钻井液流变参数的计算及应用

钻井液流变参数的计算及应用
钻井液流变参数的计算及应用

钻井液流变参数(塑性粘度,动切力,静切力,n,k)的测量与计算

钻井液的流变参数与钻井工程有着密切的关系,是钻井液重要性能之一。因此,在钻井过程中必须对其流变性进行测量和调整,以满足钻井的需要。钻井液的流变参数主要包括塑性粘度、漏斗粘度、表观粘度、动切力和静切力、流性指数、稠度系数等。

一、旋转粘度计的构造及工作原理

旋转粘度计是目前现场中广泛使用的测量钻井液流变性的仪器。它由电动机、恒速装置、变速装置、测量装置和支架箱体等五部分组成。恒速装置和变速装置合称旋转部分。在旋转部件上固定一个能旋转的外筒。测量装置由测量弹簧、刻度盘和内筒组成。内筒通过扭簧固定在机体上、扭簧上附有刻度盘,如图4—1所示。通常将外筒称为转子,内筒称为悬锤。

测定时,内筒和外筒同时浸没在钻井液中,它们是同心圆筒,环隙1mm左右。当外筒以某一恒速旋转时,它就带动环隙里的钻井液旋转。由于钻井液的粘滞性,使与扭簧连接在一起的内筒转动一个角度。根据牛顿内摩擦定律,转动角度的大小与钻井液的粘度成正比,于是,钻井液粘度的测量就转变为内筒转角的测量。转角的大小可从刻度盘上直接读出,所以这种粘度计又称为直读式旋转粘度计。

转子和悬锤的特定几何结构决定了旋转粘度计转子的剪切速率与其转速之间的关系。按照范氏仪器公司设计的转子、悬锤组合(两者的间隙为1.17mm),转子转速与剪切速率的关系为:

1 r/min=1.703s-1(4-1)

旋转粘度计的刻度盘读数θ (θ为圆周上的度数,不考虑单位)与剪切应力τ(单位为Pa)

成正比。当设计的扭簧系数为3.87×10-5时,两者之间的关系可表示为:

τ=0.511θ (4-2)

旋转粘度计有两速型和多速型两种。两速型旋转粘度计用600 r/min和300 r/min这两种固定的转速测量钻井液的剪切应力,它们分别相当于1022s-1和511s-1的剪切速率(由式

4-1计算而得)。但是,仅在以上两个剪切速率下测量剪切应力具有一定的局限性,因为所测得的参数不能反映钻井液在环形空间剪切速率范围内的流变性能。因此,目前国内外已普遍使用多速型旋转粘度计。

六速粘度计是目前最常用的多速型粘度计,该粘度计的六种转速和与之相对应的剪切速率见表4-1

表4-1 转速与剪切速率的对应关系

为了连续测量各种剪切速率下的剪切应力,NL Baroib公司又研制出从1r/min至600r/min 可连续变速的286型粘度计。对于抗高温深井钻井液,常用高温高压流变仪等测定高温高压条件下的流变性能。

二、流变参数的测量与计算

1.直读公式推导

1)表观粘度的测量与计算

根据表观粘度的定义,某一剪切速率下的表现粘度可用下式表示:

μa=τ/γ=(0.511θN /1.703N)×(1000)=(300θN)/N (4-3)

式中 N-表示转速,单位为r/min;

θN-表示转速为N时的刻度盘读数;

μa-表现粘度,mPa·s。

利用式(4-3),可将任意剪切速率(或转子的转速)下测得的刻度盘读数换算成表观粘度,常用的六种转速的换算系数见表4-2

表4-2 刻度读数与表观粘度的换算系数

例如,在300r/min时测得刻度盘读数为36,则该剪切速率下的表观粘度等与36×1.0=36(mPa·s);若在6r/min时测得刻度盘读数为4.5,则该剪切速率下的表现粘度等于

4.5×50.0=225(mPa·s)

在评价钻井液的性能时,为了便于比较,如果没有特别注明某一剪切速率,一般是指测定600 r/min时的表观粘度,即

μe=(1/2)θ600 (4-4)

使用旋转粘度计测定表观粘度和其它流变参数步骤如下:

(1)将预先配好的钻井液进行充分搅拌,然后倒入量杯中,使液面与粘度计外筒的刻度线相齐。

(2)将粘度计转速设置在600r/min,待刻度盘稳定后读取数据。

(3)再将粘度计转速分别设置在300、200、100、6和3r/min,待刻度盘稳定后读取数据。

(4)计算各流变参数。必要时,通过将刻度盘读数换算成τ、将转速换算成γ,绘制出钻井液的流变曲线。

2)塑性流体流变参数的测量与计算

由测得的600r/min和300r/min的刻度盘读数,可以利用以下公式求得塑性粘度和动切力:

μp=θ600-θ300 (4-5)

τ0=0.511(θ300-μp) (4-6)

式中μp的单位为mPa·s,τ0的单位为Pa。其推导过程如下:

如前所述,塑性粘度是塑性流体流变曲线中直线段的斜率,600r/min和300 r/min所对应的剪切应力应该在直线段上。因此

μp=(τ600-τ300)/(γ600-γ300)

=[0.511(θ600-θ300)/(1022-511)]×1000

=θ600-θ300

依据宾汉模式,τ0=τ-μpγ,因此

τ0=τ600-μpγ600

=0.511θ600-[0.511(θ600-θ300)/(1022-511)]×1000

=0.511(2θ300-θ600)

=0.511(θ300—μp)

此外,塑性流体的静切力用以下方法测得:

将经充分搅拌的钻井液静置1min(或10s),在3r/min的剪切速率下读取刻度盘的最大偏转值;再重新搅拌钻井液,静置10min后重复上述步骤并读取最大偏转值。最后进行以下计算;

初切(τ初)=0.511θ3(1min或10s) (4-7)

终切(τ终)=0.511θ3(10min) (4-8)

式中,τ初和τ终的单位均为Pa。

3)假塑性流体流变参数的测量与计算

同样地,由测得的600 r/min和300 r/min的刻度盘读数,可分别两式求得幂律模式的两个流变参数,即流性指数(n)和稠度系数(K):

n=3.3221g(θ600/θ300) (4-9)

K=(O.511 θ300)/511n (4-10)

式中,n为无因次量;K的单位为Pa·sn。

以上两式的推导过程如下:

将幂律模式等号两边同时取对数,得到

lgτ=lgK+nlgγ

以lgτ为纵坐标,以lgγ为横坐标,得一直线方程,在该直线上任意取两点,解联立方程:

lgτ1=lgK+nlgγ 1

lgτ2=lgK+nlgγ 2

可得

n=(lgτ2-lgτ1)/(lgγ2-lgγ1)=1g(θ2/θ1)/lg(γ2/γ1)

式中,θ2、θ1、γ2、γ1是对应于两种不同转速时的粘度计刻度盘读数和剪切速率。若将600r/min和300r/min的有关数据代入上式,可得:

n=lg(θ600/θ300)/lg(1022/511)=3.322lg(θ600/θ300)

由幂律公式τ=Kγn ,若取N=300 r/min,则γ300=1.703×300=511(s-1);又由τ300=0.511θ300,如果K的单位取mPa·sn,则

K=τ/γn=(0.511θ300)/511n

例4-1 使用旋转粘度计,测得某种钻井液的θ600=36,θ300=26,试求该钻井液的表观粘度、塑性粘度、动切力、流性指数和稠度系数。

解:将测得的刻度盘读数分别代入有关公式,可求得:

μe=(1/2)θ600=0.5×36=18(mPa·s)

μp=θ600-θ300=36-26=10(mPa·s)

τ0=0.511(θ300-μp)=0.511×(26-10)=8.18(Pa)

n=3.3221g(θ600/θ300)=3.322lg(36/26)=0.47

K=(O.511 θ300)/511n=(0.511× 26)/5110.47=0.71(Pa·sn)

需要指出,以上使用θ600和θ300计算的n、K值,其对应的剪切速率与钻井液在钻杆内的流动情况大致相当,可称为中等剪切速率条件下的n、K值。然而,人们更关心的是环形空间的n、K值,因为它们直接影响钻井液悬浮和携带钻屑的能力,并且是计算环空压降和判别流型的重要参数。较低剪切速率下的n、K值同样可以根据六速粘度计测得的数据进行计算,第二、三组的钻速分别为200、100 r/min和6、3r/min,其计算式:

n=3.322 lg(θ200/θ100) (4-11)

K=(0.511θ100)/170n (4-12)

n=3.322 1g(θ6/θ3) (4-13)

K=(0.5llθ3)/5.11n (4-14)

例4-2 用旋转粘度计测得某钻井液在600、300、200、100、6和3r/min的刻度盘读数分别为36、28、22、17、5.5和4.5,试分成三组计算钻井液的流性指数和稠度系数。

解;第一组转速为600、300r/min,在例4-1中已求得n1=0.47,K1=0.71Pa·sn。

第二、三组的钻速分别为200、100r/min 和6、3r/min,分别代入(3-18)~(3-21)可求出对应的n、K值。

n2=3.3221g(θ200/θ100)=3.322×lg(22/17)=0.37

K2=(0.511θ100)/170n=(0.511×17)/170n=1.30(Pa·sn)

n3=3.3221g(θ6/θ3)=3.322×lg(5.5/4.5)=0.29

K3=(0.5llθ3)/5.11n=(0.511×4.5)/5.110.29=1.43(Pa·sn)

从以上计算结果可知,随着剪切速率减小,钻井液的n值趋于减小,K值趋于增大。为了更准确地测定钻井液在环空的n、K值,可首先用286型无级变速流变仪,在1~1022s-1剪切速率范围内测出10个以上的点,然后果用计算的方法确定环空的n、K值。例如,先取剪切速率为80~120s-1两点,或通过计算确定其n、K值。再用下式求出钻井液在环空的剪切速率:

γ环=[(2n+1)/3n][12n/(D2-D1)] (4-15)

式中γ环-环空的剪切速率,s-1;

n-环空运速,cm/s;

D2-钻杆外径,cm;

D1-并眼直径,cm。

如果求出的γ环正好在所取的80~120s-1 剪切速率范围内,则表明所确定的n、K值是比较淮确的。若γ环未落在此范围内,则另取一段按同样程序试算,直至γ环落入所取的剪切速率范围时为止。

4)卡森流变参数的测量与计算

卡森流变参数τc和h∞同样使用旋转粘度计测得,测量时的转速一船选用600r/min和100 r/min(分别相当于剪切速率1022s-1和170s-1)。经推导,其计算式如下:

τc1/2=0.493[(6θ100)1/2-θ6001/2] (4-16)

h∞1/2=1.195(θ6001/2-θ1001/2) (4-17)

式中τc的单位为Pa;h∞的单位为mPa·s。

例4-3 密度为1.228g/cm3的分散钻井液,用旋转粘度计测得其θ600=76,θ100=25.5,试汁算该钻井液的卡森模式参数τc和h∞。

解:将已知条件代入式(3-24)和(3-25),可分别求得;

τc1/2=0.493[(6θ100)1/2-θ6001/2]=0.439×[(6×25.5)1/2-761/2]=

1.800(Pa)1/2

τc=3.24(Pa)

h∞1/2=1.195(θ6001/2-θ1001/2)=1.195(761/2-25.51/2)=4.383(mPa?s)1/2

h∞=19.21mPa·s

经验表明,在使用低固相聚合物钻井液时,为了满足快速、安全钻井的要求,将卡森流变参数保持在以下范围内是必要的,并且也是可能的,即τc=0.6~3.0Pa;h∞=2.0~

6.0mPa·s;h环=20~30mPa·s;Im=300~600。

5)赫谢尔-巴尔克莱流变参数测定

通常由旋转粘度计3r/min时测得的刻度盘读数θ3,可以近似地确定τy值。再加上600 r/min和300 r/min的读数(θ600和θ300),便可由以下三式分别求得τy、n和K:

τy=0.511θ3 (4-18)

n=3.322lg[(θ600-θ3)/(θ300-θ3)] (4-19)

K=0.511(θ300-θ3)/511n (4-20)

式中τy的单位为Pa,n无因次量,K的单位为Pa·sn

钻井液常规计算公式

钻井液常用计算 一、水力参数计算:(p196-199) 1、地面管汇压耗: Psur=C×MW×(Q/100)1.86×C1 Psur---地面管汇压耗,Mpa(psi); C----地面管汇的摩阻系数; MW----井内钻井液密度,g/cm3(ppg); Q----排量,l/s(gal/min); C1----与单位有关的系数,当采用法定法量单位时,C1=9.818;当采用英制单位时,C1=1; ①钻具内钻井液的平均流速: V1=C2×Q/2.448×d2 V1-------钻具内钻井液的平均流速,m/s(ft/s); Q-------排量,l/s(gal/min); d-------钻具内径,mm(in); C2------与单位有关的系数。当采用法定计量单位时,C2=3117采用英制单位时,C2=1。 ②钻具内钻井液的临界流速 V1c=(1.08×PV+1.08(PV2+12.34×d2×YP×MW×C3)0.5)/MW×d×C4 V1c -------钻具内钻井液的临界流速,m/s(ft/s); PV----钻井液的塑性粘度,mPa.s(cps); d------钻具内径,mm(in) MW----钻井液密度,g/cm3(ppg); C3、C4------与单位有关的系数。采用法定计量单位时,C3=0.006193,C4=1.078;采用英制单位时,C3=1、C4=1。 ③如果≤V1c,则流态为层流,钻具内的循环压耗为 P p=C5×L×YP/225×d+C6×V1×L×PV/1500×d2 ④如果V1>V1c,则流态为紊流,钻具内的循环压耗为 P p=0.0000765×PV0.18×MW0.82×Q1.82×L+C7/d4.82 P p---钻具内的循环压耗,Mpa(psi); L----某一相同内径的钻具的长度,m(ft); V1-------钻具内钻井液的平均流速,m/s(ft/s); d------钻具内径,mm(in) MW----钻井液密度,g/cm3(ppg); Q-------排量,l/s(gal/min);

配制钻井液几种常用计算公式

配制钻井液几种常用计算公式 一、 配制水基钻井液所需材料的计算 1 配制定量、定密度的水基钻井液所需的粘土量 已知:钻井液重量=粘土重量+水重量 其中:钻井液重量=11V ρ 粘土重量=22V ρ 水的重量=33V ρ 所以: 332211ρρρV V V += (1) 因为: 213V V V -= (2) (2)代入(1)则得: 整理后 ()322112ρρρρ--= V V …………………………(3) 又因 22ρW V = (4) (4)代入(3)整理后 W -粘土重量;V 1-钻井液体积;V 2-粘土体积;V 3-水体积; 1ρ-钻井液密度;2ρ-粘土密度;3ρ-水的密度; 2 配制定量、定密度的水基钻井液所需的水量 水量=欲配钻井液体积-所需粘土体积 其中:粘土密度 粘土重量所需粘土体积= 二、 调整钻井液密度所需材料 1 加重钻井液所需加重材料数量计算

(1)定量钻井液加重时所需加重材料的计算: 式中 W -加入的加重材料重量; 浆V -原浆体积; 1ρ-原浆密度; 2ρ-欲配的钻井液密度; 3ρ-加重材料的密度; (2)配制定量加重钻井液时所需加重材料的计算: 式中 W-所用加重材料的重量; V -欲配的钻井液体积; 1ρ-原浆密度; 2ρ-欲配的钻井液密度; 3ρ-加重材料的密度; 2 降低钻井液密度所需水量(或低密度钻井液量)之计算 式中 V -降低密度时需要的水量; 浆V -原浆体积; 1ρ-原浆密度; 2ρ-加水稀释后的钻井液密度(即要求的钻井液密度)。 三、 钻井液的循环容积 1 井筒容积计算(即井内钻井液量计算) (1)经验式 井眼内的钻井液量()2 1000/31井径井径=井段?m m V

第六章 钻井液的流变性

第六章 钻井液的流变性 钻井液的流变性是钻井液的一项最基本性能,它是指在外力作用下,钻井液发生流动变形的特性。该特性通常用钻井液的流变曲线、表观粘度、塑性粘度、动切力、静切力等流变参数来进行描述的。它在解决1、岩屑携带,保证井底和井眼清洁;2、悬浮岩屑和加重材料;3、保持井眼规则和保障井下安全;4、提高机械钻速等钻井问题时起着十分重要的作用。另外,钻井液的某些流变参数还直接用于钻井环空水力学的有关计算。对钻井液流变性的深入研究有利于对油气井钻井液流变参数的优化设计和合理调控。 一、流体流变性的概念 1、流体流动的特点 流体流动实际上是流体随时间连续变形的过程。液体的流动变形是因为液体受到剪切作用引起的剪切变形。既液体在大小相等、方向相反、而作用线相距很近的两个力作用下,液体内部指点发生相对错动。以河水流动的速度分布为例,可以看到,越靠近河岸,流速越小,河中心处流速最大。水在管道中流速分布与河水相似,管道中心流速最大,靠近管壁处速度为零。可以想象,如果把管道内流动的水沿着管道半径的方向由内向外分成若干层,每一层流速是不同的。 如图6—1所示。液流中各层的流速不同这个现象,通常用剪切速率(或称速度梯度)这个物理量来描述。 2、剪切速率和剪切应力 如前所述,液体在管内流动时,在垂直于流速方向上,由内向外流速逐渐减小。若液体液层之间的距离为dx ,各液层的速度差为dv ,则垂直于流速方向不同液层流速的变化可以表示为dv/dx ,那么dv/dx 叫速度梯度即剪切速率。其物理意义是在垂 直于流速方向上,单位距离流速的增量。物理单位为S -1 钻井液在循环系统的不同位 置剪切速率值如下: 沉砂池: 10 —20 S -1 环形空间: 50 —250 S -1 图6-1在圆形管道中水的流速分布 a —流速分布示意图b —流速分布曲线

石油钻井常用计算公式

常 用 公 式 一、配泥浆粘土用量 二、加重剂用量 W 加=) ()(加重后加重剂原浆加重后泥浆量 加重剂 ρρρρρ V 三、稀释加水量 Q 水=) ()(水稀释后稀释后原浆原浆量 水ρρρρρ V 四、泥浆上返速度 V 返=) d (7.122 2钻具井径 D Q 五、卡点深度 (1) L=9.8ke/P (㎝、KN) (2)L=eEF/105P=Ke/P (㎝,t ,K=21F=EF/105 ,E=2.1×106 ㎏/㎝2) 5” 壁厚9.19 K=715 3 1/2壁厚9.35 K=491 ) ()(水土水泥浆泥浆量 土土ρρρρρ V W

六、钻铤用量计算 L t. =m.q.k p 式中p ---钻压,公斤, q --钻铤在空气中重,量公斤/米, K ---泥浆浮力系数, L t ---钻铤用量, 米, m---钻铤附加系数(1.2至1.3) 七、 泵功率 N=7.5 Q p (马力) 式中p -实际工作泵压(k g /cm 2), Q –排量(l /s ) 八、钻头压力降 p 咀=4 e 22 d c Q .827.0ρ (kg /cm 2) 式中ρ-泥浆密度(g /cm 3), Q –排量(l /s ), C ---流量系数(取0.95-0.985) d e ---喷咀当量直径(cm ),d e =2 3 2221 d d d 九、喷咀水功率 N 咀=7.5 Q p 咀=4 e 23 d c Q .11.0 十、喷射速度过 v 射=2 e d Q 12.74c 十一、冲击力 F 冲 =2 e 2 d Q .12.74ρ 十二、环空返速V= 2 2 d D Q 12.74- 式中ρ-泥浆密度(g /cm 3), Q –排量(l /s ), C ---流量系数(取0.95-0.985) d e ---喷咀当量直径(cm ),d e = 2 3 2221 d d d ++ 十三、全角变化率—“井眼曲率”公式 COS ⊿E=COSa 1 COSa 2+Sina 1 Sina 2COSB 或⊿E=(a 12+ a 22-2 a 1 a 2 COSB )1/2

最常用钻井液计算公式

钻井液有关计算公式 一、加重:W= Y(Y-Y)/Y)-谡 W :需要加重1方泥浆的数量(吨) Y:加重料密度 Y:泥浆加重前密度 Y:泥浆加重后密度 二、降比重:V= (丫原-丫稀)丫水/ 丫稀-丫水 V:水量(方) 丫原:泥浆原比重 丫稀:稀释后比重 丫水:水的比重 三、配1方泥浆所需土量:W= 丫土(丫泥-丫水)/丫土-丫水 丫水:水的比重 丫泥:泥浆的比重 丫土:土的比重 四、配1方泥浆所需水量:V=1-W 土/丫土 丫土:土的比重 W 土:土的用量 五、井眼容积:V=1/4 U D2H D :井眼直径(m) H :井深(m) 六、环空上返速度:V 返= 1 2.7Q/D 2-d2 Q: 排量(l/S ) D: 井眼直径(cm) d: 钻具直径(cm) 七、循环周时间:T=V/60Q=T井内+T地面 T: 循环一周时间(分钟) V: 泥浆循环体积(升) Q: 排量(升/秒)

八、岩屑产出量:W= T D2* Z/4

W:产出量(立方米/小时) Z:钻时(机械钻速)(米 /小时) D:井眼直径(米) 九、粒度范围 粗 中粗 中细 细 超细 胶体 粘土级颗粒 砂粒级颗粒 粒度》2000卩 粒度2000- 250卩 粒度250-74卩 粒度74-44卩 粒度44- 2 粒度W 2 1 粒度w 2 1 粒度》74 1 十、API 筛网规格: 目数 20 30 40 50 60 80 100 120 十一、除砂器有关数据 除砂器:尺寸(6-12 〃) 处理量( 除砂器:尺寸(2-5 〃) 处理量( 28-115立方米/小时) 范围(除74 1以上) 6-17立方米/小时) 范围(除44 1以上) O I ” O n -=1.195 *(‘600 - -00) T c =1.512*( ... 6可00 -「600 ) 2 孔径 (1 ) 838 541 381 279 234 178 140 十二、极限剪切粘度 十三、卡森动切力:

钻井液流变参数的计算及应用

钻井液流变参数(塑性粘度,动切力,静切力,n,k)的测量与计算 钻井液的流变参数与钻井工程有着密切的关系,是钻井液重要性能之一。因此,在钻井过程中必须对其流变性进行测量和调整,以满足钻井的需要。钻井液的流变参数主要包括塑性粘度、漏斗粘度、表观粘度、动切力和静切力、流性指数、稠度系数等。 一、旋转粘度计的构造及工作原理 旋转粘度计是目前现场中广泛使用的测量钻井液流变性的仪器。它由电动机、恒速装置、变速装置、测量装置和支架箱体等五部分组成。恒速装置和变速装置合称旋转部分。在旋转部件上固定一个能旋转的外筒。测量装置由测量弹簧、刻度盘和内筒组成。内筒通过扭簧固定在机体上、扭簧上附有刻度盘,如图4—1所示。通常将外筒称为转子,内筒称为悬锤。 测定时,内筒和外筒同时浸没在钻井液中,它们是同心圆筒,环隙1mm左右。当外筒以某一恒速旋转时,它就带动环隙里的钻井液旋转。由于钻井液的粘滞性,使与扭簧连接在一起的内筒转动一个角度。根据牛顿内摩擦定律,转动角度的大小与钻井液的粘度成正比,于是,钻井液粘度的测量就转变为内筒转角的测量。转角的大小可从刻度盘上直接读出,所以这种粘度计又称为直读式旋转粘度计。 转子和悬锤的特定几何结构决定了旋转粘度计转子的剪切速率与其转速之间的关系。按照范氏仪器公司设计的转子、悬锤组合(两者的间隙为1.17mm),转子转速与剪切速率的关系为: 1 r/min=1.703s-1(4-1) 旋转粘度计的刻度盘读数θ (θ为圆周上的度数,不考虑单位)与剪切应力τ(单位为Pa) 成正比。当设计的扭簧系数为3.87×10-5时,两者之间的关系可表示为: τ=0.511θ (4-2) 旋转粘度计有两速型和多速型两种。两速型旋转粘度计用600 r/min和300 r/min这两种固定的转速测量钻井液的剪切应力,它们分别相当于1022s-1和511s-1的剪切速率(由式 4-1计算而得)。但是,仅在以上两个剪切速率下测量剪切应力具有一定的局限性,因为所测得的参数不能反映钻井液在环形空间剪切速率范围内的流变性能。因此,目前国内外已普遍使用多速型旋转粘度计。 六速粘度计是目前最常用的多速型粘度计,该粘度计的六种转速和与之相对应的剪切速率见表4-1 表4-1 转速与剪切速率的对应关系

钻井液常用计算公式

计算公式 1、钻井液配制与加重的计算 (1)配制低密度钻井液所需粘土量 水 土水 泥土泥土 ) (ρ-ρρ-ρρ=V W 式中: 土W ---所需粘土重量,吨(t ); 土ρ -- 粘土密度,克/厘米3(g/cm3) 水ρ -- 水的密度,克/厘米3(g/cm3) 泥ρ -- 欲配制的钻井液的密度,克/厘米3(g/cm3) 泥 V 欲配制的钻井液的体积,米3(m3) (2)配制低密度钻井液所需水量 土 土泥水ρ-=W V V 式中: 水V ---所需水量,米3(m3); 土ρ -- 所用粘土密度,克/厘米3(g/cm3) 土 W -- 所用粘土的重量,吨(t ) 泥V -- 欲配制的钻井液的体积,米3(m3) (3)配制加重钻井液的计算 ①对现有体积的钻井液加重所需加重剂的重量 重 加原 重加原加 ) (ρ-ρρ-ρρ=V W

式中: 加W ---所需加重剂的重量,吨(t ); 原ρ -- 原有钻井液的密度,克/厘米3(g/cm3) 重ρ -- 钻井液欲加重的密度,克/厘米3(g/cm3) 加ρ -- 加重剂的密度,克/厘米3(g/cm3) 原 V -- 原有钻井液的体积,米3(m3) ②配制预定体积的加重钻井液所需加重剂的重量 原 加原 重加重加 ) (ρ-ρρ-ρρ=V W 式中: 加W ---所需加重剂的重量,吨(t ); 原ρ -- 原有钻井液的密度,克/厘米3(g/cm3) 重ρ -- 钻井液欲加重的密度,克/厘米3(g/cm3) 加ρ -- 加重剂的密度,克/厘米3(g/cm3) 重 V -- 加重后钻井液的体积,米3(m3) ③用重晶石加重钻井液时体积增加 2 1 224100(v ρ-ρ-ρ=.) 式中: v ---每100m3原有钻井液加重后体积增加量,米3(m3); 1ρ -- 加重前钻井液的密度,克/厘米3(g/cm3) 2 ρ -- 加重后钻井液达到的密度,克/厘米3(g/cm3)

钻井液常规性能测定及常用钻井液计算公式

钻井液常规性能测定 一.密度的测定 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、将钻井液加热到所需温度。 3、在密度计的杯中注满钻井液,盖上杯盖慢慢拧动压紧。 4、用手指压住杯盖小孔,用清水冲洗并擦干样品杯。 5、把密度计的刀口放在底座的刀垫上,移动游码直到平衡,记录读值。 6、将密度计冼净擦干备用。 二.测定马氏漏斗粘度 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、将漏斗悬挂在墙上,且保证垂直;量杯置于漏斗流出管下面。 3、用手指堵住漏斗流出管下口,将搅拌均匀的泥浆倒入漏斗至筛网底;放开手指,同时启动秒表,待泥浆流满量杯达到它的边缘时,按停秒表。秒表所示时间即为泥浆粘度,单位为s。 4、使用完毕,将仪器洗净擦干。 三.流变的测定(ZNN-D6六速旋转粘度计) 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、使用前检查读数指针是否对准刻度盘“0”位,落下托盘,装配好内、外筒。 3、将搅拌均匀的泥浆倒入样品杯至刻度线、将样品杯置于托盘上,上升托盘使液面至外筒刻度线,拧紧托盘手轮。 4、调整变速手把和转速开关,迅速从高到低进行测量,待刻度盘稳定后,分别读取各转速下刻度盘的偏转格数。 5、测量完毕,落下托盘,卸下外筒,将内、外筒及样品杯洗净擦干。 四.钻井液失水的测定 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、用手指堵住泥浆杯底部小孔,将搅拌均匀的泥浆倒入杯内至刻度线处,按顺序放入“O”型密封圈、滤纸、杯盖和杯盖卡,将杯盖卡旋转90°并拧紧旋转手柄。 3、将组装好的泥浆杯组件倒置嵌入气源接头并旋转90°;将量筒置于失水仪下方并对准滤液流出孔。 4、调节气源压力至0.7MPa,打开气源手柄并同时启动秒表,收集滤液于量筒之中。 5、当秒表指示为30min时,将悬于滤液流出孔的液滴收集于量筒之中并移开量筒,此量筒中液体体积即为滤失量。 6、关闭气源手柄,放出泥浆杯中余气;卸下泥浆杯组件,倒去泥浆并洗净擦干。 五.钻井液泥饼粘滞系数的测定(NZ-3A型泥饼粘滞系数测定仪) 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、打开机盖,调节滑板及平衡脚,使水平泡居中;接通电源,按下“清零”键。 3、将泥饼平放在滑板上,滑块纵向轻轻地放在泥饼上,静置1min。 4、按一下“电机”键,使滑板转动,当滑块开始滑动时,再按一下“电机”键,滑板停止转动,此时,显示窗中的数值即为泥饼摩擦角,单位为o,查其显示角度值的正切值,正切值为泥饼的摩擦系数。 5、使用完毕,切断电源,取下滑块和泥饼,擦净仪器,盖上机盖。 六.含砂量的测定 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、将待测钻井液注入含水量砂量管中至“钻井液”刻度线处,再注入水至“水”刻度线处,用手指堵住含砂量管口,剧烈摇动。

钻井液流变性-部分

钻井液流变性 本章要点: 掌握有关的基本概念 常用流型的特点、流变参数的意义、影响因素、计算及调整 了解钻井液流变性与钻井的关系 一、基本概念 ?流变性:指在外力作用,物质发生流动和变形的特性 ?钻井液的流变性(Rheological ProPerties of Drilling Fluids):指钻井液流动和变形的特性 ?特性的表征 流变模式(最常用的两个:宾汉模式、幂律模式) 宾汉模式的参数:塑性粘度(Plastic Viscosity)和动切力(Yield Point); 幂律模式的参数:流性指数(FLow Behavior Index)和稠度系数(Consistency Index) 流变参数 流变曲线、动切力(Yield Point)、静切力(Gel Strength) 表观粘度(Apparent Viscosity)漏斗粘度(Funnel Viscosity)、塑性粘度(Plastic Viscosity) 对钻井液而言,其流动性是主要的方面 ?对钻井工作的意义 环空水力参数计算 悬浮岩屑与重晶石 提高钻井速度/机械钻速 携带岩屑,保证井底和井眼的清洁 保持井眼规则、保证井壁稳定和井下安全 1、流体流动的基本概念 ①剪切速率

液体与固体的重要区别之一就是:液体具有流动性 液流中各层流速不同的现象,通常用剪切速率(或称流速梯度)描述 剪切速率/速度梯度γ:指垂直于流速方向上单位距离流速的增量γ=dv/dx ?单位:流速单位v:m/s、距离单位x:m 、剪切速率γ:s-1 ?流速越大,剪切速率越大(剪切速率与流速成正比) 在钻井过程中,钻井液在各个部位的剪切速率不同 沉砂池处:10-20s-1 环形空间:50~250s -1 钻杆内:100~1 000 s-1 钻头喷嘴处:10 000-100 000 s-1 ②剪切应力 液流中各层的流速不同,故层与层之间必然存在着相互作用。由于液体内部内聚力的作用 流速较快的液层会带动流速度较慢的相邻液层,而流速较慢的液层又会阻碍流速较快的相邻液层 因此在流速不同的各液层之间发生内摩擦作用,即出现成对的内摩擦力(即剪切力),阻碍液层剪切变形液体的粘滞性:液体流动时所具有的抵抗剪切变形的物理性质 ?牛顿内摩擦定律:液体流动时,液体层与层之间的内摩接力(F)的大小与液体的性质及温度有关 并与液层间的接触面积(S)和剪切速率(γ)成正比,而与接触面上的压力无关表达式:F=μSγ 剪切应力:内摩擦力F除以接触面积S 表达式:τ =F/S=μγ

钻井液现场有关计算

钻井液现场有关计算1、表观粘度 式中:2、塑性粘度 公式:AV=1/2 ×∮600 AV——表观粘度,单位(mPa.s) 。∮600 ——600 转读数。 公式:PV= ∮600 -∮300 式中: PV——塑性粘度,单位(mPa.s) 。 ∮600 ——600 转读数。 ∮300 ——300 转读数。 3、动切力(屈服值) 公式:YP= 0.4788 ×(∮300 -PV) 式中: YP——动切力,单位(Pa) 。 PV——塑性粘度,单位(mPa.s) 。 ∮300 ——300 转读数。 例题1:某钻井液测得∮600=35 ,∮300=20 ,计算其表观粘度、塑性粘度和屈服值。 解:表观粘度:

AV=1/2 ×∮600=1/2 ×35=17.5 ( m Pa.s ) 塑性粘度: PV= ∮600 - ∮300=35 - 20=15 (mPa.s )屈服值: YP=0.4788 ×( ∮ 300 - P V ) =0.4788 ×(20- 15 )=2.39 (Pa ) 答:表观粘度为 17.5mPa.s ,塑性粘度 15mPa.s ,屈服值 为 2.39Pa 。 4、流性指数( n 值) 公式: n= 3.322 ×lg( ∮600 ÷ ∮300) 式中: n —— 流性指数,无因次。 ∮600 —— 600 转读数。 ∮300 —— 300 转读数。 5、稠度系数( k 值) 公 式: k = 0. 47 8 8式中: k —— 稠度系数,单位( Pa.S n )。 n —— 流性指数。 ∮300 —— 300 转读数。 例题 2:某井钻井液测得∮ 600=30 ,∮ 300=18 ,计算流性 指数,计算稠度系数 。

钻井液流变性测定

中国石油大学钻井液工艺原理实验报告 实验日期: 2015.03.23 成绩: 班 级: 石工12-1 学号 姓名: 教师: 范鹏 同组者: 实验一 钻井液流变模式确定实验 一.实验目的 1. 掌握六速旋转粘度计的使用方法。 2. 掌握如何判断钻井液的流型及对应流变参数的计算方法。 3. 比较各流变模式与实际流变曲线的吻合程度,弄清各种模式的特点。 4. 掌握NaCl 对钻井液流变性的影响。 二.实验原理 1. 旋转粘度计工作原理 电动机带动外筒旋转时,通过被测液体作用于内筒上的一个转矩,使与扭簧相连的内筒偏转一个角度。根据牛顿内摩擦定律,一定剪切速率下偏转的角度与液体的粘度成正比。于是,对液体粘度的测量就转换为内筒的角度测量。 2. 流变曲线类型、意义。 流变曲线是指剪切速率和剪切应力的关系曲线。根据曲线的形式,它可以分为牛顿型、塑性流型、假塑性流型和膨胀性流型。为了计算任何剪切速率下的剪切应力,常用的方法是使不同流变模式表示的理想曲线逼近实测流变曲线,这样,只需要确定两个流变参数,就可以绘出泥浆的流变曲线。 牛顿模式反映的牛顿液体,其数学表达式为: τ=η·D 宾汉模式反映的是塑性液体,其数学表达式为: τ=τ0 +ηp ·D 指数模式反映的是假塑性流体,其数学表达式为: τ=K ·D n 或 Lg τ=lgK + n ·lgD 卡森模式反映的是一种理想液体,其数学表达式为: 2 121212 1 .D c ∞ +=ηττ

实际流变曲线与哪一种流变模式更吻合,就把实际液体看成哪种流型的流体。 三、实验仪器及药品 1.仪器 ZNN-D6型旋转粘度计、高速搅拌器; 2. 药品 350ml水、500ml泥浆、NaCl。 四.仪器使用要点 1.检查好仪器,要求; ①粘度计刻度盘是否对零。若不对零,可松开固定螺钉调零后再拧紧。 ②检查粘度计的同心度。高速旋转时,外筒不得有偏摆。 ③检查高速搅拌机的搅拌轴是否偏摆。若偏摆,则停止使用。 2.校正旋转粘度计 ①倒350ml水于泥浆杯中,置于托盘上,上升托盘,使液面与外筒刻度线对齐,拧紧托盘手轮。 ②迅速从高速到低速依次测量。待刻度盘读数(基本)稳定后,分别记录各转速下的读数?. 要求:? 600=2.0格,? 300=1.0格。 五.实验步骤 1.熟悉旋转粘度计的使用方法。 2.检查和校正旋转粘度计。 3.测量泥浆加入NaCl前后在各剪切速率下的剪切应力。 将待测泥浆高速搅拌10min后,把水换成待测泥浆,按四-2的方法操作,分别记录各转速下的读数。 泥浆剪切应力τ与粘度计读数?对应关系:τ=0.511 ?,单位:Pa。 4. 实验后,关闭电源,倒出泥浆,洗净内、外筒,擦干装好。 注意:停转后,由于静切力作用,刻度盘可能不回零,此时不需要再调零。

泥浆各类计算公式

※各重压力的计算 注:1MPa(兆帕)=(千克力)/厘米2 =1000Kpa(千帕) 粗略计算时可认为 Map = 1Kgf/厘米 2 = 100 Kpa 一.地层·井筒内·地层孔隙, (千克力)Kgf/厘米2 =重力加速度,×地层(井筒内) 液体密度, g/cm3×井深/m (1~2)举例:某井深2000米, 所用泥浆密度为1.20;求井底的静液 柱压力·地层 静液柱压力·井筒内静液柱压力·地层孔隙压力 解:1. 井底静液柱压力,MPa =××2000= MPa 2.地层·井筒内静液柱压力·地层孔隙压力, 千克力Kgf /厘米2 =××2000=235千克力/厘米2 二.压力梯度-地层的各种随压力地层所处的垂直深度的增加而升高,垂 直深度每增加1米(或其他长度单位)压力增加的数值称为压 力梯度;通常以千克力/厘米2·米(Kg/cm2·m)作单位; 计算: a.压力梯度, 千克力(Kgf) /厘米2·米=压力, 千克/厘米2÷深(高)度/米; b1.压力梯度, KPa/米=静液压力KPa÷液柱高度/m b2.压力梯度, KPa/米=液体密度× ※泥浆加重剂用量的计算 泥浆加重剂用量/吨={原浆体积/m3×重晶石密度× (欲加重泥浆密度-原浆密度)} ÷(加重剂密度-欲加重泥浆密度)

※混浆密度计算 混浆密度g/cm3 =(原浆密度×原浆体积m3 +混浆密度×混浆体积m3)÷(原浆体积m3+混浆体积m3) ※聚合物胶液的配制 列:欲配制水:大分子:中(小)分子:=100 m3::的聚合物胶液40m3, 大.小分子各需多少 计算: 一.大分子量=40m3×%(吨)﹦(吨) 二.小分子量﹦40 m3×%=(吨) ※压井时泥浆密度的计算: 1.地层压力,MPa=关井立管压力,MPa+(重力加速度,×泥浆密度,g/cm3×井 深,m) 2. 压井时的泥浆密度,g/cm3=(原泥浆密度+ 安全附加泥浆密 度,g/cm3 )+( 100×关井立管压力/MPa÷井深/m) 例:某井用密度的泥浆钻至1000米时发生井喷, 关井后观察, 立管压力=,P套=,若取安全附加泥浆密度=1.67 g/cm3 问:关井时应采用泥浆密度为多大合适 解:+{100×(+)}÷1000=1.56 g/cm3的泥浆密度合适

钻井液现场有关计算

钻井液现场有关计算 1、表观粘度 公式:A V=1/2×∮600 式中: A V——表观粘度,单位(mPa.s)。 ∮600 —— 600转读数。 2、塑性粘度 公式:PV= ∮600 -∮300 式中: PV——塑性粘度,单位(mPa.s)。 ∮600 —— 600转读数。 ∮300 —— 300转读数。 3、动切力(屈服值) 公式:YP= 0.4788×(∮300-PV) 式中: YP——动切力,单位(Pa)。 PV——塑性粘度,单位(mPa.s)。 ∮300 —— 300转读数。 例题1:某钻井液测得∮600=35,∮300=20,计算其表观粘度、塑性粘度和屈服值。 解:表观粘度: A V=1/2 ×∮600=1/2×35=17.5(mPa.s)

塑性粘度: PV= ∮600-∮300=35-20=15(mPa.s)屈服值: YP=0.4788×(∮300-PV) =0.4788×(20-15)=2.39(Pa) 答:表观粘度为17.5mPa.s,塑性粘度15mPa.s,屈服值为2.39Pa。 4、流性指数(n值) 公式:n= 3.322×lg(∮600÷∮300) 式中: n ——流性指数,无因次。 ∮600 —— 600转读数。 ∮300 —— 300转读数。 5、稠度系数(k值) 公式:k= 0.4788×∮300/511n 式中: k ——稠度系数,单位(Pa.S n)。 n ——流性指数。 ∮300 —— 300转读数。 例题2:某井钻井液测得∮600=30,∮300=18,计算流性指数,计算稠度系数。 解:n=3.32×lg(∮600/∮300)

泥浆各类计算公式

※各重压力的计算 注:1MPa(兆帕)=10.194Kgf(千克力)/厘米2 =1000Kpa(千帕) 粗略计算时可认为0.1 Map = 1Kgf/厘米 2 = 100 Kpa 一.地层·井筒内·地层孔隙, (千克力)Kgf/厘米2 =重力加速度,0.00981×地层(井筒内) 液体密度, g/cm3×井深/m (1~2)举例:某井深2000米, 所用泥浆密度为1.20;求井底的静液 柱压力·地层 静液柱压力·井筒内静液柱压力·地层孔隙压力 解:1. 井底静液柱压力,MPa =1.20×0.00981×2000=23.5 MPa 2.地层·井筒内静液柱压力·地层孔隙压力, 千克力Kgf /厘米2 =0.00981×1.20×2000=235千克力/厘米2 二.压力梯度-地层的各种随压力地层所处的垂直深度的增加而升高,垂 直深度每增加1米(或其他长度单位)压力增加的数值称为压 力梯度;通常以千克力/厘米2·米(Kg/cm2·m)作单位; 计算: a.压力梯度, 千克力(Kgf) /厘米2·米=压力, 千克/厘米2÷深(高)度/米; b1.压力梯度, KPa/米=静液压力KPa÷液柱高度/m b2.压力梯度, KPa/米=液体密度×9.81 ※泥浆加重剂用量的计算 泥浆加重剂用量/吨={原浆体积/m3×重晶石密度× (欲加重泥浆密度-原浆密度)} ÷(加重剂密度-欲加重泥浆密度) ※混浆密度计算 混浆密度g/cm3 =(原浆密度×原浆体积m3 +混浆密度×混浆体积m3)÷(原浆体积m3+混浆体积m3)

※聚合物胶液的配制 列:欲配制水:大分子:中(小)分子:=100 m3:0.5t:0.2t的聚合物胶液40m3, 大.小分子各需多少? 计算: 一.大分子量=40m3×0.5%(吨)﹦0.2(吨) 二.小分子量﹦40 m3×0.2%=0.08(吨) ※压井时泥浆密度的计算: 1.地层压力,MPa=关井立管压力,MPa+(重力加速度,0.00981×泥浆密度,g/cm3 ×井深,m) 2. 压井时的泥浆密度,g/cm3=(原泥浆密度+ 安全附加泥浆密 度,g/cm3 )+( 100×关井立管压力/MPa÷井深/m) 例:某井用密度1.20的泥浆钻至1000米时发生井喷, 关井后观察, 立管压力=1.96MPa,P套=2.94MPa,若取安全附加泥浆密度=1.67 g/cm3 问:关井时应采用泥浆密度为多大合适? 解:1.20+{100×(1.96+1.67)}÷1000=1.56 g/cm3的泥浆密度合适 ※泥浆降低密度所需加水量/m3 ={原桨体积/m3×(原浆密度-加水稀释后的泥浆密度)}÷(加水稀释后的泥浆密度-水的密度)

钻井液测试操作规程

钻井液性能测试操作规程 (一)钻井液马氏漏斗粘度的测定 该仪器适应于测定钻井液的相对粘度(与水比较)。由于测得数据在很大程度上受胶体和密度的影响,所测数据不能与旋转粘度计等有关仪器所测数据对比。该仪器由漏斗、筛网及接收器组成,是被测钻井液在一定温度下流出946毫升时所用的时间。 一、主要技术参数 1.筛底以下的漏斗容积1500cm3 2.漏斗锥体直径152mm 3.漏斗锥体高度305mm 4.管口长度50.8mm 5.管口内径 4.7mm 6.筛网12目 7.接收器946mL 二、仪器的校正 在温度为(21℃±3℃)时,注入1500mL清水,从漏斗中流出946mL清水的时间为26±0.5s,其误差不得超过0.5s。 三、测定 1.测量钻井液的温度,用℃表示。 2.手握漏斗,用手指堵住流出口,将新取的钻井液通过筛网注入洁净、干燥直立的漏斗中,直到钻井液面与筛网底部平齐为止。 3.保持漏斗垂直,移开手指的同时按动秒表,测量钻井液注满946mL所需要时间。 4.以s为单位记录马氏漏斗粘度,并以℃为单位记录钻井液的温度。

四、操作注意事项 1.样品温度对测定结果有影响,测定时要记录样品温度。 2.大的分散颗粒和气泡干扰测定,应避免大颗粒进入漏斗,防止气泡产生,必要时加入消泡剂消泡。 3.液面的初始位置必须恰当,否则,由于液柱压力和惯性的影响可能会使测定结果错误。 4.钻井液倒入漏斗后立即开始测定,如拖延时间过长,钻井液可能形成凝胶,使测定结果出现正误差。 5.测定过程中尽可能使漏斗保持垂直。 (二)钻井液密度的测定 钻井液密度是指单位体积钻井液的质量。单位为g/cm3或kg/ m3。 通过用钻井液密度计来测定钻井液的密度。钻井液密度计通常设计成臂梁一端的钻井液杯和另一端的固定平衡锤及一个可沿刻度臂梁自由移动的游码来平衡。为使平衡准确,臂梁上装有水准泡(需要时可使用扩大量程的附件)。 一、仪器的校正 1.量点的校正 经常用淡水来校正仪器。在21℃,淡水的密度值应是1.00 g/cm3。用洁净的淡水盛满钻井液杯,然后盖上盖子,使多余的水从盖子中心小孔溢出,擦去外面的溢水,使密度计的刀口放在座支架上,将游码边线(一般是左边)对准刻度1.00处,观察密度计是否平衡(水泡是否位于中央),如果不平衡则调节平衡圆柱内的铅粒使其平衡,即水泡位于中央为止。要求在试验前校正好,密度计的误差不大于0.01。 2.加重(减重)的校正。 有时使用超重或泡沫钻井液钻井时,其密度超出测定范围,需要对密度计进行加重或减重校正,其方法是用密度较大的液体或钻井液,首先在标准密度计称重,然后根据需要将游码向左或向右移动0.3~0.4,重新调节圆柱内的铅弹,使其再平衡,这时被测液体的密度就等于密度计读数加上或减去校正时移动的格数

钻井液设计

第8章钻井液设计 本章主要介绍了新疆地区常用的钻井液体系,结合A1-4井及探井资料,设计了A区块井组所使用的钻井液体系、计算了所需钻井液用量,提出了钻井液材料计划等。 钻井液体系设计 钻探的目的是获取油气,保护地层是第一位的任务,因此,搞好钻井液设计,首先必须以地层类型特性为依据,以保护地层为前提,才能达到设计的目的。 新疆地区常用钻井液体系简介: (1)不分散聚合物钻井液体系:不分散聚合物钻井液体系指的是具有絮凝及包被作用的有机高分子聚合物机理的水基钻井液。该体系的特点是:具有很强的抑制性;具有强的携沙功能;有利于提高钻速;有利于近平衡钻井;可减少对油气层的伤害。 (2)分散性聚合物体系(即聚合物磺化体系):聚合物磺化体系是指以磺化机理及少量聚合物作用机理为主配置而成的水基钻井液。该体系的特点是:具有良好的高温稳定性,使用于深井及超深井;具有一定的防塌能力;具有良好的保护油层能力;可形成致密的高质量泥饼,护壁能力强。 (3)钾基(抑制性)钻井液体系:该体系是以聚合物的钾,铵盐及氯化钾为主处理剂配制而成的防塌钻井液。它主要是用来对付含水敏性粘土矿物的易坍塌地层。该体系特点:对水敏性泥岩,页岩具有较好的防塌效果;抑制泥页岩造浆能力较强;对储层中的粘土矿物具有稳定作用;分散型钾基钻井液有较高的固相容限度。 (4)饱和盐水钻井液体系:该体系是一种体系中所含NaCl达到饱和程度的钻井液,是专门针对钻岩盐层而设计的一种具有较强的抑制能力,抗污染能力及防塌能力的钻井液。该体系特点:具有较强的抑制性,由于粘土在其中不宜水化膨胀和分散,故具有较强的控制地层泥页岩造浆的能力;具有较强的抗污染能力,由于它已被NaCl所饱和,故对无机盐的敏感性较低,可以抗较高的盐污染,性能变化小;具有较强的防塌能力,尤其再辅以KCL对含水敏性粘土矿物的页岩具有较强抑制水化剥落作用;可制止盐岩井段溶解成大肚子井眼。由于钻井液中氯化钠已达饱和,故钻遇盐岩时就会减少溶解,以免形成大井眼;缺点是腐蚀性较强。 (5)正电胶钻井液体系是一种以带正电的混合层状金属氢氧化物晶体胶粒(MMH或MSF)为主处理剂的新型钻井液体该体系的特点:具有独特的流变性;有利于提高钻井速度;对页岩具有较强的抑制性;具有良好的悬浮稳定性;有较强

钻井液流变模式的确定

中国石油大学(钻进液工艺原理)实验报告 实验日期: x 成绩: 班级: x学号: x姓名: x教师:x 同组者: x 实验一钻井液流变模式确定实验 一.实验目的 1. 掌握六速旋转粘度计的应用方法。 2. 掌握如何判断钻井液的流型及对应流变参数的计算方法。 3. 比较各流变模式与实际流变曲线的吻合程度,弄清各种模式的特点。 4. 掌握钻井液增粘剂及降粘剂对钻井液流变性的影响。 二.实验原理 1. 旋转粘度计工作原理 电动机带动外筒旋转时,通过被测液体作用于内筒上的一个转矩,使与扭簧相连的内筒偏转一个角度。根据牛顿内摩擦定律,一定剪功速率下偏转的角度与液体的粘度成正比。于是,对液体粘度的测量就转换为内筒的角度测量。 2. 流变曲线类型、意义。 流变曲线是指流速梯度和剪切应力的关系曲线。根据曲线的形式,它可以分为牛顿型、塑性流型、假塑性流型和膨胀性流型。为了计算任何剪切速率下的剪切应力,常用的方法是使不同流变模式表示的理想曲线逼近实测流变曲线,这样,只需要确定两个流变参数,就可以绘出钻井液的流变曲线。 牛顿模式反映的牛顿液体,其数学表达式为: 宾汉模式反映的是塑性液体,其数学表达式为: 指数模式反映的是假塑性流体,其数学表达式为: 卡森模式反映的是一种理想液体,其数学表达式为: 实际流变曲线与那一种流变模式更吻合,就把实际液体看成那种流型的流体。 三、实验仪器及药品

实验仪器:ZNN-D6型旋转粘度;高速搅拌器。 实验药品:增粘剂KPAM;降粘剂XY-27或SD-202。 四.仪器使用要点 1.检查好仪器,要求; ①刻度盘对零。若不对零,可松开固定螺钉调零后在拧紧。 ②检查同心度。高速旋转时,外筒不得有偏摆。 ③内筒底与杯距不低于1.3cm。 2.校正旋转粘度计 ①倒350m1水于钻井液杯中,置于托盘上,上升托盘,使液面与外筒刻度线对齐,拧紧托盘手轮。 ②迅速从高速到低速依次测量。待刻度盘读数稳定后,分别记录各转速下的稳定读数¢. 要求:? 600=2.0格,? 300=1.0格。 3.把水换成待测钻井液,重复2。 4.在钻井液中加入增粘剂搅拌10min,重复2。 5.在加入增粘剂的钻井液中加入降粘剂搅拌10min,重复2。 6.实验后,关闭电源,倒出钻井液,洗净内、外筒,擦干装好。 注意:停转后,由于静切力作用,刻度盘可能不回零,此时不需要再调零。 五.实验步骤 1.熟悉旋转粘度计的使用方法。 2.检查和校正旋转粘度计。 3.测量钻井液在各剪率下的剪切应力。

最常用钻井液计算公式

钻井液有关计算公式 一、加重:W=γ0(γ2-γ1)/γ0-γ2 W:需要加重1方泥浆的数量(吨) γ0:加重料密度 γ1:泥浆加重前密度 γ2:泥浆加重后密度 二、降比重:V=(γ原-γ稀)γ水/γ稀-γ水 V:水量(方) γ原:泥浆原比重 γ稀:稀释后比重 γ水:水的比重 三、配1方泥浆所需土量:W=γ土(γ泥-γ水)/γ土-γ水 γ水:水的比重 γ泥:泥浆的比重 γ土:土的比重 四、配1方泥浆所需水量:V=1-W土/γ土 γ土:土的比重 W土:土的用量 五、井眼容积:V=1/4πD2H D:井眼直径(m) H:井深(m) 六、环空上返速度:V返=12.7Q/D2-d2 Q: 排量(l/S) D: 井眼直径(cm) d: 钻具直径(cm) 七、循环周时间:T=V/60Q=T井内+T地面 T: 循环一周时间(分钟) V: 泥浆循环体积(升) Q: 排量(升/秒) 八、岩屑产出量:W=πD2*Z/4

W: 产出量(立方米/小时) Z: 钻时(机械钻速)(米/小时) D: 井眼直径(米) 九、粒度范围 粗 粒度≥2000μ 中粗 粒度2000-250μ 中细 粒度250-74μ 细 粒度74-44μ 超细 粒度44-2μ 胶体 粒度≤2μ 粘土级颗粒 粒度≤2μ 砂粒级颗粒 粒度≥74μ 十、API 筛网规格: 目数 孔径(μ) 20 838 30 541 40 381 50 279 60 234 80 178 100 140 120 117 十一、除砂器有关数据 除砂器:尺寸(6-12″) 处理量(28-115立方米/小时) 范围(除74μ以上) 除砂器:尺寸(2-5″) 处理量(6-17立方米/小时) 范围(除44μ以上) 十二、极限剪切粘度:η∞=1.1952*(600θ-100θ)2 十三、卡森动切力: τc =1.512*(1006θ-600θ)2 十四、流变参数

钻井液常用计算公式

钻井液常用计算公式 1、钻井液配制与加重的计算 (1)配制低密度钻井液所需粘土量 水 土水 泥土泥土 )(ρ-ρρ-ρρ=V W 式中: 土W ---所需粘土重量,吨(t ); 土ρ -- 粘土密度,克/厘米3(g/cm3) 水ρ -- 水的密度,克/厘米3(g/cm3) 泥ρ -- 欲配制的钻井液的密度,克/厘米3(g/cm3) 泥 V 欲配制的钻井液的体积,米3(m3) (2)配制低密度钻井液所需水量 土 土泥水ρ-=W V V 式中: 水V ---所需水量,米3(m3); 土ρ -- 所用粘土密度,克/厘米3(g/cm3) 土 W -- 所用粘土的重量,吨(t ) 泥V -- 欲配制的钻井液的体积,米3(m3) (3)配制加重钻井液的计算 ①对现有体积的钻井液加重所需加重剂的重量

重 加原 重加原加 ) (ρ-ρρ-ρρ=V W 式中: 加W ---所需加重剂的重量,吨(t ); 原ρ -- 原有钻井液的密度,克/厘米3(g/cm3) 重ρ -- 钻井液欲加重的密度,克/厘米3(g/cm3) 加ρ -- 加重剂的密度,克/厘米3(g/cm3) 原 V -- 原有钻井液的体积,米3(m3) ②配制预定体积的加重钻井液所需加重剂的重量 原 加原 重加重加 ) (ρ-ρρ-ρρ=V W 式中: 加W ---所需加重剂的重量,吨(t ); 原ρ -- 原有钻井液的密度,克/厘米3(g/cm3) 重ρ -- 钻井液欲加重的密度,克/厘米3(g/cm3) 加ρ -- 加重剂的密度,克/厘米3(g/cm3) 重 V -- 加重后钻井液的体积,米3(m3) ③用重晶石加重钻井液时体积增加 2 1 224100(v ρ-ρ-ρ=.) 式中: v ---每100m3原有钻井液加重后体积增加量,米3(m3);

钻井液流变性概述

钻井液流变性概述 摘要: 钻井液在石油钻井中起着十分重要的作用,深入研究钻井液的性能,对油气井钻井液流变参数的优化设计和有效调控是钻井液工艺技术有十分重要的指导意义。根据API 推荐的钻井液性能测试标准,钻井液的常规性能包括:密度、漏斗粘度、塑性粘度、动切力、静切力、API 滤失量、HTHP 滤失量、PH 值、碱度、含砂量、固相含量、膨润土含量和滤液中的各种离子的质量浓度等。本文主要对钻井液的流变性进行综述,包括钻井液的流型及流变参数、钻井液流变性与携岩原理及井壁稳定性的关系。 关键词:钻井液 流变性 流型 携岩原理 一.钻井液在石油钻井中的作用 (1)从井底清除岩屑(2)冷却和润滑钻头及钻柱(3)造壁功能(4)控制地层压力(5)循环停止时悬浮岩屑和加重材料,防止下沉(6)从所钻地层获得资料(7)传递水力功率 二.钻井液的类型 分散钻井液 钙处理钻井液 盐水钻井液 饱和盐水钻井液 聚合物钻井液 甲基聚合物钻井液 合成基钻井液 气体型钻井液 保护油气层的钻井液 三.钻井液的流变性 钻井液的流变性是指在外力作用下,钻井液发生流动和变形的特性。 流体分为牛顿型流体和非牛顿型流体,非牛顿型流体又分为塑性流体、假塑性流体、膨胀性流体。现场使用钻井液多为塑性、假塑性流体。 1.牛顿流体 通常将剪切应力与剪切速率的关系遵守牛顿内摩擦定律的流体,称为牛顿流体。 流变方程: dv dx τμ =

其流动特点:加很小的剪切力就能流动,而且流速梯度与切应力成正比。在层流区域内,粘度不随切力流速梯度变化,为常量。 2.非牛顿流体 (1)塑性流体 0PV dv dx ττμ-= 剪切力τ≠0,而是s τ,即施加的切应力必须超过某一特定值才能开始流动。切应力继续增大,并超过s τ时,塑性流体不能均匀剪切,粘度随切应力的增加而增加,即图中曲线段;继续增加切应力,粘度不随切应力的增加而增加,图中直线段; 1)s τ,静切力,是钻井液静止时单位面积上形成的连续空间网架结构强度的量度。 2)0τ,动切力,反映钻井液处于层流状态时钻井液中网状结构强度的量度。 3)0 pv dv dx ττμ-= ,塑性粘度,即塑性流体流变曲线段斜率的倒数,不虽剪切力而变化。 4)00 PV AV PV PV dv dx dv dx dv dx dv dx τμττ μμμμ+= = = +=+结构,表观粘度,又称有效粘 度,是在某一流速梯度下剪切应力与相应流速梯度的比值。 5)0PV τμ,动塑比,反映钻井液中结构强度和塑性粘度的比例关系。一般要求在0.34—0.48的范围内。 两种粘度对钻井液工艺具有很重要的意义: 1、了解两种粘度所占的比例组成,有助于认识钻井液的实质和问题所在,有助于判断环空流态和钻井液稀释特性。

相关文档
最新文档