凝胶色谱实验讲义

凝胶色谱实验讲义
凝胶色谱实验讲义

凝胶渗透色谱在聚合物研究中的应用

一、目的要求

1. 掌握凝胶渗透色谱(GPC,gel permeation chromatography)的工作原理并了解其构造。

2. 掌握凝胶渗透色谱仪的基本操作及数据处理方法。

3. 利用凝胶渗透色谱仪测定聚合物的分子量及其分布。

二、原理及仪器构造

1.凝胶渗透色谱的工作原理。

GPC是一种特殊的液相色谱,所用仪器与高效液相色谱仪类似,但

是其色谱柱中的填充相与液相色谱不同,其填充相是具有不同比表面积,孔径分布和孔容的凝胶填料(如葡萄糖凝胶、聚丙烯酰胺凝胶、聚苯乙烯凝胶、琼脂糖凝胶等)。GPC的分离过程是基于分子筛效应而进行的。聚合物中分子量小的分子在溶液中的流体力学体积较小因而能够在凝胶颗粒内的孔隙中自由地扩散,但随着分子量的增加其在溶液中的流体力学体积也逐渐增大,当增大到与凝胶中孔隙的尺寸大小相当时,便不能顺利进入到凝胶的内部,分子量更大时便完全不能扩散到凝胶颗粒的内部。如图1所示:

根据这一分子筛效应,可以按照分子尺寸大小的差别来进行分离,

而有机聚合物的分子尺寸大小又与分子量成正相关,也就是说根据这一效应可以将聚合物分子按照分子量大小的差别来进行分离。

图 1

当一个聚合物样品被注入色谱柱时,试样溶液流经凝胶固定相颗粒,其中分子尺寸较大的不能进入凝胶孔隙,既被固定相排斥。因此这些分子便直接流出色谱柱,而他们的色谱峰便最先在色谱图上出现。另外,样品中尺寸最小的分子则能够进入固定相中所有的孔隙并浸入到整个颗粒内部,于是它们通过色谱柱最慢,保留时间最长,其色谱峰在谱图上出现最晚,而中等尺寸的分子只能够进入固定相中部分较大的孔隙,因而以中等流速流过色谱柱。这样便按照分子尺寸的大小,按从大到小的顺序实现了样品中各组分的分离。如图2所示:

图 2

GPC的实验方法是先利用同一组分已知分子量的窄分散性(/≤1.1)聚合物标准试样,在与未知试样相同的条件下得到一系列GPC谱图。然后以标准样的峰位置V e(V e被测标样的洗脱体积)对lgM作图,得到校正曲线,从而建立处理方法。然后根据未知样的V e得到对应的分子量信息。由于大多数的聚合物标样不易获得,通常情况下使用窄分散性的聚苯乙烯作为标准样来获得校正曲线,当被测样品与标准样具有相同或相近的化学结构组成时得到的分子量信息与真实值更为接近,当被测样品与标准样的化学结构组成有偏差时得到的分子量信息仅具有相对意义,且结构组成偏差越大分子量信息与真实值的偏差也越大。

此外从聚合物的GPC曲线的形状(对称、不对称、单峰、双峰等)我们可以粗略地得知该聚合物样品的分子量分布情况,GPC峰的峰宽则可大致反映聚合物的多分散性。通过计算处理(以标准曲线为参考,电脑程序自动完成),可以得到聚合物的数均分子量、重均分子量和z均分子量,进而得到聚合物的多分散性系数d,由此可以获得关于聚合物的多种定性信息。

2. 凝胶渗透色谱仪的基本构造。

GPC仪的组成主要由泵系统、进样系统、凝胶色谱柱、检测系统和数据采集与处理系统这几部分组成。

泵系统:包括一个溶剂储存器、一套脱气装置和一个高压泵。它的工作是使流动相(溶剂)以恒定的流速流入色谱柱。泵的工作状况好坏直接影响着最终数据的准确性。越是精密的仪器,要求泵的工作状态越稳定。要求流量的误差应该低于0.01mL/min。

进样系统:与液相色谱进样系统类似可分为手动和自动两种。

色谱柱:是在一根不锈钢空心细管中加入孔径不同的凝胶颗粒作为填料。每根色谱柱都有一定的相对分子质量分离范围和渗透极限,色谱柱有使用的上限和下限。色谱柱的使用上限是当聚合物最小的分子的尺寸比色谱柱中凝胶颗粒最大的孔隙的尺寸还大,这时高聚物无法进入凝胶颗粒,全部从凝胶颗粒外部流过,因此无法达到分离不同相对分子质量的高聚物的目的。而且还有堵塞柱子的可能。色谱柱的使用下限就是当聚合物中最大尺寸的分子其流体力学体积比凝胶颗粒最小的孔隙还要小,这时也无法达到分离的目的。所以在使用凝胶色谱仪测定相对分子质量时,必须首先选择好与聚合物相对分子质量范围相配的色谱柱。

检测系统:有示差折光仪检测器、紫外吸收检测器、红外、荧光、电导检测器等。示差折光仪检测器利用溶剂的折光指数与被测样品的折光指数的不同来实现检测,此检测器要求被测样品与溶剂的折光指数要有尽可能大的区别,且此检测器对温度较为敏感,因此检测器与流路系统所处的环境温度必须恒定。紫外吸收检测器则要求被测样品在检测范围内具有特征吸,且在该特征吸收附近溶剂没有强烈的吸收。其他的检

测器主要适用于对该检测器有特殊响应的高聚物和有机化合物。GPC仪的主要组成见图3:

图 3

三、实验仪器及辅助器材

美国Waters公司生产凝胶渗透色谱仪,色谱柱响应范围

500~600000Da,色谱泵型号Waters1515,检测器型号Waters2414,色谱纯四氢呋喃300ml,1ml注射器4只,4ml带盖玻璃样品瓶4个,50μl玻璃进样器1只,一次性医用手套4副,孔径0.45μm有机系针头过滤器4个。

四、实验步骤

1. 标样及待测样的制备。

将标样及待测样品配制成3~5mg/ml的溶液,溶液配制过程中不可剧烈摇动,不可超声助溶。将配制好的溶液静置数小时,使分子链充分舒展。

2. GPC仪的开启及稳定。

打开电脑,然后启动色谱泵及检测器,待检测器初始化完毕后打开测试软件。随后要排除流路中的气泡,此过程分为排除管路气泡和泵内气泡两部分。排除管路气泡:首先逆时针旋转泵中央黑色旋钮一周,然后用塑料注射器手动排除溶剂瓶至泵入口的管路中气泡,然后将旋钮复位。排除泵中气泡:此过程需要用大流速冲洗。首先将流路控制阀调至松弛状态,不然高流速会产生压力过大而损坏色谱柱。然后将软件中泵流速调至5ml/min,持续2~3分钟。冲洗完毕后一定要先停止泵然后将流路控制阀复位。然后根据实验情况设定色谱柱、检测器温度及色谱泵的流速。将仪器置于已设定状态下稳定4到5个小时,然后方可进行测量,在仪器稳定过程中要进行检测池冲洗。

3. 标准曲线的制备,样品测试及数据处理。

在相同的条件下测试窄分布标样与试样并获得色谱图,根据窄分布标样的保留时间及分子量信息制备标准曲线,并依照此标准曲线创建数据处理方法。用已创建的数据处理方法处理试样谱图,从而获得试样的相关分子量信息。

五、分析与思考

1. GPC在什么条件下获得的分子量信息与真值最为接近?什么情况下获得的是相对分子量信息?

答:当制备校正曲线所用的窄分布标准试样与待测试样为同一种类聚合物,且测试所用的条件完全一致时,GPC所获得的分子量信息与真值最为接近。当聚合物标样不易获得,校正曲线参照的是其他物质时,只能得到相对分子量。

2. 用GPC测定具有相同分子量的线性聚合物与支化聚合物时,哪一种聚合物最先从色谱柱中流出?为什么?

答:线性聚合物最先从色谱柱中流出。具有相同分子量的支化聚合物与线性聚合物相比结构更为紧凑,当两种聚合物的分子链在溶液中充分舒展开时,线性聚合物具有较大的流体力学体积,依据GPC原理具有较大的流体力学体积的分子在色谱柱中的保留时间较小,因此线性聚合物最先从色谱柱中流出。

附:GPC操作流程

1 开机顺序

1.1 打开稳压电源及打开电脑。

1.2 电脑稳定后打开色谱泵和检测器。

1.3 检测器初始化完毕后根据具体实验情况设定检测器和柱温箱

温度,点击检测器控制面板Temp℃按钮,进入温度设置界面,

分别设置Det和Col项Set栏温度值,温度值大小取决于具体实验

情况,一般情况下要高于室温5-10℃。

2 仪器预热及实验参数设置

2.1 打开软件,双击Breeze2图标,出现选择项目和系统对话框,

在色谱系统栏中选择GPC项,进入主界面。点击主界面中部水龙

头图标,出现改变流量对话框,将流量A值及变化率分别设置为

1ml/min,升速时间5min。仪器预热时间不少于4小时。

2.2 仪器稳定后点击检测器控制面板shift和purge按钮,检测器自

动调整为检测池冲洗状态。冲洗检测池时间不小于30min,检测

池冲洗完毕后再次点击shift和purge按钮,返回正常流路。

3 进样检测

3.1 点击软件主界面中水龙头图标,根据具体实验情况调整实验

流速及升速速率。待流量值升至实验预设值后点击主界面下方调用方法组编辑器向导图标,出现新方法组:选择仪器方法对话框,选择test GPC项,单击下一步完成设置。

3.2 点击主界面下方左侧平衡系统/监视基线图标,出现设定平

衡/系统监视器对话框,选择平衡/监视器项,监测基线直至基线稳定,然后点击中断正在运行的样品组或单进样图标,终止监测。

3.3 进样口旋钮旋至load状态,点击主界面中单进样图标,出现

定义进样参数对话框,输入样品信息然后点击进样选项,仪器处于待进样状态。用微量进样器抽取20μl过滤后的样品,并注入进样口,将进样口旋钮快速旋至inject状态,开始测试。仪器自动获得图谱。

薄层色谱实验

薄层色谱实验 Prepared on 22 November 2020

薄层色谱(TCL)实验 一、实验目的 1、掌握薄层色谱操作技巧 2、了解薄层色谱的基本原理和应用 二、实验原理 1、原理 薄层色谱是一种微量分析的分离过程,它将样品点在以玻璃板或铝、塑料等片材为载体的多孔吸附剂薄层的固定相上,利用流动相在特定的展开室中将混合物中的组份推移到不同距离处,在色谱展开整个过程中,样品的成份受到正反不同的力的作用。 (1)流动相利用毛细管力带着样品穿过固定相。 (2)样品与固定相的相互作用是指组份在移行过程中由于偶极-(诱导)-偶极相互作用,氢键和范德华力的作用而产生不同程度的延缓、吸附、分散、离子交换和络合等分离机理。 由于样品组份与流动相和固定相之间的相互作用力程度不同,整个毛细管流动过程中分离运动都在进行。基于这点,TLC系统(流动相和固定相)必须与样品很好地匹配。 用显色试剂处理,许多组份可在日光或紫外灯光下检视。色谱可用肉眼或使用光密度计和照相机记录或影像系统方法来评价。 2、薄层色谱的用途

1)化合物的定性检验 通过与已知标准物对比的方法进行未知物的鉴定。在条件一致的情况下,纯化合物在薄层色谱中呈现一定的移动距离,称比移值(R f值)。利用薄层色谱法可鉴定化合物的纯度或确定两种性质相似化合物是否为同一种物质。 影响比移值的因素很多,如薄层的厚度,吸附剂颗粒的大小,酸碱度、活性、外界温度和展开剂纯度、组成、挥发度等。所以要获得比移值重现性就比较困难。为此,在测定某一式样时,最好用对照品和样品同时对照进行。 d2 d1 2)快速分离少量物质(几到几十u g,甚至) 3)跟踪反应进程,在进行化学反应时,常利用薄层色谱观察原料斑点的逐步消失,来判断反应是否完成。 4)化合物纯度的检验(只出现一个斑点,且无脱尾现象,为纯物质) 3、主要操作步骤 薄层板的制备;薄层板的活化;薄层板色谱展开;薄层色谱显色与分析。 四、薄层色谱操作技巧 1、手工自制板 玻璃板的要求:用于制备薄层板的玻璃板要求表面光洁、平整,最好使用厚薄1~2mm的优质平板玻璃,普通窗玻璃一般不宜用于制作薄层板,玻璃板需

气相色谱法实验报告记录

气相色谱法实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验五—气相色谱法实验 姓名:张瑞芳 学号:2013E8003561147 班级:化院413班 培养单位:上海高等研究院 指导教师:李向军 组别:2013年12月30日第二组

气相色谱法实验 一、实验目的 1.了解气相色谱仪的各部件的功能。 2.加深理解气相色谱的原理和应用。 3.掌握气相色谱分析的一般实验方法。 4.学会使用FID气相色谱对未知物进行分析。 二、实验原理 1.气相色谱法基本原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图1所示: 图1.气相色谱仪器框图 仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。 2.气相色谱法定性和定量分析原理 在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让

分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。 图2.典型的色谱流动曲线 3.FID的原理 本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。 三.实验试剂和仪器 (1)试剂:甲醇、异丙醇、异丁醇 (2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪); 氢-空发生器(SPH-300氢气发生器)、氮气钢瓶; 色谱柱; 微量注射器。 四.实验步骤 1.打开稳定电源。 2.打开N2钢瓶(减压阀),以N2为载气,开始通气,检漏;调整柱前压约为 0.12MPa。

色谱分析实验讲义

实验一气相色谱的基本操作及进样练习 一、实验目的 (1) 了解气相色谱仪的主要结构组成和应用。 (2) 掌握仪器基本操作和调试程序,熟悉气路运行过程。 (3) 明确热导池检测器的操作注意事项。 (4) 掌握气相色谱进样操作要领,练习微量注射器的使用方法。 二、实验原理 通过实验了解气相色谱仪的结构与原理。气相色谱仪是实现气相色谱过程的仪器,按其使用目的可分为分析型、制备型和工艺过程控制型。但无论气相色谱仪的类型如何变化,构成色谱仪的5个基本组成部分皆是相同的,它们是载气系统、进样系统、分离系统(色谱柱)、检测系统及数据处理系统。 载气系统:载气是构成气相色谱过程中的重要一相——流动相,一般由高压钢瓶供气。 进样系统:汽化室是进样系统中不可缺少的组成部分,它的作用是把液体样品瞬间加热变成蒸汽,然后由载气带人色谱柱。 分离系统:色谱柱比作气相色谱仪的“心脏”,样品就是在此根据其性质的不同进行分离的。检测系统:检测器是气相色谱仪的关键部件。它的作用是将经色谱柱分离后顺序流出的化学组分的信息转变为便于记录的电信号,然后对被分离物质的组成和含量进行鉴定 和测量。 数据处理系统:数据处理系统目前多采用微机型色谱数据处理机和配备操作软件包的工作站,既可对色谱数据进行自动处理,又可对色谱系统的参数进行自动控制。 三、仪器与试剂 1.仪器 气相色谱仪(GC9790型);检测器(热导池TCD);色谱柱(邻苯二甲酸二壬酯DNP);微量进样器(1 μL)。 2.试剂 环己烷(AR);载气(氮气或氢气,含量99.99%以上)。 四、实验内容 1.开机操作步骤 (1)通气:首先连接好色谱柱,在检查气路密封良好的情况下,先逆时针旋转钢瓶总阀,调整减压阀输出压力0.4 ~ 0.5 Mpa,调节气相色谱仪上的载气稳压阀(总压),使其输出压力为0.3Mpa,调节柱前压1和2的稳流阀2~3圈,载气流量氮气约为30mL·min-1,氢气约为40 mL·min-1。 (2) 通电:检查仪器开关都应处于“关闭”位置后,开启气相色谱仪右侧的电源开关,仪器接通电源以后计算机首先进入仪器的自检程序,其状态显示为指示灯全部打开,直到屏幕出现“OK!”字样后表示仪器自检通过,可以进入正常操作程序,并且显示器自动切换到屏

气相色谱实验报告word精品

气相色谱实验报告 一、实验目的 1、了解气相色谱仪的基本结构及掌握分离分析的基本原理; 2、了解顶空气相色谱法; 3、了解影响分离效果的因素; 4、掌握定性、定量分析与测定的方法。 二、实验原理气相色谱分离是利用上试样中各组分在色谱柱中的气相和固定相间的分配系数不同,当气 化后的试样被载气带入色谱柱进行时,组分就在其中的两相中进行反复多次的分配,由于固定相各个组分的吸附或溶解能力不同,因此各组分在色谱柱中的运行速度就不同。经过 一定的柱长后,使彼此分离,顺序离开色谱柱进入检测器。检测器将各组分的浓度或质量的变化转换成一定的电信号,经过放大后在记录仪上记录下来,即可得到各组分的色谱峰。根据保留时间和峰高或峰面积,便可进行定性和定量的分析。 (1)顶空色谱法及其原理介绍顶空气相色谱是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。这一方法从气相色谱仪角度讲,是一种进样系统,即“顶空进样系统” 。其原理如下: 一个容积为V、装有体积为V o浓度为0)的液体样品的密封容器,在一定温度下达到平衡时,气相体积为Vg,液相体积为Vs,气相样品浓度为Cg,液相中样品浓度为Cs,贝平衡常数K=Cs/Cg 相比3 =Vg/Vs V=Vs+Vg=V o+Vg 又因为是密封容器,所以 C o V o=CoVs=CsVs+CgVg= KCgVs + CgVg C o=KCg+CgVg/Vs=KCg+ 3 Cg=Cg()K+ 3 Cg=C0/(K+ 3 = K'(C 可见, 在平衡状态下, 气相组成与样品原组成为正比关系, 根据这一关系我们可以进行定性和定量分析。(2)顶空色谱法的优点 顶空色谱进样器可与国内外各种气相色谱仪相连接, 它是将液体或固体样品中的挥发性组分直接导入气相色谱仪进行分离和检测的理想进样装置。 它采用气体进样,可专一性收集样品中的易挥发性成分,与液-液萃取和固相萃取相比 既可避免在除去溶剂时引起挥发物的损失, 又可降低共提物引起的噪音, 具有更高灵敏度和分析速度,对分析人员和环境危害小,操作简便,是一种符合“绿色分析化学”要求的分析手段。固相萃取和液相萃取时不可避免地带入共萃取物干扰分析。顶空分析可看成是气相萃

薄层色谱法实验报告

实验报告 一、实验目的 掌握薄层色谱的基本原理及其在有机物分离中的应用。 二、实验原理 有机混合物中各组分对吸附剂的吸附能力不同,当展开剂流经吸附剂时,有机物各组分会发生无数次吸附和解吸过程,吸附力弱的组分随流动相迅速向前,而吸附力弱的组分则滞后,由于各组分不同的移动速度而使得她们得以分离。物质被分离后在图谱上的位置,常用比移值R f表示。 R f 原点至层析斑点中心的距离原点至溶剂前沿的距离 三、实验仪器与药品 5.0cm×15.0cm硅胶层析板两块,卧式层析槽一个,点样用毛细管。 四、物理常数 五、仪器装置图

“浸有层析板的层析槽”图 1-层析缸,2-薄层板,3-展开剂饱和蒸汽,4-层析液 六、实验步骤 (1)薄层板的制备: 称取2~5g层析用硅胶,加适量水调成糊状,等石膏开始固化时,再加少许水,调成匀浆,平均摊在两块5.0×15cm的层析玻璃板上,再轻敲使其涂布均匀。(老师代做!)固化后,经105℃烘烤活化0.5h,贮于干燥器内备用。 (2)点样。 在层析板下端2.0cm处,(用铅笔轻化一起始线,并在点样出用铅笔作一记号为原点。)取毛细管,分别蘸取偶氮苯、偶氮苯与苏丹红混合液,点于原点上(注意点样用的毛细管不能混用,毛细管不能将薄层板表面弄破,样品斑点直径在1~2mm为宜!斑点间距为1cm) (3)定位及定性分析 用铅笔将各斑点框出,并找出斑点中心,用小尺量出各斑点到原点的距离和溶剂前沿到起始线的距离,然后计算各样品的比移值并定性确定混合物中各物质名称。

实验注意事项 1、铺板时一定要铺匀,特别是边、角部分,晾干时要放在平整的地方。 2、点样时点要细,直径不要大于2mm,间隔0.5cm以上,浓度不可过大,以免出现拖尾、混杂现象。 3、展开用的烧杯要洗净烘干,放入板之前,要先加展开剂,盖上表面皿,让烧杯内形成一定的蒸气压。点样的一端要浸入展开剂0.5cm 以上,但展开剂不可没过样品原点。当展开剂上升到距上端0.5-1cm 时要及时将板取出,用铅笔标示出展开剂前沿的位置。 讨论: 七、思考题

气相色谱法挥发性有机物测定实验报告

GC-MS测定挥发性有机物实验报告 专业:环境工程学号:1233351 姓名:刘鹏一、实验方法 进样器参数设定如下: 用预溶剂冲洗次数: 3 用溶剂冲洗次数: 3 用样品冲洗次数: 2 柱塞速度: 高粘度补偿时间: 0.2 sec 柱塞进样速度: 高进样器进样速度: 高注射模式: 一般抽吸次数: 5 进样口停留时间: 0.3 sec 尾部空气间隙: 否活塞吹扫速度: 高清洗体积: 8uL 注射器吸入位置: 1.0 mm 注射器注射位置: 0.0 mm 使用3个溶剂瓶: 1个瓶 [GC-2010] 柱箱温度:30.0℃进样温度:250.00℃进样模式:分流 流量控制模式:线速度压力:45.6 kPa 总流量:14.0 mL/min 柱流量:1.00 mL/min 线速度:35.9 cm/sec 吹扫流量:3.0 mL/min 分流比:10.0 高压进样模式:关载气节省器:关分流阻尼固定:关 柱温箱: 是SPL1: 是MS: 是 < 检测器(FTD)检查完毕> < 基线移动检查完毕> < 进样流量检查完毕> SPL1 载气: 是SPL1 吹扫: 是 < APC流量检查完毕> < 检测器APC流量检查完毕> 外部等待:否平衡时间: 2.0 min [GC 程序] [GCMS-QP2010 SE] 微扫描半峰宽:0.00 amu 离子源温度:200.00 ℃接口温度:250.00 ℃ 溶剂延迟时间:2.50 min 检测器增益方式:相对检测器增益:0.83 kv +0.00 kV

二、标准物质色谱图 三、实验结果 ①实验数据

答:常用的定量分析方法有标准曲线法、内标法和归一化法。 ①标准曲线法(外标法):用被测组分纯物质配制系列标准溶液,分别定量进样,记录不同浓度溶液的色谱图,测出峰面积,用峰面积对相应的浓度作图,得到一条直线,即标准曲线。有时也可用峰高代替峰面积,作峰高—浓度标准曲线。在同样条件下测定样品,根据峰面积或峰高及标准曲线计算出样品中被测组分的浓度。 外标法简便,不需要校正因子,但进样量要求十分准确,操作条件也需严格控制。它适用于日常控制分析和大量同类样品的分析。 ②内标法:选择一种样品中不存在,且其色谱峰位于被测组分色谱峰附近的纯物质作为内标物,以固定量(接近被测组分量)加到标准溶液中和样品溶液中,分别定量进样,记录色谱峰,以被测组分峰面积(或峰高)与内标物峰面积(或峰高)的比值对相应浓度作图,得到标准曲线。根据样品中被测物质与内标物峰面积(或峰高)的比值,从标准曲线中查的被测组分浓度。这种方法可抵消因实验条件和进样量变化带来的误差。 内标物的要求:样品中不含有内标物质;峰的位置在各待测组分之间或与之相近;稳定、易得纯品;与样品能互溶但无化学反应;内标物浓度恰当,使其峰面积与待测组分相差不太大。 ③归一化法:标准曲线法(外标法)和内标法适用于样品中各组分不能全部出峰、或多组分中只测量一种或几种组分的情况。如果样品中各组分都能出峰,并要求定量,则归一化法比较简单。设样品中各组分的质量分别为M1、M2、…、Mn,则各组分的质量分数(Wi)按照下式计算:

实验六 气相色谱的定量分析(学生实验讲义)

实验六、气相色谱的定量分析 一、实验目的: 1. 熟练掌握气相色谱仪的使用方法和进样技术。 2. 了解气相色谱仪及氢火焰离子化检测器的基本结构和工作原理。 3. 熟练掌握定量校正因子的测定。 4. 熟悉用归一化法定量测定混合物各组分的含量。 二、实验原理 在一定的色谱条件下,组分i 的质量m i 与检测器的响应信号峰面积A i ,成正比: i A i i A f m ?= (6-1) 式中,A i f 称为绝对校正因子。式(6-1)是色谱定量的依据。不难看出,响应信号A 及校正因了的准确测量直接影响定量分析的准确度。 由于峰面积的大小不易受操作条件如柱温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。 由式(6-1),绝对校正因子可用下式表示: i i A i A m f = 6-2 式中,m i 可用质量、物质的量及体积等物理量表示,相应的校正因子分别称为质量校正因子、摩尔校正因子和体积校正因子。由于绝对校正因子受仪器和操作条件的影响很大,其应用受到限制,一般采用相对校正因子。相对校正因子是指组分i 与基准组分s 的绝对校正因子之比,即: s i i S A is m A m A f = 6-3 因绝对校正因子很少使用,一般文献上提到的校正因子就是相对校正因子。 根据不同的情况,可选用不同的定量方法。归一化法是将样品中所有组分含量之和按100%计算,以它们相应的响应信号为定量参数,通过下式计算各组分的质量分数: 46%1001 -??= =∑=n i i A is i A is i i A A m m f f 总 ? 该法简便、准确。当操作条件变化时,对分析结果影响较小,常用于定量分析,尤其适于进样量少而体积不易准确测量的液体试样。但采用本法进行定量分析时,要求试样中各组分产生可测量的色谱峰。

GC-MS实验

实验七 I.实验目的 (1) 了解气相色谱-质谱联用技术的基本原理; (2) 学习气相色谱-质谱联用技术定性鉴定的方法; (3) 了解色谱工作站的基本功能。 II. 实验原理 质谱法是一种重要的定性鉴定和结构分析方法,但没有分离能力,不能直接分析混合物。色谱法则相反,它是一种有效的分离分析方法,特别适合于复杂混合物的分离,但对组分的定性鉴定有一定难度。如果把这两种方法结合起来,将色谱仪作为质谱仪的进样和分离系统,即混合试样进入色谱柱分离,得到的单个组分按保留时间的大小依次进入质谱仪测定质谱,这样就可以实现优势互补,解决复杂混合物的快速分离和定性鉴定。气相色谱-质谱联用(GC-MS )于1957年首次实现,并很快成为一种重要的分析手段广泛应用于化工、石油、食品、药物、法医鉴定及环境监测等领域。 气相色谱-质谱联用的主要困难是两者的工作气压不匹配。质谱仪器必须在10-3~10-4Pa 的高真空条件下工作,而气相色谱仪的流出物为常压(约100kPa ),因此需要一个硬件接口来协调两者的工作条件。当气相色谱仪使用毛细管柱时,因为每分钟几毫升的流量不足以破坏质谱仪的真空状态,所以可直接与质谱仪联用。 挥发性混合物从气相色谱仪进样,经色谱柱分离后,按组分的保留时间大小依次以纯物质形式进入质谱仪,质谱仪自动重复扫描,计算机记录和储存所有的质谱信息,然后将处理结果显示在屏幕上。质谱仪的每一次扫描都得到一张质谱图,色谱组分流入时得到的是组分的质谱图,没有色谱组分时得到的是背景的质谱图,计算机将质谱仪重复扫描得到的所有离子流信号(不分质荷比大小)的强度总和对扫描信号(即色谱保留时间)作图得到总离子流图,总离子流强度的变化正是流入质谱仪的色谱组分变化的反映,所以在GC-MS 中,总离子流图相当于色谱图,每一个谱峰代表了一个组分,谱峰的强度与组分的相对含量有关。下图是混合溶剂试样的总离子流图(a )和其中第4号峰的质谱图(b )。从总离子流图中出现的6个谱峰可以得知该混合溶剂中有6个组分;对质谱图(b )进行解析可知该组分的相对分子质量为100,图中有m/z29,43,57,71等一系列间隔14(相当于CH 2)的离子峰,说明该组分的结构中有长碳链,结合相对分子质量推测为庚烷,通过质谱标准谱库的检索验证,确定试样总离子流图的4号峰为正庚烷。 混合溶剂的总离子流图(a )和4号峰的质谱图(b ) III. 实验用品 仪器: 岛津公司GCMS-QP5050A 气相色谱-质谱联用仪,GCMS Solution 工作站,NIST 谱库。微量注射器(1μL ) 试剂: 混合试剂 异丙醇、乙酸乙酯、苯3种试剂(纯度≥99.5%)混合而成,甲醇为溶剂,均为色谱纯。 实验条件

气象色谱实验报告

在GC中使用归一法测定正构烷烃相对含量实验报告 一、实验目的: 1.学习Varian CP-3800的基本操作、气象色谱工作站和数据处理。 2.考察进样平行性。 二、实验原理: 气相色谱GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。 气相色谱仪的组成部分:载气系统,进样系统,色谱柱(包括恒温控制装置),检测系统,记录系统。氢火焰检测器FID是GC最基本的检测器,当有机物经过检测器时,在火焰中会产生离子,在极化电压的作用下,喷嘴和收集极之间的电流会增大,对这个电流信号进行检测和记录即可得到相应的谱图。一般有机化合物在FID上都有响应,一般分子量越大,灵敏度越高。可以根据信号的大小对有机物进行定量分析。 三、仪器与试剂 正构烷烃原液:含0.88mg/ml (正构二十碳烷烃n-Eicosane), 0.261mg/ml (正构二十二碳烷烃n-Docosane),0.373mg/ml (正构二十四碳烷烃n-Tetracosane). 正己烷、样品瓶、CD-3800 GC、FID、针筒 四、实验步骤 1、制备正构烷烃稀释液 2、色谱条件 Injector:250℃ Column flow:1.0l/min FID HEATER:300℃ H2:30ml/min AIR:300ml/min

气相色谱法讲义

气相色谱法 用气体作为流动相的色谱法称为气相色谱法。根据固定相的状态不同,又可将其分为气固色谱和气液色谱。气固色谱是用多孔性固体为固定相,分离的主要对象是一些永久性的气体和低沸点的化合物。但由于气固色谱可供选择的固定相种类甚少,分离的对象不多,且色谱峰容易产生拖尾,因此实际应用较少。气相色谱多用高沸点的有机化合物涂渍在惰性载体上作为固定相,一般只要在450℃以下有1.5KPa-10KPa的蒸汽压且热稳定性好的有机及无机化合物都可用气液色谱分离。由于在气液色谱中可供选择的固定液种类很多,容易得到好的选择性,所以气液色谱有广泛的实用价值。 第一节气相色谱仪 (一)气相色谱流程 气相色谱法用于分离分析样品的基本过程如下图: 气相色谱过程示意图 由高压钢瓶1供给的流动相载气。经减压阀2、净化器3、流量调节器4和转子流速计5后,以稳定的压力恒定的流速连续流过气化室6、色谱柱7、检测器8,最后放空。 气化室与进样口相接,它的作用是把从进样口注入的液体试样瞬间气化为蒸汽,以便随载气带入色谱柱中进行分离,分离后的样品随载气依次带入检测器,检测器将组分的浓度(或质量)变化转化为电信号,电信号经放大后,由记录仪记录下来,即得色谱图。 (二)气相色谱仪的结构 气相色谱仪由五大系统组成:气路系统、进样系统、分离系统、控温系统以及检测和记录系统。 1. 气路系统 气相色谱仪具有一个让载气连续运行、管路密闭的气 路系统。通过该系统,可以获得纯净的、流速稳定的载气。它的气密性、载气流速的稳定性以及测量流量的准确性,对色谱结果均有很大的影响,因此必须注意控制。 常用的载气有氮气和氢气,也有用氦气、氩气和空气。载气的净化,需经过装有活性炭或分子筛的净化器,以除去载气中的水、氧等不利的杂质。流速的调节和稳定是通过减压阀、稳压阀和针形阀串联使用后达到。一般载气的变化程度<1%。 2. 进样系统 进样系统包括进样器和气化室两部分。 路系统。通过该系统,可以获得纯净的、流速稳定的载气。它的气密性、载气流速的稳定性以及测量流量的准确性,对色谱结果均有很大的影响,因此必须注意控制。 常用的载气有氮气和氢气,也有用氦气、氩气和空气。载气的净化,需经过装有活性炭

色谱分析实验大纲

气相色谱法分析苯、甲苯、萘混合物 一、实验目的 1. 气相色谱图的分析。 2. 温度对保留时间的影响。 3. 保留因子、分离度的计算。 4. 标准曲线的建立。 二、实验原理 基本术语 基线(base line)--经流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。一般应平行于时间轴。 噪音(noise)--基线信号的波动。通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。 漂移(drift)--基线随时间的缓缓变化。主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。 色谱峰(peak)--组分流经检测器时响应的连续信号产生的曲线上的突起部分。正常色谱峰近似于对称形正态分布曲线(高斯Gauss曲线)。 峰高(peak height,h)-峰的最高点至峰底的距离。 峰宽(peak width,W)-峰两侧拐点处所作两条切线与基线的两个交点间的距离。 半峰宽(peak width at half-height,W h/2)-峰高一半处的峰宽。 峰面积(peak area,A)-峰与峰底所包围的面积。 死时间(dead time,t0)--不保留组分的保留时间。即流动相(溶剂)通过色谱柱的时间。 保留时间(retention time,t R)--从进样开始到某个组分在柱后出现浓度极大值的时间。 保留因子: 分离度: 气相色谱中随着温度升高,目标物保留时间减少,分离度降低。 三、仪器与试剂 仪器:高效液相色谱仪;超声波清洗器;色谱柱(C18);微量注射器(20ul)。 试剂:甲醇(A.R.);苯(A.R.);甲苯(A.R.);萘(A.R.)。 四、实验步骤 1. 色谱条件为 气相色谱柱: 流动相:氮气 进样量:10.0ul

薄层色谱中展开剂的选择

薄层色谱中展开剂的选择 2007-04-05 02:03 (一)有机合成中展开剂的选择 做有机合成时走板子是常有的事,展开剂的选择就至关重要了。 选择适当的展开剂是首要任务.一般常用溶剂按照极性从小到大的顺序排列大概为:石油迷<己烷<苯<乙醚

气相色谱仪的硬件与软件操作实验报告

气相色谱仪的硬件与软件操作 【实验目的】 1.安全教育; 2.气相色谱仪的硬件操作及软件操作; 3.了解气相色谱仪的基本结构及掌握仪器分离分析的基本原理。 【实验原理】 气相色谱仪是实现气相色谱过程的仪器,仪器型号繁多,但总的说来,其基本结构是相似的,主要由载气系统、进样系统、分离系统(色谱柱)、检测系统以及数据处理系统构成。气相色谱仪利用试样中各组分在色谱柱中的气相和固定相的分配系数不同,当气化后的试样被载气带入色谱柱进行时,组分就在其中的两相中进行反复多次的分配,由于固定相各个组分的吸附和溶解能力不同,因此各组分在色谱柱中的运行速度就不同,经过一定的柱长后,是彼此分离,顺序离开色谱柱进入检测器。检测器将各组分的浓度或质量的变化转换成一定的电信号,经过放大后在记录仪上记录下来,即可得到各组分的色谱峰。根据保留时间,便可进行定性分析。 【主要试剂及物理性质】 【实验仪器】 仪器:GC-2010气相色谱仪;SPB-3全自动空气泵;SPN-300氮气发生器;SPH-300氢气发生器;微量进样器(1μL);容量瓶;毛细管色谱柱(SPB-5 30.0m×0.32mm×0.25um); 【实验步骤】 1. 开机:依次打开全自动空气泵,氮气发生器(注意排气,逆时针旋转松开氮气发生器右

侧螺丝,约30分钟后,待载气稳定即压力表指针稳定指向0.4 M pa后顺时针旋转拧紧氮气发生器右侧螺丝)),氢气发生器。然后打开GC GC-2010气相色谱仪开关“POWER”由“0”至“-”,最后打开电脑上的工作站。 2.点击工作站桌面GC Real Time Analysis→,长声蜂鸣表示联机成功。 3. 在GC Real Time Analysis软件上设置相应的色谱分析条件的设置:选择“仪器参数”并设置进样器温度(SPL)150 ℃、检测器温度(FID)200 ℃、柱温为70℃(保留时间5 min)、停止时间5 min、分流比为50 (分流比过大,超出压力范围。则机器显示错误CAR1 primary pressure out of range。因此只能调为50)、尾吹流量30 mL /min、氢气流量30mL/min,空气流量300 mL /min。 4. 设置完毕后,先点击“开启系统”,接着点击“下载参数”。待进样器SPL1、柱箱、FID 的温度达到设定温度,依次打开氢气、打开火焰。等GC状态显示“准备就绪”后,点击“单次分析”,接着点击“样品记录”,依次输入“样品名称”和“数据文件”(注意输入名称的上下对应)。单击“文件夹”按钮图标,在“查找范围”中选中D盘文件夹“2014曾志老师近代有机实验”修改并保存文件名。点“开始”并注射样品液(0.1μL)。 5.数据软件处理 5.1单次数据分析 5.1.1 在桌面双击“GC Post Run Analysis”,点击确定按钮后,在“文件夹目录中”选中该样品记录双击鼠标,打开保存的路径,找到甲醇的色谱峰。使用放大缩小按钮,调试图谱中的色谱峰全部完整显示在方框内。 5.1.2 在谱图上单击鼠标右键的“显示设置”,在“显示设置”中选择“展开色谱”根据实际需要填写的“时间”和“强度”后点击。确定用鼠标点击“编辑”可根据需要选择改变“积分”中的“最小峰面积/高”、“斜率”等参数设置(通常改变一项参数,就能达到去除杂质峰的效果)。通常改变“最小峰面积”值比较快捷方便。然后又点击“定量”在“定量方法”中选择“面积归一法”,然后点击查看。复制谱图到Word文档,在谱图中点击鼠标右键选择“复制”;复制数据,单击鼠标左键全选,然后鼠标右键“复制表格到剪贴板”。在Word 文档中选中“插入”—“表格”—“插入表格”。将处理后的谱图复制到Word文档,打印

气相色谱法实验报告

气相色谱定性和定量分析实验报告 班级 姓名 学号: 成绩: 一、实验目的 1.熟悉气相色谱仪的工作原理及操作流程; 2.能够根据保留值对物质进行定性分析; 3.能够对物质进行定量分析 二、实验原理 气相色谱法是一种用以分离、分析多组分混合物极有效的分析方法。它是基于被测组分在两相间的分配系数不同,从而达到相互分离的目的。在混合物分离以后,利用已知物保留值对各色谱峰进行定性是色谱法中最常用的一种定性方法。它的依据是在相同的色谱条件下,同一物质具有相同的保留值,利用已知物的保留时间与未知组分的保留时间进行对照时,若两者的保留时间相同,则认为是相同的化合物。 气相色谱法分离分析醇系物的基本原理是基于醇系物中各组分在气相和固相两相间分配系数的不同。当试样流经色谱柱时被相互分离,被分离组分依次通过检测器时,浓度(或质量)信号被转换为电信号输出到记录仪,获得醇系物的色谱流出曲线(如图1),完全分离时,可依据流出曲线上各组分对应的色谱峰面积进行定量。 色谱分析的定性方法有多种,当色谱条件固定且完全分离时,采用将未知物的保留值与已知纯试剂(标样)的保留值相对照的方法定性较为简单,两者相同或相近即为同一物质。 实际测定可采用相对保留值is r 代替保留值进行定性分析。 M Rs M Ri Rs Ri is t t t t t t r --=='' 式中:t ’Ri ——被测组分的调整保留时间 t ’Rs ——标准物质的调整保留时间 t Ri ——被测组分保留时间 t Rs ——标准物质的保留时间(热导池检测器的标准物质一般指定为:苯) t M ——死时间 常用的色谱定量方法有归一化法、外标法、内标法。 归一化法是将样品中的所有色谱峰的面积之和除某个色谱峰的面积,即得色谱峰相应组分在混合物中的含量。

气相色谱仪原理(图文详解)

气相色谱仪原理(图文详解) 什么是气相色谱 本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。 气相色谱(GC)是一种把混合物分离成单个组分的实验技术。它被用来对样品组分进行鉴定和定量测定: 基子时间的差别进行分离 和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。 将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。这样,就是基于时间的差别对化合物进行分离。样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。 峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。 图1典型色谱图

系统 一个气相色谱系统包括 可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离 检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应 某种数据处理装置图2是对此作出的一个总结。 样品 载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」 图2色谱系统

气源 载气必须是纯净的。污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。见图 钢瓶阀

若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。 进样口 进样口就是将挥发后的样品引入载气流。最常用的进样装置是注射进样口和进样阀。注射进样口 用于气体和液体样品进样。常用来加热使液体样品蒸发。用气体或液体注射器穿透隔垫将样品注入载气流。其原理(非实际设计尺寸)如图4所示。 样品从机械控制的定量管被扫入载气流。因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。其原理(非实际设计尺寸)如图5所示。

色谱分析实验教学大纲

《色谱分析》实验教学大纲 大纲制定(修订)时间:2017年6月 课程名称:《色谱分析》课程编码:080241006 课程类别:专业课课程性质:必修 适用专业:环境工程 课程总学时:32学时 实验(上机)计划学时:12学时 开课单位:环境与化学工程学院 一、大纲编写依据 1.环境工程专业2017版教学计划; 2.环境工程专业《色谱分析》理论教学大纲对实验环节的要求; 3.近年来《色谱分析》实验教学经验。 二、实验课程地位及相关课程的联系 色谱分析实验课程的建立有助于使学生加深对于理论课程的理解,是在色谱分析理论课基础上的综合实验能力训练,有助于对色谱分析课程的理解和掌握。 三、实验目的、性质和任务 1、了解色谱分析中常用的气相色谱、高效液相色谱、平面液相色谱的理论和方法。 2、训练学生综合运用所学理论和实验技能理解实验方案,完成实验操作,分析实验结果的能力。学生要学会使用气相色谱仪和高效液相色谱分析仪器。 四、实验基本要求 “气相色谱仪原理及应用”通过学习气相色谱仪的构成和使用方法,及其在定性、定量分析中的应用,培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识)。培养培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。 “高效液相色谱原理及应用”学习高效液相色谱仪的构成和使用方法,及其在定性、定量分析中的应用。 “薄层色谱原理及应用”实验了解薄层色谱的基本原理和应用,掌握薄层色谱的操作技术。 五、实验内容和学时分配

薄层色谱实验

薄层色谱实验 一、实验目的: 1、了解薄层色谱的基本原理和应用。 2、掌握薄层色谱的操作技术。 二、实验原理: 1、原理 薄层色谱(Thin Layer Chromatography) 常用TLC 表示,又称薄层层析,属于固-液吸附色谱。样品在薄层板上的吸附剂(固定相)和溶剂(移动相) 之间进行分离。由于各种化合物的吸附能力各不相同,在展开剂上移时,它们进行不同程度的解吸,从而达到分离的目的。 2、薄层色谱的用途: 1)化合物的定性检验。(通过与已知标准物对比的方法进行未知物的鉴定)在条件完全一致的情况,纯碎的化合物在薄层色谱中呈现一定的移动距 离,称比移值(Rf 值),所以利用薄层色谱法可以鉴定化合物的纯度或确定两种性质相似的化合物是否为同一物质。但影响比移值的因素很多,如薄层的厚度,吸附剂颗粒的大小,酸碱性,活性等级,外界温度和展开剂纯度、组成、 挥发性等。所以,要获得重现的比移值就比较困难。为此,在测定某一试样时,最好用已知样品进行对照。 溶质最高浓度中心至原点中心的距离 R f 溶剂前沿至原点中心的距离 2、快速分离少量物质。(几到几十微克,甚至0.01 μg) 3、跟踪反应进程。在进行化学反应时,常利用薄层色谱观察原料斑点的逐步 消失,来判断反应是否完成。

4、化合物纯度的检验(只出现一个斑点,且无拖尾现象,为纯物质。)

此法特别适用于挥发性较小或在较高温度易发生变化而不能用气相色谱 分析的物质。 三、实验装置 薄层板在不同的层析缸中展开的方式 四、实验操作步骤: 1、吸附剂的选择 薄层色谱的吸附剂最常用的是氧化铝和硅胶。 1)、硅胶: “ 硅胶H”—不含粘合剂; “ 硅胶G”—含煅石膏粘合剂; 其颗粒大小一般为260 目以上。颗粒太大,展开剂移动速度快,分离效 果不好;反之,颗粒太小,溶剂移动太慢,斑点不集中,效果也不理想。 化合物的吸附能力与它们的极性成正比,具有较大极性的化合物吸附较 强,因而R f 值较小。 酸和碱> 醇、胺、硫醇> 酯、醛、酮> 芳香族化合物> 卤代物、醚> 烯> 饱和烃 本实验选择的吸附剂为薄层色谱用硅胶G。 2、薄层板的制备(湿板的制备)

GC7890气相色谱仪培训讲义

气相色谱仪工作原理: 气相色谱仪以气体作为流动相(载气)。当样品由微量注射器注入进样器汽化后,被载气携带进入填充柱或毛细管色谱柱。由于样品中的流动相(气相)和固定相(液相或气相)间分配或吸咐系数的差异,在载气的冲洗下各组分在两相间作反复多次分配,使各组份在柱中得分离,依次从柱后流出。然后用接在柱后的检测器,根据组份的物理、化学特性,将各组分按顺序检测出来。 气相色谱仪应用范围: 环境保护:大气水源等污染地的痕量毒物分析、监测和研究 生物化学:临床应用,病理和毒物研究 食品发酵:微生物饮料中微量组分的分析研究 中西药物:原料中间体及成品分析 石油加工:石油化工,石油地质,油品组成等分析控制和控矿研究 有机化学:有机合成领域内的成份研究和生产控制 卫生检查:劳动保护公害检测的分析和研究 尖端科学:军事检测控制和研究

GC7890气相色谱仪操作规程(一) 1.检查仪器电源线连接是否正常、气路管线连接是否正常。 2.打开载气(N2)钢瓶总阀,并调节减压阀开关,使得输出的载气压力在0.3~0.5Mpa之间,要求0.4Mpa。 3.调节仪器上的载气调压阀,使得柱前压处在分析工作所需要的压力(一般来说,柱前压在0.05~0.1Mpa之间)。本机N2 0.142Mpa; H2 0.11Mpa ; AIR 0.158Mpa. 4.打开电源开关,根据分析要求设置柱温、汽化温度、检测温度等参数,按确定键后仪器升温。同时打开色谱工作站电源。柱温150℃、汽化温度250℃、检测温度250℃ 5.仪器升温到设置温度后,打开空气发生器电源;同时扭开氢气钢瓶阀门,调节氢气减压阀压力在0.3Mpa左右。 6.调节仪器侧面右下侧的针形阀,使空气压力在0.158MPa左右,氢气压力在0.15~0.2MPa 之间,按点火键3秒以上,点着FID的火焰,用玻璃片或铁片等冷的物体靠近检测器的盖帽,有水珠凝结表明点火成功(也可以通过观察工作站所显示的基线是否在点火瞬间开始上升来确定是否点火成功)。 7.仪器点火后,打开工作站。点击数据采集菜单,查看基线。当工作站左下方出现电压及时间指示后,调节色谱仪面板上零点调节旋钮查看基线是否变化。如有变化,则色谱仪和工作站已处于联机状态,观察基线是否平稳。 8.当仪器稳定,基线零点指示灯处于正常状态时,工作站零点校正后,开始进样分析。分析结束后,将仪器柱箱、检测器、进样温度设置到50度以下,关机再关气。(载气开关最后关掉,让分析柱中有余留载气通过,起保护作用。) 9.调低各路设定温度,使柱温箱、汽化室、检测器温度下降,待柱箱温度低于70℃即可关闭仪器电源。关闭电脑。 10.关闭载气钢瓶上的总阀。清理仪器室的进样针、样品等物品,结束GC7890的操作。 如果色谱死机,关闭色谱左侧电源(红色按钮),休息2分钟后,再重新启动色谱电源,输入温度:柱温(OVEN)150℃;进样器温度(INJ)250℃;检测器温度(DET)250℃。

GC9600型气相色谱仪作业指导书

GC9600型气相色谱仪操作规程 1.目的 为保证GC9600气相色谱仪的正常运转,确保其出具的数据准确、可靠,特制定本规程。 2.适用范围 本实验室现有的一台GC9600气相色谱仪的使用和维护。 3.职责 仪器操作人员需严格按照此规程进行。 4.技术特性 4.1 使用环境: 4.1.1 仪器应放在干燥的房间内,室温5℃~35℃,室内相对湿度小于85%。 4.1.2 使用时放置在坚固平稳的工作台上,避免震动,周围不应有强烈的电磁干扰,室内温度无剧烈变化,无腐蚀性气体,空气无大的对流存在。 4.1.3 电源电压:220V±22V 频率50Hz±0.5Hz。 4.1.4 仪器表面,请勿使用酒精、丙酮等溶剂清洁。 4.2 主要技术参数 4.2.1 综合参数 外形尺寸:555×490×480(㎜);(长×宽×高)。 柱箱尺寸:260×250×150(㎜);(长×宽×高)。 色谱柱安装间隔尺寸:152.4㎜;(6英寸标准接口)。 色谱柱:填充柱外径Φ3~Φ5㎜;(金属柱或玻璃柱) 仪器重量:45㎏ 4.2.2 温度控制 柱温温度控制: 室温加8~350℃;(设定参数上限可达399℃有效,可允许使用但不保证技术指标) 温度波动:不大于±0.1℃(环境温度变化或电压变化10%) 温度梯度:±1%(温度范围100℃~350℃) 程序升温

程序阶数:5阶。 升温速率:(0.1~30)℃∕min (以0.1℃增量任设) 降温速率:柱箱温度从200℃降至100℃时间不大于3 min。 4.2.3 FID检测器 ] 。 检测限:不大于:2×10-12g/s[n-C 16 噪声:2×10-13A[不大于0.02mv] 。 飘移:不大于4×10-12A/h。 启动时间:不大于1.5小时。 5.操作步骤和程序 5.1. 打开载气 5.1.1 打开氮气发生器电源开关,缓缓旋动减压阀的调节杆,调节气压至约0.5MPa。载气经减压后进入净化器,干燥净化以除去水份及固体杂质,纯化后的载气经过稳压阀后,载气压力随之稳定,流入稳流阀。 5.1.1 调节主机总压为0.3MPa。调节柱前压Ⅰ,即将稳流阀调节至30ml/min。 5.2. 接通电源,依次打开氢气发生器、空气发生器、主机和计算机开关。 5.2.1 氢气发生器 5.2.1.1 先检查仪器各部零件是否良好,接头有无松动脱落现象。 5.2.1.2 配制电解液:将110g分析纯氢氧化钾用40ml纯化水稀释,待溶解冷却后注入注液盒内(池部容积1.5L)然后再向注液盒内补充纯化水至H处(注液盒位于仪器顶部,取下盒盖,即可注液)。注液时,观察液位显示管内部液位的位置,绝对不准超过液位上限,即略低于上限为好。 5.2.1.3 将仪器后面板上“输出”口的密封帽拧下,保持畅通。

相关文档
最新文档