谐波电流测试方法

谐波电流测试方法
谐波电流测试方法

谐波电流测试谐波电流测试(Harmonic Current)

1. 谐波电流测试参考标准:IEC61000-3-2:2001

2. 谐波电流测试主要测试设备:

限值:

表 1 A类设备的限值

谐波次数n最大允许谐波电流奇次谐波

3 2.30

5 1.14

70.77

90.40

110.33

130.21

15≤n≤390.15×15/n

偶次谐波

2 1.08

40.43

60.30

8≤n≤400.23×8/n

(注:B类设备输入电流的各次谐波不应超过表1给出值的1.5倍。)

表 2 C类设备的限值

谐波次数n 基波频率下输入电流百分数标示的最大允许谐波电流/%

22 330×λ510 77

95

11≤n≤393

λ是电路功率因数。

表3 D类设备的限值

谐波次数n 每瓦允许的最大谐波电流

mA/W最大允许谐波电流A

3 3.

4 2.30

5 1.9 1.14

7 1.00.77

90.50.40 110.350.33

13≤n≤39 3.85/n(见表1)

A类:平衡的三相设备;

家用电器,不包括列入D类的设备;

工具,不包括便携式工具;

白炽灯调光器;

音频设备。

未规定为B、C、D类的设备均视为A类设备。B类:便携式工具;

不属于专用设备的电弧设备。

C类:照明设备。

D类:功率不大于600W的下列设备:

个人计算机和个人计算机显示器;

电视接收机。

无功功率的测量方法

四种相位的测量方法(无功功率) 一、无功功率概念的历史发展 最早的无功功率概念是建立在单相正弦交流信号的基础上。 设某线路的电压 ,电流,则 有功功率为 ,无功功率为。U 、I,分别为电压与电流的有效值。 随着半导体行业和电力工业的发展,各种整流器件、换流设备以及其他非线性负载大量安装与电力系统中,使原有的无功功率定义在工程运用中非常不方便。 现在人们对正弦信号无功功率有了新的理解。 假设某单相线路的电压为 ,电流为,则将按照与平行和垂直两个方向分解为与,那么与的积即为无功功率。 二、无功功率的测量方法 1、替代法 主要使用于无功功率变送器中,用于测量三相平衡电路的无功功率。当三相电路严格平衡对称时,此方法不存在原理性误差。在不对称与存在多谐波的情况下,此方法不适用。 2、电子移相测量法(简称模拟移相法) 多用于比较高级的综合仪器中(多用数字表) 根据三角公式变换??sin 90-cos =?)(,从而把无功功率测量转化为有功功率测量,即转化为求两个向量的内积)(???=??=90-cos U I sin U I Q ??。这已经可以比较方便的测量了。 理想情况下电子移相并不存在原理性误差。但在工程上电容与电阻是实际元件,其值及相应的效应与理想值差距巨大,所以效果并不理想。 3、数字移相测量法 在一个周期内对三相电压、三相电流均匀采样24点至64点(因生产厂家所生产的设备不同而异),然后用电压采样值乘以滞后90度点的电流采样值,做积分运算从而得到一个周期内的平均无功功率 N N N N /)j 4/(i u )j 4/(i u )j 4/(i u Q N 1j C Cj B Bj A Aj ∑=+?++?++?=)( 式中 j ——代表第j 个采样点 N ——代表一个周期的采样点数,N/4代表1/4个周期 从原理上讲,不存在理论误差。该方法的问题主要在于数字移相的适用性。当被测量是单纯的三相正弦信号,可以通过控制采样点数及其均匀的程度来实现精密的数字移相。但是如果被测信号不是严格的正弦波,有谐波含量、则数字移相就要出现误差。原因在于,数字移相90度是按基波计算的,对于三次谐波而言,则相当于移了270度,对于五次谐波而言,相当于移相90度。所以此时的无功功率测量存在着各次谐波造成的误差。 )?+=wt sin(2u U )?+=wt sin(I 2i ?cos UI P =?sin UI Q =→U →I →I →U →1I →2I →U →2I

谐波及无功电流检测方法对比分析

谐波及无功电流检测方法对比分析 0 引言 APF补偿电流的检测不同于电力系统中的谐波测量。它不须分解出各次谐波分量,而只须检测出除基波和有功电流之外的总的高次谐波和无功畸变电流。难点在于准确、实时地检测出电网中瞬态变化的畸变电流,为有源电力滤波器控制系统进行精确补偿提供电流参考,这是决定APF性能的关键。目前文献已报道运行的三相APF中所使用的几种谐波电流检测方法,除了各自存在的难以克服的缺陷外,共同存在的问题是,由于是开环检测系统,故对元件参数和系统的工作状况变化依赖性都比较大,且都易受电网电压畸变的影响。对单相电路的谐波和无功电流的检测还存在实时性较差的缺点。 本文对目前有源电力滤波器中应用的畸变电流检测与控制方法进行了分析比较,在此基础上,针对APF中只须检测总的畸变电流,反向后注入系统,以抵消或补偿系统中畸变电流,使电网仅提供基波有功电流这一工作特点,从保证APF能最有效地工作出发,综合瞬时无功功率理论检测法的快速性和闭环电路的鲁棒性,提出了基于瞬时无功功率理论的闭环检测方案。从谐波及无功电流开环、闭环检测电路抽象出检测电路的本质(本文称为统一模型),在此基础上,给出了检测电路的优化设计方案,研究了检测系统中等效低通滤波器的阶数与截止频率对检测精度与快速性的影响,推导了统一模型下闭环检测电路的实现。最后,通过实验加以验证。 1 基波幅值检测原理 设单相电路中的电源电压为 u s= U sin t(1) 非线性负荷电流为 i L(t)=i f(t)+i h(t)=i fp(t)+i fq(t)+i h(t)=i fp(t)+i c(t)(2) 式中:i f(t)为i L(t)的基波电流; i h(t)为i L(t)中高次谐波电流; i fp(t),i fq(t)分别为基波电流的有功分量和无功分量; i c(t)为要补偿的谐波和无功电流之和,称为畸变电流。 因为,负荷电流中的基波有功分量必定是一个初相角与电网电压相同,角频率为基波角频率ω的正弦波,所以,我们可以设负荷电流的基波有功分量为 i fp(t)=A sin t(3) 若能求出A的大小,则可由式(3)得出基波有功电流的表达式。

电网谐波监测分析模块建设要求

建立统一的公司级谐波监测分析模块,集成全网电能质量监测数据并开展大数据分析,诊断、预测和评估电能质量干扰源对电网运行的影响,及时发现影响电网安全的隐患,支撑电能质量治理决策,增强电网系统运行可靠性和稳定性。

?谐波监测子模块数据交互方式 (1)总部和省公司谐波监测子模块数据交互应满足“电网谐波监测分析模块纵向接口要求”。 (2)省公司谐波监测子模块与省公司PMS数据交互:获取台帐、鉴权等信息,接口应满足“电网谐波监测分析模块与PMS接口要求”。?谐波分析子模块数据交互 谐波数据分析在总部谐波分析子模块开展,省公司可按权限直接访问总部相关数据。

?总部、省公司主站及其互联 总部谐波模块部署于总部信息内网二级系统域中,省公司谐波模块部署于省公司信息内网二级系统域中。总部谐波模块与省公司谐波模块通过信息内网纵向通道互联,应满足信息内网纵向边界安全防护要求。 ?监测终端接入省公司主站 监测终端通过现有通信通道接入信息内网谐波监测子模块,应满足信息内网终端接入安全防护要求。

1.变电站的重要供电母线及出线: ?跨省计量关口点(必须设置); ?纽变电站高低压母线(可选设置)等。 2. 直流受端落点换流站(必须)及受其影响的变电站高低 压母线(可选)。 3.向干扰源用户供电的母线及出线: ?电气化铁路(必须); ?电弧炉、中频炉、轧机、轨道交通、电动汽车充电站、电焊机、变频调速设备、起重设备、电加热和电解设 备、大型储能电站、大型电梯、变频空调、节能照明、逆变电源、开关试验站等(可选)。

4. 向敏感、重要、高危用户供电的母线及出线: 半导体制造、精密加工,党政机关、医院、交通枢纽、机场、金融、数据中心,危险化学品、易燃易爆品制造等(可选)。 5. 电源接入点: ?10kV及以上风电场、光伏电站等新能源发电专线接 入变电站相关母线及出线(必须), ?其他发电厂(场、站)接入点(可选)。 6. 其他监测点: ?装设FACTS设备(如SVC、STATCOM等)的系统变 电站(换流站)母线及出线(必须)、 ?现场测试中超标较严重或用户投诉较多的变电站母线 及出线等(可选)。

电能质量测试报告

电能质量测试测试报告 测试人员:xxx 报告撰写:xxx 批准:xxx 单位:xxx 2013年3月

目次 1 测试概况 (3) 2 测试依据 (3) 3 测试仪器 (5) 4 测试参数 (7) 5 测试现场接线图 (7) 6 . 4AA12出线测试结果及其分析 (8) 6.1 4AA12出线电压水平 (8) 6.1.1出线电压有效值 (8) 6.1.2出线电压偏差 (8) 6.1.3出线电压有效值变化趋势 (9) 6.1.4分析结论 (10) 6.2 电压总畸变率 (10) 6.3 电压不平衡度 (12) 6.4 电压闪变 (13) 7、3AA16出线测试结果及其分析 (13) 7.1 3AA16出线电压水平 (13) 7.1.1出线电压有效值 (13) 7.1.2 出线电压偏差 (14) 7.1.3出线电压有效值变化趋势 (14) 7.1.4分析结论 (15) 7.2 电压总畸变率 (15) 7.3 电压不平衡度 (17) 7.4电压闪变 (17) 8 测试结论 (18)

1 测试概况 xxx有两台UPS电源,主要用于给BCS医疗系统供电。该UPS由泰高系统有限公司提供,型号为:RSOAVR 60KVA/380V 在线式,每个电源柜中装载29块(阳光)电池,使用至今电池未发现漏液现象。 近期以来,晚上开启日用灯后,该UPS电源柜偶尔会发生异常报警(三声报警,无信息提示),具体原因不详。为了分析该报警是否与谐波污染有关系,该公司拟对UPS电源380V母线及出线的谐波水平进行测试。 应xxx公司要求,2016年xx月xx日至xx月xx日,xxxxxx有限公司对xxxx有限公司两台UPS供电设备出口母线进行了一次谐波测试。 2 测试依据 该项测试依据GB/T14549-93电能质量公用电网谐波国家标准进行。 GB/T14549-93各级电压等级谐波限值规定如下表1, 公共连接点的全部用户向该点注入的谐波电流允许值见表2。 ???????? 表1:公用电网谐波电压(相电压)限值

三相无功功率的测量方法

三相无功功率的测量方法 发电机及变压器等电气设备的额定容量为S=UI,单位为伏安。在功率因数较低时,即使设备已经满载,但输出的有功功率却很小(因为P=UIcosφ),不仅设备不能很好利用,而且增加了线路损失。因此提高功率因数是挖掘电力系统潜能的一项重要措施。电力工业中,在发电机、配电设备上进行无功功率的测量,可以进一步了解设备的运行情况,以便改进调度工作,降低线路损失和提高设备利用率。测量三相无功功率主要有如下方法。 1. 一表法 在三相电源电压和负载都对称时,可用一只功率表按图4-1联接来测无功功率。 将电流线圈串入任意一相,注意发电机端接向电源侧。电压线圈支路跨接到没接电流线圈的其余两相。根据功率表的原理,并对照图4-1,可知它的读数是与电压线圈两端的电压、通过电流线圈的电流以及两者间的相位差角的余 弦cosφ的乘积成正比例的,即P Q =U BC I A cosθ (4-1) 其中θ =ψ UBC –ψ iA 图4-1 由于uBC与uA间的相位差等于90度(由电路理论知),故有θ=90o-φ式中φ为对称三相负载每一相的功率因数角。在对称情况下UBC IA 可用线电压U1及线电流I1表示,即 PQ=U1I1cos(90o-φ )=U1I1sinφ (4-2) 在对称三相电路中,三相负载总的无功功率Q =√3 U1I1sinφ (4-3) ∴ 亦即Q=√3PQ (4-4) 可知用上述方法测量三相无功功率时,将有功功率表的读数乘上√3/2 倍即可。 2. 二表法

用两只功率表或二元三相功率表按图4-2联接,从功率表的作用原理可知,这时两个功率表的读数之和为 PQ=PQ1=PQ2=2U1I1sinφ(4-5) 较式(4-3) (4-5) 知(4-6) Q=√3PQ/2 图4-2 从上式可见将两功率表读数之和(或二元三相功率表的读数)乘以√3/2,可得到三相负载的无功功率。 3. 三表法 三表法可用于电源电压对称而负载不对称时,三相电路无功功率的测量,其接线如图4-3所示。当三相负载不对称时,三个线电流IA、IB、IC不相等,三个相的功率因数角φA 、φB 、φC 也不相同. 图4-3 因此,三只功率表的读数P 1、P 2 、P 3 也各不相同,它们分别是:4-3 (1) P 1=U BC I A cos(90o-φ A )=√3U A I A sinφ A (2) P 2=U CA I B cos(90o-φ B )=√3U B I B sinφ B

三种谐波和无功电流检测算法的综合性能比较

三种谐波和无功电流检测算法的综合性能比较 王冲,解大,陈陈 (上海交通大学电子信息与电气工程学院,上海市 200240) 摘要:有关谐波和无功电流的检测方法,学界提出了三种主流算法,即 p-q法、i p -i q 法和自适应电流检测法。一般文献只对算法某些方面的性能进行探 讨,并未就算法的稳态和动态滤波性能进行综合研究。本文将对这三种算法的综合滤波性能对比研究,并给出各种典型的复杂谐波状况下的仿真验证。 关键词:谐波检测;无功补偿;电力有源滤波器 0引言 电力电子技术的快速发展使得非线性装置在工业界广泛使用,随之产生的谐波污染问题也日益严重。高次谐波和无功电流的补偿已成为电力电子学和现代电力系统中亟待解决的问题。目前,有源滤波器(Active Power Filter)技术可视为最有效和最具潜力的方案。而其谐波和无功电流检测技术是整个方案的关键之处,能否快速精确的检测出需补偿的分量,并具有良好的动态跟踪性能,直接决定了装置的整体滤波性能。 谐波和无功电流检测方法一般有: (1)基于频域分析的FFT方法。原理是将谐波分量分解再合成出总的谐波分量,其特点是速度慢,且对高次谐波检测的效果不佳,同时无法检测出无功分量。 (2)用模拟带通滤波器或陷波器检测高次谐波电流。由于滤波器的中心频率固定,当电网频率波动时,滤波器效果将随之变差。此外,滤波器的中心频率对元件的参数十分敏感,这样较难得到理想的幅频特性和相频特性。同样,该法也不能分离出无功电流。 (3)基于“瞬时无功功率理论”的电流检测法。自1983年日本学者赤木泰文 提出该理论[1]以来,已发展出成熟的算法,即p-q法和i p -i q 法。理论上可检测

谐波测试报告

谐波测试评估报告一、谐波测试(只测量了AC相) 图一:电压谐波总畸变率曲线 图二:谐波电流频谱图

监测时间: 参数 A相C相 限值95%值结论95%值结论 基波电压(kV)10.512 ------ 10.502 ------ ------- 2至25次谐波电压含有率(%)2 0.03454 合格0.01092 合格 1.60 3 0.19926 合格0.15543 合格 3.20 4 0.03408 合格0.00670 合格 1.60 5 0.16759 合格0.17845 合格 3.20 6 0.02714 合格0.00746 合格 1.60 7 0.25205 合格0.24453 合格 3.20 8 0.03559 合格0.01170 合格 1.60 9 0.05251 合格0.04012 合格 3.20 10 0.03198 合格0.01110 合格 1.60 11 0.25849 合格0.23378 合格 3.20 12 0.03327 合格0.00933 合格 1.60 13 0.16225 合格0.16792 合格 3.20 14 0.02927 合格0.01277 合格 1.60 15 0.06167 合格0.03726 合格 3.20 16 0.02944 合格0.00777 合格 1.60 17 0.46499 合格0.49567 合格 3.20 18 0.02481 合格0.00602 合格 1.60 19 0.70382 合格0.82298 合格 3.20 20 0.02479 合格0.00736 合格 1.60 21 0.04745 合格0.02988 合格 3.20 22 0.02127 合格0.00644 合格 1.60 23 0.06317 合格0.08257 合格 3.20 24 0.02202 合格0.00853 合格 1.60 25 0.06950 合格0.07423 合格 3.20 电压总畸变率(%)0.95432 合格 1.04190 合格 4.00 短时间闪变(l)0.21041 ------ 0.07000 ------ ------ 长时间闪变(l)0.25475 合格0.09240 合格 1.00 三、频率及电压不平衡率评估 监测时间 参数最大值平均值最小值95%值限值结论频率(Hz)50.048 50.003 49.961 ±0.032 ±0.20 合格负序电压不平衡度(%)100.000 0.14991 0.01000 0.11000 2.00 合格

谐波电流计算公式是什么

谐波电流计算公式是什么? 谐波含量计算: 测试时最好测出设备较长时期运行时最大的谐波电流,其和产生谐波电流的负载投入有关,若产生谐波电流的负载全部投入,测试的数据是比较准的。 A、咨询现场工程人员,此时产生谐波的负载是否全部满负荷运行,产生谐波的负载就是非线性负载,变频器,整流设备,中频炉等。测试时现场工程人员应该知道同类的非线性负载投入了多少,所以一定问清楚,自己也可以通过配电盘看一下同类的设备投入了多少,最终目的就是能够知道我们此次测试的谐波电流含量是否为其真正的谐波含量,否则按比例推算。譬如我们测试时同类设备只有一半运行,毫无疑问我们的测试报告要对其进行说明,并且推算出其真实的谐波含量应该乘以2。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大谐波含量,如下图: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其THDA (平均畸变率)为9.4%,Arms为1.119KA,那么其计算的谐波含量为105.186A,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大谐波含量,那么选取1台100A的设备即可满足谐波补偿要求。 无功功率补偿计算: A、咨询现场工程人员,或者调用其原始功率因数数据,因为功率因数是考核指标,主要咨询两个问题,一是功率因数长期基本上是多少,二是在此功率因数时长期负载电流I多大,通过公式计算出P的值,然后计算出需要补偿的无功功率,无功功率计算公式为,——对应cosφ前的正切值,——对应cosφ后的正切值。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大无功补偿量,如下图所示: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其平均功率为P=140KW,补偿前功率因数cosφ前=0.554,若补偿后要求功率因数不低于cosφ后=0.90,那么根据公式其计算的无功补偿容量为142.66KVAR,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大无功补偿容量,那么选取3台100A的设备即可满足谐波补偿要求。

无功电流的测试

摘要 随着电力电子设备及非线性负载在电力系统中广泛应用,电网中的电压和电流波形畸变也越来越严重。谐波的抑制和无功电流补偿已成为电力电子学和现代电力系统急需解决的问题。这些非线性负荷在工作中时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。而由于无功电流的存在,在传送同样能量的情况下,电流比没有无功的情况下增加,会大量增加系统的铜损,降低线路与变压器的利用率。无功电流检测是对电网无功功率补偿必不可少的部分。本文主要介绍了电流的检测基本原理和从检测电流中分解出无功电流的方法和原理。检测电流包括基波分量和谐波分量,基波分量又包含有功电流分量和无功电流分量,通过滤波可以得到基波电流分量,与原有电流相减就可以得到谐波电流,通过坐标变换可以将基波电流分解成有功电流和无功电流。 关键词:基波谐波有功电流无功电流

目录 摘要I 1 电流检测的意义和基本原理 1 2无功电流的分解方法 2 2.1三相对称电路无功电流检测2 2.2单相电路无功电流检测8 3无功电流检测仿真及分析12 3.1三相对称电路无功电流检测仿真及分析12 3.2单相电路无功电流检测仿真及分析 18 总结与体会23

参考文献:25

无功电流检测研究 1 电流检测的意义和基本原理 电力电子技术的快速发展使得非线性装置在工业界广泛应用,随之产生的谐波污染问题也日益严重。谐波抑制及无功补偿的一个重要手段是电力有源滤波器。其基本原理是从补偿对象中检测出谐波或无功电流,由补偿装置产生一个与该电流大小相等而极性相反的补偿电流与其相抵消。其中,谐波和无功电流的正确检测是决定补偿效果的重要环节。无功功率Q是既产生附加线损,又对发,配电系统都有影响的量,分析Q 的物理本质,研究它的正确涮量与补偿的方法,是电工理论与电工技术中尚无定论的一个重要课题。无功功率是无功电流引起的,欲了解无功功率,应先了解无功电流。无功电流是导出量,不是基本量,基本量是有功电流。由有功电流不仅可导出无功电流和无功功率,还可以确定无功补偿所需要达到的目标以及无功补偿应采取的方法等。

基于PO法的谐波电流与无功电流检测方法没计

基于PO法的谐波电流与无功电流检测方法没计 【摘要】抑制谐波和提高功率因数是涉及电力电子技术、电气自动化技术和电力系统的一个重大课题。本文首先对谐波的危害进行了简述,分析了谐波的定义,重点讨论了三相瞬时无功功率理论,并对以此为基础的谐波电流检测法PQ法进行了理论分析和仿真验证。 【关键词】功率因数;谐波抑制;瞬时无功功率 0 引言 电力电子技术在推动电力系统发展,灵活高效地利用电能的同时,其设备又成为电力系统中最主要的谐波源,同时消耗无功功率[1-2]。谐波的危害是多方面的,主要体现在:1)对供配电线路的危害:主要是影响线路的稳定运行和电能质量;2)对电力设备的危害:包括对电力电容器的危害、对电力变压器的危害和对电力电缆的危害;3)对用电设备的危害:包括对电动机的危害、对低压开关设备的危害和对弱电系统设备的干扰。4)对人体和电力测量准确性的影响:目前采用的电力测量仪表当谐波较大时将产生计量混乱,测量不准确。谐波污染对电力系统安全、稳定、经济运行构成潜在的威胁,给周围的电器环境带来极大影响并对人体健康存在潜在危害,被公认为电网的危害和人体生命的杀手。 1 电力谐波的定义 目前国际普遍定义谐波为:谐波是一个周期电气量正弦波分量,其频率为基波频率的整数倍[3]。以正弦波电压为例,可以表示式(1):式中U是电压有效值,θ是初相角,ω是角频率,T为周期;对于周期为T的非正弦波信号,在满足狄里赫利的条件下,可分解为如式(2)的傅立叶级数。 2 基于PQ法的谐波电流和无功电流检测设计 2.1 三相瞬时无功功率理论 2.3 PQ检测仿真设计和验证 3 结论 本文以现代电力生活中大量非线形负荷造成的谐波现象为背景,提出了谐波电流抑制这个现实而急切的问题。本文揭示了谐波的产生原因和危害,重点分析了基于PQ法的谐波电流和无功电流检测法。该方法主要是将三相电流电压通过帕克转换到两相坐标上,利用向量的有关性质,在坐标系中可得到电源电流与两相电流的关系以及电源电压和两相电压的关系,从另一侧面表达出电流与功率的关系,将无功功率与有功功率分开来分析。最后以一三相电轮为实例作出仿真设计,证明了PQ法在同时检测谐波电流和无功电流时具有无延迟性。

谈IEC 61000系列标准文件对电网谐波国标的指导作用

谈IEC 61000系列标准文件对电网谐波国标的指导作用 作者:佚名文章来源:不详点击数:更新时间:2008-9-24 8:52:52 摘要:国内正在采用IEC 61000系列标准文件,文中针对这套标准文件和电网谐波国标关 系上的一些不同认识和理解,对照EIC 61000-3-6和《电能质量公用电网谐波》(GB/T 14549-1993)进行论述,以期达到提高认识,完善国家标准和正确执行标准的目的。 关键词:电磁兼容谐波国家标准 0概述 从1998年开始,我国发布的电磁兼容(EMC)标准中计有二三十项取自(等同或等效)国 际电工委员会(IEC)近年来颁布的IEC 61000系列标准文件[1]。 众所周知,各种电气设备之间以电磁传导、感应和辐射3种方式彼此关联并相互影响,在一定的条件下会对设备的正常工作和人类造成干扰和危害。20世纪80年代兴起的电磁 兼容学科就是以研究和解决这方面问题为宗旨的。该学科的着眼点是对干扰的产生、传播、接收、抑制机理以及相应的测量、计量技术进行深入的研究,在此基础上,根据经济、技 术最合理的原则,对产生的干扰水平、抗干扰水平,以及抑制措施作出明确的规定,使处 于同一电磁环境的设备都是"兼容"的。也就是说,一个设备(或装置、系统)在其电磁环境 中满意地执行其功能,而又不向该环境中的任何实体引入不能允许的电磁扰动。 EMC的基本任务是协调干扰发射者和承受者之间的关系,使其"兼容"。协调的办法是制定合理且配套的规定值。协调中所涉及的几个参数关系如图1所示。图中横坐标为独立 变量,如频率、电压偏差值、谐波含量、电压波动和闪变值、三相电压不平衡度等。

S参数和谐波平衡仿真分析 实验报告

实验报告 课程名称: ADS射频电路设计基础与典型应用实验项目名称: S参数和谐波平衡仿真分析 学院:工学院 专业班级:11信息工程 姓名: 学号:1195111016 指导教师:唐加能 预习报告

一、实验目的 本节实验课程将通过给出一个放大器S参数仿真历程的原理图与谐波平衡仿真历程的原理图,并将其电路通过仿真来实现,从而帮助大家对这两种模型有进一步的理解与认识。 二、实验仪器 PC,ADS仿真软件 三、实验原理 S参数仿真中各项需要用到的模型介绍 (1)放大器模型Motorola_PA S参数仿真原理图SP1.dsn中的放大器是一个电路模型。Motorola_PA是这个电路模型的符号。 图1 Motorola_PA 电路模型 Motorola_PA符号有子电路,它的特性是由子电路来决定,查看子电路的具体步骤如下:在原理同SP1.dsn中,单击按钮,再单击Motorola_PA电路模型。 其中的Motorola_Mosfet_Model也有子电路,可以通过相同方法进入查看。 图2 Motorola_Mosfet_Model电路模型 (2)终端负载Term

在S参数仿真中,各个端口都要加载终端负载Term。 (在本次S参数仿真中,电路输入端口没有加源,而在输入端口采用终端负载Term。) 图3 Term电路模型 (3)直流电压源 在SP1.dsn原理图中,有两个直流电压源V_DC,他们给放大电路提供静态工作点。 图4 直流电压源的电路模型 (4)S参数仿真控制器 SP1,.dsn原理图中,S参数的仿真控制器S-PARAMETERS用于设置所用到的参数,双击可以进入设置界面 图5 仿真控制器的电路模型

谐波的基础知识谐波谐波的种类及谐波频率计算

谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 ———谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 本文介绍谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率如何计算,哪些设备或电路容 易产生谐波,谐波的影响是什么 1 谐波的基础知识 2 (1)什么是基波? 3 电力网络中呈周期性变化的电压或电流的频率即为基波(又称一次波),我国电网规定频率是50 Hz 4 基波是50 Hz。 5 (2)什么是谐波? 6 电力网络中除基波(50 Hz)外,任一周期性的电压或电流信号,其频率高于基波(50 Hz)的,称为 7 电网或电路中,电压产生的谐波为电压谐波; 8 电流产生的谐波为电流谐波。 9 (3)谐波有几种? 10 整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波 11 偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。 12 奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。 13 正序谐波:谐波次数为3k+1(k 为正整数)即4、7、10等次谐波。 14 负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。 15 零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。 16 高频谐波:指频率为圆耀怨kHz的谐波。 17 (4)谐波频率如何计算? 18 谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊越猿 19 缘园Hz等。 20 (5)哪些设备或电路容易产生谐波? 21 1)非线性负载,例二极管整流电路(AC/DC)。 22 2)三相电压或电流不对称性负载。 23 3)逆变电路(DC/AC)。 24 4)UPS 电源(PC 机用),EPS 电源(大功率动力用),即不间断电源。

谐波测试分析报告参考样本

测试报告委托单位: 检测项目: 谐波测试 报告日期: 温州清华电子工程有限公司测试组 送: 目录 一、测试目的 (2) 二、测试依据 (2) 三、测试内容 (3) 四、测试信号与接线方式 (3) 采样信号 (4) 测试工况 (4) 接线方式 (4) 测试时间 (4) 五、测试结果 (5) 六、结论 (8)

附件测试数据 一、测试目的 XXXXXXX 一家工程用塑料管材制造商,是国内从事 PP-R 管道的龙头企业,目前35KV 变电所共有 3 台主变,1#,2#主变容量为 1250KVA,采用并联运行方式,3 #主变容量为1600KVA,分别供挤出,注塑,波纹管,破碎造粒车间的供电,而大部分的电机都采用直流调速,工作时不同程度的产生谐波注入 35KV 母线,故通过对伟星新型建材有限公司三台主变 0.4KV 侧的谐波测试,了解该变低压母线上的谐波情况,来评估 0.4KV 级别电源的电能质量是否符合国标《GB14549-93 电能质量公用电网谐波》。 二、测试依据 綷◆●? GB14549-93《电能质量公用电网谐波》 表 1 公用电网谐波电压(相电压)限值 电网标称电压电压总谐波畸变各次谐波电压含有率% KV 率% 奇次偶次 0.38 5.0 4.0 2.0 6 10 4.0 3.2 1.6 35 66

3.0 2.4 1.2 110 2.0 1.6 0.8 表 2 1250KVA0.4KV 公用电网谐波电流限值 谐波次数 5 7 11 13 23 25 允许值129 91 58 50 29 25 表 3 1600KVA0.4KV 公用电网谐波电流限值 谐波次数 5 7 11 13 23 25 允许值165 118 75 64 37 32 谐波电流允许值计算见 GB14549-93 中公司(B1),其中变压器 1600KVA,短路容量为 26.7MVA, 1250KVA,短路容量为 20.8MVA。 綷◆●? GB/T 12326-2000 《电能质量电压波动和闪变》 电力系统公共连接点,由波动负荷产生的电压变动限值和变动频度、电压等 级有关,如表 3。 表 4 电压变动限值 频度 r,h-1 电压变动限值d,% LV、MV HV r≤1 4 3 1

谐波电流及抑制

一.谐波电流 一般来说, 理想的交流电源应是纯正弦波形, 但因现实世界中的输出阻抗及非线性负载的原因, 导致电源波形失真。近年来整流性负载的大量使用, 造成大量的谐波电流, 也间接污染了市电, 产生电压的谐波成份. 另外一些市售的发电机或UPS本身输出电压就非纯正弦波, 甚至有方波的情形, 失真情形更严重, 所含谐波成份占了很大的比。 1.谐波的危害 谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。 2.谐波是怎么产生的 一是发电源质量不高产生谐波: 发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。

二是输配电系统产生谐波: 输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流%。 三是用电设备产生的谐波: 晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

有源电力滤波器中的谐波检测电路设计

有源电力滤波器中的谐波检测电路设计 摘要:针对现在有源电力滤波器中谐波检测的缺陷,设计出一种基于DSP、AD756和MAX260等硬件相结合的谐波检测电路。分析了ip-iq谐波电流检测算法,并且在硬件上实现。介绍了硬件结构原理,给出硬件设计框图和谐波检测各部分的程序流程,并研制出谐波检测电路。实验结果验证了谐波检测的快速性和准确性,系统运行稳定可靠,有较好的应用前景。关键词:谐波检测;TMS320F2812;AD7656;PLL;MAX260;C8051F330 对于有源电力滤波器(APF)而言,实时准确地检测出谐波电流是非常关键的,它的快速性、准 确性、灵活性以及可靠性直接决定APF的补偿性能。设计的谐波检测电路检测出的多路模拟信号会有一定的延迟性,这会大大影响APF计算谐波的精确性和准确性。本文中谐波检测装置所用的AD7656具有6路同步采样特性,克服了测量结果之间延迟的缺点,使得测量精度高。以上优点弥补了目前APF中谐波电流检测技术的缺陷,而且抗混叠滤波器、隔离放大器、过零检测电路、锁相倍频电路的设计增强了检测的精确性。1 装置整体运行原理及相关算法1.1 装置运行原理图1为并联型有源电力滤波器的原理结构框图。图中,交流电网对非线性负载电,非线性负载为谐波源,产生谐波并且消耗无功功率。有源电力滤波器由4部分组成:谐波电流检测电路、电流跟踪控制电路、主开关器件驱动电路和主电路。谐波电流检测电路采用基于瞬时无功功率理论的ip-iq算法,根据有源电力滤波器的补偿目的检测出负载电流中的谐波分量,同时还要检测直流侧母线电容电压。然后将这些信号输入电流跟踪控制电路,通过控制算法生成一系列PWM信号,以此作为补偿电流的指令信号。这些信号经过电平转换后输入主开关器件驱动电路,驱动主电路中的主开关器件。此时,APF 产生并向电网注入补偿电流,该电流与非线性负载电流相位相反,幅值为负载

一种简单实用的APF 谐波电流检测实验系统

一种简单实用的APF谐波电流检测实验系统① 李自成,任明炜,李彦旭 (江苏大学电气信息工程学院,镇江 212013) 摘 要:现有的多种有源电力滤波器(Active Power Filter, APF)单相电路谐波电流检测方法,它们的有效性均采用仿真验证,而缺少实验环节。针对此问题,将UA206 A/D数据采集卡通过PCI口与计算机相连,以电源电压和负载电流作为输入信号可以构成一种简单实用的APF谐波电流检测实验系统。该系统具有结构简单、稳定性好、可靠性高、程序设计较为容易等特点。使用此系统对一种基于神经网络的谐波电流检测方法进行了实验,实验证实使用此实验系统可以方便验证所提出的APF谐波电流检测方法的正确性和检测性能。 关键词:有源电力滤波器;谐波电流;实验系统;A/D数据采集卡;程序设计 Simple Practical Experimental Detecting System for Harmonic Current of APF LI Zi-Cheng, REN Ming-Wei, LI Yan-Xu (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China) Abstract: At present, the validities of many detecting methods for harmonic current of single-phase active power filter (APF) are verified by simulation but without experiments. To solve this problem, a simple practical experimental detecting system for harmonic current of APF is obtained by UA206 A/D data collecting block being joined with computer by PCI port and supply power voltage and load current being regarded as input signals. The system has the characteristics of simple configuration, nice stability, high reliability and easy programmer. Using this system, the experiment of a detecting method for harmonic current based on neural networks is done, and it validates that adopting the system can expediently verify the correctness and detecting performance of the proposed detecting method for harmonic current of APF. Keywords: active power filter (APF); harmonic current; experimental system; A/D data collecting block; programmer 1引言 APF是一种治理谐波和补偿无功的电力电子装置,而谐波电流检测是其关键技术。基于三相电路瞬时无功功率理论的三相电路谐波电流检测方法[1]是得到公认的较为成熟的方法。而对于单相电路,至今还没有一种较为成熟的方法。现在,APF单相电路谐波电流检测方法的研究已成为众多学者关注的一个热点。一般地,认为谐波电流检测属于非线性问题,是比较复杂的。因此,他们纷纷将针对非线性系统的现代控制的最新理论如人工神经网络、自适应控制等用于单相电路谐波电流检测,为此提出了许多新方法,如基于神经元的自适应法[2-4],基于补偿电流最 ①收稿时间:2010-09-02;收到修改稿时间:2010-09-23小原理的检测方法[5,6],基于电路模型和神经网络的检测方法[7]等。 这些谐波电流检测方法多采用仿真验证其有效性,而缺少实验环节[3-7]。造成这种结果的主要原因是传统的APF谐波电流检测的实验具有一定的复杂性,其复杂性主要体现在:要设计以微处理器为核心的硬件系统—包括电路板设计、电路板的生产、电路板的调试等;要设计验证检测方案的软件系统—要使用汇编语言或者高级语言(带有高级语言编译器的微处理器开发系统)编程,需要直接对硬件及接口编程,而且不同的微处理器,有不同的指令系统,因此,程序设计较为困难。这些无疑具有一定的难度。而且按照这

电能质量及谐波标准

电能质量及谐波标准 内容提纲 1.电能质量基本概念 2.电能质量的影响 3.电能质量国家标准综述 4.电能质量国家标准摘要 5.电能质量国外标准简介 6.谐波国家标准基本内容 7.国外谐波标准介绍 1 电能质量的基本概念 (1)电力系统概况:结构、有功和无功平衡,各种干扰(2)电能质量——关系到电气设备工作(运行)的供电电压指标。(3)电能质量指标:电压偏差、频率偏差、谐波、电压波动和闪变、三相电压不平衡度、暂时过电压和瞬态过电压、电压暂降、波形缺口、…… (4)电能质量指标特点: a. 空间上、时间上不断变化

b. 需要供、用电双方共同合作维护 (5)电能质量问题的由来 ? 随电力工业诞生而存在的一个传统问题; ? 现代用电负荷结构发生了质的变化。电力电子技术广泛应用,家用电器普及,炼钢电弧炉和轧机的发展等,由于其非线性、冲击性以及不平衡的用电特性引起电能质量的恶化。 ? 计算机的普及、IT产业的发展、微电子控制技术应用导致对电能质量要求越来越高。 例如:一个计算中心失电2s就可能破坏几十个小时数据处理结果,导致几十万美元产值损失; 1~2周波供电电压暂降,就可能破坏半导体生产线,导致上百万美元损失。 据统计美国因电能质量问题造成的损失每年高达260亿美元。 2005年由国际铜业协会(中国)的一次“中国电能质量行业现状与用户行为调研报告”中,调查了32个行业,共92个企业中有49个企业,因电能质量问题,在经济上损失2.5~3.5亿元(人民币),每个企业年经济损失约10万~100万(人民币)(其中有四家年损失1000万元以上)。(6)关于电能质量的定义 Power Quality——电能质量(电源质量、电力质量、电力品质) ? 导致用户设备故障或不能正常工作的电压、电流或频率偏差。

谐波、谐波电流、谐波电压三者的意义与区分

谐波、谐波电流、谐波电压三者的意义与区分 电力谐波就是电能中包含的谐波成分,分为谐波电压和谐波电流。接下来主要为大家介绍一下谐波、谐波电流和谐波电压的概念及区分。 一、谐波 谐波是与基波对应的一个概念。 如果有一个频率为f正弦波,那么频率为n f的正弦波就称为f正弦波的n次谐波,而频率为f的正弦波就是基波(含义为基本波形)。例如:我们的电力电压波形为50HZ的正弦波,那么3次谐波就是150HZ的正弦波,5次谐波就是250HZ的正弦波。 用数学的方法可以证明,任何一个周期性波形都可以分解为基波和谐波。因此,当电网电压发生畸变时,就表示其中包含了谐波成分。 图1是包含了5次谐波和7次谐波的波形,5次和7次谐波是工业上最典型的两种谐波。

图1含有5次和7次谐波的畸变波形 如果谐波成分是电流,就叫谐波电流。如果谐波成分是电压,就叫谐波电压。 二、谐波电流 谐波电流是导致变压器过热、电缆过热、跳闸、无功补偿装置烧毁的主要原因。 三、谐波电压 谐波电压是电子设备误动作的主要原因。在处理电子设备受干扰的问题是,更加关注电子设备接入电网的位置的谐波电压畸变率。一般要求电压畸变率小于5%。 四、谐波电流和谐波电压的区分

谐波电流与谐波电压之间的关系是很多人搞不清楚的概念。了解他们之间的关系,对于正确解决电能质量问题十分重要,下面对这两者的关系进行讲解。 谐波电流是谐波的根源,谐波电压是谐波电流的产物。因此,要彻底解决谐波导致的各种问题,就要从控制谐波电流入手。 谐波电压是谐波电流流过线路阻抗时产生的,对于特定的配电系统,谐波电流与谐波电压之间的关系如下(欧姆定律): 谐波电压=谐波电流×电网阻抗 式中:电网阻抗包括了变压器的阻抗和配电线的阻抗,如图1所示。

无功电流检测方法与SVG控制策略研究

LOW CARBON WORLD 2017/12低碳技术无功电流检测方法与SVG控制茉略研究黄实批(广西大学电气工程学院,广西南宁530000) 【摘要】本文分析了无功电流检测方法,介绍了目前几种应用的比较多的几种检测方法,接着分析了SVG控制策略,主要分为电流间接控制和电流直接控制,然后对无功电流检测方法进行了阐述,主要分为三角波比较法和滞环比较法,最后进行了仿真分析,以期为我国无功电流检测与SVG控制提供相关的借鉴和参考。 【关键词】无功电流检测;SVG控制;策略研究 【中图分类号】TM761 【文献标识码】A【文章编号】2095-2066( 2017 )36-0077-03 1引言 随着现代社会迅速发展,重要和精密的设备的应用越来 越普遍,它们的负荷所占比例也越来越大,因此电力部门和用 户对电能质量提出了更高的要求。他们不仅要求供电连续可 靠,还要求供电电压频率穗定、波形良好。然而,由于工业和生 活用电中的感性负荷以及电力系统、各工业部门和家电行业 中的电力电子装置消耗了大量无功功率,因此使得电能质量 明显降低。无功功率的补偿是改善电能质量的重要手段之一, 其在提高功率因数、降低电路损耗、减小设备容量、确保供电 和用电设备的安全可靠运行等方面作用明显。因此,无功补偿 问题的研究具有深远的意义。 2无功电流检测方法 电力系统的谐波检测方法和S V G的无功检测不一样,因 为S V G的无功检测无需将各个高次谐波分量进行分离处理, 只需要得到除去基波电压和有功电流的无功电流总值,也就 是包含畸变电流和各次谐波的电参数,以此为S V G补偿系统 供应相应的补偿指令电流,为系统提供反相的补偿电流,中和 或者弥补系统内部的无功,保持和促进基波有功电流的平穗。 现阶段,对于非正弦电路,无功电流检测的方式主要有四种, 分别为自适应理论无功检测、基于Fryze时域分析法、基于频 域分析的Fourier检测法、基于瞬时无功功率理论的开闭环检 测手段及以上各种检测方式的叠加和完善。下面简要的对上 述几种检测法进行介绍: (1) 基于自适应理论的电流检测,这种检测方法主要是检 测无功电流结构是否为闭环控制,检测的基本原理是基于自 适应算法,对基准信号和输入进行对比分析,以此得到广义的 无功电流,自适应算法和很多种理论进行综合,这个系统也具 有非常好的抗干扰性,在电网频率发生偏移时比较适用,存在 畸变电流及不平衡的状态。但相应速度受到一定的限制,因此 需要完善控制算法。 (2) 基于Fryze时域分析检测方法,这种检测方法将平均功率作为主要的检测方法,其基础思路是分解负栽电流,通过 外围的辅助运算电路以及一个周期的积分积累,使负栽电流 变成两个分量,一个是包含谐波电流在内的无功电流,另外一 个是和电压波形吻合的分量。但是,采取这种方法得出的结果 并不是真正意义上面的瞬时无功,仅仅是通过几个周期延迟 的电流值,所以,S V G补偿系统中采取这种检测方法具有很大 的限制性,必须辅助其他的算法,并且对其进行相应的改进。 (3)频域分析Fourier检测法,目的在于使用快速Fourier 变换获得各次谐波的频域参数,以此来获取相位幅值等相关 的信息,需要进行两次计算,大概有80滋s的时差,虽然这种检 测方法在频谱分析方向操作和谐波检测方向都非常成熟,但 是因为延时比较长的原因,在具体的使用过程中,无法实现很 好的实时追踪。(4)无功电流检测的主要方法是瞬时无功功率理论,这种 检测方法是对传统平均值功率的突破,为无功和谐波的实时 监控提供强大的监视工具,基本原理是变换三相电网的所有 参数,之后再进行计算,将电流点积值、电压记为有功功率,将 电流矢量叉积、电压记为瞬时无功,之后再把这些指令值逆变 为补偿电流,通过交换,得到三相补偿电流。这种检测方法应 用的非常广泛,技术发展的很成熟,有诸多优点,但由于不适 用于单相系统和三相不平衡状态,推广性方面还有待加强。 神经网络无功检测理论于近几年成为新兴的研究方向, 主要依靠的是基本神经元和训练样本的自我学习技能,依据 实际情况,不断的对网络的权重值进行调节,以此确保输出的 可靠性。神经网络中的原始输入,输出和学习因子分别对应于 无功检测系统内的畸变电压和负栽电流,输出的指令无功电 流和功电流的反馈值。它的学习过程就是把电网电流和无功 电流的对比差值,保存在结构和权重中,不断的对输出结构进 行完善和更新,促使其无限的接近最优的无功检测值。若想保 证此检测方法的可靠性,必须训练大量的可靠样本,在此前提 下,检测的精度得以确信,由于神经网络的检测方法自称一 体,因此抗干扰能力极佳,实时并且计算量小,响应速度快。只 是目前的研究还并未成熟,需要进一步理论完善。 3 SVG控制策略 S V G的控制系统是一个包括检测、控制和驱动等多个环 节的复杂系统。一个典型的S V G控制系统的工作过程是:① 检测环节通过C T、P T将电网电流电压和S V G输出的电流电 压输送到检测运算电路,检测运算电路按照给定的算法计算 出需要的信号再传送到控制器中,这些信号称为指令信号。② 控制环节根据给定的控制策略对指令信号进行处理,产生触 发变流器门极的驱动信号传送到驱动电路。③驱动电路将驱 动信号进行功率放大,再加到变流器的门极,控制变流器的导 通与截止,这就完成了对S V G的控制。 根据上述理论介绍可知,S V G对电网的补偿效果是可以 控制的,为了达到改变补偿无功电流值的大小,可以采取控制 S V G的内部参数的措施。所以,对于S V G内部控制变量的控 制策略,对系统的运行效果也起着非常关键的作用。通过制定 合理的控制方案,可以对不同的物理量进行严格的控制,以此 达到最好的控制效果,依据不同的分类依据,将S V G的控制 方式总结如下:基于控制理论的思想,S V G的控制方法主要 有:P I D控制、逆PI控制、PI、神经网、自适应理论等相关的控 制方法。基于控制系统的结构角度,能够分为复合环、开环、闭 环及二者两两结合的控制方式。基于控制的物理量,可以分为 通过反馈环直接依靠P W M技术改变无功电流值的直接控制 法及控制相角变化的间接电流控制法等。 3.1电流间接控制 基于S V G装置无功有功功率的基本表达式,我们可以得 77

相关文档
最新文档