超声检测新技术及其进展

超声检测新技术及其进展
超声检测新技术及其进展

超声波检测技术

超声工业测量技术 在非电量电测技术中,许多非电量可以通过电学方法加以测定,同样,许多非声量也可通过声学方法来加以测定,这就是所谓超声工业测量技术。非电量的电测主要是通过一些元件的电阻、电容或电感等量来进行的。在超声工业测量技术中,非声量的测定也往往是通过某些媒质声学特性(主要是声速、声衰减和声阻抗率等)的测量来进行的。 超声工业测量技术中应用最广的是媒质的声速这一物理量。 第一,媒质的声速与媒质 的许多特性有直接或间接的关系。有些关系非常简单直接,已有精确的理论公式,例如,在测定声速和密度后,就可求出媒质的弹性模量。有些关系比较间接而且复杂,但在特定的条件下,仍可以建立一些半理论或纯经验的关系式,例如,媒质的成分,混合物的比例,溶液的浓度,聚合物的转化率,某些液体产品的比重,某些材料的强度等等,都可与声速建立一定的关系,利用这些关系,就熊通过测量声速来测定这些媒质的非声特性。上述原则是声速分析仪的基本原理。 第二,媒质的声速与媒质所处的状态也有相互关系。例如,媒质的温度、压强和流速等状态参量的变化都会引起相应的声速的变化。如声学温度计、超声波风速仪和超声流量计就是用这一类关系来测量温度或流量的。 第三,其他应用,例如在声速c已经测知的媒质中,可以利用声波传播距离L和传播时间t 的关系L=ct,或利用波长λ和频率f(或周期T)之间的关系c=fλ=λ/T,进行超声测距的应用。如超声液位计和超声测厚计就是这一方面的典型应用技术。 声阻抗率方法也是一种较常用于媒质特性分析的技术。在这种技术中,所测定的声学 量是换能器对媒质的辐射阻抗率。如果换能器在媒质中所激起的是平面纵波行波,则辐射阻抗率就是声阻率ρc。当两种媒质的声速c几乎相同,但密度ρ有很大不同时,往往就可根据ρc的测量来加以区别。在同时测得声速的情况下,也可用这种方法来测量液体的密 度p或弹性模量ρc2等。如果换能器在液体媒质中激起的是切变行波,其声阻抗率将与 成正比,η是液体的粘性,这就是超声粘度计的原理。如果换能器是在流体中作弯曲振动的,则其辐射声抗率将与流体的密度p有关,因而使换能器的共振频率随p而变化,这也是一种可以精确测定液体密度的原理。 遇到需要采用声学方法来测定一个非声量的情况时,在声速、衰减和阻抗这三种技术途径中,应按什么准则来决定取舍呢?第一是看要测的非声量究竟与那一个声学量的关系比较明显。这就是说,相应于同样大小的非声量的变化,如果某一声学量能够有最大的变化,这一声学量就比较值得考虑。第二,应该考虑到声速、衰减和声阻抗率都是随很多因素变化的,除待测的那种非声量外,其他媒质特性或媒质状态的变化往往也会引起声学量的变化,对于须测的非声量来说,这些其他因素引起的变化就是一种干扰。因此,选用某种声学量的途径时,应注意干扰因素要尽可能少,干扰影响要尽可能小,或可采用切实可行的补偿措施来避免这些干扰。第三,挑选技术途径时必须注意满足现场的使用、安装和维护等条件并应达到要求的精度,在这一前提下还应力求稳定耐久和方便可靠,才能有较高的实用价值。上述准则只是一些原则性的意见,还应根据具体情况作具体的考虑。 声发射检测技术 材料或结构受外力或内力作用产生形变或断裂 ,以弹性波的形式释放出应变能的现象称为声发射。各种材料声发射的弹性波的频率范围很宽 ,从次声频、声频到超声频 ,因此 ,

超声波检测相关标准

GB 3947-83声学名词术语 GB/T1786-1990锻制园并的超声波探伤方法 GB/T 2108-1980薄钢板兰姆波探伤方法 GB/T2970-2004厚钢板超声波检验方法 GB/T3310-1999铜合金棒材超声波探伤方法 GB/T3389.2-1999压电陶瓷材料性能测试方法纵向压电应变常数d33的静态测试 GB/T4162-1991锻轧钢棒超声波检验方法 GB/T 4163-1984不锈钢管超声波探伤方法(NDT,86-10) GB/T5193-1985钛及钛合金加工产品(横截面厚度≥13mm)超声波探伤方法(NDT,89-11)(eqv AMS2631) GB/T5777-1996无缝钢管超声波探伤检验方法(eqv ISO9303:1989) GB/T6402-1991钢锻件超声波检验方法 GB/T6427-1999压电陶瓷振子频率温度稳定性的测试方法 GB/T6519-2000变形铝合金产品超声波检验方法 GB/T7233-1987铸钢件超声探伤及质量评级方法(NDT,89-9) GB/T7734-2004复合钢板超声波检验方法 GB/T7736-2001钢的低倍组织及缺陷超声波检验法(取代YB898-77) GB/T8361-2001冷拉园钢表面超声波探伤方法(NDT,91-1) GB/T8651-2002金属板材超声板波探伤方法 GB/T8652-1988变形高强度钢超声波检验方法(NDT,90-2) GB/T11259-1999超声波检验用钢制对比试块的制作与校验方法(eqv ASTME428-92) GB/T11343-1989接触式超声斜射探伤方法(WSTS,91-4) GB/T11344-1989接触式超声波脉冲回波法测厚 GB/T11345-1989钢焊缝手工超声波探伤方法和探伤结果的分级(WSTS,91-2~3) GB/T 12604.1-2005无损检测术语超声检测代替JB3111-82 GB/T12604.1-1990 GB/T 12604.4-2005无损检测术语声发射检测代替JB3111-82 GB/T12604.4-1990 GB/T12969.1-1991钛及钛合金管材超声波检验方法 GB/T13315-1991锻钢冷轧工作辊超声波探伤方法 GB/T13316-1991铸钢轧辊超声波探伤方法 GB/T15830-1995钢制管道对接环焊缝超声波探伤方法和检验结果分级 GB/T18182-2000金属压力容器声发射检测及结果评价方法 GB/T18256-2000焊接钢管(埋弧焊除外)—用于确认水压密实性的超声波检测方法(eqv ISO 10332:1994) GB/T18329.1-2001滑动轴承多层金属滑动轴承结合强度的超声波无损检验 GB/T18604-2001用气体超声流量计测量天然气流量 GB/T18694-2002无损检测超声检验探头及其声场的表征(eqv ISO10375:1997) GB/T 18696.1-2004声学阻抗管中吸声系数和声阻抗的测量第1部分:驻波比法 GB/T18852-2002无损检测超声检验测量接触探头声束特性的参考试块和方法(ISO12715:1999,IDT) GB/T 19799.1-2005无损检测超声检测1号校准试块 GB/T 19799.2-2005无损检测超声检测2号校准试块 GB/T 19800-2005无损检测声发射检测换能器的一级校准 GB/T 19801-2005无损检测声发射检测声发射传感器的二级校准 GJB593.1-1988无损检测质量控制规范超声纵波和横波检验 GJB1038.1-1990纤维增强塑料无损检验方法--超声波检验 GJB1076-1991穿甲弹用钨基高密度合金棒超声波探伤方法 GJB1580-1993变形金属超声波检验方法 GJB2044-1994钛合金压力容器声发射检测方法 GJB1538-1992飞机结构件用TC4 钛合金棒材规范 GJB3384-1998金属薄板兰姆波检验方法 GJB3538-1999变形铝合金棒材超声波检验方法 ZBY 230-84A型脉冲反射式超声探伤仪通用技术条件(NDT,87-4/84版)(已被JB/T10061-1999代替) ZBY 231-84超声探伤仪用探头性能测试方法(NDT,87-5/84版)(已被JB/T10062-1999代替)

简述全自动超声波无损检测方法

简述全自动超声波无损检测方法 摘要:全自动超声波检测技术(AUT)对于提高无损检测效率、保证无损检测质量,节约工程成本有着重要的意义,通过对AUT检测的特点,与传统检测手段进行了对比分析,阐述工程无损检测中AUT检测的通用做法。 关键词:全自动超声环焊缝检测 引言:AUT检测技术是一种新型的无损检测技术,在近几年的推广使用过程中得到了工程质检方的认可,在使用过程中各公司做法不一,本文通过多年AUT 检测工程应用经验总结归纳了AUT检测通用做法。 1、AUT检测方法适用范围 本文论述了环向焊缝全自动超声检测的要求。在AUT检测所得到结论的基础上分析评定环焊缝。根据工程临界判别法(ECA)来最终确定检测验收标准。 2 AUT检测方法步骤 2.1 外观检查 工程现场所有待检环焊缝在焊接完成后都要进行三方(监理、施工、检测)外观检查并且按照AUT检测相应标准的要求进行评定。 所有坡口应在机加工后进行焊接,并且确保焊接符合焊接工艺的要求,随后AUT全自动超声波检测应结合画参考线一起进行。 2.2 超声波检测 工程现场的所有环焊缝的全自动超声检测都要在整个焊缝圆周方向上进行,并按相应的验收标准进行评定。 3 超声波检测系统 AUT检测系统应该提供足够的检测通道的数量,保证仅扫查环焊缝一周,就可对该焊缝整个厚度上的所有区域进行全面检测。所有被选通道都应能显示一个线性A型扫查显示。检测的通道应该能按照通常如图1所示的检测区域评估被检焊缝。仪器的线性应按照相应标准来确定,每6个月测定一次。仪器的误差应该不大于实际满幅高的5%。这一条件应该适用于对数放大器及线性放大器。每一个检测的通道都应可以选择脉冲反射法或者直射法。每一个检测通道的闸门位置及两个闸门之间的最小跨度和增益都是可选择的。记录电位也是可以选择的,以显示记录的波幅和传播时间位于满幅高0~100%之间的信号。对于B扫查或者图像显示的资料记录也应该为0~100%。对于每个门都有两个可记录的输出信号。无论是模拟信号还是数字信号都包括信号的高度和渡越时间。它们都适于多通道记录仪或计算机数据采集软件的显示。 4 AUT的系统设置 4.1 AUT探头及探头灵敏度的确定 在工程现场的检测中用AUT对比试块选定该检测系统的合适当量。每个AUT 检测探头固定在扫查架相应位置上,保证中心距满足要求。分别调整扫查架上探头的位置、角度和激活晶片数,使所有探头在标准试块上的主反射体的信号都达到最大值。把所有检测探头的峰值信号都设置到仪器满屏的80%,此时显示的灵敏度数值就是该探头检测时的基准灵敏度。 4.2 闸门的设置 4.2.1 熔合区闸门的设置参照AUT对比试块上的标准反射体:闸门起点位置在坡口前大于等于3mm,闸门终点位置应大于焊缝上中心线位置1mm。闸门的起点和长度应记录在工艺文件中。

无损检测新技术-超声波相控阵检测技术简介

无损检测新技术-超声波相控阵检测技术简介 夏纪真 无损检测资讯网 https://www.360docs.net/doc/599654344.html, 广州市番禺区南村镇恒生花园14梯701 邮编:511442 摘要:本文简单介绍了超声波相控阵检测技术的基本原理、应用与局限性 关键词:无损检测超声检测相控阵 1 超声波相控阵检测技术的基本原理 超声波相控阵检测技术是一种新型的特殊超声波检测技术,类似相控阵雷达、声纳和其他波动物理学应用,依据惠更斯(Huyghens-Fresnel)原理:波动场的任何一个波阵面等同于一个次级波源;次级波场可以通过该波阵面上各点产生的球面子波叠加干涉计算得到。 并显示保真的(或几何校正的)回波图像,所生成材料内部结构的图像类似于医用超声波图像。 常规的超声波检测技术通常采用一个压电晶片来产生超声波,一个压电晶片只能产生一个固定的声束,其波束的传递是预先设计选定的,并且不能变更。 超声波相控阵检测技术的关键是采用了全新的发生与接收超声波的方法,采用许多精密复杂的、极小尺寸的、相互独立的压电晶片阵列(例如36、64甚至多达128个晶片组装在一个探头壳体内)来产生和接收超声波束,通过功能强大的软件和电子方法控制压电晶片阵列各个激发高频脉冲的相位和时序,使其在被检测材料中产生相互干涉叠加产生可控制形状的超声场,从而得到预先希望的波阵面、波束入射角度和焦点位置。因此,超声波相控阵检测技术实质上是利用相位可控的换能器阵列来实现的。超声波相控阵激发的超声波进入材料后,仍然遵循超声波在材料中的传播规律。因此,对于常规超声波检测应用的频率、聚焦的焦点尺寸、聚焦长度、入射角、回波幅度与定位等等,超声波相控阵也是同样应用的。 超声波相控阵探头的每个压电晶片都可以独立接受信号控制(脉冲和时间变化),通过软件控制,在不同的时间内相继激发阵列探头中的各个单元,由于激发顺序不同,各个晶片激发的波有先后,这些波的叠加形成新的波前,因此可以将超声波的波前聚焦并控制到一个特定的方向,可以以不同角度辐射超声波束,可以实现同一个探头在不同深度聚焦(电子动态聚焦)。此外,从电子技术上为阵列确定相位顺序和相继激发的速度可以使固定在一个位置上的探头发出的超声波束在被检工件中动态地“扫描”或“扫调”通过一个选定的波束角范围或者一个检测的区域,而不需要对探头进行人工操作。相控阵探头的关键特性包括:电子焦距长度调整、电子线性扫描和电子波束控制/偏角。 图1示出了超声波相控阵换能器实现电子聚焦和波束偏转的原理示意图。 图1超声波相控阵换能器实现电子聚焦和波束偏转的原理示意图超声波相控阵换能器的晶片不同组合构成不同的相控阵列,目前主要有三种阵列类型:线形阵列(晶片成间隔状直线形分布在探头中)、面形(二维矩阵)阵列和圆(环)形阵列,

超声监测专业技术的新应用

超声监测技术的新应用

————————————————————————————————作者:————————————————————————————————日期:

超声监测技术的新应用 超声检测技术是一门以物理、电子、机械以及材料学为基础,各行各业都在使用的通用技术之一,他是通过超声波的产生、传播及接受的物理过程完成的。目前,超声波技术广泛应用于工业领域的很多方面。 其中超声探伤检测是无损探伤中最为重要一种方法,由于超声波具有穿透能力强、对材料人体无害、使用方便等特点,可对各种锻件、轧制件、铸件、焊缝等进行内部缺陷检测,因而得到广泛应用。 此外利用超声波的各种特性,超声技术还应用于金属与非金属材料厚度测量、流量测量、料位及液位检测与控制、超声波零件清洗等工业领域。 本文主要介绍超声技术在设备故障检测及诊断方面的最新应用。 一.压力及真空系统的泄漏检测 当气体在压力下通过限流孔时,它从一个有压层流变为低压紊流(参见图1)。紊流产生所谓的“白噪声”广谱声音。在这种白噪声中含有超声波分量。因为泄漏部位的超声最大,探测这些信号通常是非常简单的。 目前已有成熟的超声检测专用仪器,可将探测到的超声波信号转换为人耳可听见的音频信号,适用于各种泄漏检测。(参见附录) 泄漏可以在压力系统或真空系统中出现。在这二种系统中,超声的产生方式如上所述。二者之间唯一不同的是真空泄漏产生的超声波振幅通常小于同等流速的压力泄漏。其原因在于真空泄漏产生的紊流是发生在真空室内,而压力泄漏产生的紊流出现在大气中 什么样的气体泄漏采用超声波探测呢?一般来说,不管何种气体,包括空气在内,只要它从限流孔泄出时产生紊流,就可以用超声波探测。与气体专用的传感器不同,超声检测是属于声音专用检测。气体专用传感器仅能用于它所能辨别的具体气体(如氦)。而超声检测能辨别出任何类型的气体,因为它探测的是泄漏紊流所产生的超声。

超声检测报告模板

基桩超声波透射法 检测报告 工程名称: 工程地点: 委托单位: 检测日期: 报告编号: (检测单位名称) 年月日

###工程 基桩超声波射法检测报告 检测人员: 检测负责: 报告编写: 校核: 审核: 审定: (检测单位盖章) 年月日 地址: 邮编: 联系人: 电话: 声明:1、本检测报告涂改、换页无效。 2、如对本检测报告有异议,可在报告发出后20天内向本检测单位书面提请复议。

工程概况

受委托,于年月日至年月日对工程(概况见表1)的基桩进行超声波透射法检测,目的是检测桩身结构完整性。根据国家和省有关规范、规程和规定,并考虑本工程的具体情况(经与有关单位研究协商),确定本次试验共检测根工程桩。现将检测情况及结果报告如下: 一、检测仪器设备、基本原理和标准 1、仪器设备 检测设备采用北京铭创科技有限公司生产的“多通道超声波基桩检测仪MC-6360”。 2、基本原理 超声波透射法检测桩身结构完整性的基本原理是:由超声脉冲发射源向砼内发射高频弹性脉冲波,并用高精度的接收系统记录该脉冲波在砼内传播过程中表现的波动特性;当砼内存在不连续或破损界面时,缺陷面形成波阻抗界面,波到达该界面时,产生波的透射和反射,使接收到的透射波能量明显降低;当砼内存在松散、蜂窝、孔洞等严重缺陷时,将产生波的散射和绕射;根据波的初至到达时间和波的能量衰减特性、频率变化及波形畸变程度等特征,可以获得测区范围内砼的密实度参数。测试记录不同侧面、不同高度上的超声波动特征,经过处理分析就能判别测区内砼存在缺陷的性质、大小及空间位置(和参考强度)。 在基桩施工前,根据桩直径在大小预埋一定数量的声测管,作为换能器的通道。测试时每两根声测管为一组,通过水的耦合,超声脉冲信号从一根声测管中的换能器中发射出去,在另一根声测管中的换能器接收信号,超声仪测定有关参数,采集记录储存。换能器由桩底同时往上逐点检测,遍及各个截面。 3、检测标准 检测参照国家行业标准《建筑基桩检测技术规范》JGJ106-2014中有关规定进行。

超声波无损检测的发展

超声无损检测仪器的发展 超声检测仪器性能直接影响超声检测的可靠性,其发展与电子技术等相关学科的发展是息息相关的。计算机的介入,一方面提高了设备的抗干扰能力,另一方面利用计算机的运算功能,实现了对缺陷信号的定量、自动读数、自动识别、自动补偿和报警。20世纪80年代,新一代的超声检测仪器——数字化、智能化超声仪问世,标志着超声检测仪器进入一个新时代。 超声无损检测仪器将向数字化、智能化、图像化、小型化和多功能化发展。在第十三、十四世界无损检测会议仪器展览会、1996年中国国际质量控制技术与测试仪器展览会、1997年日本无损检测展览会等大型国际会议会展中,数字化、智能化、图像化超声仪最引人注目,显示了当今世界无损检测仪器的发展趋势。其中以德国Krauthammer公司、美国Panametrics公司、丹麦Force Institutes公司与美国PAC公司的产品最具代表性。真正的智能化超声仪应该是全面、客观地反映实际情况,而且可以运用频谱分析,自适应专家网络对数据进行分析,提高可靠性。提高超声检测中对缺陷的定位、定量和定性的可靠性也是超声检测仪器实现数字化、智能化急待解决的关键技术问题。 现代的扫查装置也在向智能化方向发展。扫查装置是自动检测系统的基础部分,检测结果准确性、可靠性都依赖于扫查装置。例如采用声藕合监视或藕合不良反馈控制方式提高探头与工件表面的耦合稳定度以及检测的可靠性。从20世纪90年代以来,出现的各种智能检测机器人,已经形成了机器人检测的新时代及工程检测机器人的系列与商业市场。例如日本东京煤气公司的蜘蛛型机器人,移动速度约60m/h ,重约140kg,采用16个超声探头可以对运行状态下的球罐上任意点坐标位置进行扫描。日本NKK公司研制的机器人借助管道内液体推力前进,可以测量输油管道腐蚀状况,其检测精度小于1mm。 丹麦Force研究所的爬壁机器人,重约10吨,采用磁吸附与预置磁条跟踪方式可检测各类大型储罐与船体的缺陷。 超声无损检测技术的发展 超声无损检测技术是国内外应用最广泛、使用频率最高且发展较快的一种无损检测技术, 体现在改进产品质量、产品设计、加工制造、成品检测以及设备服役的各个阶段和保证机器零件的可靠性和安全性上。世界各国出版的无损检测书

超声波无损检测技术的理论研究

毕业设计(论文) 题目超声波无损检测技术 的理论研究 系(院)物理与电子科学系 专业电子信息科学与技术 班级2006级4班 学生姓名李荣 学号2006080927 指导教师吴新华 职称讲师 二〇一〇年六月十八日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。尽我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 二〇一〇年六月一十八日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 二〇一〇年六月一十八日

超声波无损检测技术的理论研究 摘要 本文首先针对波无损检测技术进行理论研究,简明扼要的介绍了超声波无损检测技术的研究意义和发展现状,超声波无损检测技术是当前一种较为先进的检测技术,应用领域更广,适用范围更宽。然后细致的分析了超声波无损检测技术的工作原理特性,基于超声波的优良特性,和传播机理,进行器件或工程的无损检测,并分析了超声波无损检测系统的噪声干扰来源,提出了降低噪声的方法。尝试用计算机模拟系统通过仿真软件来处理超声波无损检测过程中的庞大的数据信息。直观准确地定位缺陷的位置和类型。最后介绍了超声波在无损检测领域的两种典型应用,建筑方面,可以通过超声探头,利用声波的反射的折射来检测混凝土路基的厚度,电力系统方面,利用超声波无损检测技术确定次绝缘子的寿命定位绝缘子中缺陷的类型的具体位置,快速有效的解除安全隐患。 关键词:超声波;无损检测;计算机仿真;瓷绝缘子

超声波无损检测概述

超声波无损检测概述

J I A N G S U U N I V E R S I T Y 超声波无损检测概述

2.2 国内研究情况 20 世纪50 年代,我国开始从国外引进模拟超声检测设备并应用于工业生产中。上世纪80 年代初,我国研制生产的超声波探伤设备在测量精度、放大器线性、动态范围等主要技术指标方面已有很大程度的提高[3]。80 年代末期,随大规模集成电路的发展,我国开始了数字化超声检测装置的研制。近年来,我国的数字化超声检测装置发展迅速,已有多家专业从事超声检测仪器研究、生产的机构和企业(如中科院武汉物理研究所、汕头超声研究所、南通精密仪器有限公司、鞍山美斯检测技术有限公司等)[1]。目前,国内的超声超声检测装置正在向数字化、智能化的方向发展并且取得了一定的成绩。另外,国内许多领域(如航空航天、石油化工、核电站、铁道部等)的大型企业通过引进国外先进的成套设备和检测技术(如相控阵超声检测设备与技术和TOFD 检测设备与技术),既完善了国内的超声检测设备,又促进了超声无损检测技术的发展[5]。 2.3 超声波无损检测技术发展趋势 超声检测技术的应用依赖于具体检测工件的检测工艺和方法,同时,超声检测还存在检测的可靠性,缺陷的定量、定性、定位以及缺陷检出概率、漏检率、检测结果重复率等问题,这些对超声检测仪器的研制提出了更高要求。 为克服传统接触式超声检测的不足,人们开始探索非接触式超声检测技术,提出了激光超声、电磁超声、空气耦合超声等。为提高检测效率,发展了相控阵超声检测。随着机械扫描超声成像技术的成熟,超声成像检测也得到飞速发展。目前,超声检测仪器已明显向检测自动化、超声信号处理数字化、诊断智能化、多种成像技术的方向发展[5-7]。 3.超声波检测的基本原理 3.1超声波无损检测基本介绍 超声检测(UT)是超声波在均匀连续弹性介质中传播时,将产生极少能量损失;但当材料中存在着晶界、缺陷等不连续阻隔时,将产生反射、折射、散射、绕射和衰减等现象,从而损失比较多的能量,使我们由接收换能器上接收的超声波信号的声时、振幅、波形或频率发生了相应的变化,测定这些变化就

超声波检测新技术

超声波检测新技术-TOFD 摘要:本文通过简单介绍超声波检测中TOFD方法的物理原理和在无损探伤中的应用,提出了TOFD检测技术将会更加广泛应用于焊缝的无损检测工作中。TOFD检测技术的发展过程、TOFD检测的原理、优点及其局限性,对TOFD检测主要应用范围进行了阐述。给出了TOFD检测的一般工艺流程,并结合实际操作,说明了该技术的重要用途,对TOFD技术对缺陷精确定量进行了简要说明。 关键词:超声波;TOFD;检测 New technology of ultrasonic TOFD ABSTRACT: in this paper, the physical principle of TOFD in ultrasonic testing method is briefly introduced and applied in non-destructive inspection, put forward a nondestructive test technique for the detection of TOFD will be more widely used in the welding seam. TOFD detection technology development process, the TOFD detection principle, advantages and limitations of TOFD testing, main application range are described. The general process of TOFD detection is presented, and combined with the actual operation, explains the important uses of the technology, the TOFD technology of the precise and quantitative defects are introduced briefly. Keywords: ultrasonic; TOFD; detection 0 引言 TOFD(Time-of-flight-diffraction technique)检测技术于1977年,由英国Silk教授根据超声波衍射现象首次提出。现已在核电、建筑、化工、石化、长输管道等工业的厚壁容器和管道方面多有应用。TOFD技术的检测费用是脉冲回声技术的1/10。现在,TOFD检测技术在西方国家是一个热门话题,现已开始大量推广应用,几年以后,将有取代RT的可能。 2006年9月TOFD标准组成立暨首次会议上,中国特检院提出由全国锅容标委归口,2009年12月《固定式压力容器安全技术监察规程》(简称“新容规”)开始实施,后延至2010年11月正式实施。TOFD监测系统由计算机超声波探伤仪本体、发射探头、接收探头、前置放大器、光学或磁性编码器以及连接电缆组成。仪器能以不可更改的方式将所有扫描信号和TOFD图像存储于磁、光等永久介质,并能输出其硬拷贝。[1] 《固定式压力容器安全技术监察规程》第4.5.3.1无损检测方法的选择:压力容器的对接接头应当采用射线检测或者超声检测,超声检测包括衍射时差超声检测(TOFD)、可记录的脉冲反射法超声检测和不可记录的脉冲反射法超声检测;当采用不可记录的脉冲反射法超声检测时,应当采用射线检测或者衍射时差超声检测(TOFD)做为附加局部检测。第 4.5.3.4.2超声检测技术要求:采用衍射时差超声检测(TOFD)的焊接接头,合格级别不低于II级。[2] 1 TOFD检测的原理和应用 1.1 基本原理 TOFD检测原理:当超声波遇到诸如裂纹等缺陷时,将在缺陷尖端发生叠加到正常反射波上的衍射波,探头探测到衍射波,可以判定缺陷的大小和深度。也可理解为当超声波在存在缺陷的线性不连续处,如裂纹等处出现传播障碍时,在裂纹端点处除了正常反射波以外,还要发生衍射现象。 两束衍射波信号在直通波与底面反射波之间出现。缺陷两端点的信号在时间上将是可分辨的,根据衍射波信号传播的时间差可判定缺陷高度的量值。因为衍射波分离的空间(或时间)与裂纹高度直接相关。[3] 非平行扫查一般作为初始的扫查方式,用于缺陷的快速探测以及缺陷长度、缺陷自身高度的

超声波法检测混凝土试验报告

超声波法检测混凝土试验 报告 Prepared on 22 November 2020

哈尔滨工程大学 实验报告实验名称:超声波法检测混凝土实验 班级:212 学号: 姓名:纪强 合作者:黄昊、张艳慧 成绩:____________________________ 指导教师:梁晓羽 实验室名称:工程测试与检测技术实验室 目录 一.试验目的 二.试验仪器和设备 三.原理及试验装置 四.试验步骤

五.试验数据记录表格 六.注意事项 七.试验结果分析 八.问题讨论 一.试验目的 检测混凝土裂缝宽度,检测裂缝尺寸从而确定混凝土结构安全性。对混凝土裂缝超声检测进行实验研究,对预先设置在混凝土试件中的裂缝进行超声检测,将得到的检测数据与相应的理论值进行对比分析,讨论裂缝超声检测中存在的问题,对裂缝的检测方法提出建议。 二.试验仪器和设备 GTJ—F800 混凝土裂缝综合检测仪器,8500~11000RMB。 三.原理及试验装置 混凝土裂缝宽度检测试验原理:通过摄像头拍摄裂缝图像并放大显示在显示屏上,然后对裂缝图像进行图像处理和识别,执行特定的算法程序自动判读出裂缝宽度,仪器采用新型高精度、高灵敏度的光电转换器件进行图像采集,利用DSP 系统实现图像分析与处理,通过特征提取与优化算法自动判读裂缝宽度,同时在液晶屏上实时显示裂缝图像和裂缝宽度的测试结果。 裂缝深度检测试验原理:超声波在不同介质中传播时,将发生反射、折射、绕射和衰减等现象,表现为接收换能器上接收的超声波信号的声时、振幅、波形和频率发生相应变化,对这些变化分析处理就可以判定结构内部裂缝的深度。图中, H为试件高度;h为构造裂缝度 ;L1为射换能器距构造裂缝的水平距离;L2 为接收换能器距构造裂缝的水平距离。

超声波检测技术的实验原理和方法

实验超声波检测 一、实验目的 1、了解超声波检测的基本原理和方法; 2、了解超声波检测的特点和适用范围; 3、掌握斜探头横波探伤的距离-波幅(DAC)曲线制作方法。 二、实验设备器材 1、ZXUD-40E型智能超声波探伤仪 ZXUD-40E型数字式超声波探伤仪是小型化的便携式超声波探伤仪器,特别适用于材料缺陷的评估和定位、壁厚测量等,适合各种大型工件和高分辨率测量的要求。

⑴仪器外观如图9-1所示:

图9-1 仪器外观 当连接仅带有一个超声晶片的探头(自发自收)时,可以任意插入一个仪器上的探头连接器。 当连接带有双超声晶片的探头(一个为发射晶片,一个为接收晶片)或连接两个探头(一个发射探头,一个接收探头)时,必须注意:发射的一端接入左边一个探头连接器插孔,接收的一端接入右边一个探头连接器插孔,如图9-1所示。 ⑶键盘及其功能 图9-2ZXUD-40E的薄膜键盘按键排列 仪器包含27个按键。这些按键分成5大类:电源键、方向键、功能菜单键、子菜单键和功能热键。关于各按键的具体功能概述,参见表9-1。 表9-1各按键的具体功能概述

⑷参数设置规程 参数设置可通过以下两种规程来完成。 有些参数设置仅遵照“方向键增减调节规程”,比如:探头类型、声程跨距等;有些参数设置又仅遵照“直接数字输入规程”,比如:探头频率、探头规格等;还有些参数设置可遵照两种规程,比如:检测范围、零位偏移等。 ⑸方向键增减调节规程 可按下或

来增减参数设置。 ⑹直接数字输入规程 对于垂直菜单探伤通道设置,按下进入探伤通道设置状态,再次按下则进入直接数字输入状态;对于水平菜单,按下子菜单键选中子菜单项,再次按下子菜单键则也进入直接数字输入状态。 一旦进入直接数字输入状态,将在菜单项上出现闪烁光标,等待用户直接输入数字。在输入的过程中,若发现先前输入的数字错误,可按下 使得光标回退,删除刚才输入的错误数字。输入完成之后,用户可按下来接受输入,也可按下

超声波检测技术新继续教育答案

超声波检测技术(每日一练) 考生姓名:苏东旭考试日期:【2020-08-13 】单项选择题(共10 题) 1、声波透射法检测中,当声测管堵塞导致检测数据不全时,该如何 处理?(D) ?A,对上部检测完整的数据进行完整性评价 ?B,可直接判为IV类桩 ?C,根据上部数据估计声测管堵塞处以下混凝土质量 ?D,不得采用规范方法对整桩的桩身完整性进行评定 答题结果: 正确答案:D 2、下列关于声速的说法中,哪一项是正确的?(C) ?A,用声波检测仪测得的声速与测距无关 ?B,用声波检测仪测得的声速与声波频率无关 ?C,超声波在介质中的传播速度就是声能的传播速度

?D,超声波在介质中的传播速度就是质点的运动速度 答题结果: 正确答案:C 3、在桩身某处粗骨料大量堆积往往会造成(C) ?A,波速下降,波幅下降 ?B,波速下降,波幅提高 ?C,波速并不低,有时反而提高,波幅下降 ?D,波速提高,波幅提高 答题结果: 正确答案:C 4、换能器直径D为30mm,将发收换能器置于水中,在换能器表面净 距离d1=500mm、d2=200mm时测得仪器声时读数分别为t1=342.8μs,t2=140.1μs,请计算仪器系统延迟时间(即仪器零读数)t0。将上述换能器放入50号钢管(内径Φ1=54mm,外径Φ2=60mm)的声测管中进行测桩,请计算出该测试中的最终用于计算波速时需扣除的时间是()。(测试时声测管中水的声速为1500m/s;钢的声速为 5000m/s) (D) ?A,19.2

?B,19.9 ?C,18.7 ?D,22.2 答题结果: 正确答案:D 5、气泡密集的混凝土,往往会造成(A) ?A,波速没有明显降低,波幅明显下降 ?B,波速下降,波幅提高 ?C,波速不变,有时反而提高,波幅下降 ?D,波速提高,波幅提高 答题结果: 正确答案:A 6、调试超声波检测仪时,测得t0=5μs,已知某测点声距L=40cm, 仪器显示声时为105μs,则超声波在混凝土中传播的声速为(C)?A,3636m/s ?B,3810m/s

无损探伤标准

《 无损探伤标准 一、通用基础 1、GB 5616-1985 常规无损探伤应用导则 2、GB/T 9445-1999 无损检测人员技术资格鉴定通则 3、GB/T 14693-1993 焊缝无损检测符号 4、GB 16357-1996 工业X射线探伤放射卫生防护标准 5、JB 4730-1994压力容器无损检测 6、DL/T675-1999 电力工业无损检测人员资格考核规则 二、# 三、射线检测 1、GB 3323-1987 钢熔化焊对接接头射线照相和质量分级 2、GB 5097-1985 黑光源的间接评定方法 3、GB 5677-1985 铸钢件射线照相及底片等级分类方法 4、GB/T 11346-1989 铝合金铸件X射线照相检验针孔(图形)分级 5、GB/T 11851-1996压水堆燃料棒焊缝X射线照相检验方法 6、GB/T 12469-1990 焊接质量保证钢熔化焊接头的要求和缺陷分类 7、GB/T 无损检测术语射线检测 — 8、GB/T 12605-1990 钢管环缝熔化焊对接接头射线透照工艺和质量分级 9、GB/T 16544-1996 球形储罐γ射线全景曝光照相方法 10、GB/T 16673-1996 无损检测用黑光源(UV-A)辐射的测量 11、JB/T 7902-2000 线型象质计 12、JB/T 7903-1995工业射线照相底片观片灯 13、JB/T 泵产品零件无损检测泵受压铸钢件射线检测方法及底片的等级分类 14、JB/T 9215-1999 控制射线照相图像质量的方法 15、JB/T 9217-1999射线照相探伤方法 " 16、DL/T 541-1994 钢熔化焊角焊缝射线照相方法和质量分级 17、DL/T 821-2002 钢制承压管道对接焊接接头射线检验技术规程 18、TB/T6440-92 阀门受压铸钢件射线照相检验

影像型超声诊断设备新技术

附件 影像型超声诊断设备新技术 注册技术审查指导原则 本指导原则是对影像型超声诊断设备中部分新型技术的一般要求,申请人/制造商应依据具体产品的特性对注册申报资料的内容进行充实和细化,并依据具体产品的特性确定其中的具体内容是否适用,若不适用,需详细阐述其理由及相应的科学依据。 本指导原则是对申请人/制造商和审查人员的指导性文件,但不包括审评审批所涉及的行政事项,亦不作为法规强制执行,如果有能够满足相关法规要求的其他方法,也可以采用,但是需要提供详细的研究资料和验证资料。应在遵循相关法规的前提下使用本指导原则。本指导原则是对注册申报资料具体内容要求有关的其他文件的补充。影像型超声诊断设备的注册申请还应参考《影像型超声诊断设备(第三类)产品注册技术审查指导原则》。 本指导原则是在现行法规和标准体系以及当前认知水平下制订,随着法规和标准的不断完善,以及科学技术的不断发展,相关内容也将适时进行调整。 一、范围 本指导原则适用于具有三维成像、造影成像、弹性成像功能的影像型超声诊断设备。其中弹性成像不包含本指导原则“二、

技术简介”“(三)弹性成像”中所述的外来声能量弹性成像方法。各功能基本情况见本指导原则“二、技术简介”。本指导原则不包含临床评价要求。 由于技术不断更新,实际技术可能与本指导原则所介绍内容存在一定差异,可参考本指导原则中适用的部分。 二、技术简介 (一)三维成像 1.成像原理 三维超声成像的基本原理为:将采集的一系列二维超声断面用叠加的方法构成人体器官的三维图像。三维超声成像分为静态三维超声成像和实时三维超声成像(也称为四维超声成像)。 (1)静态三维超声成像 利用现有的二维超声成像,事先规定好探头的移动轨迹,扫查过程中在记录二维图像的同时记录每幅图像的几何位臵,将两者信息存入超声诊断仪或外部计算机系统,然后由相应的软件重构三维图像。根据夹持探头的方式不同,分为自由臂三维超声成像和机械定位三维超声成像。 自由臂三维超声成像:医生手持B超探头做检查,系统随时跟踪探头的位臵和方向。这样的系统可以让医生根据需要选择扫查的方向,并能在移动探头的过程中自动适应体表形状的变化。这就是自由臂三维超声成像系统(也称为Free-hand系统)。要求操作人员均匀、平稳地移动探头,根据移动的距离和花费的时间

超声波检测技术的应用概述

现代工程测试技术论文

超声波技术应用综述 +++ (++++++++++++++++++) 摘要 简述超声波的产生方式,特点和主要参数,其特点决定在实际生活中的诸多领域广泛应用,着重分析了超声波传感器的应用和研究现状,对超声波技术发展做出展望。 关键词:超声波,检测技术,传感器 Abstract The article sketch the main parameters, features and the production of ultrasonic. Its features determine the wide application in our lives. We analyzed the application of the ultrasonic sensor and the research status and prospect the development of ultrasonic technology. Key words: Ultrasonic; Measurement Technique; Sensor 超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业等诸多领域有广泛应用。 1.超声波的产生和主要参数 声波是物体机械振动状态(或能量)的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动模式,通常以纵波的方式在弹性介质内传播,是一种能量的传播形式。 1.1超声波特点 超声波有如下特点: (1)方向性强,能量易于集中。 (2)能在各种不同媒质中传播,且可传播较远距离。 (3)与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。 (4)反射、干涉、叠加和共振现象明显。 1.2超声波的两个主要参数 频率:F≥20KHz(在实际应用中因为效果相似,通常把F≥15KHz的声波也称为超声波)。 功率密度:p=发射功率(W)/发射面积(cm2),通常p≥0.3w/cm2。

超声波检测行业标准表

超声波检测行业标准表 无损检测资源网整理

GB 3947-83 声学名词术语 GB/T1786-1990 锻制园并的超声波探伤方法 GB/T 2108-1980 薄钢板兰姆波探伤方法 GB/T2970-2004 厚钢板超声波检验方法 GB/T3310-1999 铜合金棒材超声波探伤方法 GB/T3389.2-1999 压电陶瓷材料性能测试方法纵向压电应变常数d33的静态测试 GB/T4162-1991 锻轧钢棒超声波检验方法 GB/T 4163-1984 不锈钢管超声波探伤方法(NDT,86-10) GB/T5193-1985 钛及钛合金加工产品(横截面厚度≥13mm)超声波探伤方法(NDT,89-11)(eqv AMS2631) GB/T5777-1996 无缝钢管超声波探伤检验方法(eqv ISO9303:1989) GB/T6402-1991 钢锻件超声波检验方法 GB/T6427-1999 压电陶瓷振子频率温度稳定性的测试方法 GB/T6519-2000 变形铝合金产品超声波检验方法 GB/T7233-1987 铸钢件超声探伤及质量评级方法(NDT,89-9) GB/T7734-2004 复合钢板超声波检验方法 GB/T7736-2001 钢的低倍组织及缺陷超声波检验法(取代YB898-77) GB/T8361-2001 冷拉园钢表面超声波探伤方法(NDT,91-1) GB/T8651-2002 金属板材超声板波探伤方法 GB/T8652-1988 变形高强度钢超声波检验方法(NDT,90-2) GB/T11259-1999 超声波检验用钢制对比试块的制作与校验方法(eqv ASTME428-92) GB/T11343-1989 接触式超声斜射探伤方法(WSTS,91-4) GB/T11344-1989 接触式超声波脉冲回波法测厚 GB/T11345-1989 钢焊缝手工超声波探伤方法和探伤结果的分级(WSTS,91-2~3) GB/T 12604.1-2005 无损检测术语超声检测代替JB3111-82 GB/T12604.1-1990 GB/T 12604.4-2005 无损检测术语声发射检测代替JB3111-82 GB/T12604.4-1990 GB/T12969.1-1991 钛及钛合金管材超声波检验方法 GB/T13315-1991 锻钢冷轧工作辊超声波探伤方法 GB/T13316-1991 铸钢轧辊超声波探伤方法 GB/T15830-1995 钢制管道对接环焊缝超声波探伤方法和检验结果分级 GB/T18182-2000 金属压力容器声发射检测及结果评价方法 GB/T18256-2000 焊接钢管(埋弧焊除外)—用于确认水压密实性的超声波检测方法(eqv ISO 10332:1994) GB/T18329.1-2001 滑动轴承多层金属滑动轴承结合强度的超声波无损检验 GB/T18604-2001 用气体超声流量计测量天然气流量 GB/T18694-2002 无损检测超声检验探头及其声场的表征(eqv ISO10375:1997) GB/T 18696.1-2004 声学阻抗管中吸声系数和声阻抗的测量第1部分:驻波比法 GB/T18852-2002 无损检测超声检验测量接触探头声束特性的参考试块和方法(ISO12715:1999,IDT) GB/T 19799.1-2005 无损检测超声检测1号校准试块 GB/T 19799.2-2005 无损检测超声检测2号校准试块 GB/T 19800-2005 无损检测声发射检测换能器的一级校准 GB/T 19801-2005 无损检测声发射检测声发射传感器的二级校准 GJB593.1-1988 无损检测质量控制规范超声纵波和横波检验 GJB1038.1-1990 纤维增强塑料无损检验方法--超声波检验 GJB1076-1991 穿甲弹用钨基高密度合金棒超声波探伤方法 GJB1580-1993 变形金属超声波检验方法 GJB2044-1994 钛合金压力容器声发射检测方法 GJB1538-1992 飞机结构件用TC4 钛合金棒材规范 GJB3384-1998 金属薄板兰姆波检验方法

相关文档
最新文档