人教版八年级数学下册第十八章《勾股定理》全章教案

第十八章 勾股定理

18.1 勾股定理(一)

一、教学目标

1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、重点、难点

1.重点:勾股定理的内容及证明。 2.难点:勾股定理的证明。 三、例题的意图分析

例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。

例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步让学生确信勾股定理的正确性。 四、课堂引入

目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质吗? 五、例习题分析

例1(补充)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。

分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 4×

2

1

ab +(b -a )2=c 2,化简可证。 ⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷ 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。

A B

例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:左右两边的正方形边长相

等,则两个正方形的面积相等。 左边S=4×2

1

ab +c 2

右边S=(a+b )2

左边和右边面积相等,即 4×

2

1

ab +c 2=(a+b )2 化简可证。 六、课堂练习 1.勾股定理的具体内容是: 。 2.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)

⑴两锐角之间的关系: ;

⑵若D 为斜边中点,则斜边中线 ;

⑶若∠B=30°,则∠B 的对边和斜边: ; ⑷三边之间的关系: 。 3.△ABC 的三边a 、b 、c ,若满足b 2= a 2+c 2,则 =90°; 若

满足b 2>c 2+a 2,则∠B 是 角; 若满足b 2<c 2+a 2,则∠B 是 角。

4.根据如图所示,利用面积法证明勾股定理。

七、课后练习 1.已知在Rt △ABC 中,∠B=90°,a 、b 、c 是△ABC 的三边,则 ⑴c= 。(已知a 、b ,求c ) ⑵a= 。(已知b 、c ,求a ) ⑶b= 。(已知a 、c ,求b )

2.如下表,表中所给的每行的三个数a 、b 、c ,有a <b <c ,试根据表中已有数的规律,写出当a=19时,b ,c 的值,并把b 、c 用含a 的代数式表示出来。

3.在△ABC 中,∠

BAC=120°,AB=AC=310cm ,一动点P 从B 向

C 以每秒2cm 的速度移动,问当P 点移动多少秒时,PA 与腰垂直。

4.已知:如图,在△ABC 中,AB=AC ,D 在CB 的延长线上。

b

b

b

b

a

a

A B

b

A E

B

求证:⑴AD 2-AB 2=BD ·CD

⑵若D 在CB 上,结论如何,试证明你的结论。

课后反思:

八、参考答案

课堂练习 1.略;

2.⑴∠A+∠B=90°;⑵CD=21AB ;⑶AC=2

1

AB ;⑷AC 2+BC 2=AB 2。 3.∠B ,钝角,锐角;

4.提示:因为S 梯形ABCD = S △ABE + S △BCE + S △EDA ,又因为S 梯形ACDG =2

1

(a+b )2, S △BCE = S △EDA =21 ab ,S △ABE =21c 2, 21(a+b )2=2×21 ab +2

1

c 2。 课后练习

1.⑴c=22a b -;⑵a=22c b -;⑶b=22a c +

2.⎩⎨⎧+==+1

222b c c b a ;则b=212-a ,c=21

2+a ;当a=19时,b=180,c=181。

3.5秒或10秒。

4.提示:过A 作AE ⊥BC 于E 。

D

C

B

18.1 勾股定理(二)

一、教学目标

1.会用勾股定理进行简单的计算。

2.树立数形结合的思想、分类讨论思想。 二、重点、难点

1.重点:勾股定理的简单计算。 2.难点:勾股定理的灵活运用。 三、例题的意图分析

例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。让学生明确在直角三角形中,已知任意两边都可以求出第三边。并学会利用不同的条件转化为已知两边求第三边。

例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。

例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识和新知识综合运用,提高综合能力。 四、课堂引入

复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。 五、例习题分析

例1(补充)在Rt △ABC ,∠C=90°

⑴已知a=b=5,求c 。 ⑵已知a=1,c=2, 求b 。 ⑶已知c=17,b=8, 求a 。

⑷已知a :b=1:2,c=5, 求a 。

⑸已知b=15,∠A=30°,求a ,c 。

分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。⑴已知两直角边,求斜边直接用勾股定理。⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。⑷⑸已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。

例2(补充)已知直角三角形的两边长分别为5和12,求第三边。

分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。

例3(补充)已知:如图,等边△ABC 的边长是6cm 。

⑴求等边△ABC 的高。 ⑵求S △ABC 。

分析:勾股定理的使用范围是在直角三角形中,因此注意要 创造直角三角形,作高是常用的创造直角三角形的辅助线做 法。欲求高CD ,可将其置身于Rt △ADC 或Rt △BDC 中, 但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=

2

1

AB=3cm ,则此题可解。

D

B A

六、课堂练习 1.填空题

⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。 ⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。

⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= 。

⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。 ⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。 ⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 。 2.已知:如图,在△ABC 中,∠C=60°,AB=34,

AC=4,AD 是BC 边上的高,求BC 的长。

3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。 七、课后练习

1.填空题

在Rt △ABC ,∠C=90°,

⑴如果a=7,c=25,则b= 。

⑵如果∠A=30°,a=4,则b= 。 ⑶如果∠A=45°,a=3,则c= 。 ⑷如果c=10,a-b=2,则b= 。

⑸如果a 、b 、c 是连续整数,则a+b+c= 。 ⑹如果b=8,a :c=3:5,则c= 。

2.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC , AB ⊥AC ,∠B=60°,CD=1cm ,求BC 的长。

课后反思:

八、参考答案 课堂练习 1.17;

7; 6,8; 6,8,10; 4或34; 3,3;

2.8; 3.48。 课后练习

1.24; 43; 32; 6; 12; 10; 2.

3

3

2

A B

B

18.1 勾股定理(三)

一、教学目标

1.会用勾股定理解决简单的实际问题。 2.树立数形结合的思想。 二、重点、难点

1.重点:勾股定理的应用。

2.难点:实际问题向数学问题的转化。 三、例题的意图分析

例1(教材P74页探究1)明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。

例2(教材P75页探究2)使学生进一步熟练使用勾股定理,探究直角

三角形三边的关系:保证一边不变,其它两边的变化。 四、课堂引入

勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。 五、例习题分析

例1(教材P74页探究1) 分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,即门框为长方形,四个角都是直角。⑵让学生深入探讨图中有几个直角三角形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法。⑸注意给学生小结深化数学建模思想,激发数学兴趣。

例2(教材P75页探究2)

分析:⑴在△AOB 中,已知AB=3,AO=2.5,利用勾股定理计算

OB 。 ⑵ 在△COD 中,已知

CD=3,CO=2,利用勾股定理计算OD 。 则BD=OD -OB ,通过计算可知BD ≠AC 。

⑶进一步让学生探究AC 和BD 的关系,给AC 不同的值,计算BD 。 六、课堂练习

1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。

2.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是 米,水平距离是

米。

2题图 3题图 4题图

3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离

D

A

B

C

A B

是 。

4.如图,原计划从A 地经C 地到B 地修建一条高速公路,后因技术攻关,可以打隧道由A 地到B 地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少? 七、课后练习

1.如图,欲测量松花江的宽度,沿江岸取B 、C 两点,在江对岸取一点A ,使AC 垂直江岸,测得BC=50米, ∠B=60°,则江面的宽度为 。 2.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米。 3.一根32厘米的绳子被折成如图所示的形状钉在P 、Q

两点,PQ=16厘米,且RP ⊥PQ ,则RQ= 厘米。

4.如图,钢索斜拉大桥为等腰三角形,支柱高24米,∠B=∠C=30°,E 、F 分别为BD 、CD 中点,试求B 、C 两点之间的距离,钢索AB 和AE 的长度。

(精确到1米)

课后反思:

八、参考答案: 课堂练习:

1.2250; 2.6, 32; 3.18米; 4.11600; 课后练习

1.350米; 2.

2

2; 3.20; 4.83米,48米,32米;

C B

P Q A

B D E F

18.1 勾股定理(四)

一、教学目标

1.会用勾股定理解决较综合的问题。 2.树立数形结合的思想。 二、重点、难点

1.重点:勾股定理的综合应用。 2.难点:勾股定理的综合应用。 三、例题的意图分析

例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学生能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。

例2(补充)让学生注意所求结论的开放性,根据已知条件,作适当辅助线求出三角形中的边和角。让学生掌握解一般三角形的问题常常通过作高转化为直角三角形的问题。使学生清楚作辅助线不能破坏已知角。

例3(补充)让学生掌握不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。在转化的过程中注意条件的合理运用。让学生把前面学过的知识和新知识综合运用,提高解题的综合能力。

例4(教材P76页探究3)让学生利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。 四、课堂引入

复习勾股定理的内容。本节课探究勾股定理的综合应用。 五、例习题分析

例1(补充)1.已知:在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=3, 求线段AB 的长。

分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。

要求学生能够自己画图,并正确标图。引导学生分析:欲求AB ,可由AB=BD+CD ,分别在两个三角形中利用勾股定理和特殊角,求出BD=3和AD=1。或欲求AB ,可由22BC AC AB +=

分别在两个三角形中利用勾股定理和特殊角,求出AC=2和BC=6。

例2(补充)已知:如图,△ABC 中,AC=4,∠B=45°,∠A=60°,根据题设可知什么?

分析:由于本题中的△ABC 不是直角三角形,所以根据题设只能直接求得∠ACB=75°。在学生充分思考和讨论后,发现添置AB 边上的高这条辅助线,就可以求得AD ,CD ,BD ,AB ,BC 及S △ABC 。让学生充分讨论还可以作其它辅助线吗?为什么?

C

A

B

D

B A

C

D

小结:可见解一般三角形的问题常常通过作高转化为直角三角形的问题。并指出如何作辅助线? 解略。

例3(补充)已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD 的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC ,或延长AB 、DC 交于F ,或延长AD 、BC 交于E ,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。教学中要逐层展示给学生,让学生深入体会。

解:延长AD 、BC 交于E 。

∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4,

∴BE 2=AE 2-AB 2=82-42=48,BE=48=34。

∵DE 2= CE 2-CD 2=42-22=12,∴DE=12=32。 ∴S 四边形ABCD =S △ABE -S △CDE =

21AB ·BE-2

1

CD ·DE=36 小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形

的方法,把四边形面积转化为三角形面积之差。 例4(教材P76页探究3) 分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。

变式训练:在数轴上画出表示22,13-

-的点。

六、课堂练习

1.△ABC 中,AB=AC=25cm ,高AD=20cm,则BC= ,S △ABC = 。 2.△ABC 中,若∠A=2∠B=3∠C ,AC=32cm ,则∠A= 度,∠B= 度,∠C= 度,BC= ,S △ABC = 。 3.△ABC 中,∠C=90°,AB=4,BC=32,CD ⊥AB 于D ,则AC= ,CD= ,BD= ,AD= ,S △ABC = 。

4.已知:如图,△ABC 中,AB=26,BC=25,AC=17, 求S △ABC 。

七、课后练习

1.在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=3,AB= 。 2.在Rt △ABC 中,∠C=90°,S △ABC =30,c=13,且a <b ,则a= ,b= 。 3.已知:如图,在△ABC 中,∠B=30°,∠C=45°,AC=22,

B

C

C

求(1)AB 的长;(2)S △ABC 。 4.在数轴上画出表示-52,5 的点。

课后反思:

八、参考答案: 课堂练习:

1.30cm ,300cm 2; 2.90,60,30,4,32; 3.2,3,3,1,32;

4.作BD ⊥AC 于D ,设AD=x ,则CD=17-x ,252-x 2=262-(17-x )2,x=7,BD=24, S △ABC =

2

1

AC ·BD=254; 课后练习: 1.4; 2.5,12;

3.提示:作AD ⊥BC 于D ,AD=CD=2,AB=4,BD=32,BC=2+32,S △ABC = =2+32; 4.略。

C

18.2 勾股定理的逆定理(一)

一、教学目标

1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。 2.探究勾股定理的逆定理的证明方法。

3.理解原命题、逆命题、逆定理的概念及关系。 二、重点、难点

1.重点:掌握勾股定理的逆定理及证明。 2.难点:勾股定理的逆定理的证明。 三、例题的意图分析

例1(补充)使学生了解命题,逆命题,逆定理的概念,及它们之间的关系。

例2(P82探究)通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。

例3(补充)使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a 2+b 2和c 2的值。③判断a 2+b 2和c 2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。 四、课堂引入

创设情境:⑴怎样判定一个三角形是等腰三角形?

⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。

五、例习题分析

例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?

⑴同旁内角互补,两条直线平行。

⑵如果两个实数的平方相等,那么两个实数平方相等。 ⑶线段垂直平分线上的点到线段两端点的距离相等。 ⑷直角三角形中30°角所对的直角边等于斜边的一半。

分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。

⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。 解略。

例2(P82探究)证明:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。 分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。

⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题

转化为如何判断一个角是直角。 ⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A 1B 1=c ,则通过三边对应相等的两个三角形全等可证。

⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知

b

B C A1C1

欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。

证明略。

例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)

求证:∠C=90°。

分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。

⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大。根据勾股定理的逆定理只要证明a2+b2=c2即可。

⑶由于a2+b2= (n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证。

六、课堂练习

1.判断题。

⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。

⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半。”的逆命题是真命题。

⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。

⑷△ABC的三边之比是1:1:2,则△ABC是直角三角形。

2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C-∠B=∠A,则△ABC是直角三角形。

B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。

C.如果(c+a)(c-a)=b2,则△ABC是直角三角形。

D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。

3.下列四条线段不能组成直角三角形的是()

A.a=8,b=15,c=17

B.a=9,b=12,c=15

C.a=5,b=3,c=2

D.a:b:c=2:3:4

4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?

2,c=5;⑵a=5,b=7,c=9;

⑴a=3,b=2

2,c=1。

⑶a=2,b=3,c=7;⑷a=5,b=6

七、课后练习,

1.叙述下列命题的逆命题,并判断逆命题是否正确。

⑴如果a3>0,那么a2>0;

⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;

⑶如果两个三角形全等,那么它们的对应角相等;

⑷关于某条直线对称的两条线段一定相等。 2.填空题。

⑴任何一个命题都有 ,但任何一个定理未必都有 。 ⑵“两直线平行,内错角相等。”的逆定理是 。

⑶在△ABC 中,若a 2=b 2-c 2,则△ABC 是 三角形, 是直角; 若a 2<b 2-c 2,则∠B 是 。

⑷若在△ABC 中,a=m 2-n 2,b=2mn ,c= m 2+n 2,则△ABC 是 三角形。

3.若三角形的三边是 ⑴1、3、2; ⑵5

1

,41,

31; ⑶32,42,52 ⑷9,40,41; ⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有( ) A .2个 B .3个 C.4个 D.5个

4.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?

⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6;

⑶a=2,b=32,c=4; ⑷a=5k ,b=12k ,c=13k (k >0)。

课后反思:

八、参考答案: 课堂练习:

1.对,错,错,对; 2.D ;

3.D ; 4.⑴是,∠B ;⑵不是;⑶是,∠C ;⑷是,∠A 。 课后练习:

1.⑴如果a 2>0,那么a 3>0;假命题。

⑵如果三角形是锐角三角形,那么有一个角是锐角;真命题。

⑶如果两个三角形的对应角相等,那么这两个三角形全等;假命题。 ⑷两条相等的线段一定关于某条直线对称;假命题。

2.⑴逆命题,逆定理;⑵内错角相等,两直线平行;⑶直角,∠B ,钝角;⑷直角。 3.B 4.⑴是,∠B ;⑵不是,;⑶是,∠C ;⑷是,∠C 。

18.2 勾股定理的逆定理(二)

一、教学目标

1.灵活应用勾股定理及逆定理解决实际问题。

2.进一步加深性质定理与判定定理之间关系的认识。

二、重点、难点

1.重点:灵活应用勾股定理及逆定理解决实际问题。

2.难点:灵活应用勾股定理及逆定理解决实际问题。

三、例题的意图分析

例1(P83例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。

例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

四、课堂引入

创设情境:在军事和航海上经常要确定方向和位置,从而使用一

些数学知识和数学方法。

五、例习题分析

例1(P83例2)

分析:⑴了解方位角,及方位名词;

⑵依题意画出图形;

⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;

⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR-∠QPS=45°。

小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

分析:⑴若判断三角形的形状,先求三角形的三边长;

⑵设未知数列方程,求出三角形的三边长5、12、13;

⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。

解略。

六、课堂练习

1.小强在操场上向东走80m后,又走了60m,再走100m回到

原地。小强在操场上向东走了80m后,又走60m的方向

是。

2.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得

它的影长为4米,中午测得它的影长为1米,则A、B、C

三点能否构成直角三角形?为什么?

3.如图,在我国沿海有一艘不明国籍的轮船进入我国海

域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B

两个基地前去拦截,六分钟后同时到达C地将其拦截。已知

甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海

里,航向为北偏西40°,问:甲巡逻艇的航向?

七、课后练习B A

C

D

E

N

1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,

此三角形的形状为 。

2.一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直,为什么?

3.如图,小明的爸爸在鱼池边开了一块四边形土地种了

一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。

课后反思:

八、参考答案: 课堂练习:

1.向正南或正北。

2.能,因为BC 2=BD 2+CD 2=20,AC 2=AD 2+CD 2=5,AB 2=25,所以BC 2+AC 2= AB 2;

3.由△ABC 是直角三角形,可知∠CAB+∠CBA=90°,所以有∠CAB=40°,航向为北偏东50°。 课后练习:

1.6米,8米,10米,直角三角形;

2.△ABC 、△ABD 是直角三角形,AB 和地面垂直。

3.提示:连结AC 。AC 2=AB 2+BC 2=25,AC 2+AD 2=CD 2,因此∠CAB=90°, S 四边形=S △ADC +S △ABC =36平方米。

A

B

18.2 勾股定理的逆定理(三)

一、教学目标

1.应用勾股定理的逆定理判断一个三角形是否是直角三角形。 2.灵活应用勾股定理及逆定理解综合题。

3.进一步加深性质定理与判定定理之间关系的认识。 二、重点、难点

1.重点:利用勾股定理及逆定理解综合题。 2.难点:利用勾股定理及逆定理解综合题。 三、例题的意图分析

例1(补充)利用因式分解和勾股定理的逆定理判断三角形的形状。

例2(补充)使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。本题辅助线作平行线间距离无法求解。创造3、4、5勾股数,利用勾股定理的逆定理证明DE 就是平行线间距离。

例3(补充)勾股定理及逆定理的综合应用,注意条件的转化及变形。 四、课堂引入

勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。 五、例习题分析

例1(补充)已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c 。 试判断△ABC 的形状。

分析:⑴移项,配成三个完全平方;⑵三个非负数的和为0,

则都为0;⑶已知a 、b 、c ,利用勾股定理的逆定理判断三角形的形状为直角三角形。

例2(补充)已知:如图,四边形ABCD ,AD ∥BC ,AB=4,

BC=6,CD=5,AD=3。 求:四边形ABCD 的面积。

分析:⑴作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA ); ⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC 中,3、4、5勾股数,△DEC 为直角三角形,DE ⊥BC ;⑷利用梯形面积公式可解,或利用三角形的面积。

例3(补充)已知:如图,在△ABC 中,CD 是AB 边上的高,且CD 2=AD ·BD 。

求证:△ABC 是直角三角形。

分析:∵AC 2=AD 2+CD 2,BC 2=CD 2+BD 2

∴AC 2+BC 2=AD 2+2CD 2+BD 2 =AD 2+2AD ·BD+BD 2 =(AD+BD )2=AB 2

六、课堂练习

1.若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( ) A .等腰三角形; B .直角三角形;

C .等腰三角形或直角三角形;

D .等腰直角三角形。

A B C

D E

C D

2.若△ABC 的三边a 、b 、c ,满足a :b :c=1:1:2,试判断△ABC 的形状。

3.已知:如图,四边形ABCD ,AB=1,BC=43,CD=4

13

,AD=3,且

AB ⊥BC 。 求:四边形ABCD 的面积。

4.已知:在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,且CD 2=AD ·BD 。

求证:△ABC 中是直角三角形。

七、课后练习,

1.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,求△ABC 的面积。

2.在△ABC 中,AB=13cm ,AC=24cm ,中线BD=5cm 。 求证:△ABC 是等腰三角形。

3.已知:如图,∠1=∠2,AD=AE ,D 为BC 上一点,且BD=DC ,AC 2=AE 2+CE 2。

求证:AB 2=AE 2+CE 2。4.已知△ABC 的三边为a 、b 、c ,且a+b=4,ab=1,c=14,试判定△ABC 的形状。

课后反思:

八、参考答案: 课堂练习: 1.C ;

2.△ABC 是等腰直角三角形; 3.

4

9 4.提示:∵AC 2=AD 2+CD 2,BC 2=CD 2+BD 2,∴AC 2+BC 2=AD 2+2CD 2+BD 2= AD 2+2AD ·BD+BD 2=(AD+BD )2=AB 2,∴∠ACB=90°。 课后练习: 1.6;

2.提示:因为AD 2+BD 2=AB 2,所以AD ⊥BD ,根据线段垂直平分线的判定可知AB=BC 。 3.提示:有AC 2=AE 2+CE 2得∠E=90°;由△ADC ≌△AEC ,得AD=AE ,CD=CE ,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC ,则AB 2=AE 2+CE 2。

4.提示:直角三角形,用代数方法证明,因为(a+b )2=16,a 2+2ab+b 2=16,ab=1,所以a 2+b 2=14。

又因为c 2=14,所以a 2+b 2=c 2 。

D

D

八年级数学(下)人教版第十八章反勾股定理教学导案

第十八章勾股定理 课题 18.1 勾股定理课时:4课时 第一课时勾股定理 【学习目标】 1.了解勾股定理的文化背景,体验勾股定理的探索过程。 2.了解利用拼图验证勾股定理的方法。 3.利用勾股定理,已知直角三角形的两边求第三边的长。 【重点难点】 重点:探索和体验勾股定理。 难点:用拼图的方法验证勾股定理。 【导学指导】 毕达哥拉斯是古希腊著名的数学家,相传2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。是什么呢?我们来研究一下吧。 阅读教材P64-P66内容,思考、讨论、合作交流后完成下列问题。 1.请同学们观察一下,教材P64图18.1-1中的等腰直角三角形有什么特点?请用语言描述你发现的特点。 2.等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也满足这种特点?你能解决教材P65的探究吗?由此你得出什么结论? 3.我们如何证明你得出的结论呢?你看懂我国古人赵爽的证法了吗?动手摆一摆,想一想,画一画,证一证吧。 【课堂练习】 1.教材P69习题18.1第1题。 2.求下图字母A,B所代表的正方形的面积。

3.在直角三角形ABC中,∠C=90°,若a=4,c=8,则b= . 【要点归纳】 本节课你学到了什么知识?还存在什么困惑?与同伴交流一下。 【拓展训练】 1.直角三角形的两边长分别是3cm,5cm,试求第三边的长度。 2.你能用下面这个图形证明勾股定理吗? 第二课时勾股定理的应用(1) 【学习目标】 1.能熟练的叙述勾股定理的内容,能用勾股定理进行简单的计算。 2.运用勾股定理解决生活中的问题。 【重点难点】

人教版八年级数学下册第十八章《勾股定理》全章教案

第十八章 勾股定理 18.1 勾股定理(一) 一、教学目标 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 二、重点、难点 1.重点:勾股定理的内容及证明。 2.难点:勾股定理的证明。 三、例题的意图分析 例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。 例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步让学生确信勾股定理的正确性。 四、课堂引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。 对于任意的直角三角形也有这个性质吗? 五、例习题分析 例1(补充)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。 ⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 4× 2 1 ab +(b -a )2=c 2,化简可证。 ⑶发挥学生的想象能力拼出不同的图形,进行证明。 ⑷ 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。 A B

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇 年级数学《勾股定理》教案1 [教学分析] 勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活〞正是这章书所表达的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比拟、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。 本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。 [教学目标] 一、知识与技能 1、探索直角三角形三边关系,掌握勾股定理,开展几何思维。 2、应用勾股定理解决简单的实际问题 3学会简单的合情推理与数学说理 二、过程与方法 引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步开展合作交流能力和数学表达能力,并感受勾股定理的应用知识。 三、情感与态度目标 通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探

人教版八年级数学下册17.1.1勾股定理教案

《勾股定理》教学设计 八斗学校宣艳 一、内容和内容解析 本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:2002年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。 勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。 学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。 本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容教学难点:勾股定理的论证

初二数学教案《勾股定理》

初二数学教案《勾股定理》初二数学教案《勾股定理》篇1 一、教材分析: (一)教材的地位与作用 从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。 从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁; 勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。 根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。 (二)重点与难点 为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。 二、教学与学法分析 教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。 学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。 三、教学过程 我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。 首先,情境导入古韵今风

给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。 第二步追溯历史解密真相 勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。 从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此教师应引导学生利用“割”和“补”的方法求正方形c的面积,为下一步探索复杂图形的面积做铺垫。 突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面“勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形c的面积时,学生将展示“割”的方法,“补”的方法,有的学生可能会发现平移的`方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。 使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。 以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。 感性认识未必是正确的,推理验证证实我们的猜想。 第三步推陈出新借古鼎新 教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的

数学:18.1勾股定理教案_(新人教版八年级下)

人教版八年级下《勾股定理》教学设计 江西赣县第二中学李小平 一、教案背景 1、面向学生:初中八年级 2、学科:数学 3、课时:1课时 4、课前准备:百度搜索勾股定理相关内容和图片 5、学情分析:在学习了一般三角形的有关性质,进一步学习特殊三角形的性质-—直角三角形 三边的关系。 二、教学课题:用数形结合这一重要的数学思想来证明勾股定理,提高学生的解题技能。 三、教材分析 (一)教材的地位与作用 勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标 基于以上分析和数学课程标准的要求,制定了本节课的教学目标。 知识与技能: 1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。 2、了解勾股定理的内容。 3、能利用已知两边求直角三角形另一边的长。 数学思考: 在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想。 解决问题: 1、通过拼图活动,体验数学思维的严谨性,发展形象思维。 2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

情感与态度: 1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。 2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。 (三)教学重、难点 重点:探索和证明勾股定理 难点:用拼图方法证明勾股定理 (四)学情分析 学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。 四、教学策略 本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。 五、教学程序

数学人教版八年级下册勾股定理教学设计

勾股定理教学设计 一.教案背景概述: 教材分析: 勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。 学生分析:1.考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。2.以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。 设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终, 让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。 教学目标: 1. 经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。 2. 经历用多种割、补图形的方法验证勾股定理的过程,发展用数学

的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。 3. 培养学生学习数学的兴趣和爱国热情。 4. 欣赏设计图形美。 二.教案运行描述: 教学准备阶段: 学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。 老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。 三.教学流程: (一)引入 同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。(板书课题:探索直角三角形三边关系) (二)实验探究 1.取方格纸片,在上面先设计任意格点直角三角形,再以它们的每一边分别向三角形外作正方形,如图1 设网格正方形的边长为1,直角三角形的直角边分别为a、b ,斜边为c ,观察并计算每个正方形的面积,以四人小组为单位填写下表: 图1 关系

勾股定理 初中八年级下册数学教案教学设计课后反思 人教版

17.1勾股定理(1)教学设计 容县石头中学伍柱兰 一、教材分析 (一)教材的地位与作用 勾股定理(1)是九年制义务教育初级中学教材人教版八年级第十七章第一节《勾股定理》第一课时,勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标 基于以上分析和数学课程标准的要求,制定了本节课的教学目标。 1、知识与技能 掌握勾股定理反映的数量关系;会用拼图法、面积法证明勾股定理; 2、过程与方法 通过“观察—猜想—归纳—验证”过程理解勾股定理;学会从特殊到一般的数学思考方法。 3、情感态度、价值观 通过实验、猜想、拼图、证明等了解数学知识的发生发展过程,学会合作交流,体验探究乐趣,增强探索意识;感受勾股定理的悠久历史,激发学习热情。 (三)教学重、难点 重点:探索勾股定理及定理的简单应用; 难点:用拼图方法证明勾股定理; 二、教学过程 (一)创设情境,引入课题 除地球外,别的星球上有没有生命呢? 自古以来,人类就不断发出这样的疑问,特别是近年来不断出现的UFO 事件,更让人们相信有外星人的说法,如果真的有,那我们怎么和他们交流呢? 我国著名数学家华罗庚在多年前曾提出这样的设想:向太空发射一种图形,因为这种图形在几千年前就已经被人类所认识,如果他们是“文明人”,也必定认识这种图形. 毕达哥拉斯(公元前572----前492年),古希腊著名的 哲学家、数学家、天文学家。相传有一 次他在朋友家做客时,发现朋友家用砖 铺成的地面中反映了A、B、C三者面积 之间的数量关系,进而发现直角三角形 三边的某种数量关系. (师生互动:教师解说并提出问题,

人教版八年级下册数学学案:《勾股定理》

17.1 勾股定理〔1〕 2021年 3月 学习目标: 1.了解勾股定理的发现过程, 掌握勾股定理的内容, 会用面积法证明勾股定理. 2.培养在实际生活中发现问题总结规律的意识和能力. 3.介绍我国古代在勾股定理研究方面所取得的成就, 激发爱国热情, 勤奋学习. 重点:勾股定理的内容及证明. 难点:勾股定理的证明. 学习过程: 一.预习新知〔阅读教材第64至66页, 并完成预习内容. 〕 1正方形A 、B 、C 的面积有什么数量关系? 2以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系? 归纳:等腰直角三角形三边之间的特殊关系. (1)那么一般的直角三角形是否也有这样的特点呢? (2)组织学生小组学习, 在方格纸上画出一个直角边分别为3和4的直角三角形, 并以其三边为边长向外作三个正方形, 并分别计算其面积. (3)通过三个正方形的面积关系, 你能说明直角三角形是否具有上述结论吗? (4)对于更一般的情形将如何验证呢? 二.课堂展示 方法一; 如图, 让学生剪4个全等的直角三角形, 拼成如图图形, 利用面积证明. S 正方形=_______________ =____________________ 方法二; :在△ABC 中, ∠C=90°, ∠A 、∠B 、∠C 的对边为a 、b 、c. 求证:a 2+b 2=c 2. 分析:左右两边的正方形边长相等, 那么两个正方形 的面积相等. c b a D C b b b b c c c c a a a b b b a c c a

a b a b c c A B C D E 左边S=______________ 右边S=_______________ 左边和右边面积相等, 即 化简可得. 方法三: 以a 、 b 为直角边, 以c 为斜边作两个全等的直角三角形, 那么每个直角三角形的面积等于2 1ab. 把这两个直角三角形拼成如下图形状, 使A 、E 、B 三点在一条直线上. ∵ Rt ΔEAD ≌ Rt ΔCBE, ∴∠ADE = ∠BEC. ∵∠AED + ∠ADE = 90º, ∴∠AED + ∠BEC = 90º. ∴∠DEC = 180º―90º= 90º. ∴ΔDEC 是一个等腰直角三角形, 它的面积等于2 1c 2. 又∵∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC. ∴ ABCD 是一个直角梯形, 它的面积等于_________________ 归纳:勾股定理的具体内容是. 三.随堂练习 1.如图, 直角△ABC 的主要性质是:∠C=90°, 〔用几何语言表示〕 ⑴两锐角之间的关系:; (2)假设∠B=30°, 那么∠B 的对边和斜边:; (3)三边之间的关系: 2.完成书上P69习题1、2 四.课堂检测 1.在Rt △ABC 中, ∠C=90° ① 假 设 a=5, b=12, 那 么 c=___________; ②假设a=15, c=25, 那么b=___________; B D

人教版八年级数学下册181勾股定理教学教案(1课时)

人教版八年级数学下册181勾股定理教学教案(1课时)教学背景: 1:面向全体学生;中学数学 2:课时:1 3:学生课前准备,课前预习了解。 人教版:八年级数学下册18.1勾股定理教学教案 (1课时) 山东省滨州市滨城区滨北街道办事处北城中学耿新华 邮编:256651 一、教材分析 勾股定理”这节内容主要讲述了直角三角形三边间的一种关系定理。它是建立在三角形、全等三角形、等腰三角形等有关知识的基础之上。同时,也是初三几何中解直角三角形及圆中有关计算的必备知识。更重要的是,纵观初中数学,勾股定理架起了代数和几何间的桥梁。勾股定理是几何中一颗美丽的奇葩,可谓家喻户晓。它在数学理论体系中的地位举足轻重,在日常生活、工农业生产中,应用极为广泛。从学生的角度来看,对勾股定理学习的好坏直接影响他们的后续数学学习。同时还能对学生进行爱国主义教育! (一)、教学目标 1、知识目标 (1)能说出勾股定理的内容

(2)会初步运用勾股定理进行简单的计算和实际运用。 (3)经历综合运用已有知识解决问题的过程,在此过程中加深对勾 股定理、整式运算、面积等的认识。 2、能力目标 (1)经历不同的验证勾股定理的过程,体验解决同一问题方法的多 样性,进一步体会勾股定理的文化价值。 (2)在探索勾股定理的过程中,让学生体会数形结合和特殊到一般 的思想方法。 3、德育目标 (1)通过获得成功的体验和克服困难的经历,增进数学学习的信心,增强对数学学习的兴趣。 (2)通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热 爱祖国悠久文化的思想,激励学生发奋学习。 (二)教学重点和难点 教学重点:勾股定理 教学难点:通过探索得出勾股定理并掌握勾股定理。 (三)教学手段:多媒体辅助教学。 二、教学方法:动手演示、拼图、归纳、猜想。 三、教学过程 (一)、创设情景,导入新课。

新人教版八年级数学下册《勾股定理》(第一课时)教案

新人教版八年级数学下册《勾股定理》(第一课 时)教案 活动一:课堂引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC,用刻度尺量AB 的长。 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。 对于任意的直角三角形也有这个性质吗? 活动二:证明新知:

方法一;如图,让学生剪4个全等的直角三角形,拼成如图的图形,利用面积证明。 S正方形=CS正方形=4ab+(a-b)方法二; 已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。 求证:a2+b2=c2。 分析:左右两边的正方形边长相等,则两个正方形的面积相等。 左边S=4×ab+c2 右边S=(a+b)2 左边和右边面积相等,即 4×ab+c2=(a+b)2 化简可得。 归纳1.勾股定理的具体内容是:。 2.如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示) 两锐角之间的关系:; 若∠B=30°,则∠B的对边和斜边:; 三边之间的关系: 活动三:练习与思考 1.课本P69复习巩固第1、2题 2.在Rt△ABC,∠C=90°⑴已知a=b=5,求c。

八年级数学下册:18.1勾股定理(第3课时)教案(人教新课标版)

18.1 勾股定理(三) 教学时间第3课时 三维目标 一、知识与技能 能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题. 二、过程与方法 1.经历将实际问题转化为直角三角形的数学模型过程,•并能用勾股定理来解决此问题,发展学生的应用意识. 2.在解决实际问题的过程中,体验解决问题的策略,•发展学生的实践能力和创新精神. 3.在解决实际问题的过程中,学会与人合作,•并能与他人交流思维过程和结果,形成反思的意识. 三、情感态度与价值观 1.在用勾股定理探索实际问题的过程中获得成功的体验,•锻炼克服困难的意志,建立自信心. 2.•在解决实际问题的过程中形成实事求是的态度以及进行质疑和独立思考的习惯.教学重点将实际问题转化为直角三角形模型. 教学难点如何用解直角三角形的知识和勾股定理解决实际问题. 教具准备多媒体课件. 教学过程 一、创设情境,引入新课 活动1 问题:欲登12米高的建筑物,为完全需要,需使梯子底端离建筑物5米,至少需多

长的梯子? 设计意图: 勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大.它不仅在数学中,而且在其他自然科学中也被广泛的应用.此活动让学生体验勾股定理在生活中的一个简单应用. 师生行为: 学生分小组讨论,建立直角三角形的数学模型. 教师深入小组活动中,倾听学生的想法. 此活动,教师应重点关注: ①学生能否将简单的实际问题转化为数学模型; ②学生能否利用勾股定理解决实际问题并给予解释; ③学生参加数学活动是否积极主动. 生:根据题意,(如图)AC是建筑物,则AC=12m,BC=5m,AB是梯子的长度.•所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13m. 所以至少需13m长的梯子. 师:很好! 由勾股定理可知,已知两直角边的长a,b,就可以求出斜边c的长.•由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知已知斜边与一条直角边的长,就可以求出另一条直角边,

2019-2020年八年级数学下册 18.1勾股定理第一课时教案 人教新课标版

2019-2020年八年级数学下册 18.1勾股定理第一课时教案人教新 课标版 一、教学目标 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学 习。 二、重点、难点 1.重点:勾股定理的内容及证明。 2.难点:勾股定理的证明。 三、例题的意图分析 例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思 维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激 发学生的民族自豪感,和爱国情怀。 例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步 让学生确信勾股定理的正确性。 四、课堂引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号, 如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定 理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明 勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折 成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角 三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。 52+122=132,那么就有勾2+股2=弦2。 对于任意的直角三角形也有这个性质吗? A B

新人教版八年级数学下册教案勾股定理教案

17.1 勾股定理 第1课时 勾股定理 1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点) 2.掌握勾股定理,并运用它解决简单的计算题;(重点) 3.了解利用拼图验证勾股定理的方法.(难点) 一、情境导入 如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗? 二、合作探究 探究点一:勾股定理 【类型一】 直接运用勾股定理 如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,CD ⊥AB 于 D ,求: (1)AC 的长; (2)S △ABC ; (3)CD 的长. 解析:(1)由于在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,根据勾股定理 即可求出AC 的长;(2)直接利用三角形的面 积公式即可求出S △ABC ;(3)根据面积公式得 到CD ·AB =BC ·AC 即可求出CD . 解:(1)∵在△ABC 中,∠ACB =90°, AB =13cm ,BC =5cm ,∴AC =AB 2-BC 2=12cm ; (2)S △ABC =12CB ·AC =1 2×5×12= 30(cm 2 ); (3)∵S △ABC =12AC ·BC =1 2 CD ·AB ,∴CD =AC ·BC AB =6013cm. 方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可. 【类型二】 分类讨论思想在勾股定理 中的应用 在△ABC 中,AB =15,AC =13,BC 边上的高AD =12,试求△ABC 的周长. 解析:本题应分△ABC 为锐角三角形和 钝角三角形两种情况进行讨论. 解:此题应分两种情况说明: (1)当△ABC 为锐角三角形时,如图①所 示.在Rt △ABD 中,BD =AB 2-AD 2 = 152-122 =9.在Rt△ACD 中,CD = AC 2-AD 2=132-122=5,∴BC =5 +9= 14,∴△ABC 的周长为15+13+14=42; (2)当△ABC 为钝角三角形时,如图②所示.在Rt△ABD 中,BD = AB 2-AD 2=

八年级下册数学第十八章勾股定理导学案(老师用)

八年级下册数学第十八章勾股定理导学案(老师 用) 别斯托别中学315课堂教学模式人教版八下数学导学案主备: 18.1勾股定理 【学习目标】 了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。【学习重点】勾股定理的内容及证明。【学习难点】勾股定理的证明。 一、自学展示: A1、直角△ABC的主要性质是:∠C=90°(用几何语言表示) D(1)两锐角之间的关系:(2)若D为斜边中点,则斜边中线是CB(3)若∠B=30°,则∠B的对边和斜边的关系是:2、(1)、画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。(2)、再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长 52+122和132的关系,52+122 132,问题:你是否发现32+42与52,即32+42 52,3、完成65页的探究,补充下表,你能发现正方形A、B、C的关系吗?A的面积(单位面B的面积(单位面C的面积(单位面积)积)积)图1 图2 由此我们可以得出什么结论?可猜想:命题1:如果直角三角形的两直角边分别为a、b,斜边为c,那么。 二、合作探究:勾股定理的证明: 方法1、已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。 求证:a2?b2?c2

证明:4S△+S小正= CDS大正= 根据的等量关系: 由此我们得出勾股定理的内容是三、质疑导学:ab方法2、已知:在△A BC中,∠C=90°,∠A、∠B、∠C cAB的对边为a、b、c。 baba求证:a2+b2=c2。 caa分析:左右两边的正方形边长相等,则两个acbc正方形的面积相等。 c左边S=______________ cbbbc右边S=_______________ 左边和右边面积相等,即化简可得: aabab新的数学方法和概念,常常比解决数学问题本身更重要----华罗庚1 别斯托别中学315课堂教学模式人教版八下数学导学案主备: 方法3、根据如图所示,利用面积法证明勾股定理。 AaD cbEa B四、学习检测: Cb1、在Rt△ABC,∠C=90° (1)已知a=b=5,求c。(2)已知a=1,c=2, 求b。(3)已知c=17,b=8, 求a。 ⑷已知a:b=1:2,c=5, 求a。⑸已知b=15,∠A=30°,求a,c 2、一个直角三角形的两边长分别为3cm和4cm,则第三边的长为。 c3.如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________. 4.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 5.等腰三角形底边上的高为8,周长为32,则三角形的面积为() A、56 B、48 C、40 D、32 6、已知,如图在ΔABC中,AB=BC=CA=2cm,AD是边BC上的

初中数学人教版教材分析(第18章勾股定理教案)

第十八章 勾股定理 18.1 勾股定理(1) 一、教学目标 1.体验勾股定理的探索过程,掌握勾股定理的内容,会用面积法证明勾股定理. 2.培养在实际生活中发现问题总结规律的意识和能力. 二、重点难点 1.重点:勾股定理的内容及证明. 2.难点:勾股定理的证明. 三、课堂引入 让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长. 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长. 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2. 对于任意的直角三角形也有这个性质吗? 四、例题分析 例1、已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c .求证:a 2+b 2=c 2. 分析:方法1、如图所示,其等量关系为:4S △+S 小正=S 大正 4×2 1 ab +(b -a )2=c 2,化简可证. 方法2、左右两边的正方形边长相等,则两个正方形的面积相等. 左边S=4× 2 1 ab +c 2 右边S=(a+b )2 左边和右边面积相等,即 4× 2 1 ab +c 2=(a+b )2 化简可证. b b b a A B

五、巩固练习 1.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示) ⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边上的中线和斜边: ; ⑶若∠B=30°,则∠B 的对边和斜边: ; ⑷三边之间的关系: . 2.如图所示,利用面积法证明勾股定理. 3.已知在Rt △ABC 中,∠C=90°,a 、b 、c 是△ABC 的三边,则 ⑴c= .(已知a 、b ,求c ) ⑵a= .(已知b 、c ,求a ) ⑶b= .(已知a 、c ,求b ) 4.在Rt △ABC 中,∠C=90°,两直角边分别是a 和b ,斜边为c ⑴已知a=b=5,求c . ⑵已知a=1,c=2, 求b .⑶已知c=17,b=8, 求a . 5.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为_____________. 6.已知直角三角形的两边长为3、2,则另一条边长是________________. 7.如图是一个零件的形状,已知AC=3cm ,AB=4cm ,BD=12cm 求CD 的长. 8.已知:如图,在△ABC 中,AB=AC ,D 在CB 的延长线上. 求证:⑴AD 2-AB 2=BD ·CD ⑵若D 在CB 上,结论如何,试证明你的结论. D C B A B b A E B

十八章勾股定理全章教案

第十八章勾股定理 18.1 勾股定理 课时安排: 4课时 第1课时 18.1 .1 勾股定理(1) 三维目标 一、知识与技能 让学生通过观察、计算、猜想直角三角形两条直角边的平方和等于斜边的平方的结论. 二、过程与方法 1.在学生充分观察、归纳、猜想、探索直角三角形两条直角边的平方和等于斜边的平方的过程中,发展合情推理能力,体会数形结合的思想. 2.在探索上述结论的过程中,发展学生归纳、概括和有条理地表达活动的过程和结论. 三、情感态度与价值观 1.培养学生积极参与、合作交流的意识, 2.在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气. 教学重点 探索直角三角形两条直角边的平方和等于斜边的平方的结论。从而发现勾股定理. 教学难点 以直角三角形的边为边的正方形面积的计算. 教具准备 学生准备若干张方格纸。 教学过程 一、创设问题情境,引入新课 活动1 问题1:在我国古代,人们将直角三角形中的短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.根据我国古算书《周髀算经》记载,在约公元前1100年,人们已经知道,如果勾是三,股是四,那么弦是五,你知道是为什么吗? 问题2:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火? 问题3:我们再来看章头图,在下角的图案,它有什么童义?为什么选定它作为2002年在北京召开的国际数学家大会的会徽? 二.实际操作,探索直角三角形的三边关系 活动2 问题1:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了. 同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?

八年级数学下册第十八章《勾股定理》集体备课教案

八年级数学下册集体备课教案 第十七章《勾股定理》教材分析及教学建议 本章主要内容是勾股定理及其逆定理。首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念。 本章教学时间约需8课时,具体安排如下: 17.1 勾股定理 4 课时 17.2 勾股定理的逆定理 3课时 数学活动 小结 1课时 一、教科书内容和课程学习目标 本章知识结构框图: 直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30°的角所对的直角边等于斜边的一半。本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质。 勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大。它不仅在数学中,而且在其他自然科学中也被广泛地应用。 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。据说我国著名数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种“语言”的。这个事实可以说明勾股定理的重大意义,发现勾股定理,尤其在2000多年前,是非常了不起的成就。

在第一节中,教科书让学生通过观察计算一些直角三角形两直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理。 勾股定理的证明方法很多,教科书正文中介绍的是一种面积证法。其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。在教科书中,图18.1-3(1)中的图形经过割补拼接后得到图18.1-3(3)中的图形。由此就证明了勾股定理。通过推理证实命题1的正确性后,教科书顺势指出什么是定理。 由勾股定理可知,已知两条直角边的长a,b,就可以求出斜边c的长。由勾股定理可得或,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长。也就是说,在直 角三角形中,已知两条边的长,就可以求出第三条边的长。教科书相应安排了三个探究栏目,让学生运用勾股定理解决问题。 在第二节中,教科书让学生画出一些两边的平方和等于第三边的平方的三角形,可以发现画出的三角形是直角三角形。从而猜想如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形是直角三角形。这个猜想可以利用全等三角形证明,得到勾股定理的逆定理。 勾股定理的逆定理给出了判定一个三角形是直角三角形的方法。教科书安排了两个例题,让学生学会运用这种方法。这种方法与前面学过的一些判定方法不同,它通过代数运算“算”出来。实际上利用计算证明几何问题学生已经见过,计算在几何里也是很重要的。从这个意义上讲,勾股定理的逆定理的学习,对开阔学生眼界,进一步体会数学中的各种方法有很大的意义。 几何中有许多互逆的命题,互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念。学生已见过一些互逆命题(定理),例如:“两直线平行,内错角相等”与“内错角相等,两直线平行”;“全等三角形的对应边相等”与“对应边相等的三角形是全等三角形”等,都是互逆命题。勾股定理与勾股定理的逆定理也是互逆的命题,而且这两个命题的题设和结论都比较简单。因此,教科书在前面已有感性认识的基础上,在第二节中,结合勾股定理的逆定理的内容的展开,穿插介绍了逆命题、逆定理的概念,并举例说明原命题成立其逆命题不一定成立。为巩固这些内容,相应配备了一些练习与习题。 本章学习目标如下: 1.体验勾股定理的探索过程,会运用勾股定理解决简单问题; 2.会运用勾股定理的逆定理判定直角三角形; 3.通过具体的例子,了解定理的含义,了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立。 二、本章编写特点 (一)让学生体验勾股定理的探索和运用过程 勾股定理的发现从传说故事讲起,从故事中可以发现等腰直角三角形有这样的性质:以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。再看一些其他直角三角形, 发现也有上述性质。因而猜想所有直角三角形都有这个性质,即如果直角三角形的两直角边长分别为,斜边长为,那么(教科书把这个猜想记作命题1,把下节“如果三角形的三边长满足,那么这个三角形是直角三角形”记作命题2,便于引出互逆命题)。

相关文档
最新文档