a b ⨯上的最大值为K , 则对于任意取定的()F x A∈%, 有某个()f x A ∈, 使得 ()(,)()baF x g x y f y dy =⎰, 由此得知|()|(,)()baF x g x y f y dy =⎰|(,)()|bag x y f y dy ≤⎰max |(,)|max |()|ba x ba y ba a y bg x y f y dy ≤≤≤≤≤≤≤⎰[,]||||bC a b af Kdy =⎰[,]||||()C a b f K b a ≤-()KM b a ≤-.因此A%是([,])C a b 中有界集, 且A %的一个界为()KM b a -. (b) A%在([,])C a b 中等度连续. 对于()F x A ∈%,有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰. 因为(,)([,][,])g x y C a b a b ∈⨯, 因此在[,][,]a b a b ⨯上一致连续, 故对于任意的0ε>,存在0δ>, 当,[,]x x a b '∈且||x x δ'-<时, 有|(,)(,)|g x y g x y ε'-< ([,]y a b ∀∈),由此可以得到|()()|(,)()(,)()bbaaF x F x g x y f y dy g x y f y dy ''-=-⎰⎰[(,)(,)]()bag x y g x y f y dy '=-⎰|(,)(,)||()|ba g x y g x y f y dy '≤-⎰max |()||(,)(,)|ba y ba f y g x y g x y dy ≤≤'≤-⎰[,]|||||(,)(,)|bC a b af g x y g x y dy '=-⎰()M b a ε≤-.由此易知A%具有等度连续性. (ii) 当A 还是([,])C a b 中的闭集时, A%未必是紧集! 反例可以构造如下: 考虑([0,1])C 中的集合{|1,2,}k A x k ==L ,显然A 是([0,1])C 中的有界集, 一个界可以取为1.可以断言A 是([0,1])C 中的闭集, 因为对于任意的,klx x A ∈, 不妨设l k >, 则[0,1][0,1]max ||k l k l C x x x x x ∈-=-1k l k l kl kl kk k k k l l l l ---⎛⎫⎛⎫⎛⎫⎡⎤=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 对于任意固定的k , 当l 趋于无穷大时, 右端项趋向于1, 由此容易知道, 作为([0,1])C 中的子点列, 集合A 不是Cauchy 列, 因此不可能在([0,1])C 中有收敛的子列, 故集合A 没有聚点, 因此是([0,1])C 中的闭集.定义(,)1K x y =,显然(,)([0,1][0,1])K x y C ∈⨯. 对于上述的集合A , 不难计算{}101()|1,2,|1,2,1k A F x x dx k k k ⎧⎫=====⎨⎬+⎩⎭⎰%L L显然, A%是([0,1])C 中列紧集,唯一的聚点是零函数,但零函数不在A %中,因此不是闭集. 补充题. 设A 是([,])C a b 中的一个有界集, 记():()()xa B F x f t dt f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.证明B 是([,])C a b 中的列紧集.证:根据Arzela-Ascoli 定理, 需证明B 在([,])C a b 中有界且等度连续即可.(i) B 在([,])C a b 中有界, 即B 作为由函数组成的集合是一致有界的. 事实上, 如果记A 的界为M ,则对于任意取定的()F xB ∈, 有某个()f t A ∈, 使得()()xaF x f t dt =⎰, 由此得知|()|()|()|xxaaF x f t dt f t dt =≤⎰⎰[,]max |()|||||x xC a b a t baaf t dt f dt ≤≤≤=⎰⎰[,]||||()()C a b f b a M b a ≤-≤-.因此B 是([,])C a b 中有界集, 且B 的界为()M b a -.(ii) B 在([,])C a b 中等度连续. 对于()F x B ∈,有某个()f t A ∈, 使得()()xaF x f t dt =⎰.对于,[,]x x a b ∈%|()()|()()xxaaF x F x f t dt f t dt -=-⎰⎰%%()|()|xxxxf t dt f t dt =≤⎰⎰%%[,]max |()|||||xxC a b a t bxxf t dt f dt ≤≤≤=⎰⎰%%||M x x ≤-%.由此易知B 具有等度连续性.补充题.证明课本20页定理8:对于距离空间(,)X ρ中的任何集合G , G '与G 均是闭集. 证:(i) 根据闭集的定义, 仅需证明()G G '''⊆.事实上, 设()y G ''∈, 则对于任意的0ε>((,)\{})S y y G ε'⋂≠∅.设((,)\{})x S y y G ε'∈⋂, 根据极限点的定义, 对于min{(,),(,)}0x y x y δρερ=->,有((,)\{})S x x G δ⋂≠∅.又(,)(,)S x S y δε⊆,因此有((,)\{})((,)\{})S y y G S x x G εδ⋂⊇⋂≠∅.注意到0ε>的任意性, 即可得到y G '∈. 因此G '是闭集. (ii) 需证明的是G G '⊆. 因为G G G '=⋃, 又()A B A B '''⋃⊆⋃,(*)故由(i)中已经证明了的结果, 有()G G G G G G G '''''''=⋃⊆⋃⊆⊆,因此G 是闭集.如下证明(*): 设y A B ''∉⋃, 则y A '∉, 且 y B '∉.由前者知存在某个00ε>, 使得0((,)\{})S y y A ε⋂=∅;由后者知存在某个10ε>, 使得1((,)\{})S y y B ε⋂=∅.取001min{,}δεε=, 则00δ>, 且0((,)\{})()S y y A B δ⋂⋃=∅,所以()y A B '∉⋃, 即(*)得证.补充题. 判断集合2121(,,,,)||,1,2,m m A y y y y l y m m ⎧⎫==∈≤=⎨⎬⎩⎭L L L是否为2l 中的列紧集?答:A 是2l 中的列紧集, 证明如下.因为211(1,,,,)2l m ∈L L ,即级数211m m∞=∑收敛,因此,对于任意的0ε>,存在某个0m ,使得0211m m mε∞=+<∑. 考虑集合:{}001212(,,,,0,)(,,,,)m m m A y y y y y y y A ==∈L L L L容易知道0m A 是A 的ε-网,且如果视其为0mR 空间中的子集,0m A 是有界集(一个界是,因此列紧,在2l 中仍然是列紧的. 进而知道2l 是完备的,因此根据前面补充题的结论(A 是列紧集的充分必要条件是对于任意的0ε>,A 有列紧的ε-网),可以得到A 是2l 中的列紧集.补充题. 设(,)X ρ是完备的距离空间, A X ⊂. 证明:A 是列紧集的充分必要条件是对于任意的0ε>,A 有列紧的ε-网.证明:[必要性] 设A 是列紧集, 因此A 是完全有界集, 即对于任意的0ε>,A 存在有限ε-网B ,12{,,,}n B x x x =L .又有限集一定是列紧集, 因此B 是A 的列紧的ε-网.[充分性] 设条件成立, 即对于任意的0ε>, A 有列紧的/2ε-网B . 因为B 列紧, 因此全有界, 即存在有限的/2ε-网C . 不难证明C 是A 的有限ε-网. 由此可以得知, A 是全有界集, 又(,)X ρ是完备的距离空间,因此A 是列紧集.。

泛函分析答案

泛函分析答案

泛函分析答案泛函分析题1_3列紧集p191.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对?ε > 0,存在A的列紧的ε网.证明:(1) 若子集A是列紧的,由Hausdorff定理,ε > 0,存在A的有限ε网N.而有限集是列紧的,故存在A的列紧的ε网N.(2) 若?ε > 0,存在A的列紧的ε/2网B.因B列紧,由Hausdorff定理,存在B的有限ε/2网C.因C ?B ?A,故C为A的有限ε网.因空间是完备的,再用Hausdorff定理,知A是列紧的.1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界.证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数.(1) 若f无上界,则?n∈ +,存在x n∈D,使得f (x n) > 1/n.因D是紧集,故D是自列紧的.所以{x n}存在收敛子列x n(k) →x0∈D (k→∞).由f的连续性,f (x n(k))→f (x0) (k→∞).但由f (x n) > 1/n知f (x n)→ +∞(n→∞),所以f (x n(k))→ +∞ (k→∞),矛盾.故f有上界.同理,故f有下界.(2) 设M = sup x∈D f(x),则?n∈ +,存在y n∈D,使得f (y n) > M- 1/n.{y n}存在子列y n(k) →y0∈D (k→∞).因此f ( y0 ) ≥M.而根据M的定义,又有f ( y0 ) ≤M.所以f ( y0 ) = M.因此f能达到它的上确界.同理,f能达到它的下确界.1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k 个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的.证明:(1) 若A是度量空间(X, ρ)中的完全有界集.则存在A的有限1-网N = { x0, x1, x2, ..., x n }.令R = ∑1 ≤j≤nρ(x0, x j) + 1.则?x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1.因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R.所以A是度量空间(X, ρ)中的有界集.(2) 注意到ρ(e k , e j) = 21/2 ( ?k ≠ j ),故E中任意点列都不是Cauchy列.所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).因此,E不是列紧集.由l 2是完备的,以及Hausdorff定理,知E不是全有界集.但E显然是有界集.1.3.4 设(X, ρ)是度量空间,F1, F2是它的两个紧子集,求证:?x i ∈F i( i = 1, 2),使得ρ(F1, F2) = ρ(x1, x2).其中ρ(F1, F2) = inf {ρ(x, y) | x∈F1, y∈F2 }证明:由ρ(F1, F2)的定义,?n∈ +,?x i(n)∈F i( i = 1, 2),使得ρ(x1(n), x2(n)) < ρ(F1, F2) + 1/n.因F1, F2紧,故不妨假设{x1(n)}, {x2(n)}都是收敛列.设它们的极限分别为x1, x2,则ρ(x1, x2) ≤ρ(F1, F2).因此ρ(F1, F2) = ρ(x1, x2).1.3.5 设M是C[a, b]中的有界集,求证集合{F(x) =?[a, x]f(t) dt | f∈M }是列紧集.证明:设A = {F(x) =?[a, x]f(t) dt | f∈M }.由M有界,故存在K > 0,使得?f∈M,ρ( f, 0) ≤K.先证明A是一致有界的和等度连续的.F∈A,存在f∈M,使得F(x) =?[a, x]f(t) dt.由于ρ(F, 0) = max x∈[a,b] | F(x) | = max x∈[a, b] | ?[a, x]f(t) dt |≤ max x∈[a, b] | f(t) | · (b -a ) = ρ( f, 0) · (b -a ) ≤K (b -a ).故A是一致有界的.ε > 0,?s, t∈[a, b],当| s-t| < ε/K时,F∈A,存在f∈M,使得F(x) =?[a, x]f(u) du.| F(s) -F(t) | = | ?[s, t]f(u) du | ≤ max u∈[a, b] | f(u) | · | s -t |= ρ( f, 0) · | s -t | ≤K · (ε/K) = ε.故A是等度连续的.由Arzela-Ascoli定理,A是列紧集.1.3.6 设E = {sin nt}n≥ 1,求证:E在C[0, π]中不是列紧的.证明:显然E是一致有界的.根据Arzela-Ascoli定理,我们只要证明E不是等度连续的即可.我们的想法是找一个E中的点列f n,以及[0, π]中的两个点列s n 和t n,使得| s n -t n | → 0,但| f n(s n)-f n(t n)|不收敛于0.事实上,这是可以做到的,只要令f n (u) = sin (2n u),s n = (π/2)(1 + 1/(2n)),t n = (π/2)(1 - 1/(2n)).则s n + t n = π;s n -t n = π/(2n)→ 0(n→∞).因此,| f n(s n)-f n(t n)| = 2 | sin (2n s n) - sin (2n t n) |= 2 | sin (n (s n -t n)) cos (n (s n + t n)) |= 2 | sin (π/2) cos (n π) | = 2.所以,E不是等度连续的.进而,E在C[0, π]中不是列紧的.1.3.7 求证S空间的子集A是列紧的充要条件是:?n∈ +,?C n> 0,使得x = (ξ1, ξ2, ..., ξn, ...)∈A,都有| ξn | ≤C n( n = 1, 2, ...).证明:(?) 设x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... )是A中的点列.存在{x k}的子列{x1, k}使得其第1个坐标ξ1(1, k)收敛;存在{x1, k}的子列{x2, k}使得其第2个坐标ξ2(2, k)收敛;如此下去,得到一个{x k}的子列的序列,第( j +1)个子列是第j个子列的子列,且第j个子列的第j个坐标是收敛的.选取对角线构成的点列{x j, j},则{x j, j}是{x k}的子列,且每个坐标都收敛.根据习题1.2.1的证明可知,S空间的点列收敛的充要条件是坐标收敛.故{x j, j}是收敛点列.所以,A是列紧的.(?) 我们只要证明,?n∈ +,A中的点的第n个坐标所构成的集合是有界集.若不然,设A中的点的第N个坐标所构成的集合是无界的.则存在A中的点列x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... ),使得| ξN(k) | > k.显然,{ ξN(k) }无收敛子列,故{ x k }也无收敛子列,这与A列紧相矛盾.这样就完成了必要性的证明.1.3.8 设(X, ρ)是度量空间,M是X中的列紧集,映射f : X →M满足ρ( f (x1), f (x2)) < ρ( x1, x2 )(?x1, x2∈M, x1≠x2).求证:f在X中存在唯一的不动点.证明:(1) 首先证明cl(M)是紧集.为此只要证明cl(M)列紧即可.设{ x n }是cl(M)中的点列,则存在M中的点列{ y n }使得ρ( x n, y n) < 1/n.因M列紧,故{ y n }有收敛子列{ y n(k)},设y n(k) →u∈cl(M).显然{ x n(k)}也是收敛的,并且也收敛于u∈cl(M).所以cl(M)是自列紧的,因而是紧集.(2) 令g(x) = ρ( x, f (x)),则g是X上的连续函数.事实上,由ρ( f (x1),f (x2)) < ρ( x1, x2 )可知f : X →M是连续的,因而g也连续.由习题1.3.2知存在x0∈cl(M),使得g(x0) = inf {ρ( x, f (x)) | x∈cl(M) }.(3) 若g(x0) > 0,则ρ( x0, f (x0)) > 0,即x0≠f (x0).故ρ( x0, f (x0)) = g(x0) ≤g( f (x0)) = ρ( f (x0), f ( f (x0))) < ρ( x0, f (x0)),矛盾.所以,必有g(x0) = 0,即ρ( x0, f (x0)) = 0,因此x0就是f的不动点.1.3.9 设(M, ρ)是一个紧距离空间,又E?C(M),E中的函数一致有界并且满足下列的H?lder条件:| x(t1) -x(t2) | ≤Cρ(t1, t2)α(?x∈E,?t1, t2∈M ),其中0 < α≤ 1,C > 0.求证:E在C(M)中是列紧集.证明:由H?lder条件易知E是等度连续的.又E中的函数一致有界,由Arzela-Ascoli定理知E是C(M)中的列紧集.[第3节完] 泛函分析题1_4线性赋范空间p391.4.1 在2维空间 2中,对每一点z = (x, y),令|| z ||1 = | x | + | y |;|| z ||2 = ( x 2 + y 2 )1/2;|| z ||3 = max(| x |, | y |);|| z ||4 = ( x 4 + y 4 )1/4;(1) 求证|| · ||i( i = 1, 2, 3, 4 )都是 2的范数.(2) 画出( 2, || · ||i )( i = 1, 2, 3, 4 )各空间中单位球面图形.(3) 在 2中取定三点O = (0, 0),A = (1, 0),B= (0, 1).试在上述四种不同的范数下求出?OAB三边的长度.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.设z = (x, y), w = (u, v)∈ 2,s = z + w= (x + u, y + v ),|| z||1 + || w||1 = (| x | + | y |) + (| u | + | v |) = (| x | + | u |) + (| y | + | v |)≥ | x + u | + | y + v | = || z+ w||1.( || z||2 + || w||2 )2 = ( ( x 2 + y 2 )1/2 + ( u 2 + v 2 )1/2 )2= ( x 2 + y 2 ) + ( u 2 + v 2 ) + 2(( x 2 + y 2 )( u 2 + v 2 ))1/2 ≥ ( x 2 + u 2 ) + ( y 2 + v 2 ) + 2( x u+ y v )= ( x + u )2 + ( y + v)2 = ( || z+ w||2 )2.故|| z||2 + || w||2 ≥ || z+ w||2.|| z||3 + || w||3 = max(| x |, | y |) + max(| u |, | v |)≥ max(| x | + | u |, | y | + | v |) ≥ max(| x + u |, | y + v |) = || z+ w||3.|| ·||4我没辙了,没找到简单的办法验证,权且用我们以前学的Minkowski不等式(离散的情况,用H?lder不等式的离散情况来证明),可直接得到.(2) 不画图了,大家自己画吧.(3) OA = (1, 0),OB = (0, 1),AB = (- 1, 1),直接计算它们的范数:|| OA||1 = 1,|| OB||1 = 1,|| AB||1 = 2;|| OA||2 = 1,|| OB||2 = 1,|| AB||2 = 21/2;|| OA||3 = 1,|| OB||3 = 1,|| AB||3 = 1;|| OA||4 = 1,|| OB||4 = 1,|| AB||4 = 21/4.1.4.2 设c[0, 1]表示(0, 1]上连续且有界的函数x(t)全体.?x∈c[0, 1],令|| x || = sup{| x(t) | | 0 < t≤ 1}.求证:(1) || ·||是c[0, 1]空间上的范数.(2) l∞与c[0, 1]的一个子空间是等距同构的.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.|| x || = sup{| x(t) | | 0 < t≤ 1}.|| x || + || y || = sup{| x(t) | | 0 < t≤ 1} + sup{| y(t) | | 0 < t≤ 1}≥ sup{| x(t) + y(t) | 0 < t≤ 1} = || x + y ||.所以|| ·||是c[0, 1]空间上的范数.(2) 任意取定(0, 1]中的一个单调递减列{a k },满足(i) a1 = 1;(ii) lim k→∞a k = 0.显然,在每个[a k + 1, a k]上为线性函数的f∈c[0, 1]是存在的.设X = { f∈c[0, 1] | f在每个[a k + 1, a k]上为线性函数}.容易验证X是c[0, 1]的子空间.定义? : X →l∞,f #? ( f ) = ( f (a1), f (a2), ...).则? : X →l∞是线性双射,且|| ? ( f ) ||∞= sup k ≥ 1 | f (a k) | = sup0 < t≤ 1 { | f (t ) | } = || f ||.所以,? : X →l∞是等距同构.因此,l∞与c[0, 1]的一个子空间是等距同构的.1.4.3 在C1[a, b]中,令|| f ||1 = (?[a, b] ( | f(x) |2 + | f’(x) |2) dx )1/2 (?f∈C1[a, b]).(1) 求证:|| · ||1是C1[a, b]上的范数.(2) 问(C1[a, b], || · ||1)是否完备?证明:(1) 正定性和齐次性都是明显的,和前面的习题一样,只验证三角不等式.我们先来证明一个比较一般的结果:若线性空间X上的非负实值函数p, q都满足三角不等式:p(x) + p(y) ≥p(x +y),q(x) + q(y) ≥q(x +y),?x, y∈X;则函数h = ( p2 + q2 )1/2也满足三角不等式.事实上,?x, y∈X,由Minkowski不等式,我们有h(x) + h(y) = ( p(x)2 + q(x)2 )1/2 + ( p(y)2 + q(y)2 )1/2≥ (( p(x)+ p(y))2 + ( q(x) + q(y))2 )1/2 ≥ ( p(x + y)2 + q(x + y)2 )1/2 = h(x + y).回到本题:若令p( f ) = (?[a, b] | f(x) |2dx )1/2,q( f ) = (?[a, b] | f’(x) |2dx )1/2,则( p( f ) + p( g ))2 = ((?[a, b] | f(x) |2dx )1/2 + (?[a, b] | g(x) |2dx )1/2)2= ?[a, b] | f(x) |2dx + 2(?[a, b] | f(x) |2dx )1/2 · (?[a, b] | g(x)|2dx )1/2 + ?[a, b] | g(x) |2dx≥?[a, b] | f(x)|2dx + 2 ?[a, b] | f(x) | · | g(x)| dx + ?[a, b] | g(x)|2dx = ?[a, b] ( | f(x) | + | g(x)| )2dx ≥?[a, b] ( | f(x) + g(x)| )2dx = ( p( f + g ))2.所以有p( f ) + p( g ) ≥p( f + g ).特别地,p( f’) + p( g’) ≥p( f’+ g’),即q( f ) + q( g ) ≥q( f + g ).因此,线性空间C1[a, b]上的非负实值函数p, q都满足三角不等式.根据开始证明的结论,|| · ||1也满足三角不等式.所以,|| · ||1是C1[a, b]上的范数.(2) 在C1[- 1, 1]中,令f n(x) = (x2 + 1/n2 )1/2 ( ?x∈[- 1, 1] ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ?x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ?x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).故在L2[- 1, 1]中,f n(x) → | x |,f’n(x) → 2sign( x ).因此,它们都是L2[- 1, 1]中的基本列,故[- 1, 1] | f n(x) -f m(x) |2 dx → 0(m, n→∞);[- 1, 1] | f’n(x) -f m’(x) |2 dx → 0(m, n→∞).故|| f n-f m ||1 = (?[- 1, 1] ( | f n(x) -f m(x) |2 + | f’n(x) -f m’(x) |2 ) dx )1/2→ 0 (m, n→∞).即{ f n }是C1[- 1, 1]中的基本列.下面我们证明{ f n }不是C1[- 1, 1]中的收敛列.若不然,设{ f n }在C1[- 1, 1]中的收敛于f∈C1[- 1, 1].因|| f n-f ||1 = (?[- 1, 1] ( | f n(x) -f(x) |2 + | f’n(x) -f’(x) |2 ) dx )1/2≥ (?[- 1, 1] | f n(x) -f(x) |2dx )1/2,故在L2[- 1, 1]中,f n(x) →f.而在前面已说明L2[- 1, 1]中,f n(x) → | x |;由L2[- 1, 1]中极限的唯一性以及f的连续性,知f(x) = | x |.这样就得到f?C1[- 1, 1],矛盾.所以,{ f n }不是C1[- 1, 1]中的收敛列.这说明C1[- 1, 1]不是完备的.对一般的C1[a, b],只要令f n(x) = (x - (a + b )/2)2 + 1/n2 )1/2( ?x∈[a, b] )就可以做同样的讨论,就可以证明C1[a, b]不是完备空间.1.4.4 在C[0, 1]中,对每个f∈C[0, 1],令|| f ||1 = (?[0, 1] | f(x) |2dx )1/2,|| f ||2 = (?[0, 1] ( 1 + x) | f(x) |2dx )1/2.求证:|| · ||1和|| · ||2是C[0, 1]中的两个等价范数.证明:(1) 在习题1.4.3的证明中已经包含了|| · ||1是C[0, 1]中的范数的证明.下面我们证明|| · ||2是C[0, 1]中的范数,我们仍然只要验证三角不等式.|| f ||2 + || g ||2 = (?[0, 1] ( 1 + x) | f(x) |2dx )1/2 + (?[0, 1] ( 1 + x) | g(x) |2dx )1/2= || (1 + x)1/2f(x) ||1 + || (1 + x)1/2g(x) ||1≥ || (1 + x)1/2f(x) + (1 + x)1/2g(x) ||1= || (1 + x)1/2 ( f(x) + g(x) ) ||1≥ (?[0, 1] (1 + x) | f(x) + g(x) |2dx )1/2= || f + g ||2.所以,|| · ||2也是C[0, 1]中的范数.(2) 我们来证明两个范数的等价性.?f∈C[0, 1]|| f ||1 = (?[0, 1] | f(x) |2dx )1/2 ≤ (?[0, 1] ( 1 + x) | f(x) |2dx )1/2 = || f ||2,|| f ||2 = (?[0, 1] ( 1 + x) | f(x) |2dx )1/2 ≤ 2 (?[0, 1] | f(x) |2dx )1/2 = 2 || f ||1.因此两个范数等价.1.4.5 设BC[0, ∞)表示[0, ∞)上连续且有界的函数f(x)全体,对每个f ∈BC[0, ∞)及a > 0,定义|| f ||a = (?[0, ∞) e-ax | f(x) |2dx )1/2.(1) 求证|| ·||a是BC[0, ∞)上的范数.(2) 若a, b > 0,a≠b,求证|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.证明:(1) 依然只验证三角不等式.|| f ||a + || g ||a = (?[0, ∞) e-ax | f(x) |2dx )1/2 + (?[0, ∞) e-ax | g(x) |2dx )1/2= || e-ax/2f(x)||L2 + || e-ax/2g(x)||L2≤ || e-ax/2f(x)+ e-ax/2g(x)||L2= || e-ax/2 ( f(x)+ g(x))||L2= (?[0, ∞) e-ax | f(x)+ g(x) |2dx )1/2= || f + g ||a,所以|| ·||a是BC[0, ∞)上的范数.(2) 设f n(x)为[n, +∞)上的特征函数.则f n∈BC[0, ∞),且|| f n||a = (?[0, ∞) e-ax | f n(x) |2dx )1/2 = (?[n, ∞) e-ax dx )1/2 = ((1/a)e-an)1/2.同理,|| f n||b = ((1/b)e-bn)1/2.故若a < b,则|| f n||a/|| f n||b = (b/a)1/2e-(b -a)n/2→ +∞ (n→+∞).因此|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.1.4.6 设X1, X2是两个B*空间,x1∈X1和x2∈X2的序对(x1, x2)全体构成空间X = X1?X2,并赋予范数|| x || = max{ || x1 ||1, || x2 ||2 },其中x = (x1, x2),x1∈X1,x2∈X2,|| · ||1和|| ·||2分别是X1和X2的范数.求证:如果X1, X2是B空间,那么X也是B空间.证明:(1) 先验证|| · ||的三角不等式.设x = (x1, x2), y = (y1, y2)∈X1?X2,则|| x + y || = || (x1 + y1, x2 + y2) || = max{ || x1 + y1 ||1, || x2 + y2 ||2 }≤ max{ || x1 ||1 + || y1 ||1, || x2 ||2 + || y2 ||2 }≤ max{ || x1 ||1, || x2 ||2 } + max{ || y1 ||1, || y2 ||2 }= || (x1, x2) || + || (y1, y2) ||= || x || + || y ||,而|| · ||的正定性和齐次性是显然的,所以,|| · ||是X1?X2的范数.(2) 设X1, X2是B空间,我们来证明X也是B空间.设x(n) = (x1(n), x2(n))是X = X1?X2中的基本列,则|| x(n) -x(m) || = max{ || x1(n) -x1(m) ||1, || x2(n) -x2(m)||2 } ≥ || x1(n) -x1(m) ||1,故{x1(n)}是X1中的基本列,同理,{x2(n)}是X2中的基本列.因X1, X2是B空间,故{x1(n)}和{x2(n)}分别是X1, X2中的收敛列.设x1(n) →x1∈X1,x2(n) →x2∈X2,令x = (x1, x2).则|| x(n) -x || = max{ || x1(n) -x1 ||1, || x2(n) -x2 ||2 }≤ || x1(n) -x1 ||1 + || x2(n) -x2 ||2→ 0 (n→∞).所以,|| x(n) -x ||→ 0 (n→∞).即{ x(n) }为X = X1?X2中的收敛列.所以X = X1?X2也是B空间.1.4.7 设X是B*空间.求证:X是B空间,必须且只须对?{x n}?X,∑n≥ 1 || x n || < +∞?∑n≥ 1x n 收敛.证明:(?) ?{x n}?X,记S n = ∑1 ≤j≤n x j,B n = ∑1 ≤j≤n || x n ||,则|| S n + p-S n || = || ∑1 ≤j≤n + p x j -∑1 ≤j≤n x j ||= || ∑n +1 ≤j≤n + p x j ||≤∑n +1 ≤j≤n + p || x j ||= B n + p-B n → 0,(n→∞).故{ S n }为X中的Cauchy列.由X完备,故{ S n }为X中的收敛列,即∑n≥ 1x n 收敛.(?) 反证法.若(X, ρ)不完备,设(Y, d )为(X, ρ)的一个完备化.不妨设(X, ρ)是(Y, d )的子空间,则存在y∈Y \ X.因cl( X ) = Y,故?n∈ +,存在x n∈X,使得d(x n, y) < 1/2n.则ρ(x n, x m) = d(x n, x m) ≤d(x n, y) + d(x m, y) ≤ 1/2n+ 1/2m → 0,因此{x n}是X中的Cauchy列,但不是收敛列.令z n = x n+1-x n,S n = ∑1 ≤j≤n z j;则z n, S n∈X.因|| z n || = || x n+1-x n || = ρ(x n+1, x n) ≤d(x n+1, y) + d(x n+1, y) ≤ 1/2n+1+ 1/2n < 1/2n - 1,故∑n≥ 1 || z n || < +∞.而S n = ∑1 ≤j≤n z j = ∑1 ≤j≤n ( x j+1-x j ) = x n+1-x1;故∑n≥ 1z n 在中不收敛.矛盾.1.4.8 记[a, b]上次数不超过n的多项式全体为n.求证:?f(x)∈C[a, b],存在P0(x)∈ n,使得max a ≤x≤b| f(x) –P0(x) | = min{ max a ≤x≤b| f(x) –P(x) | | P∈ n }.证明:注意到 n是B*空间C[a, b]中的n+1维子空间.{1, x, x2, ..., x n}是 n中的一个向量组,把它看成C[a, b]中的一个有限向量组.根据定理p35, 1.4.23,对任意?f(x)∈C[a, b],存在最佳逼近系数{λ0, λ1, ..., λn},使得|| f(x) –∑0 ≤j≤n λj x j || = min{ || f(x) –∑0 ≤j≤n a j x j || | (a0, a1, ..., a n)∈ n+1}.令P0(x) = ∑0 ≤j≤n λj x j 就得到要证明的结论.1.4.9 在 2中,对?x = (x1, x2)∈ 2,定义范数|| x || = max(| x1 |, | x2 |),并设|| x0–λ e1 ||.e1 = (1, 0),x0 = (0, 1).求a∈ 适合|| x0–a e1 || = minλ∈并问这样的a是否唯一?请对结果作出几何解释.解:g(λ) = || x0–λ e1 || = || (0, 1) –λ(1, 0)|| = || (–λ, 1)|| = max(| λ |, 1) ≥ 1,故g(λ) 当| λ| ≤ 1时取得最小值1.所以a = 0满足要求.显然满足要求的a不是唯一的.从几何上看就是某线段上的点到某定点的距离都是1.1.4.10 求证范数的严格凸性等价于下列条件:|| x + y || = || x || + || y || ( ?x≠θ, y≠θ) ?x = c y ( c > 0).证明:(?) 设范数是严格凸的,若x, y ≠θ满足|| x + y || = || x || + || y ||,事实上,我们总有|| (x/|| x ||) || = || (y/|| y ||) || = 1.因x, y ≠θ,故|| x || + || y || > 0,所以|| x + y || ≠ 0.于是|| x ||/|| x + y || + || y ||/|| x + y || = 1.假若x/|| x || ≠y/|| y ||,由严格凸性,得到|| (|| x ||/|| x + y ||)(x/|| x ||) + (|| y ||/|| x + y ||)(y/|| y ||) || < 1,即|| (( x + y )/|| x + y ||) || < 1,矛盾.因此必然有x/|| x || = y/|| y ||,即x = (|| x ||/|| y ||) y.(?) 设?x, y ≠θ,|| x + y || = || x || + || y ||蕴涵x = c y ( c > 0).下面证明范数是严格凸的.设x≠y,且|| x || = || y || = 1,又设α, β∈(0, 1),且α + β= 1.我们知道|| α x + β y || ≤ || α x || + || β y || = α || x || + β|| y || = α + β= 1.假若|| α x + β y || = 1,根据我们的条件,就得到α x = c (β y),其中c > 0.那么,就有|| α x || = || c (β y) ||,而|| x || = || y || = 1,所以α= c β;故x = y,这就与x≠y相矛盾.所以必然有|| α x + β y || < 1,即范数是严格凸的.1.4.11 设X是线性赋范空间,函数? : X → 1称为凸的,如果不等式( λ x + (1 -λ) y ) ≤λ?( x ) + (1 -λ)?( y ) ( ? 0 ≤λ≤ 1)成立.求证凸函数的局部极小值必然是全空间的最小值.证明:设x0是凸函数?的一个局部极小点.如果存在x∈X,使得?( x ) < ?( x0),则? t ∈(0, 1),( t x + (1 -t ) x0) ≤t ?( x ) + (1 -t )?( x0) < t ?( x0) + (1 -t )?( x0) = ?( x0).而对x0的任意邻域U,都存在t ∈(0, 1),使得t x + (1 -t ) x0∈U.这就与x0是局部极小点相矛盾.因此?x∈X,都有?( x0) ≤?( x ),即x0是?的最小点.1.4.12 设(X, || · ||)是一线性赋范空间,M是X的有限维子空间,{e1, e2, ..., e n}是M的一组基,给定g∈X,引进函数F : n → 1.对?c = (c1, c2, ..., c n)∈ n,规定F(c) = F(c1, c2, ..., c n) = || ∑1 ≤i≤n c i e i-g ||.(1) 求证F是一个凸函数;(2) 若F的最小值点是c = (c1, c2, ..., c n),求证f = ∑1 ≤i≤n c ie i给出g在M中的最佳逼近元.证明:(1) 设c = (c1, c2, ..., c n), d = (d1, d2, ..., d n)∈ n, λ∈[0, 1],则F(λ c + ( 1 -λ) d ) = || ∑1 ≤i≤n ( λ c i + ( 1 -λ) d i ) e i-g || = || λ∑1 ≤i≤n c i e i + ( 1 -λ) ∑1 ≤i≤n d i e i- (λ g+ ( 1 -λ)g )|| = || λ(∑1 ≤i≤n c i e i -g) + ( 1 -λ) ( ∑1 ≤i≤n d i e i-g )||≤λ|| ∑1 ≤i≤n c i e i -g || + ( 1 -λ) || ∑1 ≤i≤n d i e i-g ||= λ F(c)+ ( 1 -λ)F(d),故F是一个凸函数.(2) 因为{e1, e2, ..., e n}是M的一组基,故M中的每个元h都可表示为h = ∑1 ≤i≤n d i e i,其中d = (d1, d2, ..., d n)∈ n.因为F(c) ≤F(d),故|| f-g || = F(c) ≤F(d) = || h-g ||.那么f就是g在M中的最佳逼近元.1.4.13 设X是B*空间,X0是X的线性子空间,假定?c∈(0, 1)使得?y∈X,有inf { || y–x || | x ∈X0 } ≤c || y ||.求证:X0在X中稠密.证明:设y∈X,?ε > 0,x1∈X0,s.t. || y–x1 || < c || y || + ε /4.x2∈X0,s.t. || (y–x1) –x2 || < c || y–x1 || + ε /8.x3∈X0,s.t. || (y–x1 –x2 ) –x3 || < c || y–x1 –x2 || + ε /16.如此下去,可得到一个X0中的点列{ x n },满足|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2(?n∈ +).那么,我们可以用数学归纳法证明|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).当n = 1时,|| y–x1 || < c || y || + ε /4.结论成立.当n = 2时,|| (y–x1) –x2 || < c || y–x1 || + ε /8< c (c || y || + ε /4) + ε /8 < c 2 || y || + ε (1/4 + 1/8),结论成立.当n≥ 3时,若|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1)成立,则|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2< c (c n || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n+ 11/2j + 1)),因此结论也成立.由数学归纳法原理,?n∈ +,|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).因为c∈(0, 1),故存在N∈ +,使得c N || y || < ε /2.令x = ∑1 ≤j≤N x j,则x∈X0.且|| y–x || < ε /2 + ε (∑1 ≤j≤N 1/2j + 1) < ε.所以,X0在X中稠密.[张峰同学的证明] 反证法.若不然,则cl(X0)是X的真闭线性子空间.用Riesz引理,存在y∈X,使得|| y || = 1,且inf { || y–x || | x ∈ cl(X0)} > c.故对此y∈X,有inf { || y–x || | x ∈X0 } > c || y ||,矛盾.1.4.14 设C0表示以0为极限的实数全体,并在C0中赋以范数|| x || = max n≥1| ξn |,( ?x = (ξ1, ξ2, ..., ξn, ...)∈C0 ).又设M = {x = (ξ1, ξ2, ..., ξn, ...)∈C0 | ∑n ≥1 ξn/2n = 0}.(1) 求证:M是C0的闭线性子空间.(2) 设x0= (2, 0, 0, ...),求证:inf z ∈M || x0–z || = 1,但?y∈M,有|| x0–y || > 1.证明:(1) 显然M ≠?,容易直接验证M是C0的线性子空间.若x k = (ξ1(k), ξ2(k), ..., ξn(k), ...)为M中的点列,且x k→x = (ξ1, ξ2, ..., ξn, ...)∈C0.则?ε > 0,存在N∈ +,使得?k > N,|| x k -x || < ε.此时,?n∈ +,有|ξn -ξn(k)| ≤ max n≥1| ξn -ξn(k) | = || x k -x || < ε.| ∑n ≥1 ξn/2n | = | ∑n ≥1 ξn/2n-∑n ≥1 ξn(k)/2n | = | ∑n ≥1 (ξn -ξn(k))/2n |≤∑n ≥1 |ξn -ξn(k)|/2n≤∑n ≥1 ε/2n = ε.所以,∑n ≥1 ξn/2n = 0,即x = (ξ1, ξ2, ..., ξn, ...)∈M.所以M是C0的闭线性子空间.(2) x0= (2, 0, 0, ...),?z = (ξ1, ξ2, ..., ξn, ...)∈M,|| x0–z || = max{| 2 -ξ1 |, | ξ2 |, | ξ3 |, ... }.如果| 2 -ξ1 | > 1,则|| x0–z || > 1.如果| 2 -ξ1 | ≤ 1,则| ξ1 | ≥ 1,我们断言{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.否则,假若它们都不超1,因为ξn → 0 (n→∞),故它们不能全为1.由∑n ≥1 ξn/2n = 0知| ξ1 |/2 = | ∑n ≥2 ξn/2n | ≤∑n ≥2 | ξn | /2n < ∑n ≥2 1/2n = 1/2,这样得到| ξ1 | < 1,矛盾.故{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.因此也有|| x0–z || > 1.综上所述,但?y∈M,有|| x0–y || > 1.由此,立即知道inf z ∈M || x0–z || ≥ 1.下面证明inf z ∈M || x0–z || ≤ 1.n∈ +,令z n= (1 - 1/2n, -1, -1, ..., -1, 0, 0, ...).( z n从第2个坐标开始有连续的n个-1,后面全部是0 ),则(1 - 1/2n)/2 - 1/4 - 1/8 - ... - 1/2n + 1 = 0,因此z n∈M.此时,|| x0–z n || = max{| 1 + 1/2n|, | 1/4|, | 1/8|, ... } = 1 + 1/2n.故inf z ∈M || x0–z || ≥ inf n || x0–z n || = inf n (1 + 1/2n ) = 1.所以,inf z ∈M || x0–z || = 1.1.4.15 设X是B*空间,M是X的有限维真子空间,求证:?y∈X,|| y|| = 1,使得|| y–x || ≥ 1 ( ?x ∈M ).证明:取定z∈X \ M,令Y = span{z} + M.记S = { y∈Y | || y || = 1 }.则M是Y的真闭子空间,而S是Y中的单位球面.由Riesz引理,?n∈ +,存在y n∈S,使得d( y n, M ) ≥ 1 - 1/n.因为Y也是有限维的,故其中的单位球面为自列紧集.存在{y n}的收敛子列.不妨设y n(k) →y∈S.则d( y n(k), M ) ≥ 1 - 1/n(k),故有d( y, M ) ≥ 1.即|| y–x || ≥ 1 ( ?x ∈M ).1.4.16 若f是定义在区间[0, 1]上的复值函数,定义ωδ( f ) = sup{| f (x) –f (y) | | ?x, y∈[0, 1], | x–y | ≤δ}.如果0< α≤ 1对应的Lipschitz空间Lipα,由满足|| f || = | f(0) | + supδ > 0{δ–αωδ( f )} < +∞的一切f组成,并且以|| f ||为模.又设lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0}.求证Lipα是B空间,而且lipα是Lipα的闭子空间.证明:(1) 显然,C1[0, 1]?Lipα,因此Lipα不空.对区间[0, 1]上的复值函数f, g,?λ∈ ,我们有ωδ( f + g ) = sup{| f (x) + g (x) – f (y) –g (y) | | ?x, y∈[0, 1], | x–y | ≤δ}≤ sup{| f (x) – f (y) | + | g (x) –g (y) | | ?x, y∈[0, 1], | x–y | ≤δ}≤ωδ( f ) + ωδ( g ).ωδ( λ f ) = sup{|λ f (x) –λ f (y) | | ?x, y∈[0, 1], | x–y | ≤δ}= | λ| sup{| f (x) –f (y) | | ?x, y∈[0, 1], | x–y | ≤δ}= | λ| ·ωδ( f ).若f, g∈Lipα,λ∈ ,则|| f + g || = | f(0) + g(0) | + supδ > 0{δ–αωδ( f + g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–α(ωδ( f ) + ωδ( g )) }= | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) + δ–αωδ( g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) }+ supδ > 0{ δ–αωδ( g ) }= || f || + || g || < +∞.|| λ f || = | λ f(0) | + supδ > 0{δ–αωδ( λ f )}= | λ| · | f(0) | + | λ| · supδ > 0{δ–αωδ( f )}= | λ| · || f || < +∞.因此,f + g, λ f∈Lipα,且上述两个不等式表明|| · ||有齐次性和三角不等式.显然,|| f || ≥ 0.当|| f || = 0时,| f(0) | + supδ > 0{δ–αωδ( f )} = 0,意味着f(0) = 0,且ωδ( f ) = 0(?δ> 0).而ωδ( f ) = 0(?δ> 0)则意味着f为常值.所以,f = 0.即|| · ||有正定性.综上所述,Lipα是B*空间.(2) 我们首先证明集合Lipα?C[0, 1].f∈Lipα,?x, y∈[0, 1],x ≠y,记δ = | x -y |.则| f (x) –f (y) | ≤ωδ( f ).而δ–αωδ( f ) ≤ supδ > 0{δ–αωδ( f n-f m) } ≤ || f ||,所以,| f (x) – f (y) | ≤ || f || δα= || f || · | x -y |α,故f∈C[0, 1].我们再证明,?f∈Lipα,|| f ||C≤ || f ||,其中|| ·||C是C[0, 1]范数.事实上,?x∈[0, 1],| f (x) | ≤ | f (0) | + | f (x) – f (0) |,故|| f ||C = max x∈[0, 1] | f (x) | ≤ | f (0) | + max x∈[0, 1] | f (x) –f (0) |≤ | f (0) | + sup x∈(0, 1] | f (x) –f (0) |/| x |α≤ | f (0) | + sup x∈(0, 1] { δ–αωδ( f ) } ≤ || f ||.这说明,如果{ f n }是Lipα中的基本列,则它也必是C[0, 1]中的基本列.而C[0, 1]是完备的,故存在f∈C[0, 1],使得{ f n }一致收敛于f.而{ f n }作为Lipα中的基本列,有|| f n-f m || = | f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } → 0 (n, m→∞),因此?ε > 0,?N∈ +,使得?n, m > N,有| f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } < ε.因此supδ > 0{δ–αωδ( f n-f m) } < ε.故?δ > 0,ωδ( f n-f m) < εδα.即?x, y∈[0, 1],| x -y | ≤δ,都有| ( f n(x) -f m(x)) - ( f n(y) -f m(y)) | < εδα.令m→∞,得到| ( f n(x) -f(x)) - ( f n(y) -f(y)) | ≤εδα.因此,sup {| ( f n(x) -f(x)) - ( f n(y) -f(y)) | | x, y∈[0, 1],| x -y | ≤δ}≤εδα.即?δ > 0,ωδ( f n-f ) ≤εδα.故supδ > 0{δ–αωδ( f n-f ) } ≤ε.同样地,对不等式| f n(0) -f m(0) | < ε令m→∞,就得到| f n(0) -f(0) | ≤ε.所以,| f n(0) -f(0) | + supδ > 0{δ–αωδ( f n-f ) } ≤ 2ε.这说明f n-f∈Lipα.而f n∈Lipα,故f = ( f -f n ) + f n∈Lipα.而前面的式子也表明|| f -f n || ≤ 2ε.因此|| f n-f || → 0 (n→∞),即{ f n }为Lipα中的收敛列.所以,Lipα是Banach空间.(3) 记lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0 }.f, g∈lipα,?λ∈ ,我们有δ–αωδ( f + g ) ≤δ–α(ωδ( f ) + ωδ( g ) ) = δ–αωδ( f ) + δ–αωδ( g ) → 0 (δ→ 0).δ–αωδ( λ f ) = | λ| ·δ–αωδ( f ) → 0 (δ→ 0).故f + g, λ f∈lipα,因此,lipα是Lipα的线性子空间.设{ f n }是lipα中的序列,且f n→f∈Lipα(n→∞).则{ f n }一致收敛于f.ε > 0,存在N∈ +,使得|| f N →f || < ε /2.故有supδ > 0{δ–αωδ( f N-f ) } < ε /2.因为lim δ→ 0 δ–αωδ( f N) = 0,所以,?? > 0,使得?δ∈(0, ?),有δ–αωδ( f N) < ε /2.此时我们有δ–αωδ( f ) ≤δ–α(ωδ( f N) + ωδ( f -f N))= δ–αωδ( f N) + δ–αωδ( f -f N)< ε /2 + supδ > 0{δ–αωδ( f N-f ) } < ε.所以,lim δ→ 0 δ–αωδ( f ) = 0,即f∈lipα.所以lipα是Lipα的闭子空间.1.4.17 (商空间) 设X是线性赋范空间,X0是X的闭线性子空间,将X中的向量分类,凡是适合x’-x’’∈X0的两个向量x’, x’’归于同一类,称其为等价类,把一个等价类看成一个新的向量,这种向量的全体组成的集合为X/X0表示,并称其为商空间.下列是关于商空间的命题.(1) 设[ y ]∈X/X0,x∈X,求证:x∈[ y ]的充分必要条件是[ y ] = x + X0.证明:设x’, x’’∈X,若它们归于同一类,则记为x’~x’’.我们用[ x ]表示x所在的等价类(大家注意,题目形式已经作了相应的修改).(?) 若x∈[ y ],则x~y.u ∈[ y ],u~y,故u~x,即u –x∈X0.因此u ∈x + X0.所以[ y ] ?x + X0.反过来,?u ∈x + X0,则u~x,故u~y.因此u ∈[ y ].所以x + X0 ? [ y ].所以[ y ] = x + X0.(?) 若[ y ] = x + X0,则y –x∈X0,即y~x.从而x∈[ y ].(2) 在X/X0中定义加法与数乘如下:[ x ] + [ y ] = x + y + X0(?[ x ], [ y ] ∈X/X0 )λ[ x ] = λ x + X0(?[ x ]∈X/X0 , ?λ∈ )其中x和y分别表示属于等价类[ x ]和[ y ]的任一元素.又规定范数|| [ x ] ||0 = inf z∈[ x ] || z || ( ?[ x ]∈X/X0 )求证:(X/X0, || · ||0)是一个B*空间.证明:第(1)部分说明了[ x ] = x + X0.容易看出加法与乘法的定义是合理的.进一步可以证明X/X0 构成数域上的线性空间,且其零元为[ θ] = X0.下面证明|| · ||0是X/X0 上的范数.显然,?[ x ]∈X/X0,|| [ x ] ||0≥ 0.若[ x ] = [ θ] = X0,则|| [ x ] ||0 = 0.若|| [ x ] ||0 = 0,则inf z∈[ x ] || z || = 0.存在z n∈[ x ]使得|| z n || → 0,即z n→θ (n→∞).那么,x-z n∈X0,x-z n→x (n→∞),而X0是闭集,故x∈X0.所以x~θ,即[ x ] = X0.因此|| · ||0有正定性.[ x ]∈X/X0,?λ∈ ,|| λ[ x ]||0 = || [ λ x ] ||0 = inf y∈[ x ] || λ y || = inf y∈[ x ] | λ| · || y ||= | λ| · inf y∈[ x ] || y || = | λ| · ||[ x ]||0.因此|| · ||0有齐次性.[ x ], [ y ]∈X/X0,|| [ x ] + [ y ] ||0 = inf z∈[ x ] + [ y ] || z || = inf u∈[ x ], v∈[ y ] || u + v ||≤ inf u∈[ x ], v∈[ y ] { || u || + || v || } ≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} }≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} } = inf u∈[ x ] { || u || + inf v∈[ y ] || v || }= inf u∈[ x ] || u || + inf v∈[ y ] || v || = || [ x ] ||0 + || [ y ] ||0.因此|| · ||0的三角不等式成立.所以,(X/X0, || · ||0)是一个B*空间.(3) 设[ x ]∈X/X0, 求证对?y∈[ x ]有inf { || y -z || | z∈X0 } = ||[ x ] ||0.证明:|| [ x ] ||0 = inf u∈[ x ] || u || = inf u∈[ y ] || u || = inf { || u || | u∈y + X0 }= inf { || y + v || | v∈X0 } = inf { || y -z || | z∈X0 }.(4) 定义映射? : X →X/X0为? (x) = [ x ] = x + X0(?x∈X ).求证?是线性连续映射.证明:?x, y∈X,?α, β∈ ,( α x + β y ) = [α x + β y ] = [α x ] + [ β y ] = α [ x ] + β[ y ] = α? (x) + β? (y).|| ? (x) -? (y) ||0 = || [ x ] - [ y ] ||0 = || [ x-y ] ||0 = in f z∈[ x-y ] || z || ≤ || x-y ||.所以,?是线性连续映射.(5) ?[ x ]∈X/X0,求证?y∈X,使得? (y) = [ x ],且|| y || ≤ 2|| [ x ] ||0.证明:因为|| [ x ] ||0 = inf z∈[ x ] || z ||,若|| [ x ] ||0 = 0,则由|| · ||0的正定性,知[ x ] = X0,取y = θ即满足要求.若|| [ x ] ||0≠ 0,则inf z∈[ x ] || z || = || [ x ] ||0 < 2 || [ x ] ||0,存在?y∈[ x ],使得|| y || ≤ 2|| [ x ] ||0.此时显然有? (y) = [ x ] = [ y ].(6) 设(X, || · ||)完备,求证(X/X0, || · ||0)也是完备的.证明:设{ [ x ]n }是X/X0中的基本列.为证明它是收敛列,只需证明它存在收敛子列.由基本列性质,可选出子列{ [ x ]n(k)}使得|| [ x ]n(k) - [ x ]n(k+1) ||0 ≤ 1/2k.故∑k ≥ 1 || [ x ]n(k) - [ x ]n(k+1) ||0 收敛.根据(5),?k∈ +,?y k∈[ x ]n(k+1) - [ x ]n(k),使得|| y k || ≤ 2|| [ x ]n(k+1) - [ x ]n(k) ||0.那么,∑k ≥ 1|| y k ||收敛.由X的完备性,s k = ∑ 1 ≤j ≤k y j是X中的收敛列.设其极限为s.由(5)中?的连续性,在X/X0中,?(s k) →?(s) ( k→∞ ).而?(s k) = ?( ∑ 1 ≤j ≤k y j ) = ∑ 1 ≤j ≤k ?( y j )= ∑ 1 ≤j ≤k ( [ x ]n(j+1) - [ x ]n(j)) = [ x ]n(k+1) - [ x ]n(1).故{[ x ]n(k+1) - [ x ]n(1)}收敛,因而{[ x ]n(k)}是收敛列.因此X/X0中的基本列{ [ x ]n }存在收敛子列{[ x ]n(k)},所以,{ [ x ]n }是X/X0中的收敛列.因此,(X/X0, || · ||0)是完备的.(7) 设X = C[0, 1],X0 = { f∈X | f (0) = 0 },求证:X/X0 ? ,其中记号“?”表示等距同构.证明:显然,X0是C[0, 1]中的线性子空间.记X0所确定的等价关系为~,则f~g ? f (0) = g (0).定义Φ : X/X0 → ,Φ([ f ]) = f (0).显然定义是合理的.f, g∈X,?α, β∈ ,Φ(α[ f ] + β[ g ]) = Φ([αf + β g ]) = (αf + β g )(0)= αf (0)+ β g (0) = αΦ([ f ])+ βΦ([ g ]).因此Φ是线性映射.因Φ(X0) = 0,故Φ是单射.而?c∈ ,若记所对应的常值函数为h c∈C[0, 1],则Φ( [ h c] ) = c.故Φ是满射.综上所述,Φ : X/X0 → 是线性同构.f∈X,|| [ f ]||0 = inf g∈[ f ] { || g || } ≥ inf g∈[ f ] { | g (0) | }= inf g∈[ f ] { | f (0) | } = | f (0) | = | Φ([ f ]) |.另一方面,因为常值函数h f (0)∈[ f ],故|| [ f ]||0 = inf g∈[ f ] { || g || } ≤ || h f (0) || = | f (0) | = | Φ([ f ]) |.所以,?f∈X,都有|| [ f ]||0 = | Φ([ f ]) |,因此Φ : X/X0 → 是等距同构.[第4节完] 泛函分析题1_5凸集与不动点p521.5.1 设X是B*空间,E是以θ为内点的真凸子集,P是由E产生的Minkowski 泛函,求证:(1) x∈int(E) ?P(x) < 1;(2) cl(int(E)) = cl(E).证明:(1) (?) 若x∈int(E),存在δ > 0,使得Bδ(x) ?E.注意到x + x/n→x ( n→∞ ),故存在N ∈ +,使得x + x/N ∈Bδ(x) ?E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(?) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ?E.令η = δ(a - 1)/a,?z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ?E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ?E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ? cl(E).下面证明相反的包含关系.若x∈cl(E),则?ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈ +,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ? cl(int(E))所以cl(int(E)) = cl(E).1.5.2 求证在B空间中,列紧集的凸包是列紧集.证明:设A是B空间X中的列紧集,?ε > 0,存在A的有限ε /3网B.设B = {b1, b2, ..., b n},M = max j{ || b j || },取δ > 0,使得n δ M < ε /3.设[0, 1]分划D为0 = t0 < t1 < t2 < ... < t m = 1,使得max 1 ≤j ≤m {| t j–t j–1|} < δ.设?x∈co(A),设x= λ1 a1 + λ2 a2+ ... + λ k a k,其中a j∈A,λ j > 0,∑ j λ j = 1.对每个j ≤k,存在b i( j )∈B使得|| a j-b i( j ) || < ε /3;令y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k),则|| x - y || = || λ1 (a1 -b i(1)) + λ2 (a2 -b i(2))+ ... + λ k (a k-b i(k))||,≤λ1 · || a1 -b i(1) || + λ2 · || a2 -b i(2) || + ... + λ k · || a k-b i(k) ||≤ ( λ1 + λ2 + ... + λ k ) · (ε /2) = ε /3.将y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k)中的那些含有相同b j 的项合并起来,于是,y可表示为y= μ1 b1 + μ2 b2+ ... + μ n b n,其中μj ≥ 0,且∑ j μj = 1.对每个l ≤n,存在t s( l )∈D,使得|| μl-t s( l ) || < δ;令z= t s(1) b1 + t s(2) b2+ ... + t s(n) b n,则|| y - z || = || (μ1 -t s(1))b1 + (μ2 -t s(2))b2+ ... + (μn -t s(n))b n ||≤∑ l | μl-t s( l ) | · max j{ || b j || } ≤n δ M < ε /3;令C = {t s(1) b1 + t s(2) b2+ ... + t s(n) b n | t s(i)∈D,1 ≤i≤n},则C是有限集,且C是co(A)的有限ε网.因空间是完备的,故co(A)是列紧集.1.5.3 设C是B*空间X中的一个紧凸集,映射T : C →C连续,求证T在C上有一个不动点.证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) ?C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.。

《泛函分析》习题解答(不完全版)

《泛函分析》习题解答(不完全版)

( x1 , y) ( x1 , x2 ) ( x2 , y) , ( x2 , y ) (x2 , x1 ) (x1 , y ).
对两端关于 y A 取下确界, 可以得到 . inf ( x1 , y) ( x1 , x2 ) inf ( x2 , y) , inf (x2 , y ) (x2 , x1 ) inf (x1 ,y )
1 1
f ( x) L1 ([a, b]) , 需要证明: 对于任意的 0 , 存在 g ( x) C[a, b] , 使得
( f , g)
[ a ,b ]
| f ( x ) g ( x) | dx .
事实上, 首先根据积分的绝对连续性, 存在 0 , 使得当 E [a, b] , 只要 mE , 就有
x n , 0 x 1, f n ( x ) : 1, 1 x 2.
则 { f n ( x )} C ([0,2]) 在本题所定义的距离的意义下是 Cauchy 列, 因为
( f n , f m ) | f n ( x) f m ( x) | dx

因此, 根据 Lebesgue 有界收敛定理, 可以得到
( f n , g ) | f n ( x ) g ( x ) | dx
0
1
| x n 0 | dx x n dx
0 0
1
1
1 0. n 1
但 g ( x) C ([0,2]) . (2) C ([a, b]) 的完备化空间是 L ([a, b]) . 因为 (i) 在距离 的意义下, C ([a, b]) 是 L ([a, b]) 的稠密子集. 事实上, 任意取定一个

泛函分析课后习题答案

泛函分析课后习题答案

___ ___ ___
1 n
d ( x, y ) 1 d ( x, y )
t 在 [o, ) 上是单增函数, 1 t
___ d ( x, y ) d ( x, z ) d ( y , z ) d ( x, y ) 1 d ( x, y ) 1 d ( x, z ) d ( y , z )
1 n
x1 B ,使 d ( x0 , x1 )
1 1 。设 d ( x0 , x1 ) 0, 则易验证 U ( x0 , ) on ,这就 n n
证明了 on 是 开集 显然 n on B 。若 x on 则对每一个 n,有 xn B 使 d ( x , x1 ) ,因 1 n 1 此 xn x(n ) 。因 B 是闭集,必有 x B ,所以 on B 。证毕 n 1 4 设 d(x,y)为空间 X 上的距离,证明 d ( x, y ) 是 X 上的距离 证明 (1)若 d ( x, y ) 0 则 d ( x, y ) 0 ,必有 x=y (2)因 d ( x, y ) d ( x, z ) d ( y, z ) 而 于是 d ( x, y ) =
___
因此 f o (t ) A 由于 A 是开集,必有 0 ,当 f C[a,b]且 d ( f , f 0 ) 时, f A 定义,n=1,2。 。 。 。 。则 d ( f n , f 0 ) | t n t0 | 0(n ) 因此当 | t n t0 | 时, f n A 。 但是 f n (t n ) a | t t0 | | t n t0 | a ,此与 f n A 的必要条件:对 任意
t B ,有 f n (t ) a 矛盾

泛函分析习题及参考答案

泛函分析习题及参考答案



ξi( n ) < ε p 对任何自然数 n 成立。
1 p
p
p⎞ ⎛ ∞ (n) (n) 证明:必要性证明,由 d ( xn , x) = ⎜ ∑ ξi − ξi ⎟ → 0 可知, ξi → ξi , i = 1, 2, ⎝ i =1 ⎠

由 x = (ξ1 ,

, ξi , ) ∈ l p 可知, ∀ε > 0 ,存在 N1 > 0 ,使得
1 3
1 3
1 1 1 ⎧ ⎫ O( x, ) ∩ O( y, ) = Φ ,从而 ⎨O( x, ) x ∈ M ⎬ 是一族互不相交的球,其总数是不可数的。 3 3 3 ⎩ ⎭
(或:由 ∪O 因此 {y n }至少也有不可数个,这与 {y n }是可数的相矛盾。 (yn , ) ⊃l ⊃M 以

1 3
p p
En
∫x
n
பைடு நூலகம்
− x dt +
p
Fn
∫x
n
− x dt 。此时,
p
1 1 ⎡ ⎤ p p p p p p x x dt ( x dt ) ( x dt ) − ≤ + ⎢ ⎥ , ∫ x n − x dt < (b − a ) ⋅ ε 。 n n ∫ ∫ ∫ ⎢ En ⎥ Fn En En ⎣ ⎦
依测度收敛于 x(t ) 。
, 令n → ∞, 可得 m( E ( x n − x ≥ σ ) → 0 。 即 x n (t )
由 x(t ) 的积分绝对连续性可知,对任何 ε > 0 ,存在 δ 1 > 0 ,使得 e ⊂ E ,me < δ 1 时,
( ∫ x(t ) dt ) <

泛函分析答案泛函分析解答(张恭庆).doc

泛函分析答案泛函分析解答(张恭庆).doc

精 品 资 料第五章习题第一部分01-151. M 为线性空间X 的子集,证明span( M )是包含M 的最小线性子空间.[证明] 显然span( M )是X 的线性子空间.设N 是X 的线性子空间,且M ⊆ N . 则由span( M )的定义,可直接验证span( M ) ⊆ N . 所以span( M )是包含M 的最小线性子空间.2. 设B 为线性空间X 的子集,证明conv(B ) = {∑=ni i i x a 1| a i ≥ 0,∑=ni ia1= 1, x i ∈B , n 为自然数}.[证明] 设A = {∑=ni i i x a 1| a i ≥ 0,∑=ni ia1= 1, x i ∈B , n 为自然数}.首先容易看出A 为包含B 的凸集,设F 也是包含B 的凸集,则显然有A ⊆ F ,故A 为包含B 的最小凸集.3. 证明[a , b ]上的多项式全体P [a , b ]是无限维线性空间,而E = {1, t , t 2, ..., t n , ...}是它的一个基底.[证明] 首先可以直接证明P [a , b ]按通常的函数加法和数乘构成线性空间, 而P [a , b ]中的任一个元素皆可由E 中有限个元素的线性组合表示. 设c 0, c 1, c 2, ..., c m 是m + 1个实数,其中c m ≠ 0,m ≥ 1. 若∑=mn n n t c 0= 0,由代数学基本定理知c 0 = c 1 = c 2 = ... = c m = 0,所以E 中任意有限个元素线性无关,故P [a , b ]是无限维线性空间,而E 是它的一个基底。

4. 在2中对任意的x = (x 1, x 2)∈2,定义|| x ||1 = | x 1 | + | x 2 |,|| x ||2 = (x 12 + x 22)1/2,|| x ||∞ = max{ | x 1 |, | x 2 | }.证明它们都是2中的范数,并画出各自单位球的图形.[证明] 证明是直接的,只要逐条验证范数定义中的条件即可.单位球图形略.5. 设X 为线性赋范空间,L 为它的线性子空间。

泛函分析部分课后习题答案

泛函分析部分课后习题答案
n
T : R n E ,对于 1 , 2 n R n , 。
下证 T 为同构映射。 显 然 T 为 单 射 , 容 易 证 T 也 为 满 射 。 事 实 上 , 对 于 x E , 令
n
ci x, ei R, i 1, 2, n ,必有 T c1 , c2 cn ci ei x 。
f x 为
n
Cauchy 列 , 则 f n x , f n1 x 0 n , 由
f ni x f ni1 x f n , f n 1 0 n 知 f ni x 也为 Cauchy 列。由 Cauchy
由于时间和能力有限,只完成了部分习题,仅供参考,有错误的请指出,大家共同进步!——陈建军
习题 1 1、解: C a,b 按 是非完备的。
n1
令函数列 Pn x
i 0
b

xi ,显然 Pn C a,b ,且有 2i
b
Pn , Pn1 Pn1 Pn dx
T x1 , x2 , xn 0, x1 , x2 , xn 1 , S x1 , x2 , xn 0, x2 , xn 。易证 T,S 为线性算
子。取点 1,0, 0 R n ,显然有 TS 1, 0, 0 T 0,0, 0 0, 0, 0 ,
n k 1
fi x f ek ,显然 f X 且 fi i 1 为 X 的基。令 T : X X ,使得
f f e1 , f e2 , f en ,易证 T 为双射。命题得证。

泛函分析答案(完整版)

泛函分析答案(完整版)

1.}{ .1的极限是唯一的中的收敛列证明距离空间n x X *.** 0*)**,( )( 0*)*,(*),(*)**,(0)( *** x x x x n x x x x x x n x x x x n n n n ==∞→→+≤≤∞→→→,即所以,则,设ρρρρ第七章距离空间、赋范线性空间2.* }{* }{ .2x x X x x X n n 的任一子列收敛于收敛于中的序列试证距离空间⇔∈.* 0*),( 0*),(}{}{)( *x x x x x x x x n x x kkk n n n n n n →→→∞→→,所以,故的任一子列,依条件,是,设ρρ.*}{.*}{*),( }{}{*),(0*}{*}{000x x x x x x x x x x N n N x x x x n n n n n n n n k k k收敛于此与假设矛盾,故不收敛于显然使的一个子列,于是可选取,使,都存在,使对任意的自然数则必存在,不收敛于,如果的任一子列收敛于反之,设ερερε≥≥>>3),(),(|),(),(| )ii (),(|),(),(| )i ( .3w z y x w y z x y x z y z x X w z y x ρρρρρρρ+≤−≤−:中的任意四个点,证明是距离空间、、、设),(|),(),(|)2()1()2( ),(),(),( ),(),(),()1( ),(),(),( ),(),(),( )i (y x z y z x y x z x z y z x x y z y y x z y z x z y y x z x ρρρρρρρρρρρρρρρ≤−≤−+≤≤−+≤即得:、结合得再由得由),(),(|),(),(|)4()3()4( ),(),(),(),( ),(),(),(),()3( ),(),(),(),( ),(),(),(),(),(),( )ii (w z y x w y z x w z y x z x w y w z z x x y w y w z y x w y z x z w w y y x z y y x z x ρρρρρρρρρρρρρρρρρρρρρρ+≤−+≤−++≤+≤−++≤+≤即得:、结合得再由得由4距离吗?是定义在实数集合上的2)(),( .4y x y x −=ρ.,24120),(),(),(),(.)(),(2上式就不成立时,,,比如取满足、、不能对所有的因为的距离不是定义在实数集合上>===+≤⋅⋅−=z y x y z z x y x z y x y x y x ρρρρρ.),( }{}{ .5收敛中的基本列,证明是距离空间、设n n n n n y x X y x ρα=.Cauchy }{),(),( |),(),(|||),( 0),( ),( 0),(数列,故收敛是即知再由依条件:n m n m n m m n n m n m n m n y y x x y x y x m n y y m n x x αρρρρααρρ+≤−=−∞→→∞→→5的闭包是闭集。

泛函分析课后习题答案

泛函分析课后习题答案

有某自然数 n,使 U ( x, ) Ox 。
1 ) 中必有 2n 1 1 1 某 U ( xk , ) ,且 U ( xk , ) Ox 。 。事实上,若 y U ( xk , ) ,则 2n 2n 2n 1 1 1 1 d ( y , x ) d ( y , xk ) + d ( x k , x ) + = 所以 y U ( xk , ) Ox 。 2n 2n n 2n 1 这样我们就证明了对任意 x X ,存在 k,n 使 x U ( xk , ) 且 2n 1 1 存在 U ( xk , ) O 任取覆盖 U ( xk , ) 的 O,记为 Ok ,n 是 2n 2n
8
设 B[a,b]表示[a,b]上实有界函数全体,对 B[a,b]中任意 两元素 f,g B[a,b],规定距离为 d ( f , g ) = sup | f (t ) − g (t ) | 。
a t b
证明 B[a,b]不是可分空间 证明
0
对任意 t0 [a,b],定义 ft (t ) = 1, t [a, t0 )2, t [to , b)}
5,证明点列{ f n }按习题 2 中距离收敛与 f C [a, b] 的充要条件为 f n 的 各阶导数在 [a,b]上一致收敛于 f 的各阶导数 证明 若{ f n }按习题 2 中距离收敛与 f C [a, b] ,即
f n (t ) − f ( r ) (t ) 1 ——>0 d ( f , f n ) r max (r ) a t b 1 + f n (t ) − f ( r ) (t ) r =0 2

f ( r ) (t ) − g ( r ) (t ) h ( r ) (t ) − g ( r ) (t ) 1 max + r a t b 1 + f ( r ) (t ) − g ( r ) (t ) 1 + h ( r ) (t ) − g ( r ) (t ) r =0 2

泛函分析答案

泛函分析答案

泛函分析题1_3列紧集p191.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对∀ε > 0,存在A的列紧的ε网.证明:(1) 若子集A是列紧的,由Hausdorff定理,∀ε > 0,存在A的有限ε网N.而有限集是列紧的,故存在A的列紧的ε网N.(2) 若∀ε > 0,存在A的列紧的ε/2网B.因B列紧,由Hausdorff定理,存在B的有限ε/2网C.因C ⊆B ⊆A,故C为A的有限ε网.因空间是完备的,再用Hausdorff定理,知A是列紧的.1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界.证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数.(1) 若f无上界,则∀n∈ +,存在x n∈D,使得f (x n) > 1/n.因D是紧集,故D是自列紧的.所以{x n}存在收敛子列x n(k) →x0∈D (k→∞).由f的连续性,f (x n(k))→f (x0) (k→∞).但由f (x n) > 1/n知f (x n)→ +∞(n→∞),所以f (x n(k))→ +∞ (k→∞),矛盾.故f有上界.同理,故f有下界.(2) 设M = sup x∈D f(x),则∀n∈ +,存在y n∈D,使得f (y n) > M- 1/n.{y n}存在子列y n(k) →y0∈D (k→∞).因此f ( y0 ) ≥M.而根据M的定义,又有f ( y0 ) ≤M.所以f ( y0 ) = M.因此f能达到它的上确界.同理,f能达到它的下确界.1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的.证明:(1) 若A是度量空间(X, ρ)中的完全有界集.则存在A的有限1-网N = { x0, x1, x2, ..., x n }.令R = ∑1 ≤j≤nρ(x0, x j) + 1.则∀x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1.因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R.所以A是度量空间(X, ρ)中的有界集.(2) 注意到ρ(e k , e j) = 21/2 ( ∀k ≠ j ),故E中任意点列都不是Cauchy列.所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).因此,E不是列紧集.由l 2是完备的,以及Hausdorff定理,知E不是全有界集.但E显然是有界集.1.3.4 设(X, ρ)是度量空间,F1, F2是它的两个紧子集,求证:∃x i ∈F i( i = 1, 2),使得ρ(F1, F2) = ρ(x1, x2).其中ρ(F1, F2) = inf {ρ(x, y) | x∈F1, y∈F2 }证明:由ρ(F1, F2)的定义,∀n∈ +,∃x i(n)∈F i( i = 1, 2),使得ρ(x1(n), x2(n)) < ρ(F1, F2) + 1/n.因F1, F2紧,故不妨假设{x1(n)}, {x2(n)}都是收敛列.设它们的极限分别为x1, x2,则ρ(x1, x2) ≤ρ(F1, F2).因此ρ(F1, F2) = ρ(x1, x2).1.3.5 设M是C[a, b]中的有界集,求证集合{F(x) =⎰[a, x]f(t) dt | f∈M }是列紧集.证明:设A = {F(x) =⎰[a, x]f(t) dt | f∈M }.由M有界,故存在K > 0,使得∀f∈M,ρ( f, 0) ≤K.先证明A是一致有界的和等度连续的.∀F∈A,存在f∈M,使得F(x) =⎰[a, x]f(t) dt.由于ρ(F, 0) = max x∈[a, b] | F(x) | = max x∈[a, b] | ⎰[a, x]f(t) dt |≤ max x∈[a, b] | f(t) | · (b -a ) = ρ( f, 0) · (b -a ) ≤K (b -a ).故A是一致有界的.∀ε > 0,∀s, t∈[a, b],当| s-t| < ε/K时,∀F∈A,存在f∈M,使得F(x) =⎰[a, x]f(u) du.| F(s) -F(t) | = | ⎰[s, t]f(u) du | ≤ max u∈[a, b] | f(u) | · | s -t |= ρ( f, 0) · | s -t | ≤K · (ε/K) = ε.故A是等度连续的.由Arzela-Ascoli定理,A是列紧集.1.3.6 设E = {sin nt}n≥ 1,求证:E在C[0, π]中不是列紧的.证明:显然E是一致有界的.根据Arzela-Ascoli定理,我们只要证明E不是等度连续的即可.我们的想法是找一个E中的点列f n,以及[0, π]中的两个点列s n和t n,使得| s n -t n | → 0,但| f n(s n)-f n(t n)|不收敛于0.事实上,这是可以做到的,只要令f n (u) = sin (2n u),s n = (π/2)(1 + 1/(2n)),t n = (π/2)(1 - 1/(2n)).则s n + t n = π;s n -t n = π/(2n)→ 0(n→∞).因此,| f n(s n)-f n(t n)| = 2 | sin (2n s n) - sin (2n t n) |= 2 | sin (n (s n -t n)) cos (n (s n + t n)) |= 2 | sin (π/2) cos (n π) | = 2.所以,E不是等度连续的.进而,E在C[0, π]中不是列紧的.1.3.7 求证S空间的子集A是列紧的充要条件是:∀n∈ +,∃C n> 0,使得∀x = (ξ1, ξ2, ..., ξn, ...)∈A,都有| ξn | ≤C n( n = 1, 2, ...).证明:(⇐) 设x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... )是A中的点列.存在{x k}的子列{x1, k}使得其第1个坐标ξ1(1, k)收敛;存在{x1, k}的子列{x2, k}使得其第2个坐标ξ2(2, k)收敛;如此下去,得到一个{x k}的子列的序列,第( j +1)个子列是第j个子列的子列,且第j个子列的第j个坐标是收敛的.选取对角线构成的点列{x j, j},则{x j, j}是{x k}的子列,且每个坐标都收敛.根据习题1.2.1的证明可知,S空间的点列收敛的充要条件是坐标收敛.故{x j, j}是收敛点列.所以,A是列紧的.(⇒) 我们只要证明,∀n∈ +,A中的点的第n个坐标所构成的集合是有界集.若不然,设A中的点的第N个坐标所构成的集合是无界的.则存在A中的点列x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... ),使得| ξN(k) | > k.显然,{ ξN(k) }无收敛子列,故{ x k }也无收敛子列,这与A列紧相矛盾.这样就完成了必要性的证明.1.3.8 设(X, ρ)是度量空间,M是X中的列紧集,映射f : X →M满足ρ( f (x1), f (x2)) < ρ( x1, x2 )(∀x1, x2∈M, x1≠x2).求证:f在X中存在唯一的不动点.证明:(1) 首先证明cl(M)是紧集.为此只要证明cl(M)列紧即可.设{ x n }是cl(M)中的点列,则存在M中的点列{ y n }使得ρ( x n, y n) < 1/n.因M列紧,故{ y n }有收敛子列{ y n(k)},设y n(k) →u∈cl(M).显然{ x n(k)}也是收敛的,并且也收敛于u∈cl(M).所以cl(M)是自列紧的,因而是紧集.(2) 令g(x) = ρ( x, f (x)),则g是X上的连续函数.事实上,由ρ( f (x1), f (x2)) < ρ( x1, x2 )可知f : X →M是连续的,因而g也连续.由习题1.3.2知存在x0∈cl(M),使得g(x0) = inf {ρ( x, f (x)) | x∈cl(M) }.(3) 若g(x0) > 0,则ρ( x0, f (x0)) > 0,即x0≠f (x0).故ρ( x0, f (x0)) = g(x0) ≤g( f (x0)) = ρ( f (x0), f ( f (x0))) < ρ( x0, f (x0)),矛盾.所以,必有g(x0) = 0,即ρ( x0, f (x0)) = 0,因此x0就是f的不动点.1.3.9 设(M, ρ)是一个紧距离空间,又E⊆C(M),E中的函数一致有界并且满足下列的Hölder条件:| x(t1) -x(t2) | ≤Cρ(t1, t2)α(∀x∈E,∀t1, t2∈M ),其中0 < α≤ 1,C > 0.求证:E在C(M)中是列紧集.证明:由Hölder条件易知E是等度连续的.又E中的函数一致有界,由Arzela-Ascoli定理知E是C(M)中的列紧集.[第3节完] 泛函分析题1_4线性赋范空间p391.4.1 在2维空间 2中,对每一点z = (x, y),令|| z ||1 = | x | + | y |;|| z ||2 = ( x 2 + y 2 )1/2;|| z ||3 = max(| x |, | y |);|| z ||4 = ( x 4 + y 4 )1/4;(1) 求证|| · ||i( i = 1, 2, 3, 4 )都是 2的范数.(2) 画出( 2, || · ||i )( i = 1, 2, 3, 4 )各空间中单位球面图形.(3) 在 2中取定三点O = (0, 0),A = (1, 0),B= (0, 1).试在上述四种不同的范数下求出∆OAB三边的长度.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.设z = (x, y), w = (u, v)∈ 2,s = z + w= (x + u, y + v ),|| z||1 + || w||1 = (| x | + | y |) + (| u | + | v |) = (| x | + | u |) + (| y | + | v |)≥ | x + u | + | y + v | = || z+ w||1.( || z||2 + || w||2 )2 = ( ( x 2 + y 2 )1/2 + ( u 2 + v 2 )1/2 )2= ( x 2 + y 2 ) + ( u 2 + v 2 ) + 2(( x 2 + y 2 )( u 2 + v 2 ))1/2≥ ( x 2 + u 2 ) + ( y 2 + v 2 ) + 2( x u+ y v )= ( x + u )2 + ( y + v)2 = ( || z+ w||2 )2.故|| z||2 + || w||2 ≥ || z+ w||2.|| z||3 + || w||3 = max(| x |, | y |) + max(| u |, | v |)≥ max(| x | + | u |, | y | + | v |) ≥ max(| x + u |, | y + v |) = || z+ w||3.|| ·||4我没辙了,没找到简单的办法验证,权且用我们以前学的Minkowski不等式(离散的情况,用Hölder不等式的离散情况来证明),可直接得到.(2) 不画图了,大家自己画吧.(3) OA = (1, 0),OB = (0, 1),AB = (- 1, 1),直接计算它们的范数:|| OA||1 = 1,|| OB||1 = 1,|| AB||1 = 2;|| OA||2 = 1,|| OB||2 = 1,|| AB||2 = 21/2;|| OA||3 = 1,|| OB||3 = 1,|| AB||3 = 1;|| OA||4 = 1,|| OB||4 = 1,|| AB||4 = 21/4.1.4.2 设c[0, 1]表示(0, 1]上连续且有界的函数x(t)全体.∀x∈c[0, 1],令|| x || = sup{| x(t) | | 0 < t≤ 1}.求证:(1) || ·||是c[0, 1]空间上的范数.(2) l∞与c[0, 1]的一个子空间是等距同构的.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.|| x || = sup{| x(t) | | 0 < t≤ 1}.|| x || + || y || = sup{| x(t) | | 0 < t≤ 1} + sup{| y(t) | | 0 < t≤ 1}≥ sup{| x(t) + y(t) | 0 < t≤ 1} = || x + y ||.所以|| ·||是c[0, 1]空间上的范数.(2) 任意取定(0, 1]中的一个单调递减列{a k },满足(i) a1 = 1;(ii) lim k→∞a k = 0.显然,在每个[a k + 1, a k]上为线性函数的f∈c[0, 1]是存在的.设X = { f∈c[0, 1] | f在每个[a k + 1, a k]上为线性函数}.容易验证X是c[0, 1]的子空间.定义ϕ : X →l∞,f #ϕ ( f ) = ( f (a1), f (a2), ...).则ϕ : X →l∞是线性双射,且|| ϕ ( f ) ||∞= sup k ≥ 1 | f (a k) | = sup0 < t≤ 1 { | f (t ) | } = || f ||.所以,ϕ : X →l∞是等距同构.因此,l∞与c[0, 1]的一个子空间是等距同构的.1.4.3 在C1[a, b]中,令|| f ||1 = (⎰[a, b] ( | f(x) |2 + | f’(x) |2) dx )1/2 (∀f∈C1[a, b]).(1) 求证:|| · ||1是C1[a, b]上的范数.(2) 问(C1[a, b], || · ||1)是否完备?证明:(1) 正定性和齐次性都是明显的,和前面的习题一样,只验证三角不等式.我们先来证明一个比较一般的结果:若线性空间X上的非负实值函数p, q都满足三角不等式:p(x) + p(y) ≥p(x +y),q(x) + q(y) ≥q(x +y),∀x, y∈X;则函数h = ( p2 + q2 )1/2也满足三角不等式.事实上,∀x, y∈X,由Minkowski不等式,我们有h(x) + h(y) = ( p(x)2 + q(x)2 )1/2 + ( p(y)2 + q(y)2 )1/2≥ (( p(x)+ p(y))2 + ( q(x) + q(y))2 )1/2 ≥ ( p(x + y)2 + q(x + y)2 )1/2 = h(x + y).回到本题:若令p( f ) = (⎰[a, b] | f(x) |2dx )1/2,q( f ) = (⎰[a, b] | f’(x) |2dx )1/2,则( p( f ) + p( g ))2 = ((⎰[a, b] | f(x) |2dx )1/2 + (⎰[a, b] | g(x) |2dx )1/2)2= ⎰[a, b] | f(x) |2dx + 2(⎰[a, b] | f(x) |2dx )1/2 · (⎰[a, b] | g(x)|2dx )1/2 + ⎰[a, b] | g(x) |2dx≥⎰[a, b] | f(x)|2dx + 2 ⎰[a, b] | f(x) | · | g(x)| dx + ⎰[a, b] | g(x)|2dx= ⎰[a, b] ( | f(x) | + | g(x)| )2dx ≥⎰[a, b] ( | f(x) + g(x)| )2dx = ( p( f + g ))2.所以有p( f ) + p( g ) ≥p( f + g ).特别地,p( f’) + p( g’) ≥p( f’+ g’),即q( f ) + q( g ) ≥q( f + g ).因此,线性空间C1[a, b]上的非负实值函数p, q都满足三角不等式.根据开始证明的结论,|| · ||1也满足三角不等式.所以,|| · ||1是C1[a, b]上的范数.(2) 在C1[- 1, 1]中,令f n(x) = (x2 + 1/n2 )1/2 ( ∀x∈[- 1, 1] ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ∀x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ∀x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).故在L2[- 1, 1]中,f n(x) → | x |,f’n(x) → 2sign( x ).因此,它们都是L2[- 1, 1]中的基本列,故⎰[- 1, 1] | f n(x) -f m(x) |2 dx → 0(m, n→∞);⎰[- 1, 1] | f’n(x) -f m’(x) |2 dx → 0(m, n→∞).故|| f n-f m ||1 = (⎰[- 1, 1] ( | f n(x) -f m(x) |2 + | f’n(x) -f m’(x) |2 ) dx )1/2→ 0 (m, n→∞).即{ f n }是C1[- 1, 1]中的基本列.下面我们证明{ f n }不是C1[- 1, 1]中的收敛列.若不然,设{ f n }在C1[- 1, 1]中的收敛于f∈C1[- 1, 1].因|| f n-f ||1 = (⎰[- 1, 1] ( | f n(x) -f(x) |2 + | f’n(x) -f’(x) |2 ) dx )1/2≥ (⎰[- 1, 1] | f n(x) -f(x) |2dx )1/2,故在L2[- 1, 1]中,f n(x) →f.而在前面已说明L2[- 1, 1]中,f n(x) → | x |;由L2[- 1, 1]中极限的唯一性以及f的连续性,知f(x) = | x |.这样就得到f∉C1[- 1, 1],矛盾.所以,{ f n }不是C1[- 1, 1]中的收敛列.这说明C1[- 1, 1]不是完备的.对一般的C1[a, b],只要令f n(x) = (x - (a + b )/2)2 + 1/n2 )1/2( ∀x∈[a, b] )就可以做同样的讨论,就可以证明C1[a, b]不是完备空间.1.4.4 在C[0, 1]中,对每个f∈C[0, 1],令|| f ||1 = (⎰[0, 1] | f(x) |2dx )1/2,|| f ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2.求证:|| · ||1和|| · ||2是C[0, 1]中的两个等价范数.证明:(1) 在习题1.4.3的证明中已经包含了|| · ||1是C[0, 1]中的范数的证明.下面我们证明|| · ||2是C[0, 1]中的范数,我们仍然只要验证三角不等式.|| f ||2 + || g ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 + (⎰[0, 1] ( 1 + x) | g(x) |2dx )1/2= || (1 + x)1/2f(x) ||1 + || (1 + x)1/2g(x) ||1≥ || (1 + x)1/2f(x) + (1 + x)1/2g(x) ||1= || (1 + x)1/2 ( f(x) + g(x) ) ||1≥ (⎰[0, 1] (1 + x) | f(x) + g(x) |2dx )1/2= || f + g ||2.所以,|| · ||2也是C[0, 1]中的范数.(2) 我们来证明两个范数的等价性.∀f∈C[0, 1]|| f ||1 = (⎰[0, 1] | f(x) |2dx )1/2 ≤ (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 = || f ||2,|| f ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 ≤ 2 (⎰[0, 1] | f(x) |2dx )1/2 = 2 || f ||1.因此两个范数等价.1.4.5 设BC[0, ∞)表示[0, ∞)上连续且有界的函数f(x)全体,对每个f ∈BC[0, ∞)及a > 0,定义|| f ||a = (⎰[0, ∞) e-ax | f(x) |2dx )1/2.(1) 求证|| ·||a是BC[0, ∞)上的范数.(2) 若a, b > 0,a≠b,求证|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.证明:(1) 依然只验证三角不等式.|| f ||a + || g ||a = (⎰[0, ∞) e-ax | f(x) |2dx )1/2 + (⎰[0, ∞) e-ax | g(x) |2dx )1/2= || e-ax/2f(x)||L2 + || e-ax/2g(x)||L2≤ || e-ax/2f(x)+ e-ax/2g(x)||L2= || e-ax/2 ( f(x)+ g(x))||L2= (⎰[0, ∞) e-ax | f(x)+ g(x) |2dx )1/2= || f + g ||a,所以|| ·||a是BC[0, ∞)上的范数.(2) 设f n(x)为[n, +∞)上的特征函数.则f n∈BC[0, ∞),且|| f n||a = (⎰[0, ∞) e-ax | f n(x) |2dx )1/2 = (⎰[n, ∞) e-ax dx )1/2 = ((1/a)e-an)1/2.同理,|| f n||b = ((1/b)e-bn)1/2.故若a < b,则|| f n||a/|| f n||b = (b/a)1/2e-(b -a)n/2→ +∞ (n→+∞).因此|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.1.4.6 设X1, X2是两个B*空间,x1∈X1和x2∈X2的序对(x1, x2)全体构成空间X = X1⨯X2,并赋予范数|| x || = max{ || x1 ||1, || x2 ||2 },其中x = (x1, x2),x1∈X1,x2∈X2,|| · ||1和|| ·||2分别是X1和X2的范数.求证:如果X1, X2是B空间,那么X也是B空间.证明:(1) 先验证|| · ||的三角不等式.设x = (x1, x2), y = (y1, y2)∈X1⨯X2,则|| x + y || = || (x1 + y1, x2 + y2) || = max{ || x1 + y1 ||1, || x2 + y2 ||2 }≤ max{ || x1 ||1 + || y1 ||1, || x2 ||2 + || y2 ||2 }≤ max{ || x1 ||1, || x2 ||2 } + max{ || y1 ||1, || y2 ||2 }= || (x1, x2) || + || (y1, y2) ||= || x || + || y ||,而|| · ||的正定性和齐次性是显然的,所以,|| · ||是X1⨯X2的范数.(2) 设X1, X2是B空间,我们来证明X也是B空间.设x(n) = (x1(n), x2(n))是X = X1⨯X2中的基本列,则|| x(n) -x(m) || = max{ || x1(n) -x1(m) ||1, || x2(n) -x2(m)||2 } ≥ || x1(n) -x1(m) ||1,故{x1(n)}是X1中的基本列,同理,{x2(n)}是X2中的基本列.因X1, X2是B空间,故{x1(n)}和{x2(n)}分别是X1, X2中的收敛列.设x1(n) →x1∈X1,x2(n) →x2∈X2,令x = (x1, x2).则|| x(n) -x || = max{ || x1(n) -x1 ||1, || x2(n) -x2 ||2 }≤ || x1(n) -x1 ||1 + || x2(n) -x2 ||2→ 0 (n→∞).所以,|| x(n) -x ||→ 0 (n→∞).即{ x(n) }为X = X1⨯X2中的收敛列.所以X = X1⨯X2也是B空间.1.4.7 设X是B*空间.求证:X是B空间,必须且只须对∀{x n}⊆X,∑n≥ 1 || x n || < +∞⇒∑n≥ 1x n 收敛.证明:(⇒) ∀{x n}⊆X,记S n = ∑1 ≤j≤n x j,B n = ∑1 ≤j≤n || x n ||,则|| S n + p-S n || = || ∑1 ≤j≤n + p x j -∑1 ≤j≤n x j ||= || ∑n +1 ≤j≤n + p x j ||≤∑n +1 ≤j≤n + p || x j ||= B n + p-B n → 0,(n→∞).故{ S n }为X中的Cauchy列.由X完备,故{ S n }为X中的收敛列,即∑n≥ 1x n 收敛.(⇐) 反证法.若(X, ρ)不完备,设(Y, d )为(X, ρ)的一个完备化.不妨设(X, ρ)是(Y, d )的子空间,则存在y∈Y \ X.因cl( X ) = Y,故∀n∈ +,存在x n∈X,使得d(x n, y) < 1/2n.则ρ(x n, x m) = d(x n, x m) ≤d(x n, y) + d(x m, y) ≤ 1/2n+ 1/2m → 0,因此{x n}是X中的Cauchy列,但不是收敛列.令z n = x n+1-x n,S n = ∑1 ≤j≤n z j;则z n, S n∈X.因|| z n || = || x n+1-x n || = ρ(x n+1, x n) ≤d(x n+1, y) + d(x n+1, y) ≤ 1/2n+1+ 1/2n < 1/2n - 1,故∑n≥ 1 || z n || < +∞.而S n = ∑1 ≤j≤n z j = ∑1 ≤j≤n ( x j+1-x j ) = x n+1-x1;故∑n≥ 1z n 在中不收敛.矛盾.1.4.8 记[a, b]上次数不超过n的多项式全体为 n.求证:∀f(x)∈C[a, b],存在P0(x)∈ n,使得max a ≤x≤b| f(x) –P0(x) | = min{ max a ≤x≤b| f(x) –P(x) | | P∈ n }.证明:注意到 n是B*空间C[a, b]中的n+1维子空间.{1, x, x2, ..., x n}是 n中的一个向量组,把它看成C[a, b]中的一个有限向量组.根据定理p35, 1.4.23,对任意∀f(x)∈C[a, b],存在最佳逼近系数{λ0, λ1, ..., λn},使得|| f(x) –∑0 ≤j≤n λj x j || = min{ || f(x) –∑0 ≤j≤n a j x j || | (a0, a1, ..., a n)∈ n+1}.令P0(x) = ∑0 ≤j≤n λj x j 就得到要证明的结论.1.4.9 在 2中,对∀x = (x1, x2)∈ 2,定义范数|| x || = max(| x1 |, | x2 |),并设|| x0–λ e1 ||.e1 = (1, 0),x0 = (0, 1).求a∈ 适合|| x0–a e1 || = minλ∈并问这样的a是否唯一?请对结果作出几何解释.解:g(λ) = || x0–λ e1 || = || (0, 1) –λ(1, 0)|| = || (–λ, 1)|| = max(| λ |, 1) ≥ 1,故g(λ) 当| λ| ≤ 1时取得最小值1.所以a = 0满足要求.显然满足要求的a不是唯一的.从几何上看就是某线段上的点到某定点的距离都是1.1.4.10 求证范数的严格凸性等价于下列条件:|| x + y || = || x || + || y || ( ∀x≠θ, y≠θ) ⇒x = c y ( c > 0).证明:(⇒) 设范数是严格凸的,若x, y ≠θ满足|| x + y || = || x || + || y ||,事实上,我们总有|| (x/|| x ||) || = || (y/|| y ||) || = 1.因x, y ≠θ,故|| x || + || y || > 0,所以|| x + y || ≠ 0.于是|| x ||/|| x + y || + || y ||/|| x + y || = 1.假若x/|| x || ≠y/|| y ||,由严格凸性,得到|| (|| x ||/|| x + y ||)(x/|| x ||) + (|| y ||/|| x + y ||)(y/|| y ||) || < 1,即|| (( x + y )/|| x + y ||) || < 1,矛盾.因此必然有x/|| x || = y/|| y ||,即x = (|| x ||/|| y ||) y.(⇐) 设∀x, y ≠θ,|| x + y || = || x || + || y ||蕴涵x = c y ( c > 0).下面证明范数是严格凸的.设x≠y,且|| x || = || y || = 1,又设α, β∈(0, 1),且α + β= 1.我们知道|| α x + β y || ≤ || α x || + || β y || = α || x || + β|| y || = α + β= 1.假若|| α x + β y || = 1,根据我们的条件,就得到α x = c (β y),其中c > 0.那么,就有|| α x || = || c (β y) ||,而|| x || = || y || = 1,所以α= c β;故x = y,这就与x≠y相矛盾.所以必然有|| α x + β y || < 1,即范数是严格凸的.1.4.11 设X是线性赋范空间,函数ϕ : X → 1称为凸的,如果不等式ϕ( λ x + (1 -λ) y ) ≤λϕ( x ) + (1 -λ)ϕ( y ) ( ∀ 0 ≤λ≤ 1)成立.求证凸函数的局部极小值必然是全空间的最小值.证明:设x0是凸函数ϕ的一个局部极小点.如果存在x∈X,使得ϕ( x ) < ϕ( x0),则∀ t ∈(0, 1),ϕ( t x + (1 -t ) x0) ≤t ϕ( x ) + (1 -t )ϕ( x0) < t ϕ( x0) + (1 -t )ϕ( x0) = ϕ( x0).而对x0的任意邻域U,都存在t ∈(0, 1),使得t x + (1 -t ) x0∈U.这就与x0是局部极小点相矛盾.因此∀x∈X,都有ϕ( x0) ≤ϕ( x ),即x0是ϕ的最小点.1.4.12 设(X, || · ||)是一线性赋范空间,M是X的有限维子空间,{e1, e2, ..., e n}是M的一组基,给定g∈X,引进函数F : n → 1.对∀c = (c1, c2, ..., c n)∈ n,规定F(c) = F(c1, c2, ..., c n) = || ∑1 ≤i≤n c i e i-g ||.(1) 求证F是一个凸函数;(2) 若F的最小值点是c = (c1, c2, ..., c n),求证f = ∑1 ≤i≤n c i e i给出g在M中的最佳逼近元.证明:(1) 设c = (c1, c2, ..., c n), d = (d1, d2, ..., d n)∈ n, λ∈[0, 1],则F(λ c + ( 1 -λ) d ) = || ∑1 ≤i≤n ( λ c i + ( 1 -λ) d i ) e i-g ||= || λ∑1 ≤i≤n c i e i + ( 1 -λ) ∑1 ≤i≤n d i e i- (λ g+ ( 1 -λ)g )||= || λ(∑1 ≤i≤n c i e i -g) + ( 1 -λ) ( ∑1 ≤i≤n d i e i-g )||≤λ|| ∑1 ≤i≤n c i e i -g || + ( 1 -λ) || ∑1 ≤i≤n d i e i-g ||= λ F(c)+ ( 1 -λ)F(d),故F是一个凸函数.(2) 因为{e1, e2, ..., e n}是M的一组基,故M中的每个元h都可表示为h = ∑1 ≤i≤n d i e i,其中d = (d1, d2, ..., d n)∈ n.因为F(c) ≤F(d),故|| f-g || = F(c) ≤F(d) = || h-g ||.那么f就是g在M中的最佳逼近元.1.4.13 设X是B*空间,X0是X的线性子空间,假定∃c∈(0, 1)使得∀y∈X,有inf { || y–x || | x ∈X0 } ≤c || y ||.求证:X0在X中稠密.证明:设y∈X,∀ε > 0,∃x1∈X0,s.t. || y–x1 || < c || y || + ε /4.∃x2∈X0,s.t. || (y–x1) –x2 || < c || y–x1 || + ε /8.∃x3∈X0,s.t. || (y–x1 –x2 ) –x3 || < c || y–x1 –x2 || + ε /16.如此下去,可得到一个X0中的点列{ x n },满足|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2(∀n∈ +).那么,我们可以用数学归纳法证明|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).当n = 1时,|| y–x1 || < c || y || + ε /4.结论成立.当n = 2时,|| (y–x1) –x2 || < c || y–x1 || + ε /8< c (c || y || + ε /4) + ε /8 < c 2 || y || + ε (1/4 + 1/8),结论成立.当n≥ 3时,若|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1)成立,则|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2< c (c n || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n+ 11/2j + 1)),因此结论也成立.由数学归纳法原理,∀n∈ +,|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).因为c∈(0, 1),故存在N∈ +,使得c N || y || < ε /2.令x = ∑1 ≤j≤N x j,则x∈X0.且|| y–x || < ε /2 + ε (∑1 ≤j≤N 1/2j + 1) < ε.所以,X0在X中稠密.[张峰同学的证明] 反证法.若不然,则cl(X0)是X的真闭线性子空间.用Riesz引理,存在y∈X,使得|| y || = 1,且inf { || y–x || | x ∈ cl(X0)} > c.故对此y∈X,有inf { || y–x || | x ∈X0 } > c || y ||,矛盾.1.4.14 设C0表示以0为极限的实数全体,并在C0中赋以范数|| x || = max n≥1| ξn |,( ∀x = (ξ1, ξ2, ..., ξn, ...)∈C0 ).又设M = {x = (ξ1, ξ2, ..., ξn, ...)∈C0 | ∑n ≥1 ξn/2n = 0}.(1) 求证:M是C0的闭线性子空间.(2) 设x0= (2, 0, 0, ...),求证:inf z ∈M || x0–z || = 1,但∀y∈M,有|| x0–y || > 1.证明:(1) 显然M ≠∅,容易直接验证M是C0的线性子空间.若x k = (ξ1(k), ξ2(k), ..., ξn(k), ...)为M中的点列,且x k→x = (ξ1, ξ2, ..., ξn, ...)∈C0.则∀ε > 0,存在N∈ +,使得∀k > N,|| x k -x || < ε.此时,∀n∈ +,有|ξn -ξn(k)| ≤ max n≥1| ξn -ξn(k) | = || x k -x || < ε.| ∑n ≥1 ξn/2n | = | ∑n ≥1 ξn/2n-∑n ≥1 ξn(k)/2n | = | ∑n ≥1 (ξn -ξn(k))/2n |≤∑n ≥1 |ξn -ξn(k)|/2n≤∑n ≥1 ε/2n = ε.所以,∑n ≥1 ξn/2n = 0,即x = (ξ1, ξ2, ..., ξn, ...)∈M.所以M是C0的闭线性子空间.(2) x0= (2, 0, 0, ...),∀z = (ξ1, ξ2, ..., ξn, ...)∈M,|| x0–z || = max{| 2 -ξ1 |, | ξ2 |, | ξ3 |, ... }.如果| 2 -ξ1 | > 1,则|| x0–z || > 1.如果| 2 -ξ1 | ≤ 1,则| ξ1 | ≥ 1,我们断言{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.否则,假若它们都不超1,因为ξn → 0 (n→∞),故它们不能全为1.由∑n ≥1 ξn/2n = 0知| ξ1 |/2 = | ∑n ≥2 ξn/2n | ≤∑n ≥2 | ξn | /2n < ∑n ≥2 1/2n = 1/2,这样得到| ξ1 | < 1,矛盾.故{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.因此也有|| x0–z || > 1.综上所述,但∀y∈M,有|| x0–y || > 1.由此,立即知道inf z ∈M || x0–z || ≥ 1.下面证明inf z ∈M || x0–z || ≤ 1.∀n∈ +,令z n= (1 - 1/2n, -1, -1, ..., -1, 0, 0, ...).( z n从第2个坐标开始有连续的n个-1,后面全部是0 ),则(1 - 1/2n)/2 - 1/4 - 1/8 - ... - 1/2n + 1 = 0,因此z n∈M.此时,|| x0–z n || = max{| 1 + 1/2n|, | 1/4|, | 1/8|, ... } = 1 + 1/2n.故inf z ∈M || x0–z || ≥ inf n || x0–z n || = inf n (1 + 1/2n ) = 1.所以,inf z ∈M || x0–z || = 1.1.4.15 设X是B*空间,M是X的有限维真子空间,求证:∃y∈X,|| y|| = 1,使得|| y–x || ≥ 1 ( ∀x ∈M ).证明:取定z∈X \ M,令Y = span{z} + M.记S = { y∈Y | || y || = 1 }.则M是Y的真闭子空间,而S是Y中的单位球面.由Riesz引理,∀n∈ +,存在y n∈S,使得d( y n, M ) ≥ 1 - 1/n.因为Y也是有限维的,故其中的单位球面为自列紧集.存在{y n}的收敛子列.不妨设y n(k) →y∈S.则d( y n(k), M ) ≥ 1 - 1/n(k),故有d( y, M ) ≥ 1.即|| y–x || ≥ 1 ( ∀x ∈M ).1.4.16 若f是定义在区间[0, 1]上的复值函数,定义ωδ( f ) = sup{| f (x) – f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}.如果0< α≤ 1对应的Lipschitz空间Lipα,由满足|| f || = | f(0) | + supδ > 0{δ–αωδ( f )} < +∞的一切f组成,并且以|| f ||为模.又设lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0}.求证Lipα是B空间,而且lipα是Lipα的闭子空间.证明:(1) 显然,C1[0, 1]⊆Lipα,因此Lipα不空.对区间[0, 1]上的复值函数f, g,∀λ∈ ,我们有ωδ( f + g ) = sup{| f (x) + g (x) – f (y) – g (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}≤ sup{| f (x) – f (y) | + | g (x) – g (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}≤ωδ( f ) + ωδ( g ).ωδ( λ f ) = sup{|λ f (x) –λ f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}= | λ| sup{| f (x) – f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}= | λ| ·ωδ( f ).若f, g∈Lipα,λ∈ ,则|| f + g || = | f(0) + g(0) | + supδ > 0{δ–αωδ( f + g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–α(ωδ( f ) + ωδ( g )) }= | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) + δ–αωδ( g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) }+ supδ > 0{ δ–αωδ( g ) }= || f || + || g || < +∞.|| λ f || = | λ f(0) | + supδ > 0{δ–αωδ( λ f )}= | λ| · | f(0) | + | λ| · supδ > 0{δ–αωδ( f )}= | λ| · || f || < +∞.因此,f + g, λ f∈Lipα,且上述两个不等式表明|| · ||有齐次性和三角不等式.显然,|| f || ≥ 0.当|| f || = 0时,| f(0) | + supδ > 0{δ–αωδ( f )} = 0,意味着f(0) = 0,且ωδ( f ) = 0(∀δ> 0).而ωδ( f ) = 0(∀δ> 0)则意味着f为常值.所以,f = 0.即|| · ||有正定性.综上所述,Lipα是B*空间.(2) 我们首先证明集合Lipα⊆C[0, 1].∀f∈Lipα,∀x, y∈[0, 1],x ≠y,记δ = | x -y |.则| f (x) – f (y) | ≤ωδ( f ).而δ–αωδ( f ) ≤ supδ > 0{δ–αωδ( f n-f m) } ≤ || f ||,所以,| f (x) – f (y) | ≤ || f || δα= || f || · | x -y |α,故f∈C[0, 1].我们再证明,∀f∈Lipα,|| f ||C≤ || f ||,其中|| ·||C是C[0, 1]范数.事实上,∀x∈[0, 1],| f (x) | ≤ | f (0) | + | f (x) – f (0) |,故|| f ||C = max x∈[0, 1] | f (x) | ≤ | f (0) | + max x∈[0, 1] | f (x) – f (0) |≤ | f (0) | + sup x∈(0, 1] | f (x) – f (0) |/| x |α≤ | f (0) | + sup x∈(0, 1] { δ–αωδ( f ) } ≤ || f ||.这说明,如果{ f n }是Lipα中的基本列,则它也必是C[0, 1]中的基本列.而C[0, 1]是完备的,故存在f∈C[0, 1],使得{ f n }一致收敛于f.而{ f n }作为Lipα中的基本列,有|| f n-f m || = | f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } → 0 (n, m→∞),因此∀ε > 0,∃N∈ +,使得∀n, m > N,有| f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } < ε.因此supδ > 0{δ–αωδ( f n-f m) } < ε.故∀δ > 0,ωδ( f n-f m) < εδα.即∀x, y∈[0, 1],| x -y | ≤δ,都有| ( f n(x) -f m(x)) - ( f n(y) -f m(y)) | < εδα.令m→∞,得到| ( f n(x) -f(x)) - ( f n(y) -f(y)) | ≤εδα.因此,sup {| ( f n(x) -f(x)) - ( f n(y) -f(y)) | | x, y∈[0, 1],| x -y | ≤δ}≤εδα.即∀δ > 0,ωδ( f n-f ) ≤εδα.故supδ > 0{δ–αωδ( f n-f ) } ≤ε.同样地,对不等式| f n(0) -f m(0) | < ε令m→∞,就得到| f n(0) -f(0) | ≤ε.所以,| f n(0) -f(0) | + supδ > 0{δ–αωδ( f n-f ) } ≤ 2ε.这说明f n-f∈Lipα.而f n∈Lipα,故f = ( f -f n ) + f n∈Lipα.而前面的式子也表明|| f -f n || ≤ 2ε.因此|| f n-f || → 0 (n→∞),即{ f n }为Lipα中的收敛列.所以,Lipα是Banach空间.(3) 记lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0 }.∀f, g∈lipα,∀λ∈ ,我们有δ–αωδ( f + g ) ≤δ–α(ωδ( f ) + ωδ( g ) ) = δ–αωδ( f ) + δ–αωδ( g ) → 0 (δ→ 0).δ–αωδ( λ f ) = | λ| ·δ–αωδ( f ) → 0 (δ→ 0).故f + g, λ f∈lipα,因此,lipα是Lipα的线性子空间.设{ f n }是lipα中的序列,且f n→f∈Lipα(n→∞).则{ f n }一致收敛于f.∀ε > 0,存在N∈ +,使得|| f N →f || < ε /2.故有supδ > 0{δ–αωδ( f N-f ) } < ε /2.因为lim δ→ 0 δ–αωδ( f N) = 0,所以,∃∆ > 0,使得∀δ∈(0, ∆),有δ–αωδ( f N) < ε /2.此时我们有δ–αωδ( f ) ≤δ–α(ωδ( f N) + ωδ( f -f N))= δ–αωδ( f N) + δ–αωδ( f -f N)< ε /2 + supδ > 0{δ–αωδ( f N-f ) } < ε.所以,lim δ→ 0 δ–αωδ( f ) = 0,即f∈lipα.所以lipα是Lipα的闭子空间.1.4.17 (商空间) 设X是线性赋范空间,X0是X的闭线性子空间,将X中的向量分类,凡是适合x’-x’’∈X0的两个向量x’, x’’归于同一类,称其为等价类,把一个等价类看成一个新的向量,这种向量的全体组成的集合为X/X0表示,并称其为商空间.下列是关于商空间的命题.(1) 设[ y ]∈X/X0,x∈X,求证:x∈[ y ]的充分必要条件是[ y ] = x + X0.证明:设x’, x’’∈X,若它们归于同一类,则记为x’~x’’.我们用[ x ]表示x所在的等价类(大家注意,题目形式已经作了相应的修改).(⇒) 若x∈[ y ],则x~y.∀u ∈[ y ],u~y,故u~x,即u –x∈X0.因此u ∈x + X0.所以[ y ] ⊆x + X0.反过来,∀u ∈x + X0,则u~x,故u~y.因此u ∈[ y ].所以x + X0 ⊆ [ y ].所以[ y ] = x + X0.(⇐) 若[ y ] = x + X0,则y –x∈X0,即y~x.从而x∈[ y ].(2) 在X/X0中定义加法与数乘如下:[ x ] + [ y ] = x + y + X0(∀[ x ], [ y ] ∈X/X0 )λ[ x ] = λ x + X0(∀[ x ]∈X/X0 , ∀λ∈ )其中x和y分别表示属于等价类[ x ]和[ y ]的任一元素.又规定范数|| [ x ] ||0 = inf z∈[ x ] || z || ( ∀[ x ]∈X/X0 )求证:(X/X0, || · ||0)是一个B*空间.证明:第(1)部分说明了[ x ] = x + X0.容易看出加法与乘法的定义是合理的.进一步可以证明X/X0 构成数域 上的线性空间,且其零元为[ θ] = X0.下面证明|| · ||0是X/X0 上的范数.显然,∀[ x ]∈X/X0,|| [ x ] ||0≥ 0.若[ x ] = [ θ] = X0,则|| [ x ] ||0 = 0.若|| [ x ] ||0 = 0,则inf z∈[ x ] || z || = 0.存在z n∈[ x ]使得|| z n || → 0,即z n→θ (n→∞).那么,x-z n∈X0,x-z n→x (n→∞),而X0是闭集,故x∈X0.所以x~θ,即[ x ] = X0.因此|| · ||0有正定性.∀[ x ]∈X/X0,∀λ∈ ,|| λ[ x ]||0 = || [ λ x ] ||0 = inf y∈[ x ] || λ y || = inf y∈[ x ] | λ| · || y ||= | λ| · inf y∈[ x ] || y || = | λ| · ||[ x ]||0.因此|| · ||0有齐次性.∀[ x ], [ y ]∈X/X0,|| [ x ] + [ y ] ||0 = inf z∈[ x ] + [ y ] || z || = inf u∈[ x ], v∈[ y ] || u + v ||≤ inf u∈[ x ], v∈[ y ] { || u || + || v || } ≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} }≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} } = inf u∈[ x ] { || u || + inf v∈[ y ] || v || }= inf u∈[ x ] || u || + inf v∈[ y ] || v || = || [ x ] ||0 + || [ y ] ||0.因此|| · ||0的三角不等式成立.所以,(X/X0, || · ||0)是一个B*空间.(3) 设[ x ]∈X/X0, 求证对∀y∈[ x ]有inf { || y -z || | z∈X0 } = || [ x ] ||0.证明:|| [ x ] ||0 = inf u∈[ x ] || u || = inf u∈[ y ] || u || = inf { || u || | u∈y + X0 }= inf { || y + v || | v∈X0 } = inf { || y -z || | z∈X0 }.(4) 定义映射ϕ : X →X/X0为ϕ (x) = [ x ] = x + X0(∀x∈X ).求证ϕ是线性连续映射.证明:∀x, y∈X,∀α, β∈ ,ϕ( α x + β y ) = [α x + β y ] = [α x ] + [ β y ] = α [ x ] + β[ y ] = αϕ (x) + βϕ (y).|| ϕ (x) -ϕ (y) ||0 = || [ x ] - [ y ] ||0 = || [ x-y ] ||0 = inf z∈[ x-y ] || z || ≤ || x-y ||.所以,ϕ是线性连续映射.(5) ∀[ x ]∈X/X0,求证∃y∈X,使得ϕ (y) = [ x ],且|| y || ≤ 2|| [ x ] ||0.证明:因为|| [ x ] ||0 = inf z∈[ x ] || z ||,若|| [ x ] ||0 = 0,则由|| · ||0的正定性,知[ x ] = X0,取y = θ即满足要求.若|| [ x ] ||0≠ 0,则inf z∈[ x ] || z || = || [ x ] ||0 < 2 || [ x ] ||0,存在∃y∈[ x ],使得|| y || ≤ 2|| [ x ] ||0.此时显然有ϕ (y) = [ x ] = [ y ].(6) 设(X, || · ||)完备,求证(X/X0, || · ||0)也是完备的.证明:设{ [ x ]n }是X/X0中的基本列.为证明它是收敛列,只需证明它存在收敛子列.由基本列性质,可选出子列{ [ x ]n(k)}使得|| [ x ]n(k) - [ x ]n(k+1) ||0 ≤ 1/2k.故∑k ≥ 1 || [ x ]n(k) - [ x ]n(k+1) ||0 收敛.根据(5),∀k∈ +,∃y k∈[ x ]n(k+1) - [ x ]n(k),使得|| y k || ≤ 2|| [ x ]n(k+1) - [ x ]n(k) ||0.那么,∑k ≥ 1|| y k ||收敛.由X的完备性,s k = ∑ 1 ≤j ≤k y j是X中的收敛列.设其极限为s.由(5)中ϕ的连续性,在X/X0中,ϕ(s k) →ϕ(s) ( k→∞ ).而ϕ(s k) = ϕ( ∑ 1 ≤j ≤k y j ) = ∑ 1 ≤j ≤k ϕ( y j )= ∑ 1 ≤j ≤k ( [ x ]n(j+1) - [ x ]n(j)) = [ x ]n(k+1) - [ x ]n(1).故{[ x ]n(k+1) - [ x ]n(1)}收敛,因而{[ x ]n(k)}是收敛列.因此X/X0中的基本列{ [ x ]n }存在收敛子列{[ x ]n(k)},所以,{ [ x ]n }是X/X0中的收敛列.因此,(X/X0, || · ||0)是完备的.(7) 设X = C[0, 1],X0 = { f∈X | f (0) = 0 },求证:X/X0 ≅ ,其中记号“≅”表示等距同构.证明:显然,X0是C[0, 1]中的线性子空间.记X0所确定的等价关系为~,则f~g ⇔ f (0) = g (0).定义Φ : X/X0 → ,Φ([ f ]) = f (0).显然定义是合理的.∀f, g∈X,∀α, β∈ ,Φ(α[ f ] + β[ g ]) = Φ([αf + β g ]) = (αf + β g )(0)= αf (0)+ β g (0) = αΦ([ f ])+ βΦ([ g ]).因此Φ是线性映射.因Φ(X0) = 0,故Φ是单射.而∀c∈ ,若记所对应的常值函数为h c∈C[0, 1],则Φ( [ h c] ) = c.故Φ是满射.综上所述,Φ : X/X0 → 是线性同构.∀f∈X,|| [ f ]||0 = inf g∈[ f ] { || g || } ≥ inf g∈[ f ] { | g (0) | }= inf g∈[ f ] { | f (0) | } = | f (0) | = | Φ([ f ]) |.另一方面,因为常值函数h f (0)∈[ f ],故|| [ f ]||0 = inf g∈[ f ] { || g || } ≤ || h f (0) || = | f (0) | = | Φ([ f ]) |.所以,∀f∈X,都有|| [ f ]||0 = | Φ([ f ]) |,因此Φ : X/X0 → 是等距同构.[第4节完] 泛函分析题1_5凸集与不动点p521.5.1 设X是B*空间,E是以θ为内点的真凸子集,P是由E产生的Minkowski 泛函,求证:(1) x∈int(E) ⇔P(x) < 1;(2) cl(int(E)) = cl(E).证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈ +,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈ +,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.2 求证在B空间中,列紧集的凸包是列紧集.证明:设A是B空间X中的列紧集,∀ε > 0,存在A的有限ε /3网B.设B = {b1, b2, ..., b n},M = max j{ || b j || },取δ > 0,使得n δ M < ε /3.设[0, 1]分划D为0 = t0 < t1 < t2 < ... < t m = 1,使得max 1 ≤j ≤m {| t j–t j–1|} < δ.设∀x∈co(A),设x= λ1 a1 + λ2 a2+ ... + λ k a k,其中a j∈A,λ j > 0,∑ j λ j = 1.对每个j ≤k,存在b i( j )∈B使得|| a j-b i( j ) || < ε /3;令y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k),则|| x - y || = || λ1 (a1 -b i(1)) + λ2 (a2 -b i(2))+ ... + λ k (a k-b i(k))||,≤λ1 · || a1 -b i(1) || + λ2 · || a2 -b i(2) || + ... + λ k · || a k-b i(k) ||≤ ( λ1 + λ2 + ... + λ k ) · (ε /2) = ε /3.将y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k)中的那些含有相同b j的项合并起来,于是,y可表示为y= μ1 b1 + μ2 b2+ ... + μ n b n,其中μj ≥ 0,且∑ j μj = 1.对每个l ≤n,存在t s( l )∈D,使得|| μl-t s( l ) || < δ;令z= t s(1) b1 + t s(2) b2+ ... + t s(n) b n,则|| y - z || = || (μ1 -t s(1))b1 + (μ2 -t s(2))b2+ ... + (μn -t s(n))b n ||≤∑ l | μl-t s( l ) | · max j{ || b j || } ≤n δ M < ε /3;令C = {t s(1) b1 + t s(2) b2+ ... + t s(n) b n | t s(i)∈D,1 ≤i≤n},则C是有限集,且C是co(A)的有限ε网.因空间是完备的,故co(A)是列紧集.1.5.3 设C是B*空间X中的一个紧凸集,映射T : C →C连续,求证T在C上有一个不动点.证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) ⊆C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点] 1.5.4 设C是B空间X中的一个有界闭凸集,映射T i : C→X (i = 1, 2)适合(1) ∀x, y∈C ⇒T1x + T2y∈C;(2) T1是一个压缩映射,T2是一个紧映射.。

泛函分析答案

泛函分析答案

泛函分析答案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--泛函分析答案:1、 所有元素均为0的n ×n 矩阵2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。

子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。

3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。

4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。

5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件:(1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x)(3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }Td 2(x,y)=(21||ni i i x y =-∑)1/2d 1(x,y)=1||ni i i x y =-∑d p (x,y) = (1||np i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i nx y ≤≤-6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n?∞),这时记作0lim nn xx -->∞=,或简单地记作x n ?x 07、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数(3)||x+y||≤||x||+||y||,for every x,y ∈E8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。

泛函分析标准答案泛函分析解答(张恭庆)

泛函分析标准答案泛函分析解答(张恭庆)

第五章习题第一部分01-151. M 为线性空间X 的子集,证明span( M )是包含M 的最小线性子空间.[证明] 显然span( M )是X 的线性子空间.设N 是X 的线性子空间,且M ⊆ N . 则由span( M )的定义,可直接验证span( M ) ⊆ N . 所以span( M )是包含M 的最小线性子空间.2. 设B 为线性空间X 的子集,证明conv(B ) = {∑=ni i i x a 1| a i ≥ 0,∑=ni ia1= 1, x i ∈B , n 为自然数}.[证明] 设A = {∑=ni i i x a 1| a i ≥ 0,∑=ni ia1= 1, x i ∈B , n 为自然数}.首先容易看出A 为包含B 的凸集,设F 也是包含B 的凸集,则显然有A ⊆ F ,故A 为包含B 的最小凸集.3. 证明[a , b ]上的多项式全体P [a , b ]是无限维线性空间,而E = {1, t , t 2, ..., t n , ...}是它的一个基底.[证明] 首先可以直接证明P [a , b ]按通常的函数加法和数乘构成线性空间, 而P [a , b ]中的任一个元素皆可由E 中有限个元素的线性组合表示. 设c 0, c 1, c 2, ..., c m 是m + 1个实数,其中c m ≠ 0,m ≥ 1. 若∑=mn n n t c 0= 0,由代数学基本定理知c 0 = c 1 = c 2 = ... = c m = 0,所以E 中任意有限个元素线性无关,故P [a , b ]是无限维线性空间,而E 是它的一个基底。

4. 在2中对任意的x = (x 1, x 2)∈2,定义|| x ||1 = | x 1 | + | x 2 |,|| x ||2 = (x 12 + x 22)1/2,|| x ||∞ = max{ | x 1 |, | x 2 | }.证明它们都是2中的范数,并画出各自单位球的图形.[证明] 证明是直接的,只要逐条验证范数定义中的条件即可.单位球图形略.5. 设X 为线性赋范空间,L 为它的线性子空间。

泛函分析考试题型及答案

泛函分析考试题型及答案

泛函分析考试题型及答案一、单项选择题(每题2分,共20分)1. 泛函分析中,下列哪个概念不是线性空间的基本元素?A. 向量B. 线性组合C. 线性映射D. 拓扑结构答案:D2. 在希尔伯特空间中,以下哪个性质不是内积空间必须具备的?A. 正定性B. 线性C. 对称性D. 交换性答案:D3. 下列哪个定理不是泛函分析中的基本定理?A. 赫尔德不等式B. 闵可夫斯基不等式C. 贝叶斯定理D. 一致有界性原理答案:C4. 巴拿赫空间是指完备的赋范线性空间,以下哪个条件不是巴拿赫空间必须满足的?A. 线性B. 赋范C. 完备性D. 有限维答案:D5. 在泛函分析中,紧算子是指将有界集映射到相对紧集的线性算子,以下哪个性质不是紧算子必须具备的?A. 线性B. 有界性C. 紧性D. 单射性答案:D6. 下列哪个概念不是泛函分析中的拓扑概念?A. 开集B. 闭集C. 连续性D. 线性映射答案:D7. 泛函分析中,下列哪个概念与巴拿赫空间无关?A. 赋范线性空间B. 完备性C. 紧性D. 线性答案:C8. 在泛函分析中,下列哪个性质不是线性泛函必须具备的?A. 线性B. 有界性C. 单射性D. 连续性答案:C9. 下列哪个定理不是泛函分析中解决方程问题的基本定理?A. 赫尔德定理B. 拉克斯-米尔格拉姆定理C. 贝祖定理D. 弗雷德霍姆选择定理答案:C10. 在泛函分析中,下列哪个概念不是线性算子的基本性质?A. 线性B. 有界性C. 紧性D. 可逆性答案:D二、填空题(每题2分,共20分)1. 泛函分析中的线性空间必须满足向量加法和标量乘法的______性。

答案:封闭2. 希尔伯特空间中的内积必须满足正定性、线性、对称性和______性。

答案:共轭对称3. 巴拿赫空间是完备的______线性空间。

答案:赋范4. 紧算子将有界集映射到______集。

答案:相对紧5. 巴拿赫空间中的完备性是指空间中的每个柯西序列都收敛到空间内的某个元素,这种性质也称为______性。

《泛函分析》课后习题答案(张恭庆)

《泛函分析》课后习题答案(张恭庆)

2 a
n
fn
2 b
ba
.
1.4.6 设 X 1, X 2 是两个线性赋范空间,定义
X
X1 X2
x1, x2 | x1
X1, x2
X2 称
为 X1 与 X2 的 Decard笛卡尔空间. 规定线性运算如下:
x1, x2
y1, y2
x1
y1, x2
y2
5
,
K, x1, y1
X1, x2, y2
X 2 ,并赋以范数
n 1
x1
,
1
x
n 2
x2 2
2
n N.
1.4.7 设 X 是 B 空间,求证: X 是 B 空间,必须且仅须

6
xn
X,
xn
n1
mp
xn
n1 mp
收敛.
xn
xn


m
m
显然.
设 xn 是基本列, 由1.2.2 只要 xn 存在一
串收敛子列.
事实上, 对 k 是基本列,
, 取k
1 2k
,
因为
xn
所以 N k, 使得
但因为 F 2 紧, 存在它们的子序列 ynkj 收敛,设
y nk j
x2
F 2 , 即有
d
xnkj , ynkj
d
1
j
nkj
d
x1, x2 .
1.3.5 设 M 是 C a, b 中的有界集,求证集合
x
M
Fx
f t dt | f M
a
是列紧集.
证: 设 E
Fx
x f t dt | f

(完整word版)泛函分析习题标准答案

(完整word版)泛函分析习题标准答案

(完整word版)泛函分析习题标准答案第⼆章度量空间作业题答案提⽰ 1、试问在R 上,()()2,x y x y ρ=-能定义度量吗?答:不能,因为三⾓不等式不成⽴。

如取则有(),4x y ρ=,⽽(),1x z ρ=,(),1z x ρ= 2、试证明:(1)()12,x y x y ρ=-;(2)(),1x y x y x yρ-=+-在R 上都定义了度量。

证:(1)仅证明三⾓不等式。

注意到21122x y x z z y x z z y ??-≤-+-≤-+- ?故有111222x yx z z y-≤-+-(2)仅证明三⾓不等式易证函数()1xx x=+在R +上是单调增加的,所以有()()a b a b ??+≤+,从⽽有1111a b a b a b++≤≤+++++++令,,x y z R ?∈,令,a z x b y z =-=- 即111y x z x y zy x z x y z---≤++-+-+-4.试证明在[]b a C ,1上,)12.3.2()()(),(?-=ba dt t y t x y x ρ定义了度量。

证:(1)0)()(0),(≡-?=t y t x y x ρ(因为x,y 是连续函数) 0),(≥y x ρ及),(),(x y y x ρρ=显然成⽴。

[]),(),()()()()()()()()()()(),()2(y z z x dtt y t z dt t z t x dtt y t z dt t z t x dtt y t x y x bab ab aba ρρρ+≤-+-≤-+-≤-=5.试由Cauchy-Schwarz 不等式证明∑∑==≤??ni in i i x n x 1221证:∑∑∑∑=====?≤??ni in i n i i n i i x n x x 1212122118.试证明下列各式都在度量空间()11,ρR 和()21,R R 的Descartes 积21R R R ?=上定义了度量{}212/1222121,max ~~)3(;)(~)2(;)1(ρρρρρρρρρ=+=+= 证:仅证三⾓不等式。

泛函分析试题及答案

泛函分析试题及答案

泛函分析试题及答案### 泛函分析试题及答案#### 一、选择题(每题5分,共20分)1. 泛函分析中,下列哪个概念不是线性空间的概念?A. 线性组合B. 线性映射C. 线性泛函D. 非线性变换答案:D2. 在Banach空间中,以下哪个条件不是完备性的必要条件?A. 空间中的每个Cauchy序列都收敛于空间内B. 空间是完备的C. 空间中存在一个完备的度量D. 空间中的每个有界序列都有一个收敛的子序列答案:C3. 泛函分析中,Hilbert空间的完备性是相对于哪种范数?A. 欧几里得范数B. 赋范范数C. 内积诱导的范数D. 以上都是答案:C4. 下列哪个定理不是泛函分析中的基本定理?A. Hahn-Banach定理B. Riesz表示定理C. 闭图定理D. 微积分基本定理答案:D#### 二、填空题(每题5分,共20分)1. 线性泛函在定义域上的连续性等价于其在定义域的原点处的连续性,这是基于泛函分析中的________定理。

答案:Hahn-Banach2. 在Hilbert空间中,任意两个向量的内积满足平行四边形法则,即对于任意向量\( u \)和\( v \),有\( \|u+v\|^2 + \|u-v\|^2 =2(\|u\|^2 + \|v\|^2) \),这是基于________定理。

答案:平行四边形3. 线性算子的谱半径公式为\( r(T) = \lim_{n \to \infty}\|T^n\|^{1/n} \),其中\( T \)是Banach空间上的有界线性算子,这是基于________定理。

答案:Gelfand公式4. 在泛函分析中,紧算子的定义是:如果对于空间中的每一个有界序列,其在算子下的像序列都有一个收敛的子序列,则称该算子为紧算子,这是基于________定理。

答案:Arzelà-Ascoli#### 三、简答题(每题15分,共30分)1. 简述Riesz表示定理的内容及其在泛函分析中的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 设 x (x1, x2 ) , y ( y1, y2 ) R1 R2 ,则
1
(x, y) [12 (x1, y1) 22 (x2, y2 )]2
1
12 (x1, z1) 12 (z1, y1)2 22 (x2, z2 ) 22 (z2, y2 )2 2
1
1
12 (x1,
13.(1)若度量空间 R 中的序列{xn}是收敛的,并且有极限 x ,试 证明{xn}的每个子序列{xnk }都是收敛的,并且有同一极限。
(2)若{xn}是 Cauchy 序列,并且存在收敛的子序列{xnk }, xnk x ,试证明{xn}也是收敛的,并且有同一极限。
(1) 略
(2) , N ,当 m, nk N 时,有
有 xn, xn0 1,因此,对于一切 n ,有
xn , xn0 max 1, x1, xn0 ,..., xn01, xn0
19.若xn 和yn 都是度量空间 x 中的 Cauchy 列,试证明: n xn, yn 是收敛的。
证:根据三角不等式,有 n xn , yn xn , xm xm , ym ym , yn xn , xm m ym , yn
t[0,2 ]
t[0,2 ]
4
11.试证明在离散度量空间中,每个子集既是开的又是闭的。
设 A 是离散度量空间 X 的任一子集。 a A ,开球 B(a, 1) {a} A ,故 A 事开集。
2
同样道理,知 AC 是开的,故 A (AC )C 又是闭集。
12.设 x0 是 M R 的聚点,试证明 x0 的任何邻域都含有 M 的无限 多个点。 证:略。
以 xM ,因此 M 是紧的。
第三章 线性空间和赋范线性空间
10.试证明下列都是 Rn 上的范数
(1)
x 1
n
xi ;
i 1
1
(2)
x 2
n i1
2 2 xi
; (3)
x
max i
xi
;
x
n i 1
xi
1
2
2 是范数吗?
(1)、(2)和(3)的证明略
x
n
i 1
xi
1 2
i1
i 1
证: n
xi 2
n
n
n
xi 2 12 n
xi 2
i1
i 1
i 1
i 1
8.试证明下列各式都在度量空间 R1, 1 和 R1, R2 的 Descartes 积
R R1 R2 上定义了度量
(1)
1
2 ; (2)~
( 12
2 2
)1
/
2
;
(3)
~~
max 1,
2
证:仅证三角不等式。(1)略。
故, n m xn, xm ym, yn 同样有: m n xn, xm ym, yn
即: n m xn, xm ym, yn 0 而 R 是完备的,则n 是收敛的。
34.若 X 是紧度量空间,并且 M X 是闭的,试证明 M 也是紧的。
证明:因为 X 是紧的,故 M 中任一序列xn 有一个在 X n 中收敛的 子序列xnk。不妨设xnk x X ,则有 x M 。又因 M 是闭的,所
9、试问在 C[a,b] 上的 B(x0;1) 是什么? C[a,b]上图像以 x0 为中心铅直高为 2 的开带中的连续函数的集
合。
10、试考虑C[0,2 ] 并确定使得 y B(x, r) 的最小 r ,其中 x sin t, y cost 。
(x, y) sup sin t cos t sup 2 sin(t ) 2
b
(2) (x, y) a x(t) y(t) dt
b a x(t) z(t) dt z(t) y(t) dt
b
b
a x(t) z(t) dt a z(t) y(t) dt
(x, z) (z, y)
5.试由 Cauchy-Schwarz 不等式证明
n xi 2 n n xi 2

xz
1 2
z
y
1 2
2
故有
x
y
1 2
xz
1 2
z
y
1 2
(2)仅证明三角不等式 易证函数 x x 在 R 上是单调增加的,
1 x
所 以 有 aba b , 从 而 有
ab
ab
a
b
1 a b 1 a b 1 a 1 b
令 x, y, z R ,令 a z x,b y z
z1 )
12 (z1,
y1) 2
22 (x2 ,
z2 )
2 2
(
z2
,
y2 ) 2
(x, z) (z, y)
n i 1
i
i
2
1
2
n i 1
i2
1
2
n
i2
i 1
1
2
(3) (x, y) max{1 (x1, y1), 2 (x2, y2)}
max{1 (x1, z1) 1 (z1, y1), 2 (x2 , z2 ) 2 (x2 , z2 )} max[1 (x1, z1) 1 (z1, y1)] max[2 (x2 , z2 ) 2 (x2 , z2 )] (x, z) (z, y)
即 yx zx yz
1 y x 1 z x 1 y z
4.试证明在 C 1 a, b上,
( x,
y)
b
a
x(t)
y(t)
dt
(2.3.12)
定义了度量。
证:(1) (x, y) 0 x(t) y(t) 0 (因为 x,y 是连续函数)
(x, y) 0 及 (x, y) ( y, x) 显然成立。
(xm , xnkl )
2
, (xnkl , x)
2
({xn} 是
Cauchy
序列且 xnk
x)
因此,当 m N 时,
( xm ,
x)
( xm ,
xnkl
)
( xnkl
,
x)
2
2
18.试证明:Cauchy 序列是有界的.
证明:若xn 是 Cauchy 序列,则存在 ,使得对于一切 n n0 ,
第二章 度量空间
作业题答案提示
1、 试问在 R 上, x, y x y2 能定义度量吗?
答:不能,因为三角不等式不成立。如取
则有 x, y 4 ,而 x, z 1, z, x 1
2、
试证明:(1)
x,
y
x
y
1 2
;(2)
x,
y
x y
在 R 上都定
1 x y
义了度量。
证:(1)仅证明三角不等式。注意到
2
不是范数,不满足三角不等式。
相关文档
最新文档