数学建模_淋雨模型86221

数学建模_淋雨模型86221
数学建模_淋雨模型86221

淋雨量模型

一、问题概述

要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m,

=5m/s,雨速u=4m/s,降雨量ω=2cm/h,设跑步的距离d=1000m,跑步的最大速度v

m

及跑步速度为v,按以下步骤进行讨论

[17]

(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;

(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。计算θ=0,θ=30°的总淋雨量.

(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)

(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.

(5)、若雨线方向跑步方向不在同一平面内,试建立模型

二、问题分析

淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位

面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

可得:

淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①

时间(t)=跑步距离(d)÷人跑步速度(v)②

由①②得:淋雨量(V)=ω×S×d/v

三、模型假设

(1)、将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m.

=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑

设跑步距离d=1000m,跑步最大速度v

m

步速度为v;

(参考)

(2)、假设降雨量到一定时间时,应为定值;

(3)、此人在雨中跑步应为直线跑步;

(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失

的水量,因为它可以直观的表示降雨量的多少;

四、模型求解:

(一)、模型Ⅰ建立及求解:

设不考虑雨的方向,降雨淋遍全身,则淋雨面积:

S=2ab+2ac+bc

雨中奔跑所用时间为:

t=d/v

总降雨量

V=ω×S×d/v

ω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得:

S=2.2(㎡)

V=0.00244446 (cm3)=2.44446 (L)

(二)、模型Ⅱ建立及求解:

若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)

设雨从迎面吹来时与人体夹角为θ. ,且 0°<θ<90°,建立a ,b ,c ,d ,u ,ω,θ之间的关系为:

(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θsin u ?且方向与v 相反,故人相对于雨的水平速度为:

()v sin u +?θ

则前部单位时间单位面积淋雨量为:

u /v sin u )(+??θω

又因为前部的淋雨面积为:b a ?,时间为: d/v

于是前部淋雨量V 2为 :

()()[]()v /d u /v sin u V 2?+????=θωb a

即:

()()v u /v sin u a V 2?+????=θωd b ①

(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ?,顶部面积为()c b ? ,淋雨时间为()v /d ,于是顶部淋雨量为:

v /cos b V 1θω????=d c ②

由①②可算得总淋雨量 :

()()v u /v sin u a v /cos c b V V V 21?+?????+????=+=θωθωd b d

代入数据求得:

v

1800v

875.1sin 5.7cos V ?++=

θθ

由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角

(θ)两者有关。

对函数V (v )求导,得:

()

2

v 1800sin 5.7cos V ??+-

='θ

θ

显然:V '<0, 所以V 为v 的减函数,V 随v 增大而减小。 因此,速度v=v m =5m/s ,总淋雨量最小。 (Ⅰ)当θ=0,代入数据,解得:

V =0.0011527778(m 3)≈1.153(L )

(Ⅱ)当θ=30°,代入数据,解得:

V =0.0014025(m 3)≈1.403(L )

(三)、模型Ⅲ建立及求解:

若雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为α则淋雨量只有两部分:顶部淋雨量和后部淋雨量.(如图2)

设雨从背部吹来时与人体夹角为α, 且0°<α﹤90°,建立a ,b ,c ,d ,u ,α,ω之间的关系为:

(1)、先考虑顶部淋雨量:当雨从背面吹来,而对于人顶部的淋雨量 V 1 ,它与模型①中一样,雨速在垂直方向只有向下的分量,同理可得:

()/v cos d c b v /cos b V 1αωαω????=????=d c

(2)、后部淋雨量:人相对于雨的水平速度为:?

???>?-?≤-?ααα

αsin u v sin v sin u v v sin ,,u u

从而可得,人背部单位时间单位面积淋雨量为:()()????>?-??≤-??ααωα

αωsin u v u /sin u v sin u v u /v sin ,,u

可得人背部淋雨量为: ()()????>?-????=?≤-?????=ααωα

αωsin u v u /sin u v a V sin u v u /v sin a V 33,,d b u d b

而总淋雨量:V=V 1+ V 3

从而有:?

???>?-????+????=?≤-?????+????=ααωαωα

αωαωsin u v u /)sin u v (d b a v /cos c b V sin u v u /)v sin (d b a v /cos c b V ,,d u d ③

化简③式得:()()????>+?-????=?≤-?+????=αααωα

ααωsin u v /a v /sin cos b V sin u v /a v /sin cos b V ,,u a c d u a c d

代入相关数据化简得:()[]()[]????>+-=?≤-+=αααα

ααsin u v 360/375.0v /1.5sin cos 2.0V sin u v 360/375.0v /1.5sin cos 2.0V ,, ⑤

当?=30α时。

()[]()[]??

??>+-=?≤-+=α

ααα

ααsin u v 360/375.0v /1.5sin cos 2.0V sin u v 360/375.0v /1.5sin cos 2.0V ,,

12345678

2

4

6

8

10

12

14

16

-4

由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角(α)两者有关。

(Ⅰ)、 当αsin u v ?≤时,且0°<α﹤90°,可得:c cos α+a sin α>0 对⑤式求导,易知V '<0;所以,总淋雨量(V )随着速度(v )的增加而减少, 因此,αsin u v ?= 总淋雨量最小。

(Ⅱ)、当v >u sin α时,且0°<α﹤90°,对⑤式求导, 解得:2v 180cos 2.0sin 5.1V )

(?-=

α (ⅰ)、当1.5sin α-0.2 cos α<0时,即 :tan α<2/15,即V`<0;从而推出,总

淋雨量(V )随着速度(v )的增加而减少,所以,速度v=v m ,总淋雨量最小。

(ⅱ)、当1.5sin α-0.2 cos α>0时,即 :tan α>2/15,即V`>0;从而推出, 总淋雨量(V )随着速度(v )的增加而增加,所以,当速度(v )取最小, 即v=u sin α 总淋雨量最小。

当α=30°,tan α>2/15 ,由模型⑶分析的,当v=u sin α=4×1/2=2(m/s ) 总淋雨量最小,且V=0.0002405(m 3)=0.2405(L) 五、 结果分析:

(1)在该模型中考虑到雨的方向问题,这个模型跟模型二相似,将模型二与模型三综合起来

跟实际的生活就差不多很相似了 。 由这三个模型可以得出在一定的速度下人跑的越快淋雨量

就越少。

(2)若雨迎面吹来时,跑得越快越好

(3)若雨从背面吹来时,分为两种情况:

当tanα>c/a时,跑步速度v=u sinα时V最小;

当tanα

但是该模型只是考虑雨线方向与人的跑步方向在同一平面内,若是雨线方向与人的跑步方向不在同一平面内建立坐标系上,对于这种情况,我们认为在本质和考虑问题的思想上来说模型是不变的,应分别对几个淋雨面进行以上同样方法建立求解模型,但是解算的过程,我想应该更复杂。

参考文献:

[1] 姜启源, 数学模型(第三版)[M],高等教育出版社, 2003.08

[2] 薛梦香,优秀的雨中淋雨模型[J]https://www.360docs.net/doc/689478536.html, ,2012.03.20

a=1/2;b=sqrt(3)/2;

v1=[1:0.001:2];

v2=[2:0.001:8];

V1=((0.2.*b+1.5.*a)./v1-0.375)./360;

V2=((0.2*b-1.5*a)./v2+0.375)/360;

plot(v1,V1)

hold on

plot(v2,V2)

(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度 摘要 由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。 对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。 其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。 最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。 对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。D、E、F区分别需新增4、2、2个平台。利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。 其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。此方案在保证成功围堵嫌疑人的前提下,若在前面阶段堵到罪犯,则可以减少警力资源调度,节省资源。 【关键字】:不同权重的平台调整评价模糊加权分析最短路二分图匹配

数学建模-淋雨模型

淋雨量模型 一、问题概述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。 将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]: (1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量; (2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。计算θ=0,θ=30°的总淋雨量. (3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)

(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义. (5)、若雨线方向跑步方向不在同一平面内,试建立模型 二、问题分析 淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。 可得: 淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)① 时间(t)=跑步距离(d)÷人跑步速度(v)② 由①②得:淋雨量(V)=ω×S×d/v

三、模型假设 (1)、将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m.设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v;(参考) (2)、假设降雨量到一定时间时,应为定值; (3)、此人在雨中跑步应为直线跑步; (4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少; 四、模型求解: (一)、模型Ⅰ建立及求解: 设不考虑雨的方向,降雨淋遍全身,则淋雨面积: S=2ab+2ac+bc 雨中奔跑所用时间为: t=d/v 总降雨量 V=ω×S×d/v

雨中奔跑问题数学建模

题目:一个雨天,你有件急事需要从家中到学校去,学校离家不远,仅一公里,况且事情紧急,你来不及花时间去翻找雨具,决定碰一下运气,顶着雨去学校。假设刚刚出发雨就大了,但你不打算再回去了,一路上,你将被大雨淋湿。一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。 1 建模准备 建模目标:在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最小。 主要因素:淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度 2 模型假设及符号说明 1)把人体视为长方体,身高h 米,宽度w 米,厚度d 米。淋雨总量用C 升来记。 2)降雨大小用降雨强度I 厘米/时来描述,降雨强度指单位时间平面上的降下水的厚度。在这里可视其为一常量。 3)风速保持不变。 4)你一定常的速度v 米/秒跑完全程D 米。 3 模型建立与计算 1)不考虑雨的方向,此时,你的前后左右和上方都将淋雨。 淋雨的面积 )( 222米wd dh wh S ++= 雨中行走的时间 )(秒v D t = 降雨强度 )/()3600/01.0()/(01.0)/(s m I I I ==时米时厘米 (升) 米S I v D S I t C ??=???=3600/)/(10)(01.0)3600/(3 模型中为变量。为参数,而v S I D ,, 结论,淋雨量与速度成反比。这也验证了尽可能快跑能减少淋雨量。 。米即米米米小时厘米米若取参数22.2,20.0,50.0,50.1,/2,1000======S d w h I D 秒。分秒,即你在雨中行走了每秒,则计算得 米度你在雨中行走的最大速472167/6=v

全国大学生数学建模竞赛论文--范例

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全 名):参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):

全国评阅编号(由全国组委会评阅前进行编号):

眼科病床的合理安排 摘要 病床是医院的重要卫生资源,其使用情况是反映医院工作效率的重要指标,合理分配床位、提高病床使用率对于充分利用医疗资源、提高医院的两个效益有着十分重要的意义。 本题针对某医院眼科病床分配中存在的不合理现象,让我们建立一个合理的病床安排模型,以解决病床的最优分配问题,从而提高对医院资源的有效利用。 针对问题一,本文制定的指标评价体系包括门诊相关指标集(病人平均等待时间、门诊等待平均队长、病人平均满意度)和病床相关指标集(出院者平均住院日数、病床平均工作日、病床平均周转率、实际病床利用率)。为了能够全面地评价出模型的优劣,本文采用目前普遍使用的密切值法、TOPSIS法和RSR法等综合评价方法,并对应建立了三个评价模型,以得出更为科学合理的结论。 针对问题二,本文建立了以病床需求数为状态转移变量、以各类病人的病床安排数为决策变量的动态规划模型。模型中,充分考虑了观测期内病人平均等待时间、病床平均周转率、病床利用率和潜在流失率等指标,且在制定寻优策略时,引入了病人满意度量化函数和优先级函数,使得模型更加合理。通过Matlab 对该模型求解,得出了次日病床安排方案(结果见表4)。 综合评价模型时,以该医院目前的病床安排方案和我国医院通用的病床安排方法为比较对象,借助上述三种评价方法和模型,进行了综合评价比较,从综合评价结果来看,本文的模型相对较优(评价结果见表9)。 针对问题三,本文既充分考虑了如何缩短病人平均等待时间和提高病床利用率,又兼顾了公平原则,根据病症的不同和就诊病人到院的顺序制订了优先服务策略,给出了每个病人相应的入住时间区间(见P18)。 针对问题四,由于住院部周六和周日不安排手术,对某些类型病人的病床安排产生了一定的影响,因此我们对问题二中模型的优先级函数进行了相应的调整,并利用Matlab进行了求解(结果见表10)。 为了判断手术安排时间是否改变,本文根据问题一的评价方法和模型对修改后的模型进行了综合评价,从评价结果得知,手术安排时间应该做相应的调整。 针对问题五,为了使所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短,本文建立了以其为目标函数且带约束条件的非线性规划模型,并利用了Lingo 软件对其进行求解,得出的结论是:分配给外伤、白内障(双眼)、白内障(单眼)、青光眼、视网膜疾病等各类型病人的床位数依次为:8、16、12、21、22,分别占总床数的比例为:10.13%、20.25%、15.19%、26.58%、27.85%。 最后,本文对所建模型的优点和缺点进行了客观的评价,认为本文研究的结果在实际医院病床安排中有一定的参考价值。 关键词:病人平均等待时间;实际病床利用率;RSR 法;满意度量化函数;动态规划模型;非线性规划 1.问题重述 医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,

数学建模数学建模之雨中行走问题模型

数学建模 雨 中 行 走 模 型 系别: 班级: 姓名: 学号:

正文: 数学建模之雨中行走问题模型 摘要: 考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。若雨是迎着你前进的方向向你落下,这时的策略很简单,应以最大的速度向前跑; 若雨是从你的背后落下,你应控制你在雨中的行走速度,让它刚好等于落雨速度的水平分量。 ① 当 α sin r v <时,淋在背上的雨量为 []v vh rh pwD -αsin ,雨水总量 ()[]v v r h dr pwD C -+=ααsin cos . ② 当α sin r v =时,此时0 2 =C .雨水总量α cos v pwDdr C = ,如0 30 =α ,升 24.0=C 这表明人体仅仅被头顶部位的雨水淋湿.实际上这意味着人体刚好跟着雨滴向前走,身体前后将不被淋雨. ③ 当α sin r v >时,即人体行走的快于雨滴的水平运动速度αsin r .此时将不断地赶上 雨滴.雨水将淋胸前(身后没有),胸前淋雨量()v r v pwDh C α sin 2 -= 关键词: 淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度 1.问题的重述 人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想到,走多快才会少淋雨呢?一个简单的情形是只考虑人在雨中沿直线从一处向另一处进行时,雨的速度(大小和方向)已知,问行人走的速度多大才能使淋雨量最少? 2.问题的分析. 由于没带伞而淋雨的情况时时都有,这时候大多人都选择跑,一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。, 一、我们先不考虑雨的方向,设定雨淋遍全身,以 最大速度跑的话,估计总的淋雨量; 二、再考虑雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为 ,如图1,建立总淋雨量与速度v 及参数a,b,c,d,u,w,θ之间的关系,问速度v 多大,总淋雨量最少,计算=0,=0 90时的总淋雨量; θθθ

数学建模_淋雨模型

专业及班级土木10班 学号20136452 姓名杨昌友 淋雨量模型 一摘要:本文主要研究人在雨中行走的淋雨量问题。在给定的降雨条件下,分别建立相应的数学 模型,分析人体在雨中奔跑时淋雨多少与奔跑速度、降雨方向等因素的关系。得出结论:若雨迎面落下,则以最大的速度跑完全程淋雨量最少;若雨从背后落下,则以降雨速度的水平分量时奔跑时淋雨量最少。 关键词:淋雨量雨速大小雨速方向跑步速度路程远近 二、问题概述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论就是否跑得越快,淋雨量越少。 将人体简化成一个长方体,高a=1、5m(颈部以下),宽b=0、5m,厚c=0、2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]: (1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量; (2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1、建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。计算θ=0,θ=30°的总淋雨量、 (3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,

如图2、建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。计算α=30°的总淋雨量、(说明:题目中所涉及的图形为网上提供) (4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义、(5)、若雨线方向跑步方向不在同一平面内,模型会有什么变化? 三、问题分析 淋雨量就是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积与淋雨时间的乘积。 可得: 淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t) ① 时间(t)=跑步距离(d)÷人跑步速度(v) ②由①②得: 淋雨量(V)=ω×S×d/v 四模型假设 (1)、将人体简化成一个长方体,高a=1、5m(颈部以下),宽b=0、5m,厚c=0、2m、设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v; (2)、假设降雨量到一定时间时,应为定值; (3)、此人在雨中跑步应为直线跑步; (4)、问题中涉及的降雨量应指天空降落到地面的雨,而不就是人工,或者流失的水量,因为它可以直观的表示降雨量的多少; 五、符号 淋雨量V 降雨量ω 人体淋雨面积S 淋浴时间t 跑步距离 d 跑步速度v 人高 a 人宽 b 人厚 c 六、模型求解: (一)、模型Ⅰ建立及求解: 设不考虑雨的方向,降雨淋遍全身,则淋雨面积: S=2ab+2ac+bc

数学建模中的图论方法

数学建模中的图论方法 一、引言 我们知道,数学建模竞赛中有问题A和问题B。一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。因此很多人有这样的感觉,A题入手快,而B题不好下手。 另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。这样增加了建立数学模型的难度。但是这也并不是说无法求解。一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。 图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。图论方法已经成为数学模型中的重要方法。许多难题由于归结为图论问题被巧妙地解决。而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如: AMCM90B-扫雪问题; AMCM91B-寻找最优Steiner树; AMCM92B-紧急修复系统的研制(最小生成树) AMCM94B-计算机传输数据的最小时间(边染色问题) CMCM93B-足球队排名(特征向量法) CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性) CMCM98B-灾情巡视路线(最优回路) 等等。这里面都直接或是间接用到图论方面的知识。要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。 本文将从图论的角度来说明如何将一个工程问题转化为合理而且可求解的数学模型,着重介绍图论中的典型算法。这里只是一些基础、简单的介绍,目的在于了解这方面的知识和应用,拓宽大家的思路,希望起到抛砖引玉的作用,要掌握更多还需要我们进一步的学习和实践。

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

关于淋雨数学建模

合肥学院数学与物理系 建模与优化模块II 综合实验 题目淋雨量数学建模 班级16数学与应用数学(1) 学号1607021006 姓名陈静 合肥学院数学与物理系制

淋雨量数学建模 摘要:本文通过对人在雨中直线行走时雨垂直降落、从前吹来、从后吹来这三种情况的分析讨论,得到了在不同情况下淋雨总量与人的行走速度的数学模型。并发现,当雨垂直落下和迎面吹来时,跑的速度越快淋雨越少;而当雨从背面吹来时,当人跑的速度大于等于雨速的水平分量的大小且此时夹角α满足tan c a α<时,跑得越快淋雨越少,除此之外的其它情况下有当αsin u v =时,淋雨量最小。 关键词:淋雨量,降雨方向,降雨大小,直线行走 正文 一 问题重述 人在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变。试建立数学模型讨论是否跑得越快,淋雨量越少,并用MATLAB 编程实现。 假设跑步距离d=100米,跑步最大速度为m v =5 m/s ,雨速u=4m/s ,降雨量为w=2cm/h 。 (1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的淋雨量。 (2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为θ,问跑步速度v 为多大?淋雨量最少。 二 问题的分析 人在雨中行走时可能出现以下三种情形: 情形一:雨垂直下落,人以速度v 前行,此时降雨淋遍全身(如图1所示)

图 1 情形二:雨迎面吹来,雨线与跑步方向在同一平面内,与人的正面夹角为θ,此时后背淋不到雨(如图2所示) 图2 情形三:雨从背面吹来,雨线方向与跑步方向在同一平面内,与人的背后夹角为α,此时正面淋不到雨(如图3所示) 图 3 我们知道当人在雨中前行的时候,人和雨相对地面都是运动的,故知人与雨是相对运动的。为此我们选择人作为参考系,再考虑雨的相对速度及其与人体方向(即与人体夹角θ、α)对总淋雨量的影响。 三合理的假设 3.1 将人体看成一个长方体; 3.2 雨速为常数且方向不变;

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模淋雨量与跑步速度

淋雨量与跑步速度关系探究 摘要当大雨来临时,人们总是习惯于拔腿就跑。摆脱困境的本能迫使我们加快速度,与此同时,日常经验又让我们很多人对跑得越快淋雨就越少这一点深信不疑。事实是否正如大多数人所想的呢?本文就“淋雨量与跑步速度关系”的问题建立了数学模型,从实际情况出发对不同条件下速度和淋雨量关系做出分析探究。 在问题一中,因为已经假设雨淋遍全身,且速度为最大,所以由题目的已知条件,直接列方程求解。 在问题二中,我们利用最优化原理,建立出一个动态规划模型。并将该问题分为两部分解答,即:(1)雨从迎面吹来;(2)雨从背面吹来。同时绘制出第二部分的“淋雨量—速度”图像,方便于快速直观地得到两者关系。解决该问题的过程中,本文利用了几何中的面积公式及物理中速度的分解等知识,结合题目中的已知条件,列出方程求解。 问题三是问题二的深入,将简单的平面问题升华为空间问题,但处理方法和问题二基本相同,只是增加了空间角,本质没有区别。 本文的特点是在建立模型的基础上层层深入,配合图形,简单明了。同时,基于本文是建立在严谨的计算之上的,具有一定的可靠性,在很大程度上具有参考价值。 关键词最优化原理动态模型速度选择淋雨量 1.问题的重述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型是否跑得越快,淋雨量越少。 将人体简化成一个长方体,高a=1.5米(颈部以下),宽b=0.5米,厚c=0.2米。设跑步距离d=1000米,跑步最大速度 v=5m/s,雨速u=4m/s,降雨量ω=2cm/h, m 记跑步速度为v,讨论以下问题: (1)不考虑雨的方向,设降雨淋遍全身,以最大速度奔跑,估计跑完全程的总淋雨量。 (2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之 间的关系,问速度v多大,总淋雨量最少。计算θ=0?,30?时 的总淋雨量;雨从背面吹来,雨线方向与跑步方向在同一平面内, 且与人体的夹角是α,如图2。建立总淋雨量与速度 v及参数 a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最少, 计算α=30?时的总淋雨量。

数学建模-淋雨模型

淋雨量模型 摘要 步入雨季,降雨天气逐渐开始在人们的日常生活中频繁出现起来,与此同时,突如其来的雨水也常常带给无准备的人们淋成落汤鸡的窘境。面对骤雨,大多数人在通常情况下会选择快速奔跑以希求淋雨最少。然而这样真的能淋雨最少吗?以此日常情景为背景提出了四个问题,本文运用几何知识、物理知识等方法成功解决了这四个问题,得到了在不同的降雨条件下人体在雨中奔跑时淋雨多少与奔跑速度、降雨方向等因素的关系。并针对不同降雨条件给出了淋雨量最少的方法。 针对问题一,条件给出:不考虑雨的方向,降雨淋遍全身;确定淋雨量为人体表面积与单位面积降雨量及淋雨时间之积 针对问题二,根据已知条件(雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ),对雨线的速度分别沿水平、竖直方向正交分解,并综合考虑人的速度与雨线速度的制约关系,建立模型,得出函数模型。并对函数求导分析最小淋雨量对应速度。

针对问题三,在雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α的条件下,对雨线的速度分别沿水平、竖直方向正交分解,并综合考虑人的速度与雨线速度的制约关系,建立模型,得出函数模型。并对函数分析最小淋雨量对应速度。以总淋雨量为纵轴,速度v为横轴,对函数用Excel作图(考虑α的影响),并解释结果的实际意义。 针对问题四,综合考虑前三种情况的共同作用,并基于前三种模型进行修正。 最后,对所建立的模型和求解方法的方法的优缺点给出了客观的评价,并指出误差所在。 关键字:淋雨量雨速大小雨速方向跑步速度路程远近 一、问题重述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。 将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω =2cm/h,及跑步速度为v,按以下步骤进行讨论]: (1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量; (2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。计算θ=0,θ=30°的总淋雨量. (3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。计算α=30°的总淋雨量.

数学建模淋雨量模型

数学建模淋雨量模型文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

重庆大学本科学生论文 数学模型的淋雨量模型 学生:谭昕宇、杨龙顺 学号: 指导教师:黄光辉 专业:通信工程专业 重庆大学通信工程学院 二O一七年十月 摘要 本文针对淋雨量最小问题,采用matlab仿真等方法,得到不同风向下淋雨量与跑步速度的关系。 针对问题一,可以得到淋雨量最小是2.44L 针对问题二,通过matlab仿真可以得到迎面淋雨时跑步速度最大,淋雨量最小。且淋雨量大小与跑步方向和雨线夹角有关。 针对问题三,通过matlab仿真可以知道背面淋雨时,跑步方向和雨线夹角不太小时,当跑步速度与雨速在同一方向分量相等时淋雨量最小,此时只有顶面淋雨。 在本文的最后,对模型的优缺点进行分析,并提出一些改进。 关键字:淋雨量最小,跑步速度,雨线与跑步方向夹角,matlab

目录 一、问题描述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变。讨论淋雨量与人体跑步速度的关系。 二、问题分析 这是一个简单优化问题,根据雨速大小和方向、人速度大小进行合理分析,使得人淋雨量最小。淋雨面积与雨的方向有关,淋雨时间与跑步速度与雨速相对速度大小有关,所以在不同情况下有不同的最优解。 三、模型假设 1.人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚 c=0.2m;

2.雨速u是常数(4m/s),在跑步过程中降雨量w是常数(2cm/h); =5m/s; 3.在整个过程中人跑步速度v是常数,且有最大速度V max 4.雨线的方向是确定的; 5.跑步距离一定d=1000m. 四、符号说明 五、模型的建立与求解 根据题意,按以下步骤进行讨论: 5.1 不考虑雨的方向,设雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。 淋雨面积s=2ab+2ac+ab=2.2m2,跑完时间t=d/v=200 s,降雨量 w=2cm/h=1/1.8X105m/s, 淋雨量 Q=swt=2.44X10-3 m3。

数据建模目前有两种比较通用的方式

数据建模目前有两种比较通用的方式1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。1987年高等教育出版社出版了国内第一本《数学模型》教材。20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。本文主要介绍了数学建模中常用的方法。 一、数学建模的相关概念 原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。一个原型,为了不同的目的可以有多种不同的模型。数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。 数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。 二、教学模型的分类 数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。 三、数学建模的常用方法 1.类比法 数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,

全国大学生数学建模竞赛论文模板

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性为主要标准。 所以论文中应努力反映出这些特点。

一、 问题的重述 数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。 此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。 这部分的内容是将原问题进行整理,将已知和问题明确化即可。 注意: 在写这部分的内容时,绝对不可照抄原题! 应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。 二、 模型假设 作假设时需要注意的问题: ①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设! ②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述! ③与题目无关的假设,就不必在此写出了。 三、 变量说明 为了使读者能更充分的理解你所做的工作, 对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意: ①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。 ②要与数学中的习惯相符,不要使用程序中变量的写法 比如: 一般表示圆周率;c b a ,, 一般表示常量、已知量;z y x ,, 一般表示变量、未知量 再比如:变量21,a a 等,就不要写成:a[0],a[1]或a(1),a(2) 四、模型的建立与求解 这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有: ①一定要有分析,而且分析应在所建立模型的前面; ②一定要有明确的模型,不要让别人在你的文章中去找你的模型; ③关系式一定要明确;思路要清晰,易读易懂。

关于淋雨数学建模

淋雨数学建模 摘要:本文通过对人在雨中直线行走时雨垂直降落、从前吹来、从后吹来这三 种情况的分析讨论,得到了在不同情况下淋雨总量与人的行走速度的数学模型。并发现,当雨垂直落下和迎面吹来时,跑的速度越快淋雨越少;而当雨从背面吹 来时,当人跑的速度大于等于雨速的水平分量的大小且此时夹角α满足tan c a α< 时,跑得越快淋雨越少,除此之外的其它情况下有当αsin u v =时,淋雨量最小。 关键词:淋雨 直线行走 一 问题重述 人在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变。试建立数学模型讨论是否跑得越快,淋雨量越少,并用MATLAB 编程实现。 假设跑步距离d=100米,跑步最大速度为m v =5 m/s ,雨速u=4m/s ,降雨量为w=2cm/h 。 (1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的淋雨量。 (2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为θ,问跑步速度v 为多大?淋雨量最少。 二 问题的分析 人在雨中行走时可能出现以下三种情形: 情形一:雨垂直下落,人以速度v 前行,此时降雨淋遍全身(如图1所示) 图 1 情形二:雨迎面吹来,雨线与跑步方向在同一平面内,与人的正面夹角为θ,此 时后背淋不到雨(如图2所示)

图2 情形三:雨从背面吹来,雨线方向与跑步方向在同一平面内,与人的背后夹角为α,此时正面淋不到雨(如图3所示) 图 3 我们知道当人在雨中前行的时候,人和雨相对地面都是运动的,故知人与雨是相对运动的。为此我们选择人作为参考系,再考虑雨的相对速度及其与人体方向(即与人体夹角θ、α)对总淋雨量的影响。 三合理的假设 3.1 将人体看成一个长方体; 3.2 雨速为常数且方向不变; 3.3 降雨量为一定值; 3.4 考虑雨的方向与人体前进的方向在同一平面内; 3.5 符号的假定: a: 身高(颈部以下) b: 身宽 c: 身厚 v: 跑步最大速度d: 跑步距离 v: 跑步速度 m w: 降雨量 u: 雨速 Q: 总淋雨量 θ: 雨迎面吹来与人的夹角α: 雨背面吹来与人的夹角 s:有效淋雨面积v:以人为参考系时的相对雨速 四模型的建立 我们先考虑如下情形,现有一块土地面积为s,雨垂直降落,雨速及方向不变,且降雨量为一常数w ,则有时间t内该土地的淋雨量为Q stw =。若雨速发生变化,则降雨量也会相对发生改变,设雨速从u变为u u +?,则降雨量相对变

全国大学生数学建模竞赛论文格式规范

全国大学生数学建模竞赛论文格式规范 (全国大学生数学建模竞赛组委会,2019年修订稿) 为了保证竞赛的公平、公正性,便于竞赛活动的标准化管理,根据评阅工作的实际需要,竞赛要求参赛队分别提交纸质版和电子版论文,特制定本规范。 一、纸质版论文格式规范 第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。 第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。 第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。 第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。 第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行(或者运行结果与正文不符),可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有源程序,也应在论文附录中明确说明“本论文没有源程序”。 第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。 第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。 第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。 二、电子版论文格式规范 第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求提交以

数学建模淋雨问题论文

淋雨问题论文 摘要 本文在给定的降雨条件下,分别建立相应的数学模型,分析人在雨中奔跑时淋雨的多少与奔跑速度、降雨的方向以及雨线的方向与跑步的方向是否在同一平面内等因素的关系,得出结论:若雨迎面落下,则以最大速度跑完全程淋雨量最少;如果雨从背面吹来,分两种情况: (雨从背面吹来时与人体夹角为α)当tan2/15 α>时,跑步 α<时,跑得越快越好;当tan2/15 速度,则以降雨速度的水平分量奔跑时淋雨量最少。若雨线方向与跑步方向不在同一平面内,则可将雨速方向分解为与人跑速度同向的速度和与人跑速度方向垂直的速度. 同向速度即平面共面,可看成模型二、三的情况,垂直速度可看成模型一的情况。 关键词 淋雨量,雨速大小与方向,跑步速度。 正文 1.问题概述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量就越少。 将人体简化成一个长方体,搞a=1.5m(颈部以下),宽b=0.5m,厚

c=0.2m 。设跑步距离d=1000m ,跑步最大速度5/m v m s =,雨速u=4m/s ,降雨量w=2cm/h,记得跑步速度为v ,按以下步骤进行讨论: (1)不考虑雨的方向,设降雨淋遍全身,以最大的速度跑步,估计跑完全程的总淋雨量。 (2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为x ,如图1,建立总淋雨量与速度v 以及参数a 、b 、c 、d 、u 、w 、θ之间关系,问速度v 多大,总淋雨量最少,计算0θ=,30θ=时的总淋雨量 (3)雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为α,如图2,建立总淋雨量与速度v 以及参数a 、d 、c 、d 、u 、w 、α之间的关系,问速度v 多大,总淋雨量最少,计算30α=时的总淋雨量。 (4)以总淋雨量为纵轴,速度v 为横轴,对(3)进行作图(考虑α的影响),并解释结果的实际意义。 (5)若雨线方向与跑步方向不在同一平面内,模型会有什么变化。 2.模型假设 2.1将人体简化成一个长方体,高a=1.5m,宽b=0.5m.厚c=0.2m ;设跑

数学建模常用算法模型

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握) 解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。 满足两个条件可用: ①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式 2、微分方程预测(高大上、备用) 微分方程预测是方程类模型中最常见的一种算法。近几年比赛都有体现,但其中的要求,不言而喻。学习过程中 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。 3、回归分析预测(必掌握) 求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化; 样本点的个数有要求: ①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小; ②样本点的个数n>3k+1,k为自变量的个数;

相关文档
最新文档