平行四边形的存在性问题解题策略

平行四边形的存在性问题解题策略
平行四边形的存在性问题解题策略

平行四边形的存在性问题解题策略

专题攻略

解平行四边形的存在性问题一般分三步:

第一步寻找分类标准,第二步画图,第三步计算.

难点在于寻找分类标准,分类标准寻找的恰当,可以使解的个数不重复不遗漏,也可以使计算又好又快.

如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.

根据平行四边形的对边平行且相等,灵活运用坐标平移,可以使得计算过程简便.根据平行四边形的中心对称的性质,灵活运用坐标对称,可以使得解题简便.

例题解析

例?如图1-1,在平面直角坐标系中,已知抛物线

y=-x2-2x+3与x轴交于A、B两点(A在B的左侧),

与y轴交于点C,顶点为P,如果以点P、A、C、D为

顶点的四边形是平行四边形,求点D的坐标.

图1-1 【解析】P、A、C三点是确定的,过△P AC的三个顶点分别画对边的平行线,三条直线两两相交,产生3个符合条件的点D(如图1-2).

由y=-x2-2x+3=-(x+1)2+4,得A(-3,0),C(0, 3),P(-1, 4).

由于A(-3,0)33

右,上C(0, 3),所以P(-1, 4)33

右,上D1(2, 7).由于C(0, 3)33

下,左D2(-4, 1).

下,左A(-3,0),所以P(-1, 4)33

由于P(-1, 4)11

右,下D3(-2, -1).

右,下C(0, 3),所以A(-3,0)11

我们看到,用坐标平移的方法,远比用解析式构造方程组求交点方便多了.

图1-2

例?如图2-1,在平面直角坐标系中,已知抛物线y=-x2+2x+3与x轴交于A、B两

点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标.

图2-1

【解析】在P、M、A、B四个点中,A、B是确定的,以AB为分类标准.

由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0).

①如图2-2,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P 关于AB的中点(1,0)对称,所以点M的横坐标为2.此时M(2,3).

②如图2-3,图2-4,当AB是平行四边形的边时,PM//AB,PM=AB=4.

所以点M的横坐标为4或-4.所以M (4,-5)或(-4,-21).

我们看到,因为点P的横坐标是确定的,在解图2-2时,根据对称性先确定了点M的横坐标;在解图2-3和图2-4时,根据平移先确定了点M的横坐标.

图2-2 图2-3 图2-4 例?如图3-1,在平面直角坐标系中,直线y=-x+4与x轴交于点A,与y轴交于点B,点C在直线AB上,在平面直角坐标系中求一点D,使得以O、A、C、D为顶点的四边形是菱形.

图3-1

【解析】由y=-x+4,得A(4, 0),直线AB与坐标轴的夹角为45°.

在O、A、C、D四个点中,O、A是确定的,以线段OA为分类标准.

如图3-2,如果OA是菱形的对角线,那么点C在OA的垂直平分线上,点C(2,2)关于OA的对称点D的坐标为(2,-2).

如果OA是菱形的边,那么又存在两种情况:

如图3-3,以O为圆心,OA为半径的圆与直线AB的交点恰好为点B(0, 4),那么正方形AOCD的顶点D的坐标为(4, 4).

如图3-4,以A 为圆心,AO 为半径的圆与直线AB 有两个交点C (4-和

C ′(4+-,点C 和C ′向左平移4个单位得到点

D (-和D ′-.

图3-2 图3-3 图3-4

例? 如图4-1,已知抛物线241633

y x x =+与x 轴的负半轴

交于点C ,点E 的坐标为(0,-3),点N 在抛物线的对称轴上,点

M 在抛物线上,是否存在这样的点M 、N ,使得以M 、N 、C 、E

为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若

不存在,请说明理由.

图4-1

【解析】C (-4,0)、E (0,-3)两点是确定的,点N 的横坐标-2也是确定的.

以CE 为分类标准,分两种情况讨论平行四边形:

①如图4-2,当CE 为平行四边形的边时,由于C 、E 两点间的水平距离为4,所以M 、N 两点间的水平距离也为4,因此点M 的横坐标为-6或2.

将x =-6和x =2分别代入抛物线的解析式,得M (-6,16)或(2, 16).

②如图4-3,当CE 为平行四边形的对角线时,M 为抛物线的顶点,所以M 16(2,)3

--.

图4-2 图4-3

例?如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),点D 是第四象限内抛物线上的一点,直线AD 与y 轴负半轴交于点C ,且CD =4AC .设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.

图5-1

【解析】由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).

由CD=4AC,得x D=4.所以D(4, 5a).

已知A(-1, 0)、D(4, 5a),x P=1,以AD为分类标准,分两种情况讨论:

①如图5-2,如果AD为矩形的边,我们根据AD//QP,AD=QP来两次平移坐标.

由于A、D两点间的水平距离为5,所以点Q的横坐标为-4.所以Q(-4,21a).

由于A、D两点间的竖直距离为-5a,所以点P的纵坐标为26a.所以P(1, 26a).

根据矩形的对角线相等,得AP2=QD2.所以22+(26a)2=82+(16a)2.

整理,得7a2=1.所以a=P(1.

②如图5-3,如果AD为矩形的对角线,我们根据AP//QD,AP=QD来两次平移坐标.由于A、P两点间的水平距离为2,所以点Q的横坐标为2.所以Q(2,-3a).

由于Q、D两点间的竖直距离为-8a,所以点P的纵坐标为8a.所以P(1, 8a).

再根据AD2=PQ2,得52+(5a)2=12+(11a)2.

整理,得4a2=1.所以

1

2

a=-.此时P(14)

-

,.

我们从图形中可以看到,像“勾股图”那样构造矩形的外接矩形,使得外接矩形的边与坐标轴平行,那么线段的等量关系就可以转化为坐标间的关系.

上面我们根据“对角线相等的平行四边形是矩形”列方程,还可以根据定义“有一个角是直角的平行四边形叫矩形”来列方程.

如图5-2,如果∠ADP=90°,那么MA ND

MD NP

=;如图5-3,如果∠QAP=90°,那么

GQ KA

GA KP

=.

图5-2 图5-3

例?如图6-1,将抛物线c1:2

y=x轴翻折,得到抛物线c2.

现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.

图6-1

【解析】没有人能精确画好抛物线,又怎么平移抛物线呢?我们去伪存真,将A 、B 、

D 、

E 、M 、N 六个点及它们的坐标在图中都标注出来(如图6-2),如果您看到了△MAB 和△NED 是边长为2的等边三角形,那么平移就简单了.

如图6-3,在两个等边三角形平移的过程中,AM 与EN 保持平行且相等,所以四边形ANEM 保持平行四边形的形状,点O 为对称中心.

【解法一】如果∠ANE =90°,根据30°角所对的直角边等于斜边的一半,可得AE =2EN =4.而AE =AO +OE =2AO ,所以AO =2.已知AB =2,此时B 、O 重合(如图6-4),所以m =BO =1.

【解法二】如果对角线MN =AE ,那么OM =OA ,此时△MAO 是等边三角形.所以等边三角形MAB 与△MAO 重合.因此B 、O 重合,m =BO =1.

【解法三】在平移的过程中,(1,0)A m --、(1,0)B m -,M (m -,根据OA 2=OM 2列方程(1+m )2=m 2+3.解得m =1.

图6-2 图6-3 图6-4

例? 如图7-1,菱形ABCD 的边长为4,∠B =60°,E 、H 分别是AB 、CD 的中点,E 、G 分别在AD 、BC 上,且AE =CG .

(1)求证四边形EFGH 是平行四边形;

(2)当四边形EFGH 是矩形时,求AE 的长;

(3)当四边形EFGH 是菱形时,求AE 的长.

图7-1

【解析】(1)证明三角形全等得EF =GH 和FG =HE 大家最熟练了.

(2)平行四边形EFGH 的对角线FH =4是确定的,当EG =FH =4时,四边形EFGH 是矩形.

以FH 为直径画圆,你看看,这个圆与AD 有几个交点,在哪里?如图7-2.

如图7-3,当E为AD的中点时,四边形ABGE和四边形DCGE都是平行四边形.

如图7-4,当E与A重合时,△ABG与△DCE都是等边三角形.

(3)如果平行四边形EFGH的对角线EG与FH互相垂直,那么四边形EFGH是菱形.过FH的中点O画FH的垂线,EG就产生了.

在Rt△AOE中,∠OAE=60°,AO=2,此时AE=1.

又一次说明了如果会画图,答案就在图形中.

图7-2 图7-3 图7-4 图7-5

例?如图8-1,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(4, 0)、B(0, 3),点C的坐标为(0, m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD =2OC,连结DE,以DE、DA为边作平行四边形DEF A.

(1)如果平行四边形DEF A为矩形,求m的值;

(2)如果平行四边形DEF A为菱形,请直接写出m的值.

图8-1

【解析】这道题目我们着重讲解怎样画示意图.我们注意到,点A和直线AB(直线l)是确定的.

如图8-2,先画x轴,点A和直线l.在直线l上取点E,以AE为对角线画矩形DEF A.如图8-3,过点E画直线l的垂线.画∠MDN,使得DN=2MN,MN⊥DN,产生点C.如图8-4,过点C画y轴,产生点O和点B.

图8-2 图8-3 图8-4 您是否考虑到,画∠MDN时,还存在DM在x轴下方的情况?如图8-5.

同样的,我们可以画如图8-6,如图8-7的两个菱形.

图8-5 图8-6 图8-7

9.解题技巧专题:特殊平行四边形中的解题方法

解题技巧专题:特殊平行四边形中的解题方法 ◆类型一特殊四边形中求最值、定值问题 一、利用对称性求最值【方法10】 1.(2017·青山区期中)如图,四边形ABCD是菱形,AC=8,DB=6,P,Q分别是AC,AD上的动点,连接DP,PQ,则DP+PQ的最小值为________. 第1题图第2题图 2.(2017·安顺中考)如图,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________. 二、利用面积法求定值 3.如图,在矩形ABCD中,点P是线段BC上一动点,且PE⊥AC,PF⊥BD,AB=6,BC=8,则PE+PF的值为________. 【变式题】矩形两条垂线段之和→菱形两条垂线段之和→正方形两条垂线段之和眉山期末)如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点, (1)(2017· 分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于________. 变式题(1)图变式题(2)图 (2)如图,正方形ABCD的边长为1,E为对角线BD上一点且BE=BC,点P为线段CE 上一动点,且PM⊥BE于M,PN⊥BC于N,则PM+PN的值为________. ◆类型二正方形中利用旋转性解题 4.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是__________.

5.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF =S△ABE+S△ADF. 6.如图,在正方形ABCD中,对角线AC,BD交于点O,P为正方形ABCD外一点,且BP⊥CP,连接OP. 求证:BP+CP=2OP.

平行四边行常见题型及解题思路

平行四边行常见题型及解题思路 一、基本知识储备 1、直角三角型:直角三角型斜边的中线等于斜边的一半;另外两锐角和等于90°;勾股定理 2、中位线定理:三角形两边中点的连线平行且等于第三边的一半 3、三线合一:等腰三角形底边上的中线就是它的顶角平分线和底边上的高 4、全等三角形证明:SSS SAS ASA AAS HL 5、平行四边形的证明方法: // // == ×∠∠ 二、常见题型分析 (一)平行四边形判定定理的应用 1、下列条件不能判定四边形ABCD为平行四边形的是(). A.AB=CD,AD=BC B.AB=AD,BC=CD C.AB//CD,AB=CD D.∠A=∠C,∠B=∠D 2、已知,从①AB//CD,②AB=CD,③BC//AD,④BC=AD这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有种. (二)已知某两条短线段相等。(相等线段加减同一条线段所得线段仍然相等,一般结合三角型全等解题) 1、已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且 2、平行四边形ABCD中,E、F在对角线BD上,BE=DF.求证:四边形AECF (三)已知线段中点,求证中点连线所组成的四边形为平行四边形或者求解四边形边长。(中位线定理,一般结合平行四边形的判定方法) 1、在□ABCD中,对角线AC、BD相交于点O,过O点作OE//AB交CB于E,若BE=3cm,则AD= . A B C D E O

2、求证:四边形中点连线组成的四边形是平行四边形。 3、如图,△ABC 中∠ACB =90o ,点D 、E 分别是AC ,AB 的中点,点F 在BC 的延长线上,且∠CDF =∠A 。求证:四边形DECF 是平行四边形。 (四)已知角平分线,求证四边形为平行四边形或求解线段长度。(一般结合两直线平行内错角相等得等腰三角形,) 1、□ABCD 中,若AB=2,BC=3,∠B 、∠C 的平分线分别交AD 于E 、F ,则EF= . 2、如图,□ABCD 中,AE 平分∠BAD 交BC 于点E ,CF 平分∠BCD 交AD 于点F 求证:四边形AECF 是平行四边形. 3、已知,如图,AD 是△ABC 的角平分线,DE//AB 交AC 于点E ,F 是AB 上一点,且BF=AE .求证:BE 、DF 互相平分. A B C D E F A B D C F E A B C D E F

实验 平行四边形定则

实验三 验证力的平行四边形定则 一、实验目的: 探究力的合成规律 —— 平行四边形定则;理解等效替代思想方法在物理学中的应用. 二、实验原理: 互成角度的两个力与一个力产生 相同 的效果,看它们用平行四边形定则求出的合力与这个力是否在实验误差允许的范围内相等. 三、实验器材: 木板、白纸、图钉若干、 橡皮条 、细绳、弹簧秤(2只)、三角板、 刻度尺 ,等. 四、实验步骤: ① 用图钉把一张白纸钉在水平桌面上的 方木板 上,如图所示; ②用两个弹簧秤分别钩住两个绳套,互成角度地拉橡皮条,使橡皮条伸长, 结点到达某一点O ; ③用铅笔描下 结点O 的 位置和两个细绳套的 方向 ,并记录弹簧秤的读数21F F ,利用刻度尺和三角板作平行边形,画出对角线所代表的力F ; ④只用一个弹簧秤,通过细绳套把橡皮条的结点拉到与前面实验中的相同 位置O ,记下弹簧的读数F ′ 和细绳的方向; ⑤比较F 和F ′,观察它们在实验误差允许的范围内是否 相等 . ⑥改变21F F ,的大小和方向,再做两次实验。 五、误差分析: 实验误差除弹簧测力计本身的误差外,还主要来源于 读数 误差和 作图 误差两个方面.

① 减小读数误差的方法:弹簧测力计数据在允许的情况下,尽量 大 一些.读数时眼睛一定要 正视弹簧测力计的刻度 ,要按有效数字正确读数和记录. ② 减小作图误差的方法:21F F 与夹角适宜,且比例要恰当。 六、注意事项: ①位置不变:在同一次实验中,使橡皮条拉长时 结点 的位置一定要相同. ②角度合适:用两个弹簧测力计钩住细绳套互成角度地拉橡皮条时,其夹角不宜太 小 ,也不宜太大,以60°~120°之间为宜. ③ 尽量减少误差:在合力不超出量程及在橡皮条弹性限度内形变应尽量大一些;细绳套应适当长一些,便于确定力的方向. ④ 统一标度:在同一次实验中,画力的图示选定的标度要相同,并且要恰当选定标度,使力的图示稍大一些. 〖考点1〗对实验原理及实验过程的考查 【例1】在“验证力的平行四边形定则”实验中,需要将橡皮条的一端固定在水平木板上, 先用一个弹簧秤拉橡皮条的另一端到某一点并记下该点的位置;再将橡皮条的另一端系两根细绳,细绳的另一端都有绳套,用两个弹簧秤分别勾住绳套,并互成角度地拉橡皮条. ⑴ 某同学认为在此过程中必须注意以下几项: A .两根细绳必须等长 B .橡皮条应与两绳夹角的平分线在同一直线上 C .在使用弹簧秤时要注意使弹簧秤与木板平面平行 D .在用两个弹簧秤同时拉细绳时要注意使两个弹簧秤的读数相等 E .在用两个弹簧秤同时拉细绳时必须将橡皮条的另一端拉到用一个弹簧秤拉时记下的位置 其中正确的是_______________(填入相应的字母) ⑵ “验证力的平行四边形定则”的实验情况如图甲所示,其中A 为固定橡皮条的图钉,O 为橡皮条与细绳的结点,OB 和OC 为 细绳.图乙是在白纸上根据实验结果画出的力的示意图. ① 图乙中的F 与F′两力中,方向一定沿AO 方向的是______; ② 本实验采用的科学方法是________ A .理想实验法 B .等效替代法 C .控制变量法 D .建立物理模型法 ⑶ 某同学在坐标纸上画出了如图所示的两个已知力F 1和F 2,图中小正方形的边长表示2 N ,两力的合力用F 表示,F 1、F 2与F 的夹角分别为θ1和θ2,关于F 1、F 2与F 、θ1和θ2关系正确的有________ A .F 1 = 4N B .F = 12 N C .θ1 = 45° D .θ1 < θ2

二次函数平行四边形存在性问题例题

二次函数平行四边形存在性问题例题 一.解答题(共9小题) 1.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点. (1)求抛物线的解析式; (2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标; (3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由. 2.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧). (1)求抛物线的解析式及点B坐标; (2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值; (3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由. 3.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点

分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x 轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP 为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F 在点N的左侧)两点,交y轴于E点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;若不存在,请说明理由. 4.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA ﹣QO|的取值范围. 5.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,

中考数学解题策略专题02 平行四边形的存在性问题

中考数学解题策略专题02 平行四边形的存在性问题 专题攻略 解平行四边形的存在性问题一般分三步: 第一步寻找分类标准,第二步画图,第三步计算. 难点在于寻找分类标准,分类标准寻找的恰当,可以使解的个数不重复不遗漏,也可以使计算又好又快. 如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况. 根据平行四边形的对边平行且相等,灵活运用坐标平移,可以使得计算过程简便.根据平行四边形的中心对称的性质,灵活运用坐标对称,可以使得解题简便. 例题解析 例?如图1-1,在平面直角坐标系中,已知抛物线 y=-x2-2x+3与x轴交于A、B两点(A在B的左侧), 与y轴交于点C,顶点为P,如果以点P、A、C、D为 顶点的四边形是平行四边形,求点D的坐标. 图1-1 例?如图2-1,在平面直角坐标系中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标. 图2-1

例? 如图3-1,在平面直角坐标系中,直线y =-x +4与x 轴交于点A ,与y 轴交于点B ,点C 在直线AB 上,在平面直角坐标系中求一点D ,使得以O 、A 、C 、D 为顶点的四边形是菱形. 图 3-1 例? 如图4-1,已知抛物线241633 y x x =+与x 轴的负半轴交于点C ,点E 的坐标为(0,-3),点N 在抛物线的对称轴上,点 M 在抛物线上,是否存在这样的点M 、N ,使得以M 、N 、C 、E 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若 不存在,请说明理由. 图4-1 例?如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B

平行四边形的判定定理培优讲解及练习

平行四边形的判定定理 【要点梳理】 要点一、平行四边形的判定 1.两组对边分别平行的四边形是平行四边形; 2.一组对边平行且相等的四边形是平行四边形; 3.两组对边分别相等的四边形是平行四边形; 4.两组对角分别相等的四边形是平行四边形; 5.对角线互相平分的四边形是平行四边形. 要点诠释: (1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个 行四边形时,应选择较简单的方法. (2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 【典型例题】 类型一、平行四边形的判定 例1、如图所示,E、F分别为四边形ABCD的边AD、BC上的点,且四边形AECF和DEBF都是平行四边形,AF和BE相交于点G,DF和CE相交于点H.求证:四边形EGFH为平行四边形. 【思路点拨】欲证四边形EGFH为平行四边形,只需证明它的两组对边分别平行,即EG∥FH,FG ∥HE可用来证明四边形EGFH为平行四边形. 【答案与解析】 证明:∵四边形AECF为平行四边形, ∴ AF∥CE. 页1

∵四边形DEBF为平行四边形, ∴ BE∥DF. ∴四边形EGFH为平行四边形. 【变式】如图,在四边形ABCD中,AB∥CD,∠BAD的平分线交直线BC于点E,交直线DC于点F,若CE=CF,求证:四边形ABCD是平行四边形. 【答案】 证明:∵∠BAD的平分线交直线BC于点E, ∴∠1=∠2, ∵AB∥CD, ∴∠1=∠F, ∵CE=CF, ∴∠F=∠3, ∴∠1=∠3, ∴∠2=∠3, ∴AD∥BC, ∵AB∥CD, ∴四边形ABCD是平行四边形. 例2、如图,在?ABCD中,点E,F在对角线AC上,且AE=CF.求证: (1)DE=BF; (2)四边形DEBF是平行四边形. 【思路点拨】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF. 页2

平行四边形的性质与判定解题技巧专题练习含答案

综合滚动练习:平行四边形的性质与判定 时间:45分钟分数:100分得分:________ 一、选择题(每小题4分,共32分) 1.在?ABCD中,若∠A+∠C=120°,则∠A的度数是() A.100°B.120°C.80°D.60° 2.如图,在?ABCD中,点O是对角线AC,BD的交点,下列结论错误的是() A.AB∥CD B.AB=CD C.AC=BD D.OA=OC 第2题图第5题图 3.在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是() A.4∶3∶3∶4 B.7∶5∶5∶7 C.4∶3∶2∶1 D.7∶5∶7∶5 4.平面直角坐标系中,已知?ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则点D的坐标是() A.(-2,1) B.(-2,-1) C.(-1,-2) D.(-1,2) 5.如图,?ABCD中,点E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为() A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2 6.如图,在?ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E.若AB=6,EF=2,则BC的长为() A.8 B.10 C.12 D.14 第6题图第7题图 7.如图,在?ABCD中,∠B=80°,AE平分∠BAD交BC于E,CF∥AE交AD于F,则∠BCF等于() A.40°B.50°C.60°D.80° 8.(2017·龙东中考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是() A.22 B.20 C.22或20 D.18 二、填空题(每小题4分,共24分)

平行四边形定则应用

平行四边形定则应用 1.如图1-5-12所示,用轻绳AO和OB将重为G的重物悬挂在水平天花板和竖直墙壁之间处于静 止状态,AO绳水平,OB绳与竖直方向的夹角为θ.则AO绳的拉力T1、OB绳的拉力T2的大小与 G之间的关系为()A.T1=G tanθ B.T1= C.T2= D.T2=G cosθ 2.如 图所示,一个半径为r、重为G的圆球,被长为r的细绳挂在竖直的光滑的墙壁上,绳与墙所成的角度为30°,则绳子的拉力T和墙壁的弹力N分别是( ) A.T=G, B.T=2G,N=G C. D. 3.如图所示,在倾角为45°的光滑斜面上有一圆球,在球前放一光滑挡板使球保持静止, 此时球对斜面的正压力为N1;若去掉挡板,球对斜面的正压力为N2,则下列判断正确的是 A.B.N2=N1C.N2=2N1D. 4.如图是某同学为颈椎病人设计的一个牵引装置的示意图,一根绳绕过两个定滑轮和 动滑轮后各挂着一个相同的重物,与动滑轮相连的帆布带拉着病人的颈椎(图中是用手指 代替颈椎做实验),整个装置在同一竖直平面内。如果要增大手指所受的拉力,可采取的方法是A.只增加绳的长度 B.只增加重物的重量 C.只将手指向下移动 D.只将手指向上移动 5.如图所示,在倾角为α的斜面上,放一质量为m的小球,小球和斜坡及挡板间均无摩擦,当 档板绕O点逆时针缓慢地转向水平位置的过程中,则有() A.斜面对球的支持力逐渐增大 B.斜面对球的支持力逐渐减小 C.档板对小球的弹力先减小后增大 D.档板对小球的弹力先增大后 减小 6.用一轻绳将小球P系于光滑墙壁上的O点,在墙壁和球P之间夹有 一矩形物块Q,如图所示。P、Q均处于静止状态,则下列相关说法正确 的是() A.P物体受4个力 B.Q受到3个力 C.若绳子变长,绳子的拉力将变小 D.若绳子变短,Q受到的静摩擦力将增大 8.一光滑大圆球固定在地上,O点为其球心,一根轻细绳跨在圆球上,绳的两端分别系有 质量为m1和m2的小球(小球半径忽略不计),当它们处于平衡状态时,质量为m1的小球与 O点的连线与竖直方向的夹角θ =60°,两小球的质量比m1:m2为() A. B. C. D. 9.如图所示,将一球形物体夹在竖直墙AC与木板BC之间,已知各接触面均光滑,将球对墙的压力 用N1表示,球对木板的压力用N2表示.现将木板以C端为轴缓慢地转至水平位置的过程中,下列说 法中正确的是() A、N1和N2都增大 B、N1和N2都减小 C、N1增大, N2减小 D.、N1减小, N2增大 10.如图所示,放在光滑斜面上的小球,一端系于固定的O点,现用外力缓慢将斜面在水平桌面 上向左推移,使小球上升(最高点足够高),在斜面运动过程中,球对绳的拉力将() A.先增大后减小B.先减小后增大 C.一直增大D.一直减小

中考数学解题思路步骤专题讲解---平行四边形的存在性问题

中考数学解题思路步骤专题讲解 ---平行四边形的存在性问题解题策略 专题攻略 解平行四边形的存在性问题一般分三步: 第一步寻找分类标准,第二步画图,第三步计算. 难点在于寻找分类标准,分类标准寻找的恰当,可以使解的个数不重复不遗漏,也可以使计算又好又快. 如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点. 如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况. 根据平行四边形的对边平行且相等,灵活运用坐标平移,可以使得计算过程简便. 根据平行四边形的中心对称的性质,灵活运用坐标对称,可以使得解题简便. 例题解析 例? 如图1-1,在平面直角坐标系中,已知抛物线 y =-x 2-2x +3与x 轴交于A 、B 两点(A 在B 的左侧), 与y 轴交于点C ,顶点为P ,如果以点P 、A 、C 、D 为 顶点的四边形是平行四边形,求点D 的坐标. 图1-1 【解析】P 、A 、C 三点是确定的,过△P AC 的三个顶点分别画对边的平行线,三条直线两两相交,产生3个符合条件的点D (如图1-2). 由y =-x 2-2x +3=-(x +1)2+4,得A (-3,0),C (0, 3),P (-1, 4). 由于A (-3,0)33uuuuuuuuuuuuuu r 右,上 C (0, 3),所以P (-1, 4)33uuuuuuuuuuuuuu r 右,上 D 1(2, 7). 由于C (0, 3)33uuuuuuuuuuuuuu r 下,左 A (-3,0),所以P (-1, 4)33uuuuuuuuuuuuuu r 下,左 D 2(-4, 1). 由于P (-1, 4)11uuuuuuuuuuuuur 右,下 C (0, 3),所以A (-3,0)11uuuuuuuuuuuuur 右,下 D 3(-2, -1). 我们看到,用坐标平移的方法,远比用解析式构造方程组求交点方便多了.

实验探究力的平行四边形定则

实验:探究力的平行四边形定则 一、实验目的 1.会使用弹簧测力计. 2.验证互成角度的两个力合成时的平行四边形定则. 二、实验原理 1.等效法:一个力F′的作用效果和两个力F1、F2的作用效果都是让同一 条一端固定的橡皮条伸长到同一点,所以一个力F′就是这两个力F1和F2 的合力,作出力F′的图示,如图所示. 2.平行四边形法:根据平行四边形定则作出力F1和F2的合力F的图示. 3.验证:比较F和F′的大小和方向是否相同,若在误差允许的范围内相 同,则验证了力的平行四边形定则. 三、实验器材 方木板、白纸,弹簧测力计(两只),橡皮条,细绳套(两个),三角板,刻度尺,图钉(几个).四、实验步骤 1.在水平桌面上平放一块方木板,在方木板上铺一张白纸,用图钉 把白纸固定在方木板上. 2.用图钉把橡皮条的一端固定在板上的A点,在橡皮条的另一端拴 上两条细绳,细绳的另一端各系上细绳套. 3.用两个弹簧测力计分别钩住细绳套,互成角度地拉橡皮条,将结 点拉到某一位置O,如图所示. 4.用铅笔描下O点的位置和两条细绳的方向,读出并记录两个弹簧测力计的示数. 5.用铅笔和刻度尺在白纸上从O点沿两条细绳的方向画直线,按一定的标度作出两个力F1和F2的图示,并以F1和F2为邻边用刻度尺和三角板作平行四边形,过O点的平行四边形的对角线即为合力F. 6.只用一个弹簧测力计,通过细绳把橡皮条的结点拉到同样的位置O,读出并记录弹簧测力计的示数,记下细绳的方向,按同一标度用刻度尺从O点作出这个力F′的图示.7.比较F′与用平行四边形定则求出的合力F的大小和方向,看它们在实验误差允许的范围内是否相等. 8.改变F1和F2的大小和方向,再做两次实验. 五、注意事项 1.同一实验中的两只弹簧测力计的选取方法是:将两只弹簧测力计调零后互钩对拉,若两只弹簧测力计在对拉过程中,读数相同,则可选;若读数不同,应调整或另换 2.在同一次实验中,使橡皮条拉长时,结点O位置一定要相同. 3.用两只弹簧测力计钩住绳套互成角度地拉橡皮条时,夹角不宜太大也不宜太小,在60°~100°之间为宜. 4.读数时应注意使弹簧测力计与木板平行,并使细绳套与弹簧测力计的轴线在同一条直线上,避免弹簧测力计的外壳与弹簧测力计的限位卡之间有摩擦.读数时眼睛要正视弹簧测力计的刻度,在合力不超过量程及橡皮条弹性限度的前提下,拉力的数值尽量大些.

特殊四边形解题技巧方法

特殊四边形的中考题型的解题技巧方法 特殊四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类 一、折叠变换类 1、图形折叠问题所用知识点: 1). 2). 3). 2、解折叠问题时常用的方法: 。 3、折叠问题数学思想: (1)思考问题的逆向(反方向), (2)转化与化归思想; (3)归纳与分类的思想; (4)从变寻不变性的思想. 1、如图矩形ABCD中,3,4 ∠沿AE折 ==,点E是BC边上一点,连接AE,把B AB BC 叠,使点B落在点'B处,当△' CEB为直角三角形时,求BE 的长。

2、如图,折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠,使AD落在对角线BD上,得折痕DG,若AB = 2,BC = 1,求AG. 3、如图,矩形ABCD中,AB = 6,BC = 8,点F为BC边上的一个动点,把△ABF 沿AF折叠. 当点B的对应点B′落在矩形ABCD的对称轴上时,求BF的长。

4.(2015浙江衢州,8,21)如图1,将矩形ABCD沿DE折叠,使顶点A落在DC 上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2. (1)求证:EG=CH; (2)已知AF=2,求AD和AB的长. 二、旋转变换类: 1、涉及的知识点———旋转变换的对应图形的性质: 1) 2)

3) 解题关键: 1.提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE 分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等. 学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了. 解决问题:请你选择上述一种方法给予证明. 问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.

平行四边形的存在性问题

平行四边形的存在性问题 专题攻略 解平行四边形的存在性问题一般分三步: 第一步寻找分类标准,第二步画图,第三步计算. 难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点. 如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况. 灵活运用向量和中心对称的性质,可以使得解题简便. 针对训练 1.如图,已知抛物线y=-x2-2x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为P.若以A、C、P、M为顶点的四边形是平行四边形,求点M的坐标. 解析、由y=-x2-2x+3=-(x+3)(x-1)=-(x+1)2+4, 得A(-3,0),B(1,0),C(0,3),P(-1,4). 如图,过△P AC的三个顶点,分别作对边的平行线,三条直线两两相交的三个交点就是要求的点M. ①因为AM1//PC,AM1=PC,那么沿PC方向平移点A可以得到点M1. 因为点P(-1,4)先向下平移1个单位,再向右平移1个单位可以与点C(0,3)重合,所以点A(-3,0)先向下平移1个单位,再向右平移1个单位就得到点M1(-2,-1). ②因为AM2//CP,AM2=CP,那么沿CP方向平移点A可以得到点M2. 因为点C(0,3)先向左平移1个单位,再向上平移1个单位可以与点P(-1,4)重合,所以点A(-3,0)先向左平移1个单位,再向上平移1个单位就得到点M2(-4,1). ③因为PM3//AC,PM3=AC,那么沿AC方向平移点P可以得到点M3. 因为点A(-3,0)先向右平移3个单位,再向上平移3个单位可以与点C(0,3)重合,所以点P(-1,4)先向右平移3个单位,再向上平移3个单位就得到点M3(2,7). 2.如图,在平面直角坐标系xOy中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标. 解析.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0). ①如图1,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P关于AB 的中点(1,0)对称,所以点M的横坐标为2. 当x=2时,y =-x2+2x+3=3.此时点M的坐标为(2,3).

初中数学判定平行四边形的五种常用方法

判定平行四边形的五种常用方法 名师点金:判定平行四边形的方法通常有五种,即定义和四种判定定理,选择判定方法时,一定要结合题目的条件,选择恰当的方法,从而简化解题过程. 利用两组对边分别平行判定平行四边形 1.如图,在?ABCD中,E,F分别为AD,BC上的点,且BF=DE,连接AF,CE,BE,DF,AF与BE相交于M点,DF与CE相交于N点.求证:四边形FMEN为平行四边形. (第1题) 利用两组对边分别相等判定平行四边形 2.如图,已知△ABD,△BCE,△ACF都是等边三角形. 求证:四边形ADEF是平行四边形. (第2题) 利用一组对边平行且相等判定平行四边形 3.如图,在△ABC中,∠ACB=90°,点E为AB上一点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形. (第3题)

利用两组对角分别相等判定平行四边形 4.如图,在?ABCD中,BE平分∠ABC,交AD于点E,DF平分∠ADC,交BC于点F,那么四边形BFDE是平行四边形吗?请说明理由. (第4题) 利用对角线互相平分判定平行四边形 5.【中考·哈尔滨】如图①,?ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH. (1)求证:四边形EGFH是平行四边形; (2)如图②,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图②中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外). (第5题)

答案 1. 证明:∵四边形ABCD 是平行四边形,DE =BF ,∴DE 平行且等于BF . ∴四边形BFDE 为平行四边形. ∴BE ∥DF .同理,AF ∥CE . ∴四边形FMEN 为平行四边形. 2.证明:∵△ABD ,△BCE ,△ACF 都是等边三角形, ∴BA =BD =AD ,BC =BE ,AF =AC ,∠DBA =∠EBC =60°. ∴∠EBC -∠EBA =∠DBA -∠EBA , 即∠ABC =∠DBE . ∴△ABC ≌△DBE .∴AF =AC =DE . 同理,可证△ABC ≌△FEC , ∴AD =AB =EF . ∴四边形ADEF 是平行四边形. 3.证明:过A 作AM ⊥DF 于M . ∵∠ACB =90°,ED ⊥BC , ∴DF ∥AC .∴AM =DC . 在Rt △AMF 和Rt △CDE 中, ? ????AM =CD ,AF =CE , ∴Rt △AMF ≌Rt △CDE . ∴∠F =∠CED .∴AF ∥CE . 又∵AF =CE , ∴四边形ACEF 是平行四边形. 4.解:四边形BFDE 是平行四边形.理由:在?ABCD 中,∠ABC =∠CDA ,∠A =∠C . ∵BE 平分∠ABC ,DF 平分∠ADC , ∴∠ABE =∠CBE =12∠ABC ,∠CDF =∠ADF =12 ∠ADC .∴∠ABE =∠CBE =∠CDF =∠ADF .∵∠DFB =∠C +∠CDF ,∠BED =∠ABE +∠A ,∴∠DFB =∠BED .∴四边形BFDE 是平行四边形. 5.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EAO =∠FCO . ∵O 是AC 的中点,∴OA =OC . 在△OAE 与△OCF 中, ?????∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF , ∴△OAE ≌△OCF ,∴OE =OF . 同理OG =OH , ∴四边形EGFH 是平行四边形. (2)解:与四边形AGHD 面积相等的平行四边形有?GBCH ,?ABFE ,?EFCD ,?EGFH .

平行四边形存在性问题

平行四边形存在性问题 一、解平行四边形的存在性问题一般分三个步骤 第一步寻找分类标准,第二步画图,第三步计算. 二、难点在于寻找分类标准,寻找恰当的分类标准,可以使得解的个数不重复不遗漏,也可以使计算又准又快. 三、如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点,利用横纵坐标的平移变化得出结论。 四、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况,灵活运用向量和中心对称的性质,可以使得解题简便。(辅助手段~三角形全等,等积法,中点坐标公式) 例1.已知抛物线 b ax ax y ++-=22 与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C . ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 例2、如图,抛物线:y= x 2﹣x ﹣ 与x 轴交于A 、B (A 在B 左侧),A (﹣1,0)、B (3,0),顶点为C (1,﹣2)(1)求过A 、B 、C 三点的圆的半径.(2)在抛物线上找点P ,在y 轴上找点E ,使以A 、B 、P 、E 为顶点的四边形是平行四边形,求点P 、E 的坐标. 例 3.已知,如图抛物线

23(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B .(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由. 例4.已知抛物线:x x y 22 12 1+- = (1)求抛物线1y 的顶点坐标. (2)将抛物线1y 向右平移2个单位,再向上平移1个单位,得到抛物线2y ,求抛物线2y 的解析式. (3)如下图,抛物线2y 的顶点为P ,x 轴上有一动点M ,在1y 、2y 这两条抛物线上是否存在点N ,使O (原点)、P 、M 、 N 四点构成以OP 为一边的平行四边形, 若存在,求出N 点的坐标;若不存在,请说明理由. 例5.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理 x y y 12 3 4 5 6 7 8 9 54321 -1-2-3-4 1 y 2 -1

人教版八年级数学下册平行四边形(提高)典型例题讲解+练习及答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】 平行四边形(提高) 责编:杜少波 【学习目标】 1.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理; 2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题. 3. 能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算. 4. 理解三角形的中位线的概念,掌握三角形的中位线定理. 【要点梳理】 【平行四边形知识要点】 要点一、平行四边形的定义 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“Y ABCD”,读作“平行四边形ABCD”. 要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条. 要点二、平行四边形的性质 1.边的性质:平行四边形两组对边平行且相等; 2.角的性质:平行四边形邻角互补,对角相等; 3.对角线性质:平行四边形的对角线互相平分; 4.平行四边形是中心对称图形,对角线的交点为对称中心. 要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系 或倍半关系. (2)由于平行四边形的性质内容较多,在使用时根据需要进行选择. (3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决. 要点三、平行四边形的判定 1.两组对边分别平行的四边形是平行四边形; 2.两组对边分别相等的四边形是平行四边形; 3.一组对边平行且相等的四边形是平行四边形; 4.两组对角分别相等的四边形是平行四边形; 5.对角线互相平分的四边形是平行四边形. 要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法. (2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 要点四、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个

平行四边形存在性问题

平行四边形存在性问题 1.如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在x轴、y轴上,且OA、OB的长满足方程x2﹣16x+64=0. (1)求点A、B的坐标; (2)将点A翻折落在线段OB的中点C处,折痕交OA于点D,交斜边于点E,求直线DE的解析式; (3)在(2)的条件下,在平面直角坐标系内,是否存在点F使点A、D、E、F为顶点的四边形是平行四边形?若存在请直接写出点F的坐标;若不存在,请说明理由. 2.如图,?ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动,两点均运动到点D停止. (1)若动点M、N同时出发,经过几秒钟两点相遇? (2)在相遇前,是否存在过点M和N的直线将?ABCD的面积平分?若存在,请求出所需时间;

若不存在,请说明理由. (3)若点E在线段BC上,BE=2cm,动点M、N同时出发且相遇时均停止运动,那么点M运动到第几秒钟时,与点A、E、N恰好能组成平行四边形? 3.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处. (1)如图,已知折痕与边BC交于点E,连结AP、EP、EA.求证:△ECP∽△PDA; (2)若△ECP与△PDA的面积比为1:4,求边AB的长; (3)在(2)的条件下以点A为坐标原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,问在坐标平面内是否存在点M,使得以点A、B、E、M为顶点的四边形是平行四边形?若存在请直接写出点M的坐标;若不存在请说明理由.

(完整版)平行四边形及特殊平行四边形知识点(经典完整版)

平行四边形矩形菱形正方形图形 性质①对边且; ②对角;邻角; ③对角线; ④对称性:平行四边形不是轴对称图形. ①对边且; ②对角且四个角都是; ③对角线; ④对称性:轴对称图形(对边中点连线所在直 线,2条). ①对边且四条边都; ②对角; ③对角线且每条对角 线; ④对称性:轴对称图形(对角线所在直线,2 条) ①对边且四条边都; ②对角且四个角都是; ③对角线且每条对角线 (即与边的夹角 度); ④对称性:轴对称图形(4条) 判定方法 ①的 四边形是平行四边形; ②的 四边形是平行四边形; ③的 四边形是平行四边形; ④的 四边形是平行四边形; ⑤的 四边形是平行四边形; ①是矩形; ②是矩形; ③是矩形; ①是菱形; ②是菱形; ③是菱形; ①有一组的矩形是正方形; ②对角线的矩形是正方形; ③有一个角是的菱形是正方形; ④对角线的菱形是正方形.; ⑤有一组且有一个角是的 平行四边形是正方形; ⑥对角线且的 平行四边形是正方形.?????? 正方形的判定方法很多,所有以平行四边形, 矩形,菱形三者的判定作为条件的四边形都是 正方形. 面积

一、本章知识框架图 正方形与平行四边形、矩形、菱形之间的关系有怎样的包含关系?请填入下图中. 平行四边形 二、几种特殊四边形的常用说理方法与解题思路分析 (1)判定矩形的常用方法(3种) ①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的有一个角为直角. ②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等. ③说明四边形ABCD的三个角是直角. (2)判定菱形的常用方法(3种)

关于矢量遵循平行四边形定则的理解

先把我们所要讲的力基于位移来说,位移我们可以知道在空间上是遵循平行四边形法则的,位移的平行四边形法则我们很容易理解。那为什么力、速度、加速度等也可以呢? 那么,先来说说速度,有速度会产生位移,速度公式V=X/T,那么两个速度合成的话,V1=X1/T,V2=X2/T,那么X1、X2两个位移可以通过空间上的平行四边形法则合成,那么同样速度也是可以啊,V1:V2=X1:X2。速度是我们定义出来的,是位移与时间的比得到的,那么速度是可以按照平行四边形法则合成的! 同样,加速度也可以,而力又是产生加速度的原因,都是与位移有关,那么都是可以合成的! 以下的是网上看到的,和我讲的意思一样的(以上是本人表达的,可能比较简略): 首先,要认识到合力的本质。合力是什么呢,就是说,如果几个力产生的作用效果与一个力相同,那么这个力就叫做其它几个力的合力。为简单起见,这里从三角形法则说起。有一定的几何基础应不难理解三角形法则与平行四边形法则是等效的,证明了三角形法则,即证明了平行四边形法则。 这里,首先需要理解的是加速度法则为何遵守平行四边形法则。加速度用微积分的观点说是速度的导数,速度是位移的导数。用通俗的语言描述,即单位时间内速度的变化。首先位移是一个向量,它符合三角形法则应是不用证明的,因为我们本身用的三角形法则本身就是位移的直观表现。而速度被通俗定义为单位时间的位移,从某种程度上说,它还是位移,不过是一种极限情况的位移。位移的变化符合三角形法则,因而速度的变化也符合这个法则。加速度被定义为单位时间内速度的变化,也就是说加速度也符合这一法则。 如果理解了加速度的叠加符合三角形法则,有了牛顿第二定律,这就不难理解了。物体的加速度与受的力成正比,与质量成反比。物体受二力后,产生的加速度可以按平行四边形法则来叠加,而同一物体质量相同,因而力与加速度成正比,力与加速度同方向。加速度可按三角形法则来做,能产生相同的合加速度的的力,自然也就是合力。不难理解,这可以按三角形法则来做。

相关文档
最新文档