非线性Hammerstein模型的辨识【开题报告】

非线性Hammerstein模型的辨识【开题报告】
非线性Hammerstein模型的辨识【开题报告】

毕业设计开题报告

电气工程与自动化

非线性Hammerstein模型的辨识

一、选题的背景与意义

系统辨识是是现代控制理论中的一个重要分支。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及控制器的设计。非线性系统辨识是系统辨识的一个重要的发展方向,一直是现代辨识领域中的一个主要课题,对其研究有十分重要的理论和实际意义。非线性问题的主要困难之一是一直缺乏描述各种非线性系统特性的统一的数学模型。为此,人们提出了多种类型的模型,如块联模型]1[、神经网络模型]2[、双线性模型]3[、非线性参数模型等等。

Hammerstein模型属于块联模型,由一个线性动态系统跟随一个非线性静态模块构成。自从Narendra& Gallman 1966年提出了Hammerstein模型后]4[,由于模型结构简单且能有效地描述常见的非线性动态系统特性,所以许多学者相继研究了Hammerstein模型参数的估计方法,近年来Hammerstein模型被广泛地应用于非线性系统辨识。辨识Hammerstein模型的意义在于:利用辨识结果获得中间层输出,选择合适的性能指标,就可以把原非线性系统的控制问题分解为线性模块的动态优化问题和非线性模块的静态求根问题,因此可以有效结合线性模型预测控制的成熟理论解决这类非线性对象的控制问题,避免传统非线性控制方法计算量大,收敛性和闭环稳定性不能得到保证等诸多问题。

二、研究的基本内容与模拟解决的主要问题:

针对Hammerstein模型的辨识问题,可以归结为线性模块的动态优化问题和非线性模块的静态求根问题。因此研究的重点就是如何运用比较新颖的优化算法得到Hammerstein模型的参数解集,并能通过和传统算法的比较论证阐述采用方法的合理性,可行性及有效性。具体需要解决的问题包括以下几点:

1.什么是Hammerstein模型,它的基本结构式怎么样的;

2.确定Hammerstein非线性系统辨识的思想和实现方法;

3.熟悉PSO/BFO优化算法和熟悉最小二乘法估计方法;

4.辨识仿真模型为Hammerstein 模型,设非线性环节由四阶多项式描述;

5.采用PSO/BFO 优化算法和最小二乘法进行辨识,并要求在不同信噪比下比较辨识的结果,如辨识精度,收敛时间,鲁棒性等。

三、研究的方法与技术路线:

1.辨识Hammerstein 模型]5[

Hammerstein 模型是由一个无记忆非线性增益环节和线性子系统串联而成,其连接方式如图1所示。

一类有色噪声干扰下的Hammerstein 模型的差分方程可描述为:

)()()()()()(111k w q C k x q B k y q A ---+= (1)

其中,1-q 为滞后算子;)(k x 为非线性增益环节的输出;)(k y 为线性子系统的输出;)(k w 是均值为0、方差为2σ 的高斯白噪声序列;)(1-q C 为白化滤波器;)(k w 与)(k u 相互独立。

n n q a q a q a q A ----+???+++=221111)( m m q b q b q b q B ----+???++=22111)(

t t q c q c q c q C ----+???+++=221111)(

无记忆非线性增益环节采用规格化以后的p 阶指数多项式逼近:

)()()()()(3322k u r k u r k u r k u k x p p +???+++= (2)

且假设式(1)的特征方程02211=+???+++--n n n n a z a z a z 的特征根都在单位圆以内。引入参数向量为

T p t m n r r r c c c b b b a a a ),,,,,,,,,,,,,,(21212121????????????=θ

则辨识的目的就是在给定输入信号)(k u 和系统输出)(k y 的情况下估计参数向量θ。 设参数向量θ的估计值:

T p

t m n r r r c c c b b b a a a )?,,?,?,?,,?,?,?,,?,?,?,?,?(?21212121????????????=θ 则估计的偏差可以用以下准则函数来衡量:

无记忆非 线性增益 线性子系统 )(k u

)(k x )(k y

图1. Hammerstein 模型结构

∑=---=s

i i k y

i k y k J 02)](?)([)( (3) 其中,s 为辨识窗口宽度,)(?k y

为根据估计模型计算出的输出值。因此,问题归结为利用输入输出观测序列)(k u 和)(k y ,极小化(3)式来估计参数的标准优化问题。所以可以采用最小二乘估计法和PSO 算法来求(3)式的极值及其对应的模型参数。

2. 最小二乘法原理

如确定多项式n n x a x a a x P +???++=10)(,对于一组数据),(i i y x (i=1,2,…,N )使得2

1])([∑=-=N i i i y x P ?达到极小,这里n<

?实际上是n a a a ,,,10???的多元函数,即:

211010][),,,(i n i n i N

i n y x a x a a a a a -???++=???∑=?

要使?最小,可以用数学中求极值的方法即:

n k a k

,,0,0???==??? 这种方法称为数据拟合的最小二乘法,即最小二乘法原理]6[。

3.粒子群优化算法

PSO ]7[与大多数进化计算技术一样。是一种基于迭代的优化算法,是通过初始化一组随机解,采用迭代搜索最优值。故具有以下类似过程:

第1步:种群随机初始化

第2步:对种群内的每一个个体计算适应值(fitness value),适应值与最 优解的距离直接有关。

第3步:种群根据适应值进行复制。

第4步:如果终止条件满足。则停止;否则转到第2步

PSO 算法中每个优化问题的解都有是搜索空间中的一只鸟,称为粒子。与其他进化计算技术不同的是群体中的每个粒子可以记忆自己到过的最优位置,并能感知邻近群体已经达到的最优位置,每个粒子能够根据自身到过的最优位置和邻近群体已到过的最优位置来更新自己,然后粒子们不断地追赶当前最优粒子在解空间搜索。

3.1 PSO 算法

PSO 算法的数学描述为:假设搜索空间为D 维,第i 个粒子可以用一个D 维向量表示T iD i i i t x t x t x t X ))(,),(),(()(21???= ,粒子的速度可表示为

T iD i i i t v t v t v t V ))(,),(),(()(21???= ,第i 个粒子曾到过的最优位置为T iD i i i p p p P ),,,(21???= ,

粒子群中曾到达的最优位置是

T gD g g g p p p P ),,,(21???= ,粒子的动态范围为T D x x x X ),,,(max 2max 1max max ???= 最大速度为T D v v v V ),,,(m ax 2m ax 1m ax m ax ???= ,粒子的速度和位置根据以下公式从h 代到h+1代: )()(2211d h i gd d h i id id h d h i x P rand C x P rand C v w v -??+-??+?= (4)

d h id d h id d h id d h id h id v v v v v v v v v v v max max max max max max 1-<≤≤->?????-=+ (5)

11+++=h id h id h id v x x (6) 其中,i=1,2,...,D;1C ,2C 为加速因子;1rand ,2rand 为相互独立的[0,1]区间内均匀分布的随机数。当w=1是,就是基本的PSO 算法。图2 为PSO 算法的流程图。

达到最大进化数?

结束开始

随机产生的位置和速度初始化粒子群

求每个粒子曾到过的最优位置Pi

求粒子群曾到过的最优位置Pg

用公式(4)、(5)、(6)更新速

度和位置

N Y

图2 PSO 算法的流程图

3.2 PSO 参数设置

适应度函数:一般而言,适应度函数是由目标函数变换而成的。通常可以由直接求

的目的函数f (x )转化为适应度函数Fit (f (x ));

惯性权重w :用于控制过去速度对现在速度的作用大小,从而影响粒子的全局和局部的搜索能力;

最大调整速度m ax V :由(4)、(5)式可以看出最大调整速度限制了PSO 的全局搜索能力; 粒子数:粒子数主要和搜索空间有关,搜索空间越大、越复杂,所需的粒子数越多,一般取20~40;

粒子的搜索范围宽度max X :由优化问题决定,每一维可以设定不同的宽度。如果在实现前能够对粒子的搜索范围进行估计,则可以强制粒子在一个较小的空间中流动,这样可以提高搜索速度和精度;

加速度因子1C ,2C :(4)式中)(11h id

id x P rand C -??项可看成认知项,它和粒子自己的认知经验有关。

4 细菌觅食优化(BFO )算法

对于Hammerstein 模型的辨识研究,笔者将会重点基于PSO 算法对其模型进行辨识,因此对BFO 算法]8[只做简单的原理阐述。

细菌觅食优化算法是新兴的进化算法,也是一种全局随机搜索算法。该算法主要通过趋向性操作、复制操作和迁徙操作这三种操作迭代计算来求解问题,下面介绍这三大操作及其流程 。

(1)趋向性操作

大肠杆菌在觅食过程中有两种基本运动:游动和旋转。这两种运动依靠细菌表面遍布的鞭毛以100—200 r/s 的速度同方向摆动来实现。当所有鞭毛逆时针转动时,大肠杆菌以l0—20~tm/s 的平均速度向前游动,游动的平均时间大约为(0.86+1.18)S ;当所有鞭毛顺时针转动时,大肠杆菌在原地旋转,并随机选择一个方向进行下一次的游动,旋转的平均时间大约是(014~0.19)s 。通常,细菌在环境差的区域(如:有毒区域)会较频繁地旋转,在环境好的区域(如:食物丰富的区域)会较多地游动。大肠杆菌的整个生命周期就是在游动和旋转这两种基本运动之间进行变换(鞭毛几乎不会停止摆动),游动和旋转的目的是寻找食物并避开有毒物质。在细菌觅食优化算法中模拟这种现象称为趋向性行为(chemotaxis)。

(2)复制操作

生物进化过程的规律是优胜劣汰。经过一段时间的食物搜索过程后,部分寻找食物能力弱的细菌会被自然淘汰掉,为了维持种群规模,剩余的细菌会进行繁殖。在细菌觅

食优化算法中模拟这种现象称为复制行为(reproduction)。在原始BFOA中,经过复制操作后算法的种群大小不变。设淘汰掉的细菌个数为=S/2,首先按照细菌位置的优劣排序,然后把排在后面的个细菌淘汰掉,剩余的,个细菌进行自我复制,各自生成一个与自己完全相同的新个体,即生成的新个体与原个体有相同的位置,或者说具有相同的觅食能力。

(3)迁徙操作

细菌个体生活的局部区域可能会突然发生变化(如:温度的突然升高)或者逐渐变化(如:食物的消耗),这样可能会导致生活在这个局部区域的细菌种群集体死亡,或者集体迁徙到一个新的局部区域。在细菌觅食优化算法中模拟这种现象称为迁徙行为(elimination and dispersa1)。迁徙操作以一定概率发生。给定概率P ,如果种群中的某个细菌个体满足迁徙发生的概率,则这个细菌个体灭亡,并随机地在解空间的任意位置生成一个新个体,这个新个体与灭亡的个体可能具有不同的位置,即不同的觅食能力。迁徙操作随机生成的这个新个体可能更靠近全局最优解,这样更有利于趋向性操作跳出局部最优解和寻找全局最优解。

除了上述3个主要操作外,BFOA还有群聚性的特点。每个细菌个体除按照自己的方式搜索食物外,还收到种群中其他个体发出的吸引力信号,即个体会游向种群中心,同时也会收到附近个体发出的排斥力信号,以保持个体与个体之间的安全距离。因此BFOA 中的每一个细菌个体寻找食物的决策行为受两个因素的影响:一是自身的信息,即个体觅食的目的,目的是使个体在单位时间内获取的能量最大;二是其他个体的信息,即种群中其他细菌传递的觅食信息。

5、研究条件和可能存在的问题及预期的结果

对于Hammerstein模型辨识实验可以通过MATLAB软件进行仿真研究,也可以在相关专门的运控实验室可以进行模拟研究。

在文献[7]中可知,传统PSO算法辨识和最小二乘法辨识相比较,PSO辨识所获得的模型与真实模型的参数和阶跃响应均比较吻合,而通过带遗忘因子的增广最小二乘递推算法进行辨识所获得的模型与真实模型的阶跃响应相差比较大,辨识的结果不是很理想;PSO算法的精度和鲁棒性也都要高于非线性最小二乘法。

然而,PSO算法仍然存在很多的问题,比方说过早收敛和停滞于局部优化等]9[。文献[10]展现了PSO算法在前几次迭代中比其它演化进化算法有更好的表现,但是随着迭代次数的增加,它的收敛性随之降低。因此,将会采用改进的PSO算法(Modified PSO algorithm)对Hammerstein模型进行辨识。

四、研究的总体安排与进度:

第1-3周(2010.11.27-2010.12.19):在广泛查阅中外文献与资料的基础上,完善课题研究方案,完成文献综述2000字以上和翻译外文文献2篇以上,(每篇外文文献翻译的中文字数一般要求2000字以上)。

第4周(2010.12.20-2010.12.26):在文献查阅的基础上,完成课题综述,完成开题报告,完成开题报告答辩。

第5-8周(2010.12.27-2011.1.16):毕业设计(论文)的设计主要实施阶段,按本课题的技术路线与总体方案具体实施。

第9-12周(2011.02.17-2011.03.13):2010学年上学期第1-4周毕业实习。

第13-18周(2011.03.14-2011.04.24):继续设计阶段、实验、设计、编程、调试、结果分析、撰写论文。期间还将组织毕业设计的中期检查,执行“毕业设计(论文)中期黄牌警告制度”。

第19-21周(2011.04.25-2011.05.15):毕业设计资料整理,提交完整的毕业设计(论文)资料。

第22-23周(2011.05.16-2011.05.27):毕业设计(论文)答辩准备、答辩、毕业设计成绩评定。

五、主要参考文献:

[1] 张媛媛,徐科军.基于块联模型的动态非线性校正方法比较[J].控制工程,2009年3月,(第16卷第2期)

[2] 张鹏.常羽彤.基于人工神经网络的动态过程聚类研究[J].计算机X-程与应用,2007,(第43卷第23期)

[3] 徐晓秋,夏丛英.遗传算法的双线性模型参数辨识[J].西南工学院学报,2000年6月,(第15卷第2期)

[4] K.S.Narenda,P.G.Gallman,An Iterative method for the Idenfication of Nonlinear Systems using a Hammerstein Model[J].IEEE Transactions on Automatic Control,1966,1l (3):546~550

[5] 徐小平,钱富才.基于改进粒子群算法的Hammerstein模型辨识.[J].计算机工程,2008年7月,(第34卷第14期)

[6] 邹乐强.最小二乘法原理及其简单应用.[J].科技信,2010年,(第23期)

[7] 林卫星,张惠娣.应用粒子群优化算法辨识Hammerstein模型[J].仪器仪表学报,2006

年1月,(第27卷第1期)

[8] 周雅兰.细菌觅食优化算法的研究与应用[J].计算机工程与应用,2010,(第46卷第20期)

[9] 杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004年5月,(第6卷第5期)

[10] Satyasai Jagannath Nanda, Ganapati Panda,Development of Immunized PSO Algorithm and Its Application to Hammerstein Model Identification [J].IEEE Congress on Evolutionary Computation,2009

非线性Hammerstein模型的辨识【开题报告】

毕业设计开题报告 电气工程与自动化 非线性Hammerstein模型的辨识 一、选题的背景与意义 系统辨识是是现代控制理论中的一个重要分支。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及控制器的设计。非线性系统辨识是系统辨识的一个重要的发展方向,一直是现代辨识领域中的一个主要课题,对其研究有十分重要的理论和实际意义。非线性问题的主要困难之一是一直缺乏描述各种非线性系统特性的统一的数学模型。为此,人们提出了多种类型的模型,如块联模型]1[、神经网络模型]2[、双线性模型]3[、非线性参数模型等等。 Hammerstein模型属于块联模型,由一个线性动态系统跟随一个非线性静态模块构成。自从Narendra& Gallman 1966年提出了Hammerstein模型后]4[,由于模型结构简单且能有效地描述常见的非线性动态系统特性,所以许多学者相继研究了Hammerstein模型参数的估计方法,近年来Hammerstein模型被广泛地应用于非线性系统辨识。辨识Hammerstein模型的意义在于:利用辨识结果获得中间层输出,选择合适的性能指标,就可以把原非线性系统的控制问题分解为线性模块的动态优化问题和非线性模块的静态求根问题,因此可以有效结合线性模型预测控制的成熟理论解决这类非线性对象的控制问题,避免传统非线性控制方法计算量大,收敛性和闭环稳定性不能得到保证等诸多问题。 二、研究的基本内容与模拟解决的主要问题: 针对Hammerstein模型的辨识问题,可以归结为线性模块的动态优化问题和非线性模块的静态求根问题。因此研究的重点就是如何运用比较新颖的优化算法得到Hammerstein模型的参数解集,并能通过和传统算法的比较论证阐述采用方法的合理性,可行性及有效性。具体需要解决的问题包括以下几点: 1.什么是Hammerstein模型,它的基本结构式怎么样的; 2.确定Hammerstein非线性系统辨识的思想和实现方法; 3.熟悉PSO/BFO优化算法和熟悉最小二乘法估计方法;

通过动态非线性偏最小二乘法对非线性模型进行预测以及控制

通过动态非线性偏最小二乘法对非线性模型进行预测以及控制 G. BAFFI, J. MORRIS and E. MARTIN 过程分析与控制技术中心,纽卡斯尔大学,纽卡斯尔,英国 通过动态非线性偏最小二乘(PLS )模型,模型预测控制(MPC)技术延伸到了非线性系统。对于嘈杂的建模,PLS显示有适合它的多元回归方法,相关性以及/或者总线的数据。在一个“静态”框架内,这种方法已广泛应用于工业过程一些数据的建模和分析中。本文的贡献是对于非线性动态PLS框架在MPC应用中的发展。该非线性动态PLS模型利用了一个基于误差的非线性偏最小二乘算法,其中非线性内部模型是建立于自回归与外源输入(ARX )框架。特别地,我们应该将二次和前馈神经网络内部模型考虑在内。一个MPC框架内的一个动态的PLS模型的应用开辟了一种基于多元统计基础的预测方法,这一方法不仅应用于过程建模,推理估计和性能监控,同时也可进行模型预测控制。一个基准仿真的pH值中和系统验证了非线性动态PLS框架在模型预测控制中的应用。 关键词:模型预测控制,非线性动态偏最小二乘

引言 模型预测控制(MPC )正成为一种常规的采用先进的过程控制策略。基于线性过程模型的MPC算法已被广泛研究并应用于化工流程工业。这主要归功于它们处理过程约束,时间延迟和多变量系统的能力。然而,许多过程是高度非线性的,并且,基于线性过程模型的MPC算法可能会导致控制性能不佳;这样一来,MPC技术就延伸到了非线性过程1-6。 在MPC中,感知的过程动态模型首先发展为预测过程在未来一定时间内的输出值。这些数值被用来评估未来的控制动作,以减少预定义的代价函数。基于程控制策略的过程建模和模型都是特别依赖于感兴趣的系统中的适当的数学表达式的可利用性。一种方法是通过基于详细的化学和物理现象的知识原理的机理原理以及模型的发展来确定过程行为。虽然一些非线性的MPC方法已经应用于基于非线性的展开机理模型,但是由于他们的发展需要详细知识和时间,这一方法未能受到广泛的应用6。此外,在现代这个响应式的制造环境中,对于复杂的多产品生产家,精确的理论模型的研发甚至可能不实用。 由于一些正在研究的不具体的过程知识比那些需要制定一个物理原理模型更加具有需求性,从过程操作数据鉴定而来的以经验数据为基础的模型提供了另一种机械建模。在工业流程上,这使得非线性的MPC算法得到了更广泛的应用。这种结构包括多项式自回归滑动平均模型(ARMA)3,Volterra级数模型5,7和神经网络模型8,9。当那些属于基本过程表示的是相关过程变量性质的正在发展的经验表示模型时,一个重要的、潜在的甚至严重的问题产生了。无视相关结构能够严重影响用于获得该模型的非线性优化技术参数。一种解决方案是应用基于偏最小二乘(PLS )建模技术的多变量的统计预测,且这种建模技术考虑到了数据底层结构的相关性。 这项工作的目的是评估动态非线性PLS在MPC应用上的适用性。一个良好已知的基准pH中和模型10已应用于测试动态非线性偏最小二乘回归模型及其在非线性PLS MPC方案中的使用。严重的非线性特征提供了一个主要的建模挑战。

非线性回归预测法——高斯牛顿法(詹学朋)

非线性回归预测法 前面所研究的回归模型,我们假定自变量与因变量之间的关系是线性的,但社会经济现象是极其复杂的,有时各因素之间的关系不一定是线性的,而可能存在某种非线性关系,这时,就必须建立非线性回归模型。 一、非线性回归模型的概念及其分类 非线性回归模型,是指用于经济预测的模型是曲线型的。常见的非线性回归模型有下列几种: (1)双曲线模型: i i i x y εββ++=1 2 1 (3-59) (2)二次曲线模型: i i i i x x y εβββ+++=2321 (3-60) (3)对数模型: i i i x y εββ++=ln 21 (3-61) (4)三角函数模型: i i i x y εββ++=sin 21 (3-62) (5)指数模型: i x i i ab y ε+= (3-63) i i i x x i e y εβββ+++=221110 (3-64) (6)幂函数模型: i b i i ax y ε+= (3-65) (7)罗吉斯曲线: i x x i i i e e y εββββ++=++1101101 (3-66) (8)修正指数增长曲线: i x i i br a y ε++= (3-67) 根据非线性回归模型线性化的不同性质,上述模型一般可细分成三种类型。 第一类:直接换元型。 这类非线性回归模型通过简单的变量换元可直接化为线性回归模型,如:(3-59)、(3-60)、(3-61)、(3-62)式。由于这类模型的因变量没有变形,所以可以直接采用最小平方法估计回归系数并进行检验和预测。 第二类:间接代换型。 这类非线性回归模型经常通过对数变形的代换间接地化为线性回归模型,如:(3-63)、(3-64)、(3-65)式。由于这类模型在对数变形代换过程中改变了因变量的形态,使得变形后模型的最小平方估计失去了原模型的残差平方和为最小的意义,从而估计不到原模型的最佳回归系数,造成回归模型与原数列之间的较大偏差。 第三类:非线性型。

非线性模型预测控制_front-matter

Communications and Control Engineering For other titles published in this series,go to https://www.360docs.net/doc/6a16743639.html,/series/61

Series Editors A.Isidori J.H.van Schuppen E.D.Sontag M.Thoma M.Krstic Published titles include: Stability and Stabilization of In?nite Dimensional Systems with Applications Zheng-Hua Luo,Bao-Zhu Guo and Omer Morgul Nonsmooth Mechanics(Second edition) Bernard Brogliato Nonlinear Control Systems II Alberto Isidori L2-Gain and Passivity Techniques in Nonlinear Control Arjan van der Schaft Control of Linear Systems with Regulation and Input Constraints Ali Saberi,Anton A.Stoorvogel and Peddapullaiah Sannuti Robust and H∞Control Ben M.Chen Computer Controlled Systems E?m N.Rosenwasser and Bernhard https://www.360docs.net/doc/6a16743639.html,mpe Control of Complex and Uncertain Systems Stanislav V.Emelyanov and Sergey K.Korovin Robust Control Design Using H∞Methods Ian R.Petersen,Valery A.Ugrinovski and Andrey V.Savkin Model Reduction for Control System Design Goro Obinata and Brian D.O.Anderson Control Theory for Linear Systems Harry L.Trentelman,Anton Stoorvogel and Malo Hautus Functional Adaptive Control Simon G.Fabri and Visakan Kadirkamanathan Positive1D and2D Systems Tadeusz Kaczorek Identi?cation and Control Using Volterra Models Francis J.Doyle III,Ronald K.Pearson and Babatunde A.Ogunnaike Non-linear Control for Underactuated Mechanical Systems Isabelle Fantoni and Rogelio Lozano Robust Control(Second edition) Jürgen Ackermann Flow Control by Feedback Ole Morten Aamo and Miroslav Krstic Learning and Generalization(Second edition) Mathukumalli Vidyasagar Constrained Control and Estimation Graham C.Goodwin,Maria M.Seron and JoséA.De Doná Randomized Algorithms for Analysis and Control of Uncertain Systems Roberto Tempo,Giuseppe Cala?ore and Fabrizio Dabbene Switched Linear Systems Zhendong Sun and Shuzhi S.Ge Subspace Methods for System Identi?cation Tohru Katayama Digital Control Systems Ioan https://www.360docs.net/doc/6a16743639.html,ndau and Gianluca Zito Multivariable Computer-controlled Systems E?m N.Rosenwasser and Bernhard https://www.360docs.net/doc/6a16743639.html,mpe Dissipative Systems Analysis and Control (Second edition) Bernard Brogliato,Rogelio Lozano,Bernhard Maschke and Olav Egeland Algebraic Methods for Nonlinear Control Systems Giuseppe Conte,Claude H.Moog and Anna M.Perdon Polynomial and Rational Matrices Tadeusz Kaczorek Simulation-based Algorithms for Markov Decision Processes Hyeong Soo Chang,Michael C.Fu,Jiaqiao Hu and Steven I.Marcus Iterative Learning Control Hyo-Sung Ahn,Kevin L.Moore and YangQuan Chen Distributed Consensus in Multi-vehicle Cooperative Control Wei Ren and Randal W.Beard Control of Singular Systems with Random Abrupt Changes El-Kébir Boukas Nonlinear and Adaptive Control with Applications Alessandro Astol?,Dimitrios Karagiannis and Romeo Ortega Stabilization,Optimal and Robust Control Aziz Belmiloudi Control of Nonlinear Dynamical Systems Felix L.Chernous’ko,Igor M.Ananievski and Sergey A.Reshmin Periodic Systems Sergio Bittanti and Patrizio Colaneri Discontinuous Systems Yury V.Orlov Constructions of Strict Lyapunov Functions Michael Malisoff and Frédéric Mazenc Controlling Chaos Huaguang Zhang,Derong Liu and Zhiliang Wang Stabilization of Navier–Stokes Flows Viorel Barbu Distributed Control of Multi-agent Networks Wei Ren and Yongcan Cao

非线性系统辨识综述

系统辨识综述 张培硕研4班 摘要:本文主要介绍了系统辨识中的非线性系统辨识方法,包括多层递阶辨识方法,以及把神经网络、模糊逻辑、遗传算法等知识应用于非线性系统辨识而得到的一些新型辨识方法,最后概括了非线性系统辨识未来的发展方向。 关键词:非线性系统辨识;多层递阶;神经网络 1 引言 系统辨识作为现代控制论和信号处理的重要内容,是近几十年发展起来的一门学科,它研究的基本问题是如何通过运行(或实验)数据来建立控制与处理对象(或实验对象)的数学模型。因为系统的动态特性被认为必然表现在它变化着的输入/输出数据之中,辨识就是利用数学方法从数据序列中提炼出系统的数学模型。 从本质上说,系统辨识是一种优化问题,当前常用辨识算法的基本方法是通过建立系统的参数模型,把辨识问题转化为参数估计问题。这类算法能较好地解决线性系统或本质线性系统的辨识问题,但若要应用于本质非线性系统则比较困难。可是,真实世界中的模型都不是严格线性的,它们或多或少都表现出非线性特性,因此越来越多的非线性现象和非线性模型己经引起了人们广泛的重视。 非线性系统广泛的存在于人们的生产生活中,随着人类社会的发展进步,越来越多的非线性现象和非线性系统已经引起研究者们的广泛关注,混沌现象的发现被誉为“ 二十世纪三大发现之一” 。目前关于非线性理论的研究正处于发展阶段。建立描述非线性现象和非线性系统的模型是研究非线性问题的基础。线性系统辨识理论已经趋于成熟,但一般的线性模型实际上是某些非线性被忽略或用线性关系代替后得到的对真实系统的近似数学描述。随着科学技术的迅猛发展,控制系统越来越复杂,对控制精度的要求越来越高,具有复杂非线性的系统不能用线性模型来近似,所以研究非线性系统辨识理论有着很重要的实际意义。 对于非线性系统参数模型的辨识问题,人们最早涉及的是某些特殊类型的非线性系统,如双线性系统模型、Hammerstain 模型、Wiener 模型、非线性时间序列模型、输出仿射模型等。针对每一类特殊模型,各国学者都作了大量的工作,提出了不少辨识算法。同时,也对这些算法的估计一致性问题进行了讨论。随着人们对非线性系统辨识问题研究的日益深入,更为一般的普适性非线性模型的辨识问题就显得日益重要。常用的非线性系统描述方法有微分(或差分)法、泛函级数法、NARMAX 模型法及分块系统法等。一些学者已经对非线性系统辨识方法进行了某方面的综述。例如,1965 年Arnold 和Stark 讨论了正交展开方法在非线性系统辨识中的应用,1968 年Aleksandrovskii 和Deich及1977 年Hung 和Stark综述了核辨识算法,1989 年Titterington 和Kitsos总结了非线性试验设计的最新发展,并列举了十五个在化工领域中常遇到的非线性模型。 本文对近年来新的非线性系统的辨识方法作以简单的综述。

模型预测控制

云南大学信息学院学生实验报告 课程名称:现代控制理论 实验题目:预测控制 小组成员:李博(12018000748) 金蒋彪(12018000747) 专业:2018级检测技术与自动化专业

1、实验目的 (3) 2、实验原理 (3) 2.1、预测控制特点 (3) 2.2、预测控制模型 (4) 2.3、在线滚动优化 (5) 2.4、反馈校正 (5) 2.5、预测控制分类 (6) 2.6、动态矩阵控制 (7) 3、MATLAB仿真实现 (9) 3.1、对比预测控制与PID控制效果 (9) 3.2、P的变化对控制效果的影响 (12) 3.3、M的变化对控制效果的影响 (13) 3.4、模型失配与未失配时的控制效果对比 (14) 4、总结 (15) 5、附录 (16) 5.1、预测控制与PID控制对比仿真代码 (16) 5.1.1、预测控制代码 (16) 5.1.2、PID控制代码 (17) 5.2、不同P值对比控制效果代码 (19) 5.3、不同M值对比控制效果代码 (20) 5.4、模型失配与未失配对比代码 (20)

1、实验目的 (1)、通过对预测控制原理的学习,掌握预测控制的知识点。 (2)、通过对动态矩阵控制(DMC)的MATLAB仿真,发现其对直接处理具有纯滞后、大惯性的对象,有良好的跟踪性和较强的鲁棒性,输入已 知的控制模型,通过对参数的选择,来获得较好的控制效果。 (3)、了解matlab编程。 2、实验原理 模型预测控制(Model Predictive Control,MPC)是20世纪70年代提出的一种计算机控制算法,最早应用于工业过程控制领域。预测控制的优点是对数学模型要求不高,能直接处理具有纯滞后的过程,具有良好的跟踪性能和较强的抗干扰能力,对模型误差具有较强的鲁棒性。因此,预测控制目前已在多个行业得以应用,如炼油、石化、造纸、冶金、汽车制造、航空和食品加工等,尤其是在复杂工业过程中得到了广泛的应用。在分类上,模型预测控制(MPC)属于先进过程控制,其基本出发点与传统PID控制不同。传统PID控制,是根据过程当前的和过去的输出测量值与设定值之间的偏差来确定当前的控制输入,以达到所要求的性能指标。而预测控制不但利用当前时刻的和过去时刻的偏差值,而且还利用预测模型来预估过程未来的偏差值,以滚动优化确定当前的最优输入策略。因此,从基本思想看,预测控制优于PID控制。 2.1、预测控制特点 首先,对于复杂的工业对象。由于辨识其最小化模型要花费很大的代价,往往给基于传递函数或状态方程的控制算法带来困难,多变量高维度复杂系统难以建立精确的数学模型工业过程的结构、参数以及环境具有不确定性、时变性、非线性、强耦合,最优控制难以实现。而预测控制所需要的模型只强调其预测功能,不苛求其结构形式,从而为系统建模带来了方便。在许多场合下,只需测定对象的阶跃或脉冲响应,便可直接得到预测模型,而不必进一步导出其传递函数或状

非线性模型预测控制_Chapter10

Chapter 10 Numerical Optimal Control of Nonlinear Systems In this chapter,we present methods for the numerical solution of the constrained ?nite horizon nonlinear optimal control problems which occurs in each iterate of the NMPC procedure.To this end,we ?rst discuss standard discretization techniques to obtain a nonlinear optimization problem in standard form.Utilizing this form,we outline basic versions of the two most common solution methods for such problems,that is Sequential Quadratic Programming (SQP)and Interior Point Methods (IPM).Furthermore,we investigate interactions between the differential equation solver,the discretization technique and the optimization method and present several NMPC speci?c details concerning the warm start of the optimization routine.Finally,we discuss NMPC variants relying on inexact solutions of the ?nite horizon optimal control problem. 10.1Discretization of the NMPC Problem The most general NMPC problem formulation is given in Algorithm 3.11and will be the basis for this chapter.In Step (2)of Algorithm 3.11we need to solve the optimal control problem minimize J N n,x 0,u(·) :=N ?1 k =0ωN ?k n +k,x u (k,x 0),u(k) +F J n +N,x u (N,x 0) with respect to u(·)∈U N X 0(n,x 0), subject to x u (0,x 0)=x 0,x u (k +1,x 0)=f x u (k,x 0),u(k) .(OCP n N ,e ) We will particularly emphasize the case in which the discrete time system (2.1)is induced by a sampled data continuous time control systems ˙x(t)=f c x(t),v(t) ,(2.6)L.Grüne,J.Pannek,Nonlinear Model Predictive Control , Communications and Control Engineering, DOI 10.1007/978-0-85729-501-9_10,?Springer-Verlag London Limited 2011275

非线性模型参数估计方法步骤

EViews非线性模型参数估计方法步骤 1.新建EViews工作区,并将时间序列X、P1和P0导入到工作区; 2.设定参数的初始值全部为1,其方法是在工作区中其输入下列命令 并按回车键 param c(1) 1 c(2) 1 c(3) 1 c(4) 1 3.估计非线性模型参数,其方法是在工作区中其输入下列命令并按 回车键 nls q=exp(c(1))*x^c(2)*p1^c(3)*p0^c(4) 4.得到结果见table01(91页表3. 5.4结果)(案例一结束) Dependent Variable: Q Method: Least Squares Date: 03/29/15 Time: 21:44 Sample: 1985 2006 Included observations: 22 Convergence achieved after 9 iterations Q=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4) Coefficient Std. Error t-Statistic Prob. C(1) 5.567708 0.083537 66.64931 0.0000 C(2) 0.555715 0.029067 19.11874 0.0000 C(3) -0.190154 0.143823 -1.322146 0.2027 C(4) -0.394861 0.159291 -2.478866 0.0233 R-squared 0.983631 Mean dependent var 1830.000 Adjusted R-squared 0.980903 S.D. dependent var 365.1392 S.E. of regression 50.45954 Akaike info criterion 10.84319 Sum squared resid 45830.98 Schwarz criterion 11.04156 Log likelihood -115.2751 Hannan-Quinn criter. 10.88992 Durbin-Watson stat 0.672163 (92页表3.5.5结果)(案例二过程) 5.新建EViews工作区,并将时间序列X、P1和P0导入到工作区;

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

非线性系统辨识模型选择方法综述

文献2:Model selection approaches for non-linear system identification: a review X. Hong, R.J. Mitchell, S. Chen, C.J. Harris, K. Li and G .W. Irwin. International Journal of Systems Science, 2008,39(10): 925–946 非线性系统辨识模型选择方法综述 摘要:近20年来基于有限观测数据集的非线性系统辨识方法的研究比较成熟。由于可利用现有线性学习算法,同时满足收敛条件,目前深入研究和广泛使用的非线性系统辨识方法是一类具有万能逼近能力的参数线性化非线性模型辨识(linear-in-the-parameters nonlinear model identification )。本文综述了参数线性化的非线性模型选择方法。非线性系统辨识最基本问题是从观测数据中识别具有最好模型泛化性能的最小模型。综述了各种非线性系统辨识算法中实现良好模型泛化性的一些重要概念,包括贝叶斯参数正规化,基于交叉验证和实验设计的模型选择准则。机器学习的一个显著进步,被认为是确定的结构风险最小化原则为基础的内核模式,即支持向量机的发展。基于凸优化建模算法,包括支持向量回归算法,输入选择算法和在线系统辨识算法。 1 引言 控制工程学科的系统辨识,是指从测量数据建立系统/过程动态特性的数学描述,以便准确预测输入未来行为。系统辨识2个重要子问题:(1)确定描述系统输入和输出变量之间函数关系的模型结构;(2)估计选定或衍生模型结构范围内模型参数。最初自然的想法是使用输入输出观测值线性差分方程。早期研究集中在线性时不变系统,近期线性辨识研究考虑连续系统辨识、子空间辨识、变量误差法(errors-in-the-variable methods )。 模型质量重要测度是未知过程逼近的拟合精度。由于大多数系统在某种程度上说都是非线性的,非线性模型通常要求满足合格的建模性能。定义非线性离散系统输入)(t u ,输出)(t y ,训练数据集合N D ={}N t t y t u 1)(),(=,基本目标是找到 )()),(()(t e t X f t y +=θ (1) )(?f 未知,θ相关参数向量,噪声)(t e ,通常假设方差(2σ)恒定,满足独立的同分布(i.i.d.)特 性。模型输入[]T e u y n t e t e n t u t u n t y t y t X )(),1(),(),1(),(),1()(------= 。y n ,u n ,e n 分别为输出、输入和噪声的延迟。方程式(1)是NARMAX 模型表达式,代表一大类非线性系统。 由于大多数工业过程满足光滑连续特性,非线性函数)(?f 辨识等价于函数逼近,即用f ?代替f 函数。为了逼近函数,用户选择各种非线性建模方法[1],如分段线性模型、有理多项式模型、Hammerstein/Wiener 模型、投影寻踪回归(PPR )和多项式自适应回归样条(MARS )、周期神经网络。逼近论中,一种通用函数表示方法是非线性基函数的线性组合。具有参数线性化结构、表示非线性输入输出关系模型表达式 ∑==m i i i t X t X f 1))(()),((?θφθ (2) ((t X i φ为已知非线性基函数映射,例如RBF 或者B 样条函数,i θ未知参数,m 模型中基函数个 数。参数线性化模型具有适合自适应学习的良好结构,具有可证明的学习和收敛条件,具备并行处理能力,明确的工程应用[2]。然而,非线性系统辨识中仍然存在一些重大挑战和障碍: (1)模型的泛化性 采用有限数据辨识模型,不仅要求模型训练精度较好,同样要求模型测试精度良好。由于)(?f 未知,

【开题报告】非线性Hammerstein模型的辨识

开题报告 电气工程与自动化 非线性Hammerstein模型的辨识 一、选题的背景与意义 系统辨识是是现代控制理论中的一个重要分支。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及控制器的设计。非线性系统辨识是系统辨识的一个重要的发展方向,一直是现代辨识领域中的一个主要课题,对其研究有十分重要的理论和实际意义。非线性问题的主要困难之一是一直缺乏描述各种非线性系统特性的统一的数学模型。为此,人们提出了多种类型的模型,如块联模型]1[ 、神经网络模型、双线性模型、非线性参数模型等等。 ]2[]3[ Hammerstein模型属于块联模型,由一个线性动态系统跟随一个非线性静态模块构成。自从Narendra& Gallman 1966年提出了Hammerstein模型后,由于模型结构简 ]4[ 单且能有效地描述常见的非线性动态系统特性,所以许多学者相继研究了Hammerstein 模型参数的估计方法,近年来Hammerstein模型被广泛地应用于非线性系统辨识。辨识Hammerstein模型的意义在于:利用辨识结果获得中间层输出,选择合适的性能指标,就可以把原非线性系统的控制问题分解为线性模块的动态优化问题和非线性模块的静态求根问题,因此可以有效结合线性模型预测控制的成熟理论解决这类非线性对象的控制问题,避免传统非线性控制方法计算量大,收敛性和闭环稳定性不能得到保证等诸多问题。 二、研究的基本内容与模拟解决的主要问题: 针对Hammerstein模型的辨识问题,可以归结为线性模块的动态优化问题和非线性模块的静态求根问题。因此研究的重点就是如何运用比较新颖的优化算法得到Hammerstein模型的参数解集,并能通过和传统算法的比较论证阐述采用方法的合理性,可行性及有效性。具体需要解决的问题包括以下几点: 1.什么是Hammerstein模型,它的基本结构式怎么样的; 2.确定Hammerstein非线性系统辨识的思想和实现方法; 3.熟悉PSO/BFO优化算法和熟悉最小二乘法估计方法;

非线性最小二乘辨识

电力系统等值参数辨识的方法研究 4.1 研究等值参数辨识的意义 目前PSS 的参数设计主要还是依赖于单机无穷大系统,但在实际系统中无穷大系统的参数难以得知,可以近似发电机升压变的高压侧或出线远端,但会带来一定误差。本项目提出了一种根据发电机机端电压和电流量的变化情况,采用非线性最小二乘方法实时辨识等值无穷大系统参数,为励磁系统的参数性能校验和参数优化打下了良好基础。 4.2 在线实时辨识单机——无穷大模型 对于同步发电机,我们可以将其外部等值为一个无穷大系统,以这样一个单机——无穷大模型为基础设计出的励磁系统及PSS 参数是可以得到令人满意的控制效果的。单机——无穷大时域仿真检验计算要求获得电力系统的等值参数,所以需要进行对电力系统等值参数辨识的方法研究。 当发电机以外系统的运行方式及结构发生变化时,将可以等值为系统电抗 )(L T s s X X X X +=以及母线电压s V 的变化(如图4-1),如果我们能够在线实时 辨识出这种变化,就将可以根据所辨识出的系统参数及发电机运行状态根据优化算法计算出新的最优反馈增益矩阵,以适应变化后的系统运行方式及其结构。 这样,可以在电网运行方式及结构发生变化时,实时对电力系统参数进行辨识,也就可以实现PSS 参数的实时优化。 考虑如图4-1的单机——无穷大系统: 根据机端电压电流之间的关系有: 图4-1 单机对无穷大系统模型 V t X T X L V s

14(sin cos -?? ?-=+=s q s td s d s tq X I V V X I V V δδ (4-1) 即 ?? ?--=+=)24(s q d s td s d q s tq X I V V X I V V (4-2) 上式中的发电机端电压td V 、 tq V 及定子电流d I 、q I 我们可以通过采样获得,这样就有可能根据这些值通过(4-2)式的关系来辨识出 s X 及s V 。 4.3 常规线性最小二乘辨识 最小二乘法是目前应用最为广泛的一种参数估计方法,其原理清晰,形式简单,并且无需任何被估参数的概率信息,其在电力系统中的应用也非常广泛。因此,对于上一节的参数估计问题,首先我们采用了一般的线性最小二乘法。 定义损失函数如下: ])()[(122∑=--++-=n i s di sq tqi s qi sd tdi ls X I V V X I V V L 通过求其偏导为零,可得: ∑∑∑====---=??=+--=??=--++-=??n i s di sq tqi sq ls n i s qi sd tdi sd ls n i di s di sq tqi qi s qi sd tdi s ls X I V V V L X I V V V L I X I V V I X I V V X L 1 110 )(20)(20])()[(2 联立求解上述三个方程,最后可得 22 ()()()() (43)()()q d qi q di d di qi s q di d qi V V I I V V I I X a I I I I - - - - - - ∑---∑--= -∑-+∑- ^(43)q sd d s V V X I b -- =+-^ (43)d sq q s V V X I c - - =-- 其中

非线性回归分析

SPSS—非线性回归(模型表达式)案例解析 2011-11-16 10:56 由简单到复杂,人生有下坡就必有上坡,有低潮就必有高潮的迭起,随着SPSS 的深入学习,已经逐渐开始走向复杂,今天跟大家交流一下,SPSS非线性回归,希望大家能够指点一二! 非线性回归过程是用来建立因变量与一组自变量之间的非线性关系,它不像线性模型那样有众多的假设条件,可以在自变量和因变量之间建立任何形式的模型非线性,能够通过变量转换成为线性模型——称之为本质线性模型,转换后的模型,用线性回归的方式处理转换后的模型,有的非线性模型并不能够通过变量转换为线性模型,我们称之为:本质非线性模型 还是以“销售量”和“广告费用”这个样本为例,进行研究,前面已经研究得出:“二次曲线模型”比“线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的趋势变化”,那么“二次曲线”会不会是最佳模型呢? 答案是否定的,因为“非线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的变化趋势” 下面我们开始研究: 第一步:非线性模型那么多,我们应该选择“哪一个模型呢?” 1:绘制图形,根据图形的变化趋势结合自己的经验判断,选择合适的模型 点击“图形”—图表构建程序—进入如下所示界面:

点击确定按钮,得到如下结果:

放眼望去, 图形的变化趋势,其实是一条曲线,这条曲线更倾向于"S" 型曲线,我们来验证一下,看“二次曲线”和“S曲线”相比,两者哪一个的拟合度更高! 点击“分析—回归—曲线估计——进入如下界面

在“模型”选项中,勾选”二次项“和”S" 两个模型,点击确定,得到如下结果: 通过“二次”和“S “ 两个模型的对比,可以看出S 模型的拟合度明显高于

系统辨识方法

第四章 系统辨识中的实际问题 §4 —1 辨识的实验设计 一、系统辨识的实验信号 实验数据是辨识的基础,只有高质量的数据才能得出良好的数学模型,而且实验数据如果不能满足起码的要求,辨识根本得不出解。 系统辨识学科是在数理统计的时间序列分析的基础上发展起来的,两者的区别在于系统辨识的对象存在着人为的激励(控制)作用,而时序分析则没有。因此,前者能通过施加激励信号u(k)达到获得较好辩识结果的目的(即实验信号的设计),而后者不能。 (一) 系统辨识对实验信号的最起码的要求 为了辨识动态系统,激励信号u 必须在观测的周期内对系统的动态持续地激励。满足辨识对激励信号最起码的要求的持续激励信号应具备的条件称“持续激励条件”,分以下四种情况讨论: 1. 连续的非参数模型辨识(辩识频率特性) 如果系统通频带的上下限为 ωmin ≤ ω ≤ ωmax ,要求输入信号的功率密度谱在此范围内不等于零。 ) () ()}({)}({)(ωωωj U j Y t u F t y F j G = =

2. 连续的参数模型辨识 被辩识的连续传函为 ,共包含(m+n+1)个参数 对于u(t)的每一个频率成分ωi 的谐波,对应的频率响应有一个实部R(ωi )和一个虚部Im(ωi ),由此对应两个关系式(方程),能解出两个未知参数。因此,为辩识(m+n+1)个参数,持续激励信号至少应包含: j ≥( m+n+1 )/2 个不同的频率成分。 3. 离散的脉冲响应 g(τ)的辨识 g(τ) ;τ = 0,1,..m ,假设过程稳定,当 τ > m 时 g(τ)= 0 。由维纳—何甫方程有: R uy (τ )=∑ g(σ)R uu (τ - σ) 式(4-1-1) 由上式得出(m+1)个方程的方程组: 上式表达成矩阵形式 φuy = φuu G 式(4-1-2) 可解出 G = φuu -1 φuy 式(4-1-3) G s b b s b s a s a s m m n n ()= ++++++0111 R R R m R R R m R R R m R m R m R g g g m uy uy uy uu uu uu uu uu uu uu uu uu ()()()() ()()()()()()()()()()()010******** ????????????=----?????????????????????????

相关文档
最新文档