单片机控制系统的抗干扰设计

单片机控制系统的抗干扰设计
单片机控制系统的抗干扰设计

单片机控制系统的抗干扰设计

摘要:单片机相关控制的灵敏度和系统所受的干扰具有一定的正相关关系,对

单片机的控制系统而言,具有较高的灵敏度才能确保系统运行正常,但灵敏度越高,系统受到的干扰就越强,设计单片机控制系统时需要重视其抗干扰能力,确

保系统能够稳定运行。

关键词:单片机;控制系统;抗干扰设计

引言

单片机控制系统是集通信技术、计算机技术以及自动化控制技术于一体的工

业通用自动控制系统,其不但操作便捷、扩展性能好,而且还具有较强的控制功能,目前已在我国电力、化工、交通以及冶金等行业得到广泛的应用。但由于工

业作业环境较为恶劣,使得单片机容易被电源波形畸变、电磁设备启停等影响而

受到干扰,使得信号接收能力大大下降,进而对测量的质量与效率造成了影响,

严重的还会对单片机的软件、硬件造成损坏,使其难以正常运作。所以,加强单

片机控制系统的抗干扰设计,正确掌握其干扰源,并采取针对性的改进措施来提

高其抗干扰能力,对单片机控制系统功能的正常发挥有着重要的作用。

1系统干扰源及干扰因素

1.1现场干扰源

电磁干扰一般分为两类,即传导和辐射。传导类型的干扰主要是通过金属、

电感、电容以及变压器传播的;而辐射类型干扰的传播途径很多,比如设备外壳

和外壳上的缝隙,设备间的连接电缆,甚至是一根导线也可以成为辐射类型干扰

的传统途径。这两种干扰往往是相辅相成的,并且在干扰吸收上可以相互转化。

在测控系统中,电磁干扰主要通过“场”进入,即电磁干扰源的能量通过电磁场传

递给测控系统。电场主要是电容性耦合干扰,在导线和电路分布的电容中,干扰

信号进入测控系统。而磁场干扰是互感性耦合干扰,借助导线和电路的互感耦合,干扰信号进入测控系统。

1.2单片机控制系统自身干扰源

单片机控制系统自身干扰源主要包括了散粒噪声、热噪声、常模噪声、共模

噪声以及接触噪声等几方面内容。散粒噪声是由于晶体管基区内的载流子发生随

即扩散,与电子空穴发生复合反应而形成的,其主要存在于半导体原件内部;热

噪声是指在没有连接电源的情况下,仍然有微弱电压存在于电阻两端,电阻两端

出现电子热运动而形成的噪音电压;常模噪声即线间感应噪声或对称噪声,往往

难以将其完全消除;共模噪声恰好与常模噪声相反,其指的是地感应噪声、不对

称噪声或是纵向噪声,该类噪声可以进行消除,但也可由共模噪声转变为常模噪声;接触噪声通常是由于两种材料进行不完全接触,使得电导率出现变化而产生的,常出现在导体连接部位。

2单片机硬件抗干扰设计

2.1电源电路的设计

在单片机控制系统中,将模拟电路电源和逻辑电路电源分离,不仅有利于去

除电源耦合逻辑电路产生的干扰,还可以抑制通过电源耦合对ECU干扰。那么单

片机控制系统电源电路设计过程中,可以采用7812和7805三端稳压集成芯片,

对电源进行负压差保护,避免因其中一个稳压电源故障导致整个电路崩溃。为改

善电源波形,可以采用低通滤波器,从而减少以高次谐波为主的干扰源,从而确

单片机抗干扰能力

单片机抗干扰能力 单片机的抗干扰性能历来为大家所重视,现在市面上的单片机就我所接触过的,就有 十家左右了,韩国的三星和现代;日本的三菱,日立,东芝,富士通,NEC;台湾的 EMC,松汉,麦肯特,合泰;美国的摩托罗拉,国半的cop8系列,microchip系列,TI 的msp430系列,AVR系列,51系列,欧洲意法半导体的ST系列。。。。。。 这些单片机的抗干扰性能大多数鄙人亲自测试过,所用机器是上海三基出的两种 高频脉冲干扰仪,一种是欧洲采用的标准,一种是日本采用的标准;

日本的标准是高 频脉冲连续发出,脉冲宽度从50ns到250ns可调,欧洲采用的标准是脉冲间歇(间歇 时间和发出时间可调)发出,脉宽也是从50ns到250ns可调;我们国家采用的是欧洲 标准。 一般情况下,脉冲干扰这一项能够耐受2000V以上就算不错了(好像我国家电标准 是1200V),有些可以达到3000V,于是很多人为此很得意。 单片机在高频脉冲干扰下程序运行是否正常,或者说抗干扰是否通过,有些人以

程序不飞掉,或者说“死机”为标准,有些人以不复位并且程序正常运行为标准。 很多情况下,芯片复位程序是可以继续运行的,表面上看的不是很清楚。我一般就看 单片机在干扰下是否复位,复位了我就认为不行了。不复位并且程序正常运行当然比 复位来说要好了。 好多人看到自己做的电路抗干扰达到2000V或者3000V就很高兴,实际上芯片的抗 干扰并不一定就很好。这里我不能不说一下日本的标准,高频脉冲连续发出的形式。 别小看一个连续和一个间歇的区别,实际上,大家如果有机会,用日本的标准测试一

下你的芯片和电路,你就会发现,几乎和欧洲标准差别很大很大,采用日本标准你会 很伤心,因为大多数单片机过不了! 日本的标准是1600V。上面我提到的十几家单片机: 意法的也就是ST的≥1800 三菱的≥1800 富士通和日立的≥1600V nec的≥1500 东芝的≥1300V 摩托罗拉的≥1300

单片机抗干扰问题浅析

- 116 - 杜 川 付会凯 (新乡学院机电工程学院,河南 新乡 453003) 【摘 要】分析了单片机系统的干扰来源,主要从抗干扰和稳定性方面入手,利用硬件与软件相结合的方法,解决了一些单片机系统的抗干扰问题。 【关键词】抗干扰;指令冗余;软件陷阱;定时中断 【中图分类号】TP368 【文献标识码】A 【文章编号】1008-1151(2010)02-0116-02 引言 随着微电子技术和信息技术的发展,计算机技术已经深 入到了人们生产和生活的各个领域当中。单片机技术作为基 于计算机的原理而出现的一种新兴的技术手段,在当今的信 息社会中扮演着重要的角色。但是,由于单片机的工作环境 往往比较恶劣,尤其是系统周围存在强烈的电磁干扰情况, 这些因素都将严重影响单片机的可靠性和稳定性,甚至有可 能导致系统瘫痪。因此,提高单片机系统的抗干扰能力尤其 具有现实意义。 (一)单片机干扰来源的分析 所谓干扰就是叠加在有用信号上的不需要的信号。干扰 以某种电信号的形式,通过一定的渠道,混入有用信号中进 入单片机系统,造成系统工作不稳。在各种实际环境中,这 些干扰降低了单片机系统的准确性,要加以避免[1] 。 单片机的干扰主要来自于两个方面的影响: 1.外部环境所产生的干扰 单片机控制系统是为工业生产而设计制造的,所以单片 机系统经常工作于工业生产现场。在实际的生产现场,存在 着大量的电磁干扰信号,对单片机控制系统的正常工作造成极大的危害,甚至有可能带来系统复位乃至失控的危险。 2.单片机系统本身产生的干扰 单片机系统的本身由各种线路互相连接组成,线路之间会产生相互影响的磁场,从而引发干扰;单片机电源的供电方式以及各种元件的电气性能,也是产生干扰的重要来源;还有就是对单片机接地方式的处理。由于社会发展迅速,自动化进程加快,在工业环境较复杂的场所,地下密布着各种电气设备的导线,这些导线之间的相互影响也对单片机的稳定性构成了巨大的威胁。 (二)增强单片机抗干扰能力的方案 单片机抗干扰一般是从硬件和软件两方面入手。硬件抗 干扰设计主要是通过抑制干扰源,切断干扰传播路径,提高 敏感器件的抗干扰性能方面入手。而软件抗干扰措施主要是 通过对程序区、RAM 空间区、表格区进行特殊处理来实现的,在存储空间允许的条件下,可充分利用软件抗干扰措施,提高单片机系统的程序运行的可靠性和数据的安全性[2] 。 1.硬件抗干扰 (1)电源系统的处理 采用大功率电源,防止从电源系统引入干扰。条件允许的情况下可采取交流稳压器保证供电的稳定性,防止电源的过压和欠压。使用隔离变压器滤掉高频噪声,低通滤波器滤掉工频干扰。 (2)接地方案的分析 在电路设计中,要尽量减小接地回路中的电阻,同时要尽量保证一点接地,避免多点接地的情况;单片机是小功率器件,要避免和大功率器件接地距离较近而产生干扰[3]。 (3)输入、输出信号的保护 在数字信号的长距离传输时用双绞线,可以对传输过程 中的干扰起到很好的抑制作用。也可以在输入、输出信号上 加光电隔离器,从而切断主机以及各向通道的相互联系,从 而有效的防止干扰进入主机系统。 2.软件抗干扰 (1)指令冗余法 单片机操作流程完全由程序计数器P C 控制,一旦P C 受到干扰,程序便会脱离正常轨道,使程序“跑飞”,从而出现改变操作数数值以及将操作数误认为操作码等情况。为了使“跑飞”的程序能迅速纳入正轨,程序中应该多用单字节指令,并且在关键地方插入一些空操作指令NOP 或者将有效单字节指令重写,这就叫做指令冗余。 这种方法通常是在双字节指令和三字节指令后插入两个字节以上的空操作指令NOP,这样即使“跑飞”程序飞到操作 数上,由于NOP 的存在,也可以避免后面的指令被当作操作数执行,程序自动纳入正轨。此外,对程序执行方向起重要作用的控制转移类指令,如RET、RETI、LCALL、LJMP、JC 等指令之前插入两条NOP,也可将“跑飞”程序纳入正轨,保证程序的正确执行。 【收稿日期】2009-12-21 【作者简介】杜川(1982-),男,河南新乡人,新乡学院机电工程学院助教,从事信息工程、电气自动化方面的研究;付会凯(1980-),男,河南长葛人,新乡学院机电工程学院讲师,硕士,从事通信、电路与系统教学与研究。

单片机自身的抗干扰措施

单片机自身的抗干扰措施 为提高单片机本身的可靠性。近年来单片机的制造商在单片机设计上 采取了一系列措施以期提高可靠性。这些技术主要体现在以下几方面。 1.降低外时钟频率 外时钟是高频的噪声源,除能引起对本应用系统的干扰之外,还可能产 生对外界的干扰,使电磁兼容检测不能达标。在对系统可靠性要求很高的应用 系统中,选用频率低的单片机是降低系统噪声的原则之一。以8051 单片机为例,最短指令周期1μs时,外时钟是12MHz。而同样速度的Motorola 单片机系统时钟只需4MHz,更适合用于工控系统。近年来,一些生产8051 兼容单片机的厂商也采用了一些新技术,在不牺牲运算速度的前提下将对外时钟的需求 降至原来的1/3。而Motorola 单片机在新推出的68HC08 系列以及其16/32 位单片机中普遍采用了内部琐相环技术,将外部时钟频率降至32KHz,而内部总线速度却提高到8MHz 乃至更高。 2.低噪声系列单片机 传统的集成电路设计中,在电源、地的引出上通常将其安排在对称的两边。如左下角是地,右下角是电源。这使得电源噪声穿过整个硅片。改进的技 术将电源、地安排在两个相邻的引脚上,这样一方面降低了穿过整个硅片的电流,一方面使外部去耦电容在PCB 设计上更容易安排,以降低系统噪声。另一个在集成电路设计上降低噪声的例子是驱动电路的设计。一些单片机提供若干 个大电流的输出引脚,从几十毫安到数百毫安。这些大功率的驱动电路集成到 单片机内部无疑增加了噪声源。而跳变沿的软化技术可消除这方面的影响,办 法是将一个大功率管做成若干个小管子的并联,再为每个管子输出端串上不同 等效阻值的电阻。以降低di/dt。

单片机上拉电阻的抗干扰设计方案

单片机上拉电阻的抗干扰设计 在电子电路设计中,干扰的存在让设计者们苦不堪言,干扰会导致电路发生异常,甚至会导致最终的产品无法正常使用。如何巧妙地减少甚至避免干扰始终是设计者们关心的重点,其中单片机的抗干扰设计就是较为重要的一环,本文将为大家介绍与上拉电阻有关的单片机抗干扰。 想要实现单片机抗干扰,首先要综合考虑各I/O 口的输入阻抗,采集速率等因素设计I/O 口的外围电路。一般决定一个I/O 口的输入阻抗有3种情况。 第一种情况:I/O 口有上拉电阻,上拉电阻值就是I/O 口的输入阻抗。人们大多用4K-20K电阻做上拉,(PIC的B 口内部上拉电阻约 20K)。 由于干扰信号也遵循欧姆定律,所以在越存在干扰的场合,选择上拉电阻就要越小,因为干扰信号在电阻上产生的电压就越小。 由于上拉电阻越小就越耗电,所以在家用设计上,上拉电阻一般都是10-20K,而在强干扰场合上拉电阻甚至可以低到1K。(如果在强干扰场合要抛弃B口上拉功能,一定要用外部上拉。) 第二种:I/O 口与其它数字电路输出脚相连,此时I/O 口输入阻抗就是数字电路输出口的阻抗,一般是几十到几百欧。

可以看出用数字电路做中介可以把阻抗减低到最理想,在许多工业控制板上可以看见大量的数字电路就是为了保证性能和保护MCU 第三种:I/O 口并联了小电容。 由于电容是通交流阻直流的,并且干扰信号是瞬间产生,瞬间熄灭的,所以电容可以把干扰信号滤除。但代价是造成I/O 口收集信号的速率下降,比如在串口上并电容是绝不可取的,因为电容会把数字信号当干扰信号滤掉。 对于一些特殊器件,如检测开关、霍尔元件等,是能够进行并电 容设计的,这主要是因为其开关量的变化较为迟缓,并不能形成很高的速率,所以即便电路中并联电容,对信号的采集也是不会有任何影响的。本文主主要对于上拉电阻有关的如何规避单片机干扰进行了介绍,正被单片机干扰困扰的朋友不妨花上几分钟阅读,相信一定会有所收获。

嵌入式系统硬件抗干扰分析和解决方法

模拟地和数字地的认识 模拟地和数字地的认识在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后再去进行抗干扰的补救措施。形成干扰的基本要素有三个: (1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 (2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。 (3)敏感器件,指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。 抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。 (类似于传染病的预防) 1 抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。

单片机抗干扰方法

如何提高抗干扰性能 搞过产品的朋友都有体会,一个设计看似简单,硬件设计和代码编写很快就搞定,但在调试过程中却或多或少的意外,这些都是抗干扰能力不够的体现。 下面讨论一下如何让你的设计避免走弯路: 抗干扰体现在2个方面,一是硬件设计上,二是软件编写上。 这里重点提醒:在MCU设计中主要抗干扰设计是在硬件上,软件为辅。因为MCU的计算能力有限,所以要在硬件上花大工夫。 看看干扰的途径: 1:干扰信号干扰MCU的主要路径是通过I/O口,一是影响了MCU的数据采集,二是影响内部其它寄存器。 解决方法:后面讨论。 2:电源干扰:MCU虽然适应电压较宽(3-5。5V),但对于电源的波动却很敏感,比如说MCU可以在3V电压下稳定工作,但却不能在电压在3V-5。5V波动的情况下稳定工作。 解决方法:用电源稳压块,做好电源的滤波等工作,提示:一定要在电源旁路并上0。1UF 的瓷片电容来滤除高频干扰,因为电解电容对超过几十KHZ的高频干扰不起作用。 3:上下电干扰:但每个MCU系统在上电时候都要经过这样一个过程,所以要尤其注意。MCU虽然可以在3V电压下稳定工作,但并不是说它不能在3V以下的电压下工作,当然在如此低的电压下MCU是超不稳定状态的。在系统加电时候,系统电源电压是从0V上升到额定电压的,比如当电压到2V时候,MCU开始工作了,但这时是超不稳定的工作,极容易跑飞。 解决方法:1让MCU在电源稳定后才开始工作。PIC在片内集成了POR(内部上电延时复位),这功能一定要在配置位中打开。 外部上电延时复位电路。有多种形式,低成本的就是在复位脚接个阻容电路。高成本的是用专用芯片。这方面的资料特多,到处都可以查找。 最难排除的就是上面第一种干扰,并且干扰信号随时可以发生,干扰信号的强度也不尽相同。但它们也有相同点:干扰信号也遵循欧姆定律,干扰信号偶合路径无非是电磁干扰,一是电火花,二是磁场。 其中干扰最厉害的是电火花干扰,其次是磁场干扰。电火花干扰表现场合主要是附近有大功率开关、继电器、接触器、有刷电机等。磁场干扰表现场合主要是附近有大功率的交流电机、变压器等。 解决方法: 第一点:也是最经典的,就是在PCB步线和元件位置安排上下工夫,这中间学问很多,说几天都说不完^^。 二:综合考虑各I/O口的输入阻抗,采集速率等因素设计I/O口的外围电路。 一般决定一个I/O口的输入阻抗有3种情况: A:I/O口有上拉电阻,上拉电阻值就是I/O口的输入阻抗。 一般大家都用4K-20K电阻做上拉,(PIC的B口内部上拉电阻约20K)。 由于干扰信号也遵循欧姆定律,所以在越存在干扰的场合,选择上拉电阻就要越小,因为干扰信号在电阻上产生的电压就越小。 由于上拉电阻越小就越耗电,所以在家用设计上,上拉电阻一般都是10-20K,而在强干扰场合上拉电阻甚至可以低到1K。 (如果在强干扰场合要抛弃B口上拉功能,一定要用外部上拉。)

如何解决单片机的抗干扰问题

如何解决单片机的抗干扰问题 随着单片机的发展,单片机在家用电器、工业自动化、生产过程控制、智能仪器仪表等领域的应用越来越广泛。然而处于同一电力系统中的各种电气设备通过电或磁的联系彼此紧密相连,相互影响,由于运行方式的改变,故障,开关操作等引起的电磁振荡会波及很多电气设备。这对我们单片机系统的可靠性与安全性构成了极大的威胁。单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。因此单片机的抗干扰问题已经成为不容忽视的问题。 1 干扰对单片机应用系统的影响 1.1测量数据误差加大 干扰侵入单片机系统测量单元模拟信号的输入通道,叠加在测量信号上,会使数据采集误差加大。特别是检测一些微弱信号,干扰信号甚至淹没测量信号。 1.2 控制系统失灵 单片机输出的控制信号通常依赖于某些条件的状态输入信号和对这些信号的逻辑处理结果。若这些输入的状态信号受到干扰,引入虚假状态信息,将导致输出控制误差加大,甚至控制失灵。 1.3 影响单片机RAM存储器和E2PROM等 在单片机系统中,程序及表格、数据存在程序存储器EPROM或FLASH中,避免了这些数据受干扰破坏。但是,对于片内RAM、外扩RAM、E2PROM 中的数据都有可能受到外界干扰而变化。 1.4 程序运行失常 外界的干扰有时导致机器频繁复位而影响程序的正常运行。若外界干扰导致单片机程序计数器PC值的改变,则破坏了程序的正常运行。由于受干扰后的PC 值是随机的,程序将执行一系列毫无意义的指令,最后进入“死循环”,这将使输出严重混乱或死机。 2 如何提高我们设备的抗干扰能力 2.1 解决来自电源端的干扰

从六方面提高单片机系统的抗干扰能力

从六方面提高单片机系统的抗干扰能力 干扰问题,一直是电力设备仪器的一个难点。对于单片机也不例外。单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。因此单片机的抗干扰问题已经成为不容忽视的问题。单片机的干扰问题,一般可以从六个方面来解决。 模拟信号采样干扰 单片机应用系统中通常要对一个或多个模拟信号进行采样,并将其通过A/D转换成数字信号进行处理。为了提高测量精度和稳定性,不仅要保证传感器本身的转换精度、传感器供电电源的稳定、测量放大器的稳定、A/D转换基准电压的稳定,而且要防止外部电磁感应噪声的影响,如果处理不当,微弱的有用信号可能完全被无用的噪音信号淹没。在实际工作中,可以采用具有差动输入的测量放大器,采用屏蔽双胶线传输测量信号,或将电压信号改变为电流信号,以及采用阻容滤波等技术。 数字信号传输通道的干扰 数字输出信号可作为系统被控设备的驱动信号(如继电器等),数字输入信号可作为设备的响应回答和指令信号(如行程开关、启动按钮等)。数字信号接口部分是外界干扰进入单片机系统的主要通道之一。在工程设计中,对数字信号的输入/输出过程采取的抗干扰措施有:传输线的屏蔽技术,如采用屏蔽线、双胶线等;采用信号隔离措施;合理接地,由于数字信号在电平转换过程中形成公共阻抗干扰,选择合适的接地点可以有效抑制地线噪声。 硬件监控电路的干扰 在单片机系统中,为了保证系统可靠、稳定地运行,增强抗干扰能力,需要配置硬件监控电路,硬件监控电路从功能上包括以下几个方面: (1)上电复位:保证系统加电时能正确地启动; (2)掉电复位:当电源失效或电压降到某一电压值以下时,产生复位信号对系统进行复位; (3)电源监测:供电电压出现异常时,给出报警指示信号或中断请求信号; (4)硬件看门狗:当处理器遇到干扰或程序运行混乱产生“死锁”时,对系统进行复位。 解决来自电源端的干扰 单片机系统中的各个单元都需要使用直流电源,而直流电源一般是市电电网的交流电经过变压、整流、滤波、稳压后产生的,因此电网上的各种干扰便会引入系统。除此之外,由于交流电源共用,各电子设备之间通过电源也会产生相互干扰,因此抑制电源干扰尤其重要。电源干扰主要有以下几类: 1.电源线中的高频干扰(传导骚扰) 供电电力线相当于一个接受天线,能把雷电、电弧、广播电台等辐射的高频干扰信号通过电源变压器初级耦合到次级,形成对单片机系统的干扰;解决这种干扰,一般通过接口防护;在接口增加滤波器、或者使用隔离电源模块解决。 2.感性负载产生的瞬变噪音(EFT) 切断大容量感性负载时,能产生很大的电流和电压变化率,从而形成瞬变噪音干扰,成为电磁干扰的主要形式;解决这种干扰,一般通过屏蔽线与双胶线,或在电源接口、信号接口进行滤波处理。这二种方法都需要在系统接地良好的情况下进行,滤波器、接口滤波电路都必须良好的接地,这样才能有效的将干扰泄放。 软件抗干扰原理及方法 尽管我们采取了硬件抗干扰措施,但由于干扰信号产生的原因错综复杂,且具有很大的

单片机系统抗干扰

单片机系统的抗干扰 抗干扰问题是单片机控制系统工程实现中须解决的关键问题之一。对干扰产生的机理及其抑制技术的研究,受到国内外普遍重视。大约在50年代,就开始了对电磁干扰的系统研究,逐步形成了以研究干扰的产生、传播、抑制和使装臵在其所处电磁环境中既不被干扰又不干扰周围设备,从而都能长期稳定运行等为主要内容的技术学科—电磁兼容技术、EMC技术。 按国家军用标准GJB 72—85《电磁场干扰和电磁兼容性名词术语》其定义为:“设备(分系统、系统)在共同的电磁环境中能一齐执行各自功能的共存状态。即:该设备不会由于受到处于同一电磁环境中其它设备的电磁发射导致或遭受不允许的降级;它也不会使同一电磁环境中其它设备(分系统、系统),因受其电磁发射而导致或遭受不允许的降级。” 一、干扰的作用机制及后果 干扰对单片机系统的作用可分为三个部分,第一个部位是输入系统,它使模拟信号失真,数字信号出错,系统如根据该信号做出的反应必然是错误的。第二个部位是输出系统,使各输出信号混乱,不能正常反映系统的真实输出量,从而导致一系列严重后果。第三个部位是单片机的内核,干扰使三总线上的数字信号错乱,使CPU工作出错。 对单片机系统而言,抗干扰有硬件和软件措施,硬件如设臵得当,可将绝大多数的干扰拒之门外,但仍然有部分的干扰窜入系统,引起不良后果,因此,软件抗干扰也是必不可少的。但软件抗干扰是以CPU的开销为代价的,如果没有硬件措施消除大部分的干扰,CPU将忙于应付,会影响到系统的实时性和工作效率。成功的抗干扰系统是由硬件和软件相结合而构成的。硬件抗干扰具有效率高的优点,但要增加系统的成本和体积,软件抗干扰具有投资低的优点,但要降低系统的工作效率。 由于应用系统的工作现场,往往有许多强电设备,它们的启动和工作过程将对单片机产生强烈的干扰;也由于被控制对象和被测信号往往分布在不同的地方,即整个控制系统的各部分之间有较远的距离,信号线和控制线均可能是长线,这样电磁干扰就很容易以不同的途径和方式混入应用系统之中。如果上述来源于生产现场的干扰称为系统内部的干扰源的话,那么还有来源于现场以外的所谓外部干扰源,如外电源(如雷电)对电网的冲击,外来的电磁辐射等。 不管哪种干扰源,对单片机的干扰总是以辐射、电源和直接传导等三种方式进入的,其途径主要是空间、电源和过程通道。按干扰的作用形式分类,干扰一般有串模干扰和共模干扰两种。抗干扰的方法则针对干扰传导的源特征和传导方式,采取抑制源噪声,切断干扰路径,和强化系统抵抗干扰等三种方式。 控制干扰源的发射,除了从源的机理着手降低其产生电磁噪声的电平之外,广泛的应用着屏蔽(包括隔离)、滤波与接地技术。屏蔽主要用于切断通过空间的静电耦合、感应耦合或交变电磁场耦合形成的电磁噪声传播途径。此三种耦合分别对应于采取的静电屏

单片机系统抗干扰性能方面分析方案

时间:来源: 前言 作为工业自动化核心部件地称重仪表,不同于商用衡器,往往面临更复杂地工况.对于拌和站电磁环境比较恶劣地情况下,一些大规模集成电路常常会受到干扰,导致不能正常工作或在错误状态下运行,造成地后果往往是很严重地.因此对抗干扰性能地了解是称量仪表选型地关键.我们在对珠海市长陆工业自动控制系统有限公司生产地与和其它同类厂家产品进行反复比较过程中,获得了一个好单片机系统(称重仪表)应具备地抗干扰性能方面地分析经验.在此与同行分享,希望以此促进行业技术水平地提高.资料个人收集整理,勿做商业用途 仪表电磁兼容性()是一项重要指标,它包含系统地发射和敏感度两方面地问题.如果一个单片机系统符条件合下面三个条件,则该系统是电磁兼容地:资料个人收集整理,勿做商业用途 .对其他系统不产生干扰; .对其他系统地发射不敏感; .对系统本身不产生干扰; 假若干扰不能完全消除,但也要使干扰减少到最小.干扰地产生不是直接地(通过导体、公共阻抗耦合等),就是间接地(通过串扰或辐射耦合).电磁干扰地产生是通过导体和通过辐射,很多磁电发射源、如光照、继电器、电机和日光灯都可以引起干扰;电源线、互连电缆、金属电缆和子系统地内部电路也都可能产生辐射或接收到不希望地信号.在高速单片机系统中,时钟电路通常是宽带噪声地最大产生源,这些电路可产生高达地谐波失真,在系统中应该把他们去掉.另外,在单片机系统中最容易受影响地是复位线,中断线和控制线.资料个人收集整理,勿做商业用途 .干扰地耦合方式 ()传导性 一种最明显而往往被忽略地能引起电路中噪声地路径是经过导体.一条穿过噪声环境地导线可检拾噪声并把噪声送到其他电路引起干扰.设计人员必须避免导线检拾噪声和在噪声引起干扰前用去耦办法去除噪声.最普通地例子是噪声通过电源进入电路.若电源本身或连接到电源地其他电路是干扰源,则在电源线进入电路之前必须对其去耦.资料个人收集整理,勿做商业用途 ()公共阻抗耦合 当来自两个不同电路地电流流经一个公共阻抗时就会产生共阻抗耦合.阻抗上地压降由两个电路决定,来自两个电路地地电流流过共地阻抗.电路地地电位被电流调制,噪声信号或补偿经共地阻抗从电路耦合到电路.资料个人收集整理,勿做商业用途 ()辐射耦合 经辐射地耦合通称串扰.串扰发生在电流流经导体时产生电磁场,而电磁场在邻近地导体中感应瞬态电流. ()辐射发射 辐射发射有两种基本类型;差分模式()和共模().共模辐射或单极天线辐射是由无意地压降引起地,它使电路中所有地连接抬高到系统电地位之上.就电场大小而言,辐射是比辐射更为严重地问题.为使辐射最小,必须用切合实际地设计使共模电流降到零.资料个人收集整理,勿做商业用途 .影响地因数

单片机控制系统的抗干扰设计

单片机控制系统的抗干扰设计 摘要:单片机相关控制的灵敏度和系统所受的干扰具有一定的正相关关系,对 单片机的控制系统而言,具有较高的灵敏度才能确保系统运行正常,但灵敏度越高,系统受到的干扰就越强,设计单片机控制系统时需要重视其抗干扰能力,确 保系统能够稳定运行。 关键词:单片机;控制系统;抗干扰设计 引言 单片机控制系统是集通信技术、计算机技术以及自动化控制技术于一体的工 业通用自动控制系统,其不但操作便捷、扩展性能好,而且还具有较强的控制功能,目前已在我国电力、化工、交通以及冶金等行业得到广泛的应用。但由于工 业作业环境较为恶劣,使得单片机容易被电源波形畸变、电磁设备启停等影响而 受到干扰,使得信号接收能力大大下降,进而对测量的质量与效率造成了影响, 严重的还会对单片机的软件、硬件造成损坏,使其难以正常运作。所以,加强单 片机控制系统的抗干扰设计,正确掌握其干扰源,并采取针对性的改进措施来提 高其抗干扰能力,对单片机控制系统功能的正常发挥有着重要的作用。 1系统干扰源及干扰因素 1.1现场干扰源 电磁干扰一般分为两类,即传导和辐射。传导类型的干扰主要是通过金属、 电感、电容以及变压器传播的;而辐射类型干扰的传播途径很多,比如设备外壳 和外壳上的缝隙,设备间的连接电缆,甚至是一根导线也可以成为辐射类型干扰 的传统途径。这两种干扰往往是相辅相成的,并且在干扰吸收上可以相互转化。 在测控系统中,电磁干扰主要通过“场”进入,即电磁干扰源的能量通过电磁场传 递给测控系统。电场主要是电容性耦合干扰,在导线和电路分布的电容中,干扰 信号进入测控系统。而磁场干扰是互感性耦合干扰,借助导线和电路的互感耦合,干扰信号进入测控系统。 1.2单片机控制系统自身干扰源 单片机控制系统自身干扰源主要包括了散粒噪声、热噪声、常模噪声、共模 噪声以及接触噪声等几方面内容。散粒噪声是由于晶体管基区内的载流子发生随 即扩散,与电子空穴发生复合反应而形成的,其主要存在于半导体原件内部;热 噪声是指在没有连接电源的情况下,仍然有微弱电压存在于电阻两端,电阻两端 出现电子热运动而形成的噪音电压;常模噪声即线间感应噪声或对称噪声,往往 难以将其完全消除;共模噪声恰好与常模噪声相反,其指的是地感应噪声、不对 称噪声或是纵向噪声,该类噪声可以进行消除,但也可由共模噪声转变为常模噪声;接触噪声通常是由于两种材料进行不完全接触,使得电导率出现变化而产生的,常出现在导体连接部位。 2单片机硬件抗干扰设计 2.1电源电路的设计 在单片机控制系统中,将模拟电路电源和逻辑电路电源分离,不仅有利于去 除电源耦合逻辑电路产生的干扰,还可以抑制通过电源耦合对ECU干扰。那么单 片机控制系统电源电路设计过程中,可以采用7812和7805三端稳压集成芯片, 对电源进行负压差保护,避免因其中一个稳压电源故障导致整个电路崩溃。为改 善电源波形,可以采用低通滤波器,从而减少以高次谐波为主的干扰源,从而确

单片机和数字电路怎么抗干扰

单片机和数字电路怎么抗干扰 形成干扰的基本要素有三个: (1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 (2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。 (3)敏感器件,指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。 抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。(类似于传染病的预防) 1、抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 按干扰的传播路径可分为传导干扰和辐射干扰两类。 所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,

综述单片机控制系统的抗干扰设计

摘要:单片机应用系统在发动机电喷中得到了广泛的应用,然而由于发动机工作环境恶劣,提高控制系统的抗干扰性至关重要。分析了单片机干扰的主要来源,并从硬件和软件抗干扰设计中总结了一些取得良好抗干扰性的方法。 关键词 在进行单片机应用开发的过程中,经常遇到在实验室调整很好的单片机一到工作现场就会出现这样或那样的问题,这主要是由于设计未充分考虑到外界环境存在的干扰,如机械震动、各种电磁波和环境温差都会影响硬件系统的性能,导致电控单元不能正常工作。鉴于此本文较全面分析了干扰单片机应用系统的因素并结合自己的研究课题,提出一些可增强系统抗干扰性的方法。 1单片机系统的主要干扰源 (1)无线电设施的射频干扰; (2)发动机上的高压点火线圈向外辐射磁场强度大、频带宽的电磁波; (3)单片机内部的晶振电路是内部干扰源之一; (4)数字电路本身门电路频繁的导通、截止造成电源地线电流变化,也会产生很大的高频电磁干扰,各种开关电子设备通断时产生的急剧变化的电流会产生较宽频谱干扰; (5)外界交流电路中产生的工频干扰亦会影响模拟电路输出信号的准确性。 2干扰的耦合方式 隔离干扰源与控制系统之间的耦合信道。表1列出了干扰源的主要干扰方式及特征。

3单片机的硬件抗干扰设计 断干扰的传输信道。常用的措施有:滤波技术、去耦技术、屏蔽技术和接地技术。 3.1电源电路的设计 源耦合逻辑电路产生的干扰进入模拟电路,二是为了避免传感器通过电源耦合对ECU干扰。各功能模块供电系统如图1所示,皆采用7812和7805三端稳压集成芯片,且都单独对电源进行负压差保护,这样不会因其中某一稳压电源出现故障而影响整个系统电路;使用低通滤波器亦可减少以高次谐波为主的干扰源,从而改善电源波形;在输出端采用了过压保护电路。通过上述设计可大大提高供电的 可靠性。图中D 1、D 2 用于负压差保护,防止压差击穿稳压器的be结使器件永久 失效,稳压管WY1、晶闸管Q 1用于过压保护,电容E 1 、E 2 、C 1 、C 2 使输出电压波 3.2模拟电路抗干扰设计 比较大,因此在模拟电路中应选择低温漂系数的集成放大器;在模拟电路中共模信号对电路板影响较大,故在模拟电路中采用差动放大电路,可得出两端输出信号;接收时,将双端信号转化为单端信号,可非常有效地抑制共模信号。若电路中输入信号变化比较大,需在放大器或比较器前加输入端保护电路以避免器件的损坏。外界交流电路产生的工频干扰对模拟信号有较大的影响,在电路中采用有源滤波器和低通滤波器。 3.3选用时钟频率低的单片机 干扰。因此选用低频率的单片机是提高抗干扰性的原则之一。其同为1 μs时,8051单片机外时钟为12 MH z,Atmel公司单片机外时钟为6 MHz,而Microchip和Motorola 的单片机时钟频率为4 MHz。 3.4输入、输出隔离 用的隔离方法有光电隔离、继电器隔离和变压器隔离。变压器隔离是传递脉冲输入、输出信号时,不能传递直流分量,因此常用于不要求传递直流分量的输入输

单片机系统的抗干扰设计

单片机系统的抗干扰设计 随着单片机系统越来越广泛地应用于消费电子、低压电器、医疗设备、以及智能化仪器与仪表等领域,单片机在简化电路设计和提高产品性能的同时,单片机系统本身的电磁干扰问题也成为影响这类设备可靠性的主要因素。 单片机系统是一个含有多种电子元器件和电子部品(乃至子设备和子系统)的复杂电子系统,外来的电磁辐射和传导干扰,以及内部元器件之间、部件之间、以及子系统之间、各传送通道之间的相互干扰对单片机及其数据信息所产生的干扰与破坏,严重地影响了单片机系统的工作稳定性、可靠性和安全性。 因此分析和消除单片机系统的不稳定因数,提高它的电磁兼容性已愈来愈成为人们所关注的课题,而这问题的本身则具有很高的实用价值。 1 单片机系统的可靠性分析 一个单片机系统的可靠性是自身软件、硬件与其所处工作环境共同作用的结果,所以系统的可靠性也应从这两方面来进行分析与设计。 对系统本身而言,要在保证系统各项功能实现的同时,对其运行过程中出现的各种干扰信号,以及来自于系统外部的干扰信号进行有效的抑制,这是决定系统可靠性的关键。而对一个有缺陷的系统来说,设计人员往往只是从逻辑上去保证系统功能的实现,而对系统运行过程中可能出现的问题考虑欠周,采取的措施不足,在干扰面前系统就可能陷入困境。 任何系统的可靠性都是相对的,在一种环境下能够可靠工作的系统,到了另外一种环境就可能就不稳定了,这充分说明环境对系统可靠运行的重要性。所以在针对系统运行环境去设计系统的同时,应当尽量采取措施来改善系统的运行环境,综合性地解决系统运行的可靠性。 2 单片机系统的电磁干扰问题 2.1 单片机系统里电磁干扰的由来 单片机的干扰是以脉冲形式进入单片机系统的,其主要渠道有三条,即空间、供电系统及信号通道。 空间干扰多发生在高电压、大电流、高频电磁场附近,通过静电感应、电磁感应等方式侵入系统内部。 供电系统的干扰通过同一电网里用电设备工作时产生的噪声干扰和瞬变干扰来影响单片机系统的工作。 信号通道的干扰则通过输入和输出通道侵入系统。干扰沿各种线路侵入系统;各类传感器,输入/输出线路的绝缘损坏均有可能给系统引入干扰。 此外,系统接地的不可靠也能是产生系统干扰的重要原因。 2.2 电磁干扰可能产生的后果 电磁干扰可能产生的后果有: ⑴数据采集误差加大 当干扰侵入单片机系统的输入通道,并叠加在信号上时,会使数据采集误差增大,特别是输入通道的传感器接口为低电平信号输入时,此现象会更加严重。 ⑵程序运行失常 ①控制状态失灵 在单片机系统中,由于干扰的加入使输出误差加大,造成逻辑状态改变,

单片机控制系统抗干扰设计

单片机控制系统抗干扰设计 在这里简单介绍一下单片机控制系统,一般来讲单片机系统拥有计算机技术、通信技术和自动化控制技术的优点,可以是实现对事物的自动化控制,其具有很多的优点: (1)该系统利于人工操作,简单方便; (2)单片机系统可以为很多领域提供方便的控制系统,例如在我国的矿产行业、电力发电行业以及交通运输行业等工业领域中都得到了广泛使用。 但是,在这些工业领域中其工作环境往往比较恶劣,工作条件比较复杂,这就会很大程度上使得单片机很受到电磁设备启停等的影响,致使接收信号不清晰,最终导致在对相关的数据进行测量时出现偏差甚至错误,影响工作的效率,此外,还可能会出现更为严重的情况,破坏单片机的软件、硬件,使机器完全不能工作。因此,对单片机控制系统的抗干扰设计需要进一步研究,找出干扰源,根据干扰源,制定相应的应对策略来增强其抗干扰能力,能够有效地降低外界环境对系统的影响,进而保证单片机控制系统正常运行。 1 单片机控制系统的主要干扰源 1.1 单片机控制系统的内部干扰源 在单片机控制系统中往往会因为其本身的特点而对其控制效果造成影响,通常来讲单片机控制系统的内部干扰源可以分为下面两个部分:如散粒噪声、热噪声等。散粒噪声的形成原理:晶体管区域里的载流子出现不规律的扩散,扩散出来的载流子在遇到电子空穴后两者之间进行反应。该种噪声大多数存在于半导体原件自身内部;热噪声的形成原理:在未与电源连通的情形下,半导体的两端可能存在一个电压值较小的电压,该电压就会导致半导体内部的电子发生热运动,而电子在运动过程中就会形成噪音电压。 1.2 现场环境的干扰源

电磁是单片机控制系统的现场环境干扰源,该干扰源通常情况下凭借场传播进入测控系统,通过电场或磁场两种方式对系统进行干扰。一般情况下,电磁干扰可以分为两种,一种是传导,另外一种是辐射。传导干扰的传播介质主要有金属、电容等;辐射干扰主要是从辐射源向外界传播,并且其在传播过程中的形式拥有很多种。 2 单片机控制系统抗干扰设计策略 2.1 利用软件防止干扰 2.1.1 使用滤波算法 一般来讲,在软件层面进行的滤波算法很多,我们比较常见的为比较舍取法、中值法、算术平均值法。这些算法虽然具体对数据的处理方式不一样,但其最终的目的还是让排除数据的波动和外界的影响。其中算术平均法的原理为:根据所需要检测的信号的特性,在对单片机控制系统不会造成任何影响的情况下,通过对多组所测的数据信息进行筛选,舍去最小值与最大值,最终计算得出平均值,这样能够有效地增加了采集数据的真实性和有效性,从而提升系统的可靠性。通常情况下都可以利用软件滤波算法来排除外界干扰信号对数据带来的影响,进而保证数据的有效性和控制效果的高效性。 2.1.2 指令冗余技术 如果在单片机控制系统正常运行的时候收到外界的干扰,此时单片机的一些寄存器中的值可能发生变化,而此时如果提取变化以后的操作码,势必会对整个系统的性能造成影响,严重时还可能导致程序跑飞和系统奔溃。为此,就需要在编程过程中采用一定的技术来防止这种现象的发生,通常可以在双字节程序和三字节程序之间增加几组单字节程序指令,或者是需要对该程序进行重新编写。 2.2 硬件抗干扰的设计 2.2.1 抑制电源干扰 最为重要的是选取设备,一定要选取质量优质的电源设备,还需要对以下3 种线路实施配线:电源线、控制线和动力线;其次,在架设电源线时要确保平行;再次,对电源变压器的输出与输入两线一

单片机系统的干扰种类及抗干扰技术

1 引言 近年来,微机测控系统,特别是单片机在工业自动化生产过程控制、智能化仪器仪表等领域的应用越来越深入和广泛,有效地提高了生产效率,大大提高了控制质量与经济效益。但是,测控系统的工作环境往往是比较恶劣和复杂的,其应用的可靠性、安全性就成为一个非常突出的问题。许多应用系统在进行仿真调试和实验室内的联机试运行时都是成功的,然而一进入现场使用,系统则会产生预料之外的误动作或误显示,严重时导致系统失灵,甚至导致巨大的损失。 影响测控系统可靠、安全运行的主要因素是来自系统内部和外部的各种电气干扰,以及系统结构设计、元器件选择、安装、制造工艺和外部环境条件等。 系统自身及应用环境产生的各种电磁噪声仍是普遍的干扰因素,产生的原因主要有:放电噪声、高频振荡噪声、浪涌噪声。干扰源产生的干扰是通过耦合通道对微机测控系统发生电磁干扰作用,噪声的传递几乎都是通过导线或者通过空间和大地传递的。 2 干扰的主要耦合方式 (1)直接耦合方式 电导性耦合最普遍的方式是干扰信号经过导线直接传导到被扰电路中而造成对电路的干扰。在微机测控系统中,干扰噪声经过电源线耦合进入计算机线路是最常见的直接耦合现象。 (2)公共阻抗耦合方式 当一个电源电路对几个电路供电时,如果电源不是内阻抗为零的理想电压源,则其内阻抗就成为接受供电的几个电路的公共阻抗,只要其中某一个电路的电流发生变化,便会使其他电路的供电电压发生变化,形成公共阻抗耦合。 (3)电容耦合方式 这是指电位变化在干扰源与干扰对象之间引起的静电感应,又称静电耦合或电场耦合。 (4)电磁感应耦合方式 在任何载流导体周围空间中都会产生磁场,若磁场是交变的,则对周围闭合电路产生感应电势,在设备内部,线圈或变压器的漏磁是一个很大的干扰,设备外部,当2根导线在很长的一段区间架设时,也会产生干扰。 (5)辐射耦合方式 当高频电流流经导体时,在该导体周围便产生电力线和磁力线,并发生高频变化,从而形成一种在空间传播的电磁波,处于电磁波中的导体便会感应出相应频率的电动势。电磁场辐射干扰是一种无规则的干扰,这种干扰很容易通过电源线传到系统中去,此外,波,称为天线效应。 (6)漏电耦合方式 漏电耦合是电阻性耦合方式,当相邻的元件和导线间的绝缘电阻降低时,有些电信号便通过这个降低了的绝缘电阻耦合到逻辑元件的输入端而形成干扰。 3 单片机系统中的主要抗干扰手段 干扰的抑制方法,一般分为硬件抗干扰和软件抗干扰。笔者在开发研制自动化仪表和智能测控系统实践中,针对单片机系统的干扰及其抑制方法进行了分析、研究,并在实际运用中收到了良好的效果。 3.1 硬件抗干扰 为便于理解,干扰的来源可笼统地概括为:电源干扰、口线干扰和空间干扰。其相应的抗干扰措施分别为:

单片机的抗干扰性能比较

发表于《工控人生论坛》 单片机的抗干扰性能比较#1 孙岩军 楼主发帖时间:2009-1-4 13:19:53 博客播客收藏回复加为好友发送消息建议删除该贴!! 单片机的抗干扰性能历来为大家所重视,现在市面上的单片机就我所接触过的,就有十家左右了,韩国的三星和现代;日本的三菱,日立,东芝,富士通,NEC;台湾的EMC,松翰,麦肯特,合泰;美国的摩托罗拉,国半的cop8系列,microchip的PIC系列,TI的msp430系列,AVR系列,51系列,欧洲意法半导体的ST系列。。。。。。 这些单片机的抗干扰性能大多数鄙人亲自测试过,所用机器是上海三基出的两种高频脉冲干扰仪,一种是欧洲采用的标准,一种是日本采用的标准;日本的标准是高频脉冲连续发出,脉冲宽度从50ns到250ns可调,欧洲采用的标准是脉冲间歇(间歇时间和发出时间可调)发出,脉宽也是从50ns到250ns 可调;我们国家采用的是欧洲标准。 一般情况下,脉冲干扰这一项能够耐受2000V以上就算不错了(好像我国家电标准是1200V),有些可以达到3000V,于是很多人为此很得意。 单片机在高频脉冲干扰下程序运行是否正常,或者说抗干扰是否通过,有些人以程序不飞掉,或者说“死机”为标准,有些人以不复位并且程序正常运行为标准。很多情况下,芯片复位程序是可以继续运行的,表面上看的不是很清楚。我一般就看单片机在干扰下是否复位,复位了我就认为不行了。不复位并且程序正常运行当然比复位来说要好了。 好多人看到自己做的电路抗干扰达到2000V或者3000V就很高兴,实际上芯片的抗干扰并不一定就很好。这里我不能不说一下日本的标准,高频脉冲连续发出的形式。别小看一个连续和一个间歇的区别,实际上,大家如果有机会,用日本的标准测试一下你的芯片和电路,你就会发现,几乎和欧洲标准差别很大很大,采用日本标准你会很伤心,因为大多数单片机过不了! 日本的标准是1600V。上面我提到的十几家单片机: 意法的也就是ST的≥1800 三菱的≥1800 富士通和日立的≥1600V NEC的≥1500 东芝的≥1300V 摩托罗拉的≥1300 三星的≥1300 现代的≥800 microchip的≥700 国半的cop8≥500 avr和51系列≥500 这里没有给出数据的我没有测试过,但是知道EMC的一款28pin的设计上有缺陷(EMC自己人讲的);合泰的据说欧洲标准可以过3000V。 大家对照一下自己用的单片机,看看在什么档次。不过呢谁要是受了打击也不要太伤心,因为我对照过,

相关文档
最新文档