混凝土钢筋检测仪

混凝土钢筋检测仪
混凝土钢筋检测仪

附表二

第1页共12页

中铁上海工程局有限公司工程质量检测中心

仪器设备技术档案册

仪器编号: DX11-0-045

名称:混凝土钢筋检测仪

型号: ZBL-R610型

功能:

单位:大西一项目

2010年 04月 10日立

第2页共12页

目录

一、仪器设备情况登记表………………………………………

二、技术资料登记表………………………………………………

三、主要附件、备件登记表………………………………………

四、消耗性备件、材料登记表……………………………………

五、验收、安装调试报告…………………………………………

六、仪器设备检定情况记录表…………………………………………

七、仪器损坏、故障、修理、定期检查履历记录表……………………

八、操作规程……………………………………………………

九、保养检修制度…………………………………………………

十、仪器负责人变动情况登记表……………………………………

十一、仪器设备报废记录……………………………………………

表1 仪器设备情况登记表

表2 技术资料登记表

表3 主要附件、备件登记表

第6页共12页

表4 消耗性备件、材料登记表

第7页共12页

表5 验收、安装调试报告

主要内容:

1、仪器设备进口、提货、开箱、安装调试、正式使用时间。

2、按合同、发票、装箱单相互对照检查在质量和数量方面有无差错,处理结果。

3、主机系列号及号码。

4、安装调试的方法、测试工具,主要性能能否达到说明书指定的规格和要求。

5、存在的问题。

6、验收负责人及参加人员姓名。

2010.04.10进场12号进行安装调试,于2010.04.20号运城市质量技术监督检验测试所鉴定合格正式使用

验收负责人及参加人员:章家传、雷红玉

表6 仪器设备检定情况记录表

表7 仪器损坏、故障、修理、定期检查履历记录表

第10页共12页

表8 操作规程

表9 保养检修制度

1、每半个月清理一次

2、一年定期标定一次

第11页共12页

表10 仪器负责人变动情况登记表

第12页共12页

表11 仪器设备报废记录

2019年全国公路水运工程试验检测人员继续教育网络平台- 钢筋笼长度检测技术

磁测井法检测钢筋笼长度是通过分析实测钢筋笼周围()的特征来进行检测。 A.磁场北向分量 B.磁场垂直分量 C.磁场水平分量 D.磁场东向 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第2题 钢筋笼属于()物质。 A.抗磁性 B.铁磁性 C.顺磁性 D.逆磁性 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第3题 以下哪种情况不能使用磁测井法检测钢筋笼长度()。 A.桩周无其他低阻体干扰 B.桩周有其他低阻体干扰 C.桩周无其他铁磁性体干扰 D.桩周有其他铁磁性体干扰 答案:D 您的答案:B 题目分数:3 此题得分:0.0 批注: 第4题 钢筋笼长度检测时,每根受检桩记录的有效实测曲线不应少于()条。 A.1 B.2 C.3 D.4 答案:B 您的答案:B

此题得分:3.0 批注: 第5题 已知磁场垂直分量梯度为Gz,上测点实测磁场垂直分量强度值为Z1,下测点实测磁场垂直分量强度值为Z2,上下测点的测点距Δh,则()。 A.Gz=(Z2-Z1)*Δh B.Gz=(Z1-Z2)*Δh C.Gz=(Z2-Z1)/Δh D.Gz=(Z1-Z2)/Δh 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第6题 多节钢筋笼中,其焊接点对应处Za曲线(磁场垂直分量-深度曲线)哪一特征点()。 A.较钢筋笼底(顶)部稍弱的拐点 B.磁场垂直分量为零的点 C.较钢筋笼底(顶)部稍强的拐点 D.较钢筋笼底(顶)部稍强的极值点 答案:A 您的答案:A 题目分数:3 此题得分:3.0 批注: 第7题 检测钢筋笼长度时,一般的检测步骤顺序是()。 A.定位→成孔→放管→测试→记录→封孔 B.定位→成孔→记录→测试→放管→封孔 C.定位→放管→测试→记录→成孔→封孔 D.记录→定位→成孔→放管→测试→封孔 答案:A 您的答案:A 题目分数:3 此题得分:3.0 批注: 第8题 磁测井法检测钢筋笼长度采用的传感器主要是()。 A.位移传感器

混凝土面板堆石坝

混凝土面板堆石坝 目录 简介 沿革 制作方法 编辑本段简介 混凝土面板堆石坝(钢筋混凝土面板碾压堆石坝)是60年代以后发展起来的 ,世界上最高的钢筋混凝土面板堆石坝是中国2011年竣工的233m高的水布垭水利枢纽。斜墙(或面板)堆石坝防渗体位于堆石体上游,材料有土料(图4)、钢筋混凝土、沥青混凝土、木材等。防渗土体可以放在堆石体上游,也可在土斜墙上设置较厚的堆石层。 主要由堆石体和防渗系统组成,即:面板、趾板、垫层、过渡层、主堆石区、次堆石区组成。 编辑本段沿革 面板堆石坝的发展大致可分成三个时期,1850~1940年是以抛填堆石为特征的早期阶段,该阶段修建的面板堆石坝坝高一般低于100m,坝体变形较大,面板开裂渗漏问题严重;1940~1965年为从抛填堆石到碾压堆石的过渡阶段,该阶段面板堆石坝的发展基本停滞;1965年以后是以碾压堆石为特点的现代阶段,碾压堆石完全取代了抛填堆石,随着薄层碾压施工技术的不断进步和完善,面板堆石坝的数量和高度迅速增加,逐渐成为当今水利水电工程建设的主流坝型之一。 面板堆石坝最早出现在19世纪50年代美国加利福尼亚州内华达山脉的矿区,当时的堆石坝采用木面板防渗。经过150余年的发展,现代面板堆石坝基本为混凝土面板堆石坝,因其具有造价低、工期短的特点,混凝土面板堆石坝得到了蓬勃的发展,已成功建设200m级的高坝。坝工界目前比较一致的观点是150m级面板堆石坝的筑坝技术是成熟的,而200m级面板堆石坝的筑坝技术还需改进和完善。中国最高的面板堆石坝为湖北的水

布垭,坝高233m,建成于2008年。国外最高的面板堆石坝为秘鲁的莫罗·德·阿里卡,坝高220m,在建。 编辑本段制作方法 斜墙(或面板)堆石坝防渗体位于堆石体上游,材料有土料(图4)、钢筋混凝土、沥青混凝土、木材等。防渗土体可以放在堆石体上游,也可在土斜墙上设置较厚的堆石层。瑞士1967年建成的马特马克坝,高120m,防渗斜墙用砾质土填筑,上游坡较陡为1:1.7~1:2.1。钢筋混凝土斜墙(或面板)堆石坝,坝的上下游坡都接近堆石的自然坡。早期的钢筋混凝土斜墙坝,在斜墙下部干砌一层片石做垫层,以防止面板出现裂缝漏水。60年代以后发展的碾压钢筋混凝土面板堆石坝(图5),在面板下一般设置一层垫层料和一层过渡层,靠近面板的垫层料要求渗透系数为10-2~10-4cm/s,当面板出现裂缝或止水破坏时,可防止大量漏水。钢筋混凝土面板可以做成只设竖向缝或分设竖向缝和水平缝。沥青混凝土可采用单层或双层。1936年阿尔及利亚建成埃尔格里卜沥青混凝土面板堆石坝,坝高72m。木材做防渗体,现在已经很少采用。

混凝土及钢筋混凝土工程施工工艺

钢筋混凝土施工工艺 (一)施工程序 其施工程序如下: 施工准备→材料采运→加工→模板、钢筋制安→砼拌和→运输→浇筑振实→养护→拆模→养护→检查验收。 (二)模板工程 (1)本工程砼施工主要采用定型钢模,其余混凝土施工根据设计图纸中砼构件的尺寸确定合适模板的材料、尺寸及形状,拼制模板时,板边要平直,接缝严密,不得漏浆。 (2)模板材质应符合相应的国家和行业规定,木材的质量应达到III等以上的材质标准,腐朽、严重扭曲或脆性的木材严禁使用。钢模厚度不应小于3mm,钢板面应尽可能光滑,不允许有凹坑,褶皱和其他表面缺陷。模板的金属支撑件材料也应符合有关行业规定。 (3)根据混凝土构件的施工详图进行施工测量放样,重要的结构多设控制点,以便检查校正。模板安装过程中,必须经常保持足够的临时固定措施,以防倾覆。安装的模板之间的接缝必须平整严密。模板安装应符合设计及规范要求。 (4)模板支撑由侧板、立档、横档、斜撑和水平撑组成,支撑必须保证牢固,在混凝土振捣过程中不会产生位移变形。 (5)安装支撑、调整完毕后的模板,在模板与砼接触面涂上防锈保护涂料和脱模涂料。模板安装合格后方能进行下道工序的施工。 (三)钢筋 本工程主要是指钢筋的采购、运输、验收、保管、加工、制作、安装等内容。 1、钢筋的材质 (1)所有钢筋均应按施工详图及有关文件、指示进行订购,进场钢筋的外观符合技术规范的要求,并具有出厂证明和试验报告单,钢筋表面或每捆(盘)均有标志并交给工程师审查。在使用之前按批号及直径依据钢筋试验规程取样试验,如拉伸试验、弯曲试验,凡检验、试验不合格的,一律清退出场,以保证钢筋质量。 (2)钢筋砼结构用的钢筋,其种类、钢号、直径及其它性能指标等均应符合施工详图及有关设计文件的规定。 (3)钢筋必须按不同等级、牌号、规格及生产厂家分批验收,分别堆存,不得混杂,且应立牌以资识别。在贮存、运输过程中应避免锈蚀和污染。钢筋宜堆置在仓库(棚)内,露天堆置时,应垫高并加遮盖。 2、钢筋的试验 钢筋在加工使用前,应分批进行机械性能试验: (1)钢筋分批试验,以同一炉(批)号、同一截面尺寸的钢筋为一批,取样的重量不大于60kg。 (2)根据厂商提供的钢筋质量证明书,检查每批钢筋的外表质量,并测量每批钢筋的代表直径。 (3)在每批钢筋中,选取经表面检查尺寸测量合格的两根钢筋中各取一个拉力试件和一个冷弯试件,如一组试验项目的一个试件不符合监理人规定数值时,则另取两倍数量的试件进行

论钢筋混凝土建筑结构

论钢筋混凝土建筑结构 摘要:钢筋混凝土结构是目前建筑工程最常见的结构形式。建筑结构形式:就是建筑物基于不同的承重建筑材料,从而形成不同的承重构件及受力传递,最终构筑起建筑物的方式。常见的结构形式有木结构、砖石结构、砖混结构、钢混结构、钢结构等。 钢筋混凝土结构是以钢筋混凝土基础、柱墙、梁板作为承重构件构建起来的结构体系,结构体系最主要的功能就是承担荷载。竖向荷载通过楼板传递给梁,梁传递给柱或墙,柱或墙向下逐层叠加梁板传递过来的荷载最终传递给基础,基础再传递给地基,在这个传递过程中引起结构的变形和内力。水平荷载通过建筑表面作用于结构(主要为风荷载),引起结构变形和内力(高层)。地震荷载是通过地面的振动引起建筑的振动,导致建筑自身的质量作用于自身结构,引起结构的变形和内力。 以上的各种荷载作用,引起的结构的变形并产生的内力都可归纳为结构构件(梁板柱墙)截面产生的弯矩、剪力、压力、拉力等,都可以根据荷载的大小、作用的部位、抗震设防的烈度等先决条件通过计算得出,把各种荷载作用引起的结构构件的变形和内力进行叠加,找出最不利情形,再根据最不利情形的变形和内力,经过计算、验算、调整最后确定结构构件的配筋和截面。 关键词:建筑结构;钢筋;混凝土 钢筋混凝土结构是由梁、板、柱、墙等这些构件组建起来的,现场的施工过程对于现浇混凝土结构来讲,就是结构构件的生产及组装的过程。钢筋混凝土结构承受各种荷载的作用的实质就是结构构件及其连接节点的承受荷载过程。结构构件及其节点之所以能够承受荷载,是由于钢筋和混凝土共同工作的结果。在钢筋混凝土的受力中,混凝土主要承受压力,钢筋主要承受拉力,在拉压力平衡状态下构件就具有了承受荷载的能力。 普通混凝土是以水泥为主要胶凝材料,与水、砂、石子,必要时掺入化学外加剂和矿物掺合料,按适当比例配合,经过均匀搅拌、密实成型及养护硬化而成的人造石材。在混凝土中,石子、砂称为粗细骨料,水泥与水形成水泥浆,大石子之间小石子充填,小石子中间砂充填,水泥浆包裹在大小石子及砂的表面并充填余下的空隙,在硬化之前,水泥浆起到润滑作用,使混凝土具有流动性、和易性、施工方便。水泥浆硬化后,将骨料胶结成一个坚实的整体。砂石合理的粒径及良好的级配,会使混合体呈现较小的间隙率和较小的总表面积,不仅水泥浆用量小,节约水泥,且可提高混凝土的密实度及强度。 抗压强度是建筑结构中混凝土最主要的利用性能。立方体抗压强度,是指按照标准方法制作养护的标准试件,在28天龄期用标准试验方法测得的具有95%保证率的立方体抗压强度,也用它代表混凝土的强度等级。由于立方体试件在压力机施压的过程中,垫板和试块接触面间有摩擦力存在,因此垫板対试件起到约束套箍的作用,混凝土在有周边约束作用的情况下,抗压强度提高,这样立方体抗压强度实际不能真实反映实际工程中结构构件的混凝土受力情况。棱柱体抗压强度,实验证明h/b=3-4棱柱体上压力机测出的的抗压强度,垫板对试件中部的横向拉伸变形已起不到约束套箍作用,基本能真实反映轴心抗压的混凝土柱中的混凝土强度。根据实验确定,棱柱体抗压强度是立方体抗压强度的0.67倍。混凝土抗拉强度,统计分析得到,混凝土抗拉强度仅为抗压强度的1/8-1/18,混凝土抗拉能力很弱,因此工程中,我们往往利用的是混凝土的抗压能力,而抗拉性能

浅淡钢筋混凝土结构的非线性有限元

价值工程 0引言 钢筋混凝土结构是目前使用最为广泛的一种结构形式。钢筋混凝土是由两种性质不同的材料组合而成的,材料性能非常复杂,特别是在其非线性阶段,混凝土和钢筋本身的各种非线性特性,都不 同程度地在这种组合材料中反映出来。 传统的分析和设计方法往往采用线弹性理论来分析其内力。随着有限元理论和计算机技术的进步,钢筋混凝土非线性有限元分析方法也得以迅速的发展并发挥出巨大的作用。 1钢筋混凝土有限元分析原理钢筋混凝土有限元分析,主要是研究钢筋混凝土结构的基本性能、设计方法和构造措施。结合钢筋混凝土的力学特性,采用有限元分析的一般原理,是有限元分析和钢筋混凝土力学特性两者的结合。 Ngo 和Scordelis 在早期进行的研究中, 把有限元方法用于钢筋混凝土结构分析,它包含了钢筋混凝土有限元分析的基本原理。可以具体阐述为如下几点: 1.1确定各单元的单元刚度矩阵, 它与一般的有限元方法基本相同,并组合成结构的整体刚度矩阵。随着荷载和作用的不断增加,可以得到钢筋混凝土结构自开始受荷到破坏的整个过程的位移、应变、应力、裂缝的形成和发展、钢筋和混凝土结合面的粘结滑移、钢筋的屈服和强化以及混凝土压碎破坏等大量有用的数据,为研究结构的性能和合理的设计方法提供可靠的依据。根据结构所受的荷载和约束,解出节点的未知位移,进而求出单元的应力。 1.2确定适用于各类单元的本构关系, 这种关系可以是线性的,也可以是非线性的。即应力应变关系,或结点力位移关系。 1.3通过设置联结单元, 模拟裂缝两侧的混凝土之间的咬合作用,以及钢筋和混凝土之间的粘结滑移关系。 1.4把钢筋混凝土结构分割成有限个小的结构单元。这些单元可以是钢筋和混凝土的组合单元或分离式单元。 2钢筋混凝土的非线性有限元分析 2.1混凝土的破坏准则混凝土的破坏准则就是描述混凝土破坏时其应力状态或应变状态满足的条件。 根据混凝土破坏准则的函数f (ξ,r ,θ,k 1,k 2,k 3,……,k n )=0中包含参数的个数,破坏准则可以分为单参数破坏准则、两参数破坏准则等等。单参数破坏准则有最大拉应力准则、最大剪应力准则及八面体剪应力准则。两参数破坏准则有Mohr -Coulomb 准则和 Drucker-prager 准则。 单参数和双参数都是早期提出的破坏准则。单参数或双参数的破坏准则不能全面反映混凝土的破坏特性。多参数破坏准则是适用性更广泛的破坏准则。它克服了单参数和双参数的一些不足,一些多参数破坏准则已能较好地描述混凝土的破坏特性。其中比较有代表性的二维的破坏准则有Kupfer-Gerstle 准则、 Hsieh-Ting-Chen 准则、李~过准则等。三维破坏准则有:Ottosen 准 则、Willam-Warnke 准则、 过-王、江-周准则等。2.2混凝土的本构模型混凝土的本构关系就是指混凝土的应力状态和应变状态的关系。目前,混凝土的本构模型主要类型有:以弹性模型为基础的线弹性和非线弹性的本构关系;以经典塑性理论 为基础的理想弹塑性和弹塑性硬化本构模型;采用断裂理论和塑性 理论组合的塑性断裂理论,并考虑用应变空间建立的本构模型;以粘性材料本构关系发展起来的内时程理论描述的混凝土本构模型;用损伤理论和弹塑性损伤断裂混合建立的本构模型等。 线弹性模型是工程上一般材料所采用的关系模型,线弹性类本构模型也是最简单、最基本的材料本构模型。材料变形在加载和卸载时都沿同一直线变化,完全卸载后无残余变形。因而,应力和应变有确定的一一对应的关系。直线的斜率为材料的弹性模量。如果混 凝土在单向受拉、 单向受压或多轴应力作用下,其应力-应变之间关系为曲线而非直线时,从原则线弹性模性已不适用。但在一些特定的情况下仍可使用线弹性模型,这样作的好处就是给分析带来方便、 快捷。非线性本构模型是能够比较正确模拟混凝土材料性质的本构模型,主要有非线性弹性本构模型和弹塑性本构模型。如Kupfer-Gerstle 的各项同性的全量模型、Darwin 正交异性增量模型和Ottosen 模型等。非线性弹性本构的优点是能反映混凝土受力变形的主要特点;计算公式和参数值都来自试验数据的回归分析,在单调比例加载的情况下有很高的计算精度;模型的表达式简明、直 观,易于理解和应用。因而, 这种模型在工程中应用最广。但它也有的缺点:不能反映卸载和加载的区别,卸载后没有残余变形等,故不能应用于加、卸载循环和非比例加载等情况。 2.3钢筋与混凝土之间的关系模型钢筋混凝土中钢筋和混凝土之间存在粘结力、骨料咬合力和销栓作用等,如何正确模拟钢筋和混凝土之间的相互作用,关系到有限元分析结果能否正确反映结构真实受力状态的关键。 钢筋与混凝土界面的有限元分析模型,根据是否考虑钢筋与混凝土之间的粘结滑移及销栓作用,以及用什么方式模拟这种作用,有两种基本不同的联结模型,一种是钢筋和混凝土之间位移完全协调的联结模式,另一种是两者之间位移不协调的连接模型,即采用粘结单元的联结模型。位移完全协调的联结模式,又分为分离式、埋置式和组合式三种模型。这些模式都认为钢筋和混凝土之间即无相对滑移,也无相对错动,不需要粘结滑移及销栓作用的模拟。粘结单元的联结模采用在钢筋单元和混凝土单元之间,设置粘结单元模拟两者之间的粘结力及销栓作用。在混凝土与钢筋之间的粘结模拟方面,人们提出了各种不相同的粘结单元的模型,比如无厚度四节点或六节点粘结单元、双弹簧粘结单元、、斜弹簧单元粘和结斜杆单元等。而关于粘结~滑移关系方面,在分析初期采用的是线性关系,随后发展为非线性关系,提出多种τ~S 曲线的表达式。因为存在的影响因素比较多,而且问题相对复杂,所以目前尚且还没有相对完善的计算模式。 2.4裂缝的模拟混凝土受拉开裂后形成裂缝,在钢筋混凝土的有限单元法中,裂缝的模型很多,一般比较常用的是单元边界的的单独裂缝和单元内部的弥散裂缝以及断裂力学模型这三种模型。第一种方法把裂缝处理为单元边界,一旦出现新的裂缝就增加新的节点,重新划分单元,使裂缝总是处于单元和单元之间的边界。这种方法的缺点是计算工作繁琐,费机时。第二种方法使得在计算过程中裂缝自动形成和发展,即不必增加结点也不用重新划分单元,所以由计算机自动进行处理比较容易,因而得到了较为广泛的应用。 —————————————————————— —作者简介:范治华(1980-),男,河南永城人,助理工程师,研究方向为城建。 浅淡钢筋混凝土结构的非线性有限元分析 Nonlinear Finite Element Analysis of Reinforced Concrete Structure 范治华Fan Zhihua ;史玉侠Shi Yuxia (神火集团有限公司,永城476600) (Shenhuo Group Company ,Yongcheng 476600,China )摘要:随着有限元理论和计算机技术的进步,钢筋混凝土非线性有限元分析方法必定会在理论实践和工程实施中得到更大程度的发展,发 挥更加强大的作用。 Abstract:With the progress of finite element theory and computer technology,nonlinear finite element analysis of reinforced concrete must be implemented in the theory and engineering practice and get the greater degree of development,and play a more powerful role. 关键词:钢筋混凝土结构;有限元;分析Key words:reinforced concrete structures ;finite element ;analysis 中图分类号:TU37 文献标识码:A 文章编号:1006-4311(2012)05-0086-02 ·86·

混凝土面板堆石坝挤压边墙

混凝土面板堆石坝挤压边墙 1案例介绍 某水库大坝为混凝土面板堆石坝,主要由溢洪道、提水泵站、供水管道及下游灌区管线组成,最大坝高为,工程等别为Ⅲ等,工程规模为中型。大坝总库容为万m3。坝体主要由挤压边墙混凝土、混凝土面板、垫层区、过渡区、堆石区、下游护坡等。大坝上游垫层保护使用挤压边墙施工技术来进行施工。 2挤压边墙施工技术的优点 混凝土面板堆石坝挤压边墙主要是使用机械挤压的方式来形成墙体,然后利用挤压过程中产生的反向作用力向前移动。在填筑上游坝面的各个垫层之前,要先使用挤压边墙设备顺着上游垫层料区的坡面提前制出一个低弹性模量、低强度、半透水的干性墙体,墙体厚度和垫层压实厚度一致。混凝土施工3~5h 后,使用垫层料后方进行回填,然后进行碾压。达到规定要求后,再按照上述工序继续向上填筑,直到形成一个强度和完整性均良好的混凝土坝面。使用这种方法进行施工,施工速度快,可以同时进行垫层料、过渡料和坝体堆石料的生产,相较于常规作业方法,有下述五个方面的优点:(1)可以一次性完成上游坡面和同层垫层料的填筑施工。在进行上游坡面垫层施工时,不需要碾压斜坡、整修坡面、超填削坡等施工,可以提高碾压和填筑的施工速度,使坝体的施工效率增加;(2)使用垂直碾压的方式代替了无侧向约束的坡面斜坡碾压,提高了垫料层的密实度,面板的抗水压能力和支撑能力提升;(3)可以一次实现上游坡面的成型。施工过程中堆石体填筑、过渡层施工、垫层施工可以同时提升,便于施工管理;(4)在施工的同时,可以有效保护坡面,使坡面的抗雨水冲刷和汛期抗洪水冲刷能力提升;(5)整个施工过程中,不需要投入过多的碾压设备、整平坡面设备以及坡面防护设备,施工参与人员少,经济性佳。 3挤压边墙的施工 布置边墙 通常情况下,在趾板和垫料层连接的小区料上布置挤压边墙。挤压边墙主要是使用挤压机进行连续挤压后形成的一个混凝土小墙。本工程中,上游坡面设计比例为1∶,垫层填筑压实层设计厚度为40cm,因此,设计挤压边墙的顶部宽度为10cm,高度为40cm,底部宽度为71cm的梯形结构,下游坡比为8∶1,上游坡比为1∶。 挤压边墙配混凝土施工配合比的试验 为保证施工质量,首先要确保施工混凝土的配合比达到要求,混凝土湿度过高或者过低均会影响挤压机的正常行走。为了便于施工,要求混凝土具有良好的和易性。本工程设计C5级标号的混凝土来进行施工。以干硬性混凝土配合比来设计墙体混凝土,设计水的使用量为95~120kg/m3,水泥的使用量为85~100kg/m3,设计水灰比为~,要求混凝土的渗透系数控制在10-2~10-3cm/s,混凝土抗压强度为1~3MPa,参考推荐配合比,在施工现场进行复核以后,将挤压边墙的最佳施工配合比确定出来。 平整施工场地 在边墙挤压施工时,为了方便设备施工,要先对施工场地进行整平,使用垫层料填平趾板头部下游三角槽,然后从趾板顶部高层

浅探钢筋混凝土建筑物裂缝成因及防治措施示范文本

浅探钢筋混凝土建筑物裂缝成因及防治措施示范文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

浅探钢筋混凝土建筑物裂缝成因及防治 措施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 0 引言 钢筋混凝土的建筑物出现裂缝较为普遍。许多钢筋混 凝土结构的破坏都是从裂缝开始的,必须十分重视裂缝的 成因、预防和处理,尤其是要避免和控制有害贯穿性裂缝 的出现,以确保建筑物的安全性、适用性、耐久性,最大 程度地保证人们的生命和财产安全。 1 钢筋混凝土建筑物裂缝原因分析 造成钢筋混凝土建筑物开裂、渗水的原因较为复杂, 涉及的因素颇多,大致可分为三类:温差过大引起的温度 裂缝;荷载过大引起的变形裂缝;混凝土干缩引起的变形 裂缝。

1.1 温度裂缝温度裂缝一般是由于大气温度变化、周围环境温度太高或者大体积混凝土施工时产生的水化热等因素造成。有关研究表明,当混凝土内外温差10℃时,冷缩值为0.01%,如果混凝土内外温差20℃~30℃时,其冷缩值为0.02%~0.03%,而混凝土的极限拉伸值只有 0.01%~0.02%,所以当其大于混凝土极限拉伸值时混凝土就开裂。 1.2 荷载裂缝荷载裂缝是建筑物在荷载作用下变形过大而产生的裂缝。一般多出现在构件的受拉区域、受剪区域或者振动严重等部位。产生的主要原因是结构设计不合理、施工方法错误、承载能力不足、地基沉降不均匀等。 1.3 干缩裂缝干缩裂缝一般是由于材料缺陷引起的。研究表明,水泥加水后变成水泥硬化体,绝对体积减小,毛细孔缝中水溢出产生毛细压力,使得混凝土产生毛细收缩,由此引起水泥砂浆的干缩值为0.1%~0.2%,混凝土的

沥青混凝土面板堆石坝设计大纲范本

FJD31080 FJD 水利水电工程技术设计阶段 沥青混凝土面板堆石坝设计 大纲范本 水利水电勘测设计标准化信息网 1997年11月 1

水电站技术设计阶段 沥青混凝土面板堆石坝技术设计大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月 2

目次 1. 引言 (4) 2. 设计依据文件和规范 (4) 3. 设计基本资料 (4) 4. 坝体布置 (9) 5.坝体设计 (9) 6.坝的计算 (12) 7.碾压式沥青混凝土面板设计 (13) 8.面板与岸坡、基础及刚性建筑物的连接 (17) 9.基础处理 (18) 10.原形观测 (19) 11.技术专题研究(含试验) (20) 12.工程量计算 (21) 13.设计成果 (22) 3

1 引言 工程系建在河(江) 游,距市(县) km。水库总库容亿m3,是以、为主和、的综合利用水库。本工程主(副)坝为沥青混凝土面板堆石坝,坝高m,坝顶长m。属等工程。 工程初步设计报告于年月经审查通过,并以文进行了批复。 2. 设计依据文件和规范 2.1 有关本工程或本专业的文件 (1) 工程初步设计报告; (2) 工程初步设计报告的审批文件; (3) 工程专题研究报告; (4) 工程有关文件或会议纪要。 2.2 主要设计规范 (1) SDJ 12-78 水利水电枢纽工程等级划分及设计标准(山区、丘陵区部 分)和补充规定(试行); (2) SDJ 218-84 碾压式土石坝设计规范及修改和补充规定; (3) SLJ 01-88 土石坝沥青混凝土面板和心墙设计准则; (4) SDJ 10-78 水工建筑物抗震设计规范(试行); (5) SDJ 20-78 水工钢筋混凝土结构设计规范(试行); (6) SDJ 14-78 水利水电工程地质勘察规范(试行); (7) SL 52-93 水利水电工程施工测量规范; (8) SL 47-94 水工建筑物岩石基础开挖工程施工技术规范; (9) SDJ 207-82 水工混凝土施工规范; (10) SDJ 213-83 碾压式土石坝施工技术规范; (11) SD 220-87 土石坝碾压式沥青混凝土防渗墙施工规范; (12) SL 62-94 水工建筑物水泥灌浆施工技术规范。 3. 设计基本资料 4

对钢筋混凝土建筑结构现代抗震思路论文1

对钢筋混凝土建筑结构现代抗震思路 摘要:该论文从1、抗震设计思路发展历程;2、现代抗震设计思路及关系;3、保证结构延性能力的抗震措施;4、我国抗震设计思路中的部分不足;5、常用抗震分析方法这五个方面,结全重庆大学白绍良老师的教义来对钢筋混凝土建筑结构现代抗震思路及我国设计规范抗震设计方法的理解和讨论 关键词:结构设计抗震 一. 抗震设计思路发展历程随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用(0.1倍自重)用于结构设计。到了60年代,随着地面运动记录的不断丰富,人们通过单自由度体系的弹性反应谱,第一次从宏观上看到地震对弹性结构引起的反应随结构周期和阻尼比变化的总体趋势,揭示了结构在地震地面运动的随机激励下的强迫振动动力特征。但同时也发现一个无法解释的矛盾,当时规范所取的设计用地面运动加速度明显小于按弹性反应谱得出的作用于结构上的地面运动加速度,这些结构大多数却并未出现严重损坏和倒塌。后来随着对结构非线性性能的不断研究,人们发现设计结构时取的地震作用只是赋予结构一个基本屈服承载力,当发生更大地震时,结构将在一系列控制部位进入屈服后非弹性变形状态,并靠其屈服后的非弹性变形能力来经受地震作用。由此,也逐渐形成了使结构在一定水平的地震作用下进入屈服,并达到足够的屈服后非弹性变

形状态来耗散能量的现代抗震设计理论。由以上可以看出,结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变。 二. 现代抗震设计思路及关系在当前抗震理论下形成的现代抗震设计思路,其主要内容是: 1.合理选择确定结构屈服水准的地震作用。一般先以一具有统计意义的地面峰值加速度作为该地区地震强弱标志值(即中震的),再以不同的R(地震力降低系数)得到不同的设计用地面运动加速度(即小震的)来进行结构的强度设计,从而确定了结构的屈服水准。 2.制定有效的抗震措施使结构确实具备设计时采用的R所对应的延性能力。其中主要包括内力调整措施(强柱弱梁、强剪弱弯)和抗震构造措施。现代抗震设计理念是基于对结构非弹性性能的研究上建立起来的,其核心是关系,关系主要指在不同滞回规律和地面运动特征下,结构的屈服水准与自振周期以及最大非弹性动力反应间的关系。其中R为弹塑性反应地震力降低系数,简称地震力降低系数;而为最大非弹性反应位移与屈服位移之比,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。60年代开始,研究者在滞回曲线为理想弹塑性及弹性刚度始终不变的前提下,通过对不同周期,不同屈服水准的非弹性单自由度体系做动力分析,得到了有关弹塑性反应下最大位移的规律:对T大于1.0秒的体系适用“等位移法则”即非弹性反应下的最大位移总等于 同一地面运动输入下的弹性反应最大位移。对于T在0.12-0.5秒之

有限元分析在钢筋混凝土结构中的应用

论文题目:钢筋混凝土有限元分析技术在结构工程中的应用 学生姓名:刘畅 学号:2014105110 学院:建筑与工程学院 2015年06月30日

有限元分析在钢筋混凝土结构中的应用【摘要】在国内外的土木工程中,钢筋混凝土结构因具有普遍性、可靠性良好、操作简单等优点,而得到了广泛的应用。钢筋混凝土结构是钢筋与混凝土两种性质截然不同的材料组合而成,由于其组合材料的性质较为复杂,同时存在非线性与几何线形的特征,应用传统的解析方法进行材料的分析与描述在受力复杂、外形复杂等情况下较为困难,往往不能得到准确的数据,给工程安全带来隐患。而有限元分析方法则充分利用现代电子计算机技术,借助有限元模型有效解决了各种实际问题。 【关键词】有限元分析;钢筋混凝土结构;应用 随着计算机在工程设计领域中的广泛应用,以及非线性有限元理论研究的不断深入,有限元作为一个具有较强能力的专业数据分析工具,在钢筋混凝土结构中得到了广泛的应用。在现代建筑钢筋混凝土结构的分析中,有限元分析方法展现了较强的可行性、实用性与精确性。例如:在计算机上应用有限元分析法,对形状复杂、柱网复杂的基础筏板,转换厚板,体型复杂高层建筑侧向构件、楼盖,钢-混凝土组合构件等进行应力,应变分析,使设计人员更准确的掌握构件各部分内力与变形,进而进行设计,有效解决传统分析方法的不足,满足当前建筑体型日益复杂,工程材料多样化的实际情况。但是在有限元分析方法的应用中,必须结合钢筋混凝土结构工程的实际情况,选取作为合理的有限元模型,才能保证模拟与分析结果的真实性、精确性与可靠性。 在钢筋混凝土结构工程中,非线性有限元分析的基本理论可以概括为:1)通过分离钢筋混凝土结构中的钢筋、混凝土,使其成为有限单位、二维三角形单元,钢箍离散为一维杆单元,以利于分析模型的构建;2)为了合理模拟钢筋、混凝土之间的粘结滑移关系,以及

ABAQUS钢筋混凝土损饬塑性模型有限元分析

ABAQUS钢筋混凝土损饬塑性模型有限元分析 发表时间:2009-10-12 刘劲松刘红军来源:万方数据 钢筋混凝土材料,是一种非匀质的力学性能复杂的建筑材料。随着计算机和有限元方法的发展,有限元法已经成为研究混凝土结构的一个重要的手段。由于数值计算具有快速、代价低和易于实现等诸多优点,这种分析方法已经广泛用于实际工程中。然而,要在有限元软件中尽可能准确地模拟混凝土这种材料,是不容易的,国内外学者提出了基于各种理论的混凝土本构模型。但是迄今为止,还没有一种理论被公认为可以完全描述混凝土的本构关系。 ABAQUS是大型通用的有限元分析软件,其在非线性分析方面的巨大优势,获得了广大用户的认可,在结构分析领域的应用趋于广泛。本文把规范建议的混凝土本构关系,应用到损伤塑性模型,对一悬臂梁进行了精细的有限元建模计算和探讨。 1 混凝土损伤塑性模型 ABAQUS在钢筋混凝土分析上有很强的能力。它提供了三种混凝土本构模型:混凝土损伤塑性模型,混凝土弥散裂缝模型和ABAQUS/Explicit中的混凝土开裂模型。其中混凝土损伤塑性模型可以用于单向加载、循环加载以及动态加载等场合,它使用非关联多硬化塑性和各向同性损伤弹性相结合的方式描述了混凝土破碎过程中发生的不可恢复的损伤。这一特性使得损伤塑性模型具有更好的收敛性。 2 模型材料的定义 2.1 混凝土的单轴拉压应力-应变曲线 本模型中选用的混凝土本构关系是《混凝土结构设计规范》所建议的曲线,其应力应变关系可由函数表达式定义。 2.2 钢筋的本构关系 钢筋采用本构关系为强化的二折线模型,无刚度退化。折线第一上升段的斜率,为钢筋本身的弹性模量,第二上升段为钢筋强化段,此时的斜率大致可取为第一段的1/100。 2.3 损伤的定义 损伤是指在单调加载或重复加载下,材料性质所产生的一种劣化现象,损伤在宏观方面的表现就是(微)裂纹的产生。材料的损伤状态,可以用损伤因子来描述。根据前面确定的混凝土非弹性阶段的应力一应变关系。可求得损伤因子的数值。 2.4混凝土塑性数值的计算 混凝土在单向拉伸,压缩试验中得到的数据,通常是以名义应变和名义应力表示的,为了准确地描述大变形过程中截面积的改变,需要使用真实应变和真实应力,可通过它们之间的换算公式计算。真实应变是由塑性应变和弹性应变两部分构成的。在ABAQUS中定义塑性材料参数时,需要使用塑性应变。 3 钢筋混凝土悬臂梁实例分析 3.1 模型设计 该悬臂梁的具体情况如图1所示,梁截面尺寸为200mm×300mm,梁长1500mm;纵筋为HRB335钢筋,箍筋为HPB235钢筋,混凝土强度等级为C30。混凝土和钢筋的各力学参数均取自《混凝土结构设计规范》的标准值。

灌注桩钢筋笼长度检测方案(建资荟萃)

灌注桩钢筋笼长度检测方案 1适用范围、检测项目及技术标准 1.1适用范围 本实施细则主要适用于就地灌注的基桩,包括钻孔灌注桩。人工挖孔灌注桩、沉管灌注桩等。为施工验收提供可靠依据,确保工程质量。 1.2检测项目(参数名称) 灌注桩钢筋笼长度 1.3技术标准 《建筑基桩检测技术规范》 JGJ 106-2003; 《灌注桩钢筋笼长度检测技术规程》 DGJ32/TJ60-2007; 《城市工程地球物理探测规范》CJJ7-2007; 2技术要求 2.1检测人员 实施灌注桩钢筋笼长度检测人员须经内部或外部培训,经考核合格后上岗。 2.2检测设备 采用武汉岩海工程技术有限公司生产的RS-RBMT 钢筋笼长度磁法测试仪。 2.3检测环境 工作温度:测量探管0~50℃,地面仪器-10~45℃;相对湿度<85%。 检测方法检测条件 充电法桩头有且能暴露钢筋 磁测井法桩周五其它铁磁性体干扰 3抽样方法和数量 3.1抽样方法 如设计单位或监理单位无明确规定,一般工程的抽样方法应采用随机采样的方法;随机、均匀抽检,并应有足够的代表性。在施工过程中发现有疑问的桩必

须进行检测,但其数量不应计入随机抽测的比例内。 3.2抽样数量 检测数量不宜少于总桩数的1%,且不因少于3根;当工程桩总数少于50根以内时,不应少于2根。 4检测步骤 4.1测前准备 钻孔布置:钻孔宜设置在距灌注桩外侧边缘不大于0.5m的土中,且钻孔中心线应平行于桩身中心线,即孔桩距沿桩的纵向保持不变;钻孔也可设置在灌注 桩中心线的混凝土中,且钻孔中心线应平行于桩身中心线。钻孔内径宜为 60-90mm,钻孔深度宜大于钢筋笼底设计深度3m。当钻孔周围存在软弱土层是, 为防止塌孔埋管,宜在钻孔中设置PVC管,PVC管内径宜大于60mm。检查钻孔或 PVC管的畅通情况,井下探管应能在全程范围内升降畅通。 连接钢筋笼长度磁法测试仪主机、记数电缆,探头,用三脚架架好记数滑轮。 4.2钢筋笼长度检测 4.2.1按下仪器电源开关,进入系统后自动加载采集软件。测试前新建一个工程文件, 利用按钮选择功能进入参数设置界面点击相应的按钮,使用模拟键盘分别设置工 地名,桩号,起点深度以及记录步距(建议使用25 cm),其它参数为默认设置。 连接传感器,点击确定进入采集界面,显示当前读数(如下图)。 Z:磁场垂直分量 H:磁场水平分量 T:总磁通量 D:深度 4.2.2将探管放入测试孔中,以10~50cm的采样间距从下往上或从上往下进行垂直(Z) 分量磁场强度的测量。记录并绘制深度-垂直分量(H-Z)曲线,有条件时宜实时

ABAQUS中的钢筋混凝土剪力墙建模

ABAQUS中的钢筋混凝土剪力墙建模 曲哲 2006-5-29 一、试验标定 选用ABAQUS中的塑性损伤混凝土本构模型,分离式钢筋建模,建立平面应力模型模拟钢筋混凝土剪力墙的单调受力行为。李宏男(2004)本可以提供比较理想的基准试验。然而计算发现,该文中试验记录的初始刚度普遍偏小,仅为弹性分析结果的1/5~1/8,原因不明,故此处不予采用。左晓宝(2001)研究了小剪跨比开缝墙的低周滞回性能,其中有一片整体墙作为对照试件,本文仅以这片墙为基准标定有限元模型。 图1:剪力墙尺寸与配筋 该试件尺寸及配筋如图1所示。墙全高750mm,宽800mm,厚75mm,墙内布有间距φ6@100的分布钢筋,墙两端设有暗柱。混凝土立方体抗压强度为54.9MPa,钢筋均为一级光圆筋。 (a)墙体分区及网格(b)钢筋网 图2:ABAQUS中的有限元模型 剪力墙采用平面应力八节点全积分单元,墙上下两端各加设100mm高的弹性梁。钢筋采用两节点梁单元,通过Embed方式内嵌于墙体内。模型网格及外观如图2所示。墙下弹性梁底面嵌固。分析中,先在墙顶施加160kN均布轴压力,再在墙上方弹性梁的左端缓缓施加位移荷载。 ABAQUS中损伤模型各参数取值如表1、图3所示。未说明的参数均使用ABAQUS默认值。

表1:有限元模型材料属性 混凝土 钢筋 材料非线性模型 Damaged Plasticity Plasticity 初始弹性模量(GPa ) 38.1 210 泊松比 0.2 0.3 膨胀角(deg ) 50 初始屈服应力(MPa ) 13 235 峰值压应力(MPa ) 44 峰值压应变(με) 2000 峰值拉应力(MPa ) 3.65 注:其中混凝土弹性模量为文献中提供的试验值,其余均为估计值。 (a )压应力-塑性应变曲线 (b )拉应力-非弹性应变曲线 (c )受拉损伤指标-开裂应变曲线 图3:混凝土塑性硬化及损伤参数 ABAQUS 的混凝土塑性损伤模型用两个硬化参数分别控制混凝土的拉压行为,同时可以分别引入受压和受拉损伤指标。本文受压硬化曲线采用Saenz 曲线(式1),可用表1中列出的初始弹性模量、峰值应力和峰值应变唯一确定。受拉软化曲线采用Gopalaratnam 和Shah (1985)曲线(式2),并采取江见鲸建议参数k =63,λ=1.01,如图3(b )所示。本文模型只定义受拉损伤指标,损伤指标随开裂应变的变化如图3(c )所示,当开裂应变小于0.0014时,损伤指标线性增大,开裂应变超过0.0014后,损伤指标保持固定值0.6。 02 0000012c c c c E E εσεεεσεε= ??????+?+???????????? (1) e k t t f λ ωσ?= (2) 图4比较了采用4节点单元和8节点单元得到的剪力墙荷载-位移曲线,并同时画出了 文献中提供的荷载-位移骨架线。可见8节点单元模型的计算结果较4节点单元模型更加平滑顺畅,下降段也比较稳定。二者在达到峰值之前差别不大,但软化行为则相差较多。这可能与基于开裂应变定义的损伤指标引入的网格依赖性有关,本文对此不做深入讨论。 与试验曲线相比,有限元分析得到的荷载-位移曲线初始刚度略大,且墙底开裂(图中1点)时刚度退化不如试验中显著,导致之后的分析结果位移偏小。受拉侧钢筋屈服后计算得到的刚度与试验曲线比较接近,不久主斜裂缝的出现使墙的承载力进入软化段,被主要裂缝穿过的钢筋均进行屈服段。软化过程中墙体形成了新的主斜裂缝并最终沿这条主斜裂缝破坏。图5、6分别展示了剪力墙在受力全过程中关键点处的混凝土主拉应变和钢筋大主应力。 与试验曲线相比,计算结果刚度偏差较大,承载力基本一致。

钢筋混凝土与素混凝土有限元模拟对比分析

钢筋混凝土与素混凝土有限元模拟对比分析 Comparison and analysis of finite element simulation of reinforced concrete and plain concrete 李君 Li Jun (广西大学 土木建筑工程学院,广西 南宁 530004) (College of Civil and Architectural Engineering, Guangxi University, Nanning 530004, China) 摘要:钢砼内钢筋与砼弹性模量相差很大,但钢筋用量少,截面积所占比例少,忽略钢筋进行计算,可以减少很多繁琐的计算。本文利用abaqus 进行模拟,计算钢筋砼与素砼在相同受荷条件下的应力和挠度,同时假定钢筋和砼均在弹性范围内。 Abstract: the steel in reinforced concrete and concrete elastic modulus vary widely, but the steel consumption, less proportion of sectional area, ignore reinforced calculation, can reduce a lot of tedious calculation. In this paper, using abaqus simulation, calculation of reinforced concrete and plain concrete in the same load conditions of the deflection and stress, at the same time assume that steel and concrete are within the elastic range. 通过摸拟计算如图的钢砼简支梁与不计钢筋的该梁,求出跨中应力和挠度及比值。为了避免出现梁局部受压破坏,在支座和集中力作用处设置0.2m*0.1m*0.05m 的钢板,取材料特性如下: 1、混凝土:弹性模量2c 3e10N/m =E ,密度32400kg/m =c ρ,2.0=μ 2、钢筋:弹性模量22.1e11N/m =Es ,密度300kg/m 87=s ρ,3.0=μ 3、垫块:弹性模量22.1e12N/m =E ,密度300kg/m 87=ρ,3.0=μ 一、建立模型 1、创建部件,选择进入部件模块 创建混凝土梁:点击创建部件图标,进入创建部件对话框,部件名称liang ,选择三维实体拉伸类型,大致尺寸取0.6,点击继续,进入二维绘图界面,绘制梁截面0.2m*0.3m ,完成后输入梁长度2m ,所创建的梁部件如下图。

钢筋笼长度检测报告

灌注桩中钢筋笼长度检测报告 (检测方法:磁测井法) 工程名称:XXXXXXXXX 委托单位:XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXX年XX月XX日

检测报告应结论明确、用词规范,并包含以下内容: 1、工程名称、工程地点、委托单位、建设单位、设计单位、监 理单位、检测目的、检测桩数、检测方法、检测日期、备注; 2、检测项目简介; 3、磁测井法原理; 4、检测前准备工作; 5、成果汇总与分析; 6、结论 7、附件 检测仪器型号钢筋笼长度磁法测试仪(RBMT) 检测人员日期 报告编写人日期 报告审核人日期 1、本报告内容涂改、漏页无效。 2、对本报告有异议者,应于收到报告之日起五日内向检测机构书面提出,检测机构应于五个工作日内答复。若仍有异议,十五日内向工程所在地县级以上建设行政主管部门申请复议,逾期恕不受理。

一、工程概况 二、检测项目简介 主要说明项目作用、桩位、桩及桩中钢筋笼设计参数表。其中桩及桩中钢筋笼设计参数见下表。 三、磁测井法原理 灌注桩主要由二种特征不同的介质——钢筋和混凝土组成,其中混凝土属非铁磁性介质,而钢筋属铁磁性介质。铁磁性物质使地球磁场在局部地区发生变化,出现地磁异常。磁法勘探就是利用仪器发现和研究这些磁异常,进而寻找含磁性矿物的地质体及其他探测对象存在的空间分布位置和几何形状。 检测前先在桩中或距桩边缘≤1m的地方钻取平行于灌注桩的钻孔1个或数个,钻孔深度宜≥设计钢筋笼长度5m,孔径不得小于76mm。然后,把检测探头极放在钻孔中,测量沿钻孔不同深度地磁参数的变化。

RS-RBMT钢筋笼长度磁法测试仪,通过在钻孔中测量钢筋笼内/附近部分地磁要素沿深度的变化,从而准确直观的反映灌注桩内钢筋笼的埋设长度。在测试数据量多时,配筋数量变化中也能反映出。 四、检测前准备工作 桩外钻孔检测,孔距离桩边沿小于1.0米,孔内径大于70mm,不用PVC管,检测前已清孔。 五、成果汇总与分析 六、结论 七、附录:桩位示意图、检测数据及(H-Z)曲线

相关文档
最新文档