用递归法解决问题

用递归法解决问题
用递归法解决问题

用递归法解决问题

一、教材分析

“算法的程序实现”是高中信息技术教育出版社《算法与程序设计》选修模块第三单元的内容,本节课是“递归算法的程序实现”,前面学习了用解析法解决问题、穷举法解决问题、在数组中查找数据、对数进行排序以及本节的前一小节知识点“什么是自定义函数”的学习,,在学习自定义函数的基础上,学习递归算法的程序实现是自定义函数的具体应用,培养学生“自顶向下”、“逐步求精”的意识起着重要的作用。

课时安排:1课时

二、学情分析

教学对象是高中二年级学生,前面学习了程序设计的各种结构,在学习程序设计各种结构的应用过程中的培养了用计算机编程解决现实中的问题,特别的学习循环语句的过程中,应用了大量的“递推”算法。前一节课学习了如何自定义函数,在此基础上学习深入学习和体会自定义函数的应用。以递推算法的逆向思维进行求解问题,在学习过程中体会递归算法的思想过程。多维度的思考问题和解决问题是提高学生的学习兴趣关键。

三、教学目标

知识与技能:

1、理解什么是递归算法,学生用递归算法的思想分析问题

2、能够应用自定义函数方法实现递归算法的编程

过程与方法:

学生参与讨论,通过思考、动手操作,体验递归算法的方法

情感态度与价值:

结合数学中的实例,激发学生的数学建模的意识,培养学生多维度的思考问题和解决问题。

四、教学重点·难点

重点:理解什么是递归算法,学生用递归算法的思想分析问题

应用自定义函数方法实现递归算法的编程

难点:应用自定义函数方法实现递归算法的编程

五、教学过程

六、教学反思

从游戏的方式导入活动,充分的调动学生的思维,渐渐的走入了“递归的思维”模式,从而引出“猴子吃桃”,使用的前面活动(礼物是什么?)的思维,诱导学生进入了“递归”思想解题。学生阅读教材范例“裴波那契”,培养学生的自学能力、和知识迁移建构自我的知识体系。内化递归算法的实现,再由递归思维的逆向思维讨论“递推”的算法,进行比较计算机资源的耗费高,可读性差。为下一步导出结论做好了铺垫。

学好本节课的前提是:懂得自定义函数的使用方法,如果学生对自定义函数理解程度,是本节课效果是否得以完成的关键

算法实验 递归回溯解八皇后问题

深圳大学实验报告 课程名称:算法分析与复杂性理论 实验项目名称:八皇后问题 学院:计算机与软件学院 专业:软件工程 指导教师:杨烜 报告人:学号:班级:15级软工学术型实验时间:2015-12-08 实验报告提交时间:2015-12-09 教务部制

一.实验目的 1.掌握选回溯法设计思想。 2.掌握八皇后问题的回溯法解法。 二.实验步骤与结果 实验总体思路: 根据实验要求,通过switch选择八皇后求解模块以及测试数据模块操作,其中八皇后模块调用摆放皇后函数模块,摆放皇后模块中调用判断模块。测试数据模块主要调用判断模块进行判断,完成测试。用一维数组保存每行摆放皇后的位置,根据回溯法的思想递归讨论该行的列位置上能否放置皇后,由判断函数Judge()判断,若不能放置则检查该行下一个位置。相应结果和过程如下所示(代码和结果如下图所示)。 回溯法的实现及实验结果: 1、判断函数 代码1: procedure BTrack_Queen(n) //如果一个皇后能放在第K行和X(k)列,则返回true,否则返回false。 global X(1:k);integer i,k i←1 while i0 do X(k)←X(k)+1 //移到下一个位置 while X(k)<=n and not Judge(k) do //判断能否放置皇后 X(k)←X(k)+1 repeat if X(k)<=n //找到一个位置 then if k=n //是一个完整的解吗

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

利用递归思想解决计数问题

利用递归思想解决计数问题 福建省永定第一中学 简绍煌 我们常会遇到一些看似排列组合应用题的计数问题,但其复杂的情形有时令人无从下手,若是利用递归思想建立递归方程加以求解,则往往能够迎刃而解. 【例1】有一楼梯共10级,如果规定每步只能跨上一级或二级,要上10级,共有多少种走法? 解 设上n 级楼梯共有n a 种走法,当1n =时,11a =;当2n =时,22a =. 当有(2)n n >级楼梯时,其走法分两类. 第一类:走完前面1n -级楼梯有1n a -种走法,走第n 级只有1种走法; 第二类:走完前面2n -级楼梯有2n a -种走法,走第1n -级与第n 级楼梯时一步走,也是1种走法. 由分类计数原理,知n 级楼梯的走法为21(2)n n n a a a n N n --=+∈>且,. 由此可以算出1089a =. 点评 其通项公式可用换元法转化为一阶线性递归数列求解. 令11n n n c a x a +=-,使数列{}n c 是以2x 为公比的等比数列(12x x 、待定). 即211211()n n n n a x a x a x a +++-=-,∴212112()n n n a x x a x x a ++=+-.对照已给递归式, 有12121 1x x x x +==-,,即12x x 、是方程210x x --=的两个根. 从而121211112222x x x x += === ∴211111(222n n n n a a a a +++-=-) ① 或211111(222n n n n a a a +++-=-) ② 由式①得1 1131(222n n n a a -++-=; 由式②得1 1131(222 n n n a a -++--=. 消去 1n a +,得11n n n a --? =?? . 【例2】将数字123n ,,,,填入标号为123n ,,,,的n 个方格内,每格一个数字,则 标号与所填数字均不同的填法共有多少种? 解 设这n 个自然数的错排数为n a . 当1n =时,10a =;当2n =时,21a =. 当3n ≥时,n 个自然数的错排数可以分两类情况计算. 第一类:自然数(11)k k n ≤≤-与n 互换,这时错排数为2n a -; 第二类:自然数n 在第k 位上,但自然数不在第n 位上.这时就把第n 位看做第k 位,相当于将n 以外的1n -个自然数进行错排,错排数为1n a -. 所以,自然数n 在第k 位上的错排数共有21n n a a --+种,由于k 可以是121n - ,,,共 1n -种可能,故n 个自然数的错排数为21(1)()(3)n n n a n a a n --=-+≥.① 由①式得,112[(1)]n n n n a a a n a ----=---,∴112 (1)[]!!!! n n n n a na a n a n n n n -----=--,

八皇后之递归算法、回溯算法、穷举算法

VAR CONT,I:INTEGER; A:ARRAY[1..N] OF BYTE;{存放正确的一组解} C:ARRAY[1..N] OF BOOLEAN;{存放某一列放皇后的情况,用于判断是否有同列的情况} L:ARRAY[1-N..N-1] OF BOOLEAN;{存放某一斜线上放皇后的情况,用于判断是否有同斜线的情况;斜线的方向为\} R:ARRAY[2..2*N] OF BOOLEAN;{存放某一斜线上放皇后的情况,用于判断是否有同斜线的情况;斜线的方向为/} PROCEDURE PR; VAR I:INTEGER; BEGIN FOR I:=1 TO N DO WRITE(A[I]:4); INC(CONT); WRITELN(' CONT=',CONT); END; PROCEDURE TRY(I:INTEGER); VAR J:INTEGER; PROCEDURE ERASE(I:INTEGER); BEGIN C[J]:=TRUE; L[I-J]:=TRUE; R[I+J]:=TRUE; END; BEGIN FOR J:=1 TO N DO

IF C[J] AND L[I-J] AND R[I+J] THEN BEGIN A[I]:=J; C[J]:=FALSE; L[I-J]:=FALSE; R[I+J]:=FALSE; IF I

《递归算法与递归程序》教学设计

递归算法与递归程序 岳西中学:崔世义一、教学目标 1知识与技能 (1) ?认识递归现象。 (2) ?使用递归算法解决冋题往往能使算法的描述乘法而易于表达 (3) ?理解递归三要素:每次递归调用都要缩小规模;前次递归调用为后次作准备:递归调用必须有条件进行。 (4) ?认识递归算法往往不是咼效的算法。 (5) ? 了解递归现象的规律。 (6) ?能够设计递归程序解决适用于递归解决的问题。 (7) ?能够根据算法写出递归程序。 (8) ? 了解生活中的递归现象,领悟递归现象的既有重复,又有变化的特点,并且从中学习解决问题的一种方法。 2、方法与过程 本节让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2) 和练习(3)这两道题目的形式相差很远,但方法和答案却是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。 3、情感态度和价值观 结合高中生想象具有较强的随意性、更富于现实性的身心发展特点,综合反映出递归算法的特点,以及递归算法解答某些实践问题通常得很简洁,从而激发学生对程序设计的追求和向往。 二、重点难点 1、教学重点 (1) 了解递归现象和递归算法的特点。 (2) 能够根据问题设计出恰当的递归程序。 2、教学难点 (1) 递归过程思路的建立。 (2) 判断冋题是否适于递归解法。 (3) 正确写出递归程序。 三、教学环境 1、教材处理 教材选自《浙江省普通高中信息技术选修:算法与程序设计》第五章,原教材的编排是以本节以斐波那契的兔子问题引人,导出递归算法,从而自 定义了一个以递归方式解决的函数过程。然后利用子过程解决汉诺塔的经典问题。 教材经处理后,让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习⑵ 和练习

回溯法与分支限界法的分析与比较

回溯法与分支限界法的分析与比较 摘要:通过对回溯法与分支限界法的简要介绍,进一步分析和比较这两种算法在求解问题时的差异,并通过具体的应用来说明两种算法的应用场景及侧重点。 关键词:回溯法分支限界法n后问题布线问题 1、引言 1.1回溯法 回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。这种以深度优先方式系统搜索问题解的算法称为回溯法。 1.2分支限界法 分支限界法是以广度优先或以最小耗费优先的方式搜索解空间树,在每一个活结点处,计算一个函数值,并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解,这种方法称为分支限界法。 2、回溯法的基本思想 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少应包含问题的一个解。之后还应将解空间很好的组织起来,使得能用回溯法方便的搜索整个解空间。在组织解空间时常用到两种典型的解空间树,即子集树和排列树。确定了解空间的组织结构后,回溯法从开始结点出发,以深度优先方式搜索整个解空间。这个开始结点成为活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。此时,应往回移动至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法以这种工作方式递归的在解空间中搜索,直至找到所要求的解或解空间中已无活结点时为止。 3、分支限界法的基本思想 用分支限界法解问题时,同样也应明确定义问题的解空间。之后还应将解空间很好的组织起来。分支限界法也有两种组织解空间的方法,即队列式分支限界法和优先队列式分支限界法。两者的区别在于:队列式分支限界法按照队列先进先出的原则选取下一个节点为扩展节点,而优先队列式分支限界法按照优先队列

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

高考数学专题复习5 点列、递归数列和数学归纳法

y x 高考数学专题复习5 点列、递归数列和数学归纳法 ★★★高考在考什么 【考题回放】 1.已知数列{ a n }的前n 项和为S n ,且S n =2(a n -1),则a 2等于( A ) A. 4 B. 2 C. 1 D. -2 2.在数列{}n a 中,121,2a a ==,且21(1)n n n a a +-=+-*()n N ∈,则10S = 35 . 3.在数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n =__2 n+1 -3___. 4.对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列}1 { +n a n 的前n 项和的公式是 2n+1-2 . 5.已知n 次式项式n n n n n a x a x a x a x P ++++=--1110)( . 若在一种算法中,计算),,4,3,2(0n k x k =的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算 (6次乘法,3次加法),则计算P 10(x 0)的值共需要 65 次运算. 下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=x P k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P n (x 0)的值共需要 2n 次运算. 6.已知函数f (x )=3 2 x x +,数列|x n |(x n >0)的第一项x n =1,以后各项按如下方式取定:曲线x =f (x)在))(,(11++n n x f x 处的切线与 经过(0,0)和(x n ,f (x n ))两点的直线平行(如图). 求证:当n * N ∈时, (Ⅰ) x ;2312 12+++=+n n n n x x x (Ⅱ)21 )2 1 () 2 1 (--≤≤n n n x . 【专家解答】(I ) 证明:因为' 2 ()32,f x x x =+ 所以曲线()y f x =在11(,())n n x f x ++处的切线斜率12 1132.n n n k x x +++=+ 即(0,0)和(,())n n x f x 两点的直线斜率是2 ,n n x x + 以221132n n n n x x x x +++=+. (II )因为函数2 ()h x x x =+,当0x >时单调递增, 而221132n n n n x x x x +++=+21142n n x x ++≤+211(2)2n n x x ++=+, 所以12n n x x +≤,即 11,2 n n x x +≥ 因此11 2 12 11 ().2n n n n n n x x x x x x x ----= ? ????? ≥ 又因为12 2 12(),n n n n x x x x +++≥+ 令2 ,n n n y x x =+ 则 11.2n n y y +≤ 因为2 1112,y x x =+= 所以12111()().22 n n n y y --≤?= 因此2 2 1 (),2 n n n n x x x -≤+≤ 故1211 ()().22 n n n x --≤≤ ★★★高考要考什么 【考点透视】 本专题是等差(比)数列知识的综合应用,同时加强数学思想方法的应用,是历年的重点内容之一,近几年考查的力度有所增加,体现高考是以能力立意命题的原则. 【热点透析】

数学归纳法的历史

1 数学归纳法的历史 数学归纳法是数学中一种重要的证明方法, 用于证明与 自然数有关的命题。一旦涉及无穷,总会花费人们大量的时间 与精力,去研究它的真正意义。数学归纳法这个涉及“无穷”而 无法直观感觉的概念,自然也需要一个漫长的认识过程。 一般认为,归纳推理可以追溯到公元前6 世纪的毕达哥 拉斯时代。毕达哥拉斯对点子数的讨论是相当精彩的。他由 有限个特殊情况而作出一般结论, 具有明显的推理过程,但 这些推理只是简单的列举,没有涉及归纳结果,因此是不完 全的归纳推理。完整的归纳推理,即数学归纳法的早期例证 是公元前3 世纪欧几里得《几何原本》中对素数无限的证 明。其中已经蕴含着归纳步骤和传递步骤的推理。 16 世纪中叶,意大利数学家莫罗利科(F·Maurolycus)对 与自然数有关命题的证明进行了深入的研究。莫罗利科认 识到,对于一个与自然数有关的命题,为了检验其正确与否, 若采取逐一代入数进行检验的方法,那不是严格意义上的数 学证明, 要把所有的自然数都检验一遍是不可能做得到的, 因为自然数有无穷多个。那么对于这类问题该如何解决呢? 1575 年,莫罗利科在他的《算术》一书中,明确地提出了“递归 推理”这个思想方法。 法国数学家B·帕斯卡(Pascal)对莫罗利科提出的递归推 理思想进行了提炼和发扬。在他的《论算术三角形》中首次使 用数学归纳法,并用其证明了“帕斯卡三角形”(二项展开式系数表,中国称为“贾宪三角性”或“杨辉三角形”)等命题。 “数学归纳法”这一名称最早见于英国数学家A.德·摩 根1838 年所著的《小百科全书》的引言中。德·摩根指出“这 和通常的归纳程序有极其相似之处”, 故赋予它“逐次归纳 法”的名称。由于这种方法主要应用于数学命题的证明,德· 摩根又提出了“数学归纳法”这个名称。 虽然数学归纳法早就被提出并广泛应用了,一直以来它 的逻辑基础都是不明确的。1889 年意大利数学家皮亚诺(G Peano)建立了自然数的序数理论,将“后继”作为一种不加定 义的基本关系, 列举了自然数不加证明的五条基本性质,其 中归纳公理便为数学归纳法的逻辑基础。 至此,数学归纳法有了严格的逻辑基础,并逐渐演变为 一种常用的数学方法。

利用递归解决实际问题

数据结构上机实验报告题目:用递归方法解决问题 学生姓名 学生学号 学院名称计算机学院 专业计算机科学与技术 时间

目录 第一章需求分析 (1) 1.1 原题表述 (1) 1.2 问题解决方案 (1) 第二章概要设计 (2) 2.1 主要算法描述 (2) 2.2 主要算法分析 (2) 第三章详细设计 (3) 3.1 程序代码 (3) 第四章调试分析 (4) 4.1 出现的问题及解决方法 (4) 第五章测试分析 (5) 5.1 测试样例 (5)

第一章需求分析 1.1 原题表述 日本著名数学游戏专家中村义作教授提出这样一个问题:父亲将2520个桔子分给六个儿子。分完后父亲说:“老大将分给你的桔子的1/8给老二;老二拿到后连同原先的桔子分1/7给老三;老三拿到后连同原先的桔子分1/6给老四;老四拿到后连同原先的桔子分1/5给老五;老五拿到后连同原先的桔子分1/4给老六;老六拿到后连同原先的桔子分1/3给老大”。结果大家手中的桔子正好一样多。问六兄弟原来手中各有多少桔子?请设计递归算法解决该问题。 1.2 问题解决方案 由于最后每个人分得的橘子一样多,所以最后每个人手里的橘子有2520/6 = 420个。因为每个人在拿到上一个人给的以后又分了一部分给下一个(老大不同,老大是最后得到的。根据题目关系,可以算出老大开始有橘子240个。)根据每个人得到与给出橘子的关系,可以用递归算法解决问题。

2.1 主要算法描述 解决此问题主要使用递归运算。 由题目可以看出原来手中的加上得到的满足关系式: StartNum = 420 * (n -2)/(n - 1) 分给下一个人的橘子数: GiveNum = AfterGetNum / n; 下一个人的橘子数: nextStartNum = 420*(n-1)/(n-2) - GiveNum; 下一个人加上之前得到的橘子的总数: afterGetNum = nextStartNum + GiveNum; 以此使用递归算法可以算出各个孩子原来手中的橘子数。 2.2 主要算法分析 此递归算法的时间复杂度为O(n)

回溯搜索算法

补充2 回溯法 解回溯法的深度优先搜索策略 z理解回溯法的深度优先搜索策略。 z掌握用回溯法解题的算法框架 (1)递归回溯 (2)迭代回溯 (3)子集树算法框架 (4)排列树算法框架 通过应用范例学习回溯法的设计策略 z通过应用范例学习回溯法的设计策略。

Sch2-1z Sch2-1 方法概述搜索算法介绍 (1)穷举搜索 (2)盲目搜索 —深度优先(DFS)或回溯搜索( Backtracking); —广度优先搜索( BFS ); (Branch &Bound) —分支限界法(Branch & Bound);—博弈树搜索( α-βSearch) (3)启发式搜索 —A* 算法和最佳优先( Best-First Search ) —迭代加深的A*算法 —B*AO*SSS*等算法B , AO , SSS 等算法 —Local Search, GA等算法

Sch2-1z Sch2-1 方法概述搜索空间的三种表示: —表序表示:搜索对象用线性表数据结构表示; —显示图表示:搜索对象在搜索前就用图(树)的数据结构表示; —隐式图表示:除了初始结点,其他结点在搜索过程中动态生成。缘于搜索空间大,难以全部存储。 z 搜索效率的思考:随机搜索 —上世纪70年代中期开始,国外一些学者致力于研究随机搜索求解困难的组合问题,将随机过程引入搜索; —选择规则是随机地从可选结点中取一个从而可以从统计角度分析搜选择规则是随机地从可选结点中取一个,从而可以从统计角度分析搜索的平均性能; —随机搜索的一个成功例子是:判定一个很大的数是不是素数,获得了第个多式时算法 第一个多项式时间的算法。

递归算法与递归程序

一、教学目标 1、知识与技能 (1).认识递归现象。 (2).使用递归算法解决问题往往能使算法的描述乘法而易于表达 (3).理解递归三要素:每次递归调用都要缩小规模;前次递归调用为后次作准备:递归调用必须有条件进行。 (4).认识递归算法往往不是高效的算法。 (5).了解递归现象的规律。 (6).能够设计递归程序解决适用于递归解决的问题。 (7).能够根据算法写出递归程序。 (8).了解生活中的递归现象,领悟递归现象的既有重复,又有变化的 特点,并 且从中学习解决问题的一种方法。 2、方法与过程 本节让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2)和练习(3)这两道题目的形式相差很远,但方法和答案却是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。 3、情感态度和价值观 结合高中生想象具有较强的随意性、更富于现实性的身心发展特点,综合反映出递归算法的特点,以及递归算法解答某些实践问题通常得很简洁,从而激发学生对程序设计的追求和向往。 二、重点难点 1、教学重点 (1)了解递归现象和递归算法的特点。

(2)能够根据问题设计出恰当的递归程序。 2、教学难点 (1)递归过程思路的建立。 (2)判断问题是否适于递归解法。 (3)正确写出递归程序。 三、教学环境 1、教材处理 教材选自《广东省普通高中信息技术选修一:算法与程序设计》第四章第五节,原教材的编排是以本节以斐波那契的兔子问题引人,导出递归算法,从而自定义了一个以递归方式解决的函数过程。然后利用子过程解决汉诺塔的经典问题。 教材经处理后,让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2)和练习(3)这两道题目的形式相差很远,但方法和答案却都是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。 教学方法采用讲解、探究、任务驱动和学生自主学习相结合 2、预备知识 学生已掌握了用计算机解决问题的过程,掌握了程序设计基础,掌握了解析法、穷举法、查找法、排序法设计程序的技巧。 3、硬件要求 建议本节课在多媒体电脑教室中完成,最好有广播教学系统或投影仪,为拓展学习,学生机应允许上互联网。 4、所需软件 学生机要安装VB6.0或以上版本。 5、所需课时 2课时(90分钟)

搜索与回溯算法介绍

搜索与回溯算法介绍 一、概述: 计算机常用算法大致有两大类:一类叫蛮干算法,一类叫贪心算法。前者常使用的手段就是搜索,对全部解空间进行地毯式搜索,直到找到指定解或最优解。后者在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解。 二、搜索与回溯: 这里着重介绍搜索与回溯。当很多问题无法根据某种确定的计算法则来求解时可以利用搜索与回溯的技术求解。回溯是搜索算法中既带有系统性又带有跳跃性的一种控制策略。它的基本思想是:为了求得问题的解,先选择某一种可能情况向前探索。在探索过程中,一旦发现原来的选择是错误的,就退回一步重新选择,然后继续向前探索,如此反复进行,直至得到解或证明无解。如迷宫问题:进入迷宫后,先随意选择一个前进方向,一步步向前试探前进。如果碰到死胡同,说明前进方向已无路可走,这时,首先看其它方向是否还有路可走,如果有路可走,则沿该方向再向前试探;如果已无路可走,则返回一步,再看其它方向是否还有路可走;如果有路可走,则沿该方向再向前试探。按此原则不断搜索回溯再搜索,直到找到新的出路或从原路返回入口处无解为止。 【建立解空间】 问题的解应该如何描述,如何建立呢?问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。问题的解空间应到少包含问题的一个(最优)解。借助图论的思想,可以用图来描述,图的定义为G,由顶点集和边集构成,顶点即实实在在的数据、对象,而边可以抽象为关系,即顶点间的关系,这种关系不一定非要在数据结构上表现出来,用数据结构的语言来描述,如果关系是一对一,则为线性表,如果关系是一对多,则为树,如果关系是多对多,则为图,如果完全没有关系,则为集合。但在数据结构中这种关系不一定非要在数据的存储性质上一开始就表现出来,譬如,你可以用一个数组表示一个线性表,也可以表示完全二叉树,同样也可以用邻接表表示一个图,对于关系的描述不是数据结构本身的描述,而是算法的描述,正如数据结构是离不开特定的算法一样,不可分开单独而谈。 确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向

数学归纳法

“数学归纳法”教学设计 一、教材与内容解析 (一)内容与内容解析 数学归纳法是人教B版普通高级中学教科书数学选修2-2第二章第三节的内容。本节课的主要内容是介绍数学归纳法的原理。 由于正整数具有无穷无尽的特点,有些关于正整数n的命题,难以对n进行一一的验证,从而需要寻求一种新的推理方法,以便能通过有限的推理来证明无限的结论,这是数学归纳法产生的根源。 数学归纳法是一种证明与正整数n有关命题的重要方法。它的独到之处便是运用有限个步骤就能证明无限多个对象,而实现这一目的的工具就是递推思想。 数学归纳法的两个步骤中,第一步是证明的奠基,第二步是递推。递推是实现从有限到无限飞跃的关键,没有它我们就只能停留在对有限情况的把握上。 数学归纳法是以归纳为基础、以演绎为手段证明结论的一种方法,是归纳法与演绎法的完善结合.这也许是数学归纳法不是归纳法但又叫“数学归纳法”的原因. (二)地位与作用解析 从应用上看,数学归纳法是解决与正整数有关命题的一种推理方法,它将无限多个归纳过程转化为一个有限步骤的演绎过程,是证明与正整数有关问题的重要工具。数学归纳法本质是归纳递推,但它与归纳法有着一定程度的关联。在数学结论的发现过程中,不完全归纳法发现结论,最终利用数学归纳法证明解决问题。 从思想方法上看,数学归纳法蕴含了无限转化为有限的思想,体现了奠基、递推、总结一体的整体思想。 从美学上看,数学归纳法展现了无限与有限的统一美;揭示了有限推证无限,把无限“沦为”有限的思维美;数学归纳法的发展历程展现了数学文化美。 二、教学问题诊断 1.学生已有的经验和基础:(1)学生已有数学归纳法的萌芽和相关经验.虽然学生没有正式学过数学归纳法,但小学的数数、找一列数的规律、高中等差数列和等比数列通项公式的推导过程等等,都蕴含着数学归纳法的萌芽和基础.(2)学生已经有用具有代表性的元素来代替任意的、无穷多的元素的经验.如在线面垂直的定义和证明中,用“平面内

用递归法解决问题

用递归法解决问题 一、教材分析 “算法的程序实现”是高中信息技术教育出版社《算法与程序设计》选修模块第三单元的内容,本节课是“递归算法的程序实现”,前面学习了用解析法解决问题、穷举法解决问题、在数组中查找数据、对数进行排序以及本节的前一小节知识点“什么是自定义函数”的学习,,在学习自定义函数的基础上,学习递归算法的程序实现是自定义函数的具体应用,培养学生“自顶向下”、“逐步求精”的意识起着重要的作用。 课时安排:1课时 二、学情分析 教学对象是高中二年级学生,前面学习了程序设计的各种结构,在学习程序设计各种结构的应用过程中的培养了用计算机编程解决现实中的问题,特别的学习循环语句的过程中,应用了大量的“递推”算法。前一节课学习了如何自定义函数,在此基础上学习深入学习和体会自定义函数的应用。以递推算法的逆向思维进行求解问题,在学习过程中体会递归算法的思想过程。多维度的思考问题和解决问题是提高学生的学习兴趣关键。 三、教学目标 知识与技能: 1、理解什么是递归算法,学生用递归算法的思想分析问题 2、能够应用自定义函数方法实现递归算法的编程 过程与方法: 学生参与讨论,通过思考、动手操作,体验递归算法的方法 情感态度与价值: 结合数学中的实例,激发学生的数学建模的意识,培养学生多维度的思考问题和解决问题。 四、教学重点·难点 重点:理解什么是递归算法,学生用递归算法的思想分析问题 应用自定义函数方法实现递归算法的编程 难点:应用自定义函数方法实现递归算法的编程 五、教学过程

六、教学反思 从游戏的方式导入活动,充分的调动学生的思维,渐渐的走入了“递归的思维”模式,从而引出“猴子吃桃”,使用的前面活动(礼物是什么?)的思维,诱导学生进入了“递归”思想解题。学生阅读教材范例“裴波那契”,培养学生的自学能力、和知识迁移建构自我的知识体系。内化递归算法的实现,再由递归思维的逆向思维讨论“递推”的算法,进行比较计算机资源的耗费高,可读性差。为下一步导出结论做好了铺垫。 学好本节课的前提是:懂得自定义函数的使用方法,如果学生对自定义函数理解程度,是本节课效果是否得以完成的关键

数学归纳法几种常见方式及其应用中存在的问题论文

数学归纳法几种常见方式及其应用中存在的问题 摘要 在处理数学问题时,经常涉及与任意自然数有关的一些命题,这些命题实质上是由无限个n取具体整数时得到的无限个命题组成的,我们往往不能逐一验证,这时,数学归纳法就是我们最常应用的一个有效的推理方法,为什么我们能够相信数学归纳法的证明呢?因为数学归纳法实质上是一种演绎推理法,华罗庚老先生是这样解释数学归纳法原理的:“我们采用形式上的讲法,也就是:有一批编了号码的数学命题,我们能够证明第1号命题是正确的;如果我们能够证明在第K 号命题正确的时候,第K+1号命题也是正确的,那么,这一批命题就全部正确.”其实,数学归纳法的正确性在我们学到的自然数的公理系统已经得到说明,他是与皮亚诺公理等价的一个本原性命题. 关键字数学归纳法常见方式及问题无限有限 数学归纳法(Mathematical Induction,通常简称为MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。是用来研究与正整数有关的数学问题,在高中数学中常用来证明等式(不等式)成立和数列通项公式成立。 数学归纳法一般分为以下几种常见的方式: (一)第一数学归纳法: 一般地,证明一个与自然数n有关的命题P(n),有如下步骤 (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (二)第二数学归纳法: 对于某个与自然数有关的命题P(n), (1)验证n=n0时P(n)成立; (2)假设n0≤n<=k时P(n)成立,并在此基础上,推出P(k+1)成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (三)倒推归纳法(反向归纳法): (1)验证对于无穷多个自然数n命题P(n)成立, (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (四)螺旋式归纳法

用递归法解决问题

3.5用递归法解决问题 【教材分析】 “用递归法解决问题”是《算法与程序设计》第三章第5节的内容,学业水平测试对本节内容也达到了B级要求,本节内容是在学习了VB基础知识中的三种基本结构,并且学习了数组、用解析法和穷举法解决问题等算法。本节先后介绍了“什么是递归法”、“自定义函数”、以及应用自定义函数结合递归算法来解决问题实例。通过本节内容的学习可以培养学生分析和分解问题的能力。从教材的结构上看“自定义函数”和“递归算法”是独立的,可以分别讲解,但在使用时两者是相辅相成的。 【学情分析】 这节课的教学对象是高中二年级学生,已经学习了算法与程序设计VB中的一些基础知识,初步了解了算法的概念。特点是在学习循环结构的过程中,学生已经积累了一些“递归”和“穷举”的算法。但是学生对函数尤其是“自定义函数”非常陌生,而“自定义函数”和“递归法”是本册的学习重点,也是以后编程的重点。学习本节内容学生可以充分体会递归算法的思想过程,扩大原来的知识面,进一步认识程序设计的功能,进一步激发学生学习算法与程序设计的兴趣。 【教学目标】 1.知识与技能: 理解什么是递归法,会用递归法的思想分析和解决问题 理解什么是自定义函数,能应用自定义函数实现递归算法的编程 2.过程与方法 学生通过思考、探究,体验递归算法和发现问题与解决问题的步骤 3.情感态度与价值观 在建立数学模型中培养学生的抽象思维能力,培养学生多维度思考问题和解决能力。 树立多学科整合的思想意识,能够用联系的观点解决问题。 【教学重点】 理解什么是递归算法,学会用递归法的思想分析问题。 理解自定义函数的概念。 【教学难点】 用自定义函数和递归算法编写程序解决问题 【教学方法及策略】

数学归纳法的理论依据

数学归纳法的理论依据 ——数学教学改革实验与理解能力培养 我们在中学教数学归纳法时,经常碰到一些勤于思考的学生提出:“数学归纳法的理论依据是什么?”这个问题在《高等代数》中早有论述,但中学生一般还很难看懂。为了保护学生们的好奇心、求知欲望和探索精神,提高与发展学生的领会理解能力,我们以数学课外活动的方式,开设“数学专题讲座”,给这个问题作出深入浅出的回答。 一、自然数集的基本性质与皮亚诺公理。 1962年我国著名数学家华罗庚教授在一次讲话中说:“简单朴素的数的性质,成为数学概念和方法的一个重要源泉。”数学归纳是用来证明某些与自然数n有关的数学命题P(n)的重要方法。它的理论依据就必定与自然数的基本性质有关。 1889年意大利数学家皮亚诺创立了五条自然数集的公理体系,揭示出自然数集N的基本性质。这五条公理是 (1)1属于自然数集N,即; (2)若,则有且仅有一个自然数紧跟在a后面,记为a+1; (3)若a属于自然数集N,即,则; (4)设,,当x+1=y+1时,x=y; (5)若M是N的一个子集,具有下面两个性质: 1); 2)若,有, 则M=N。 依皮亚诺公理,有,1+1记为2,则2,2+1记为3,则,

3+1记为,则4,则依此递推,便得自然数集。 事实上,我们数自然数时,第一个数便是1,这就是公理1。公理2说明,任何自然数a都有唯一确定的后继数a+1。公理3说明,1是自然数中唯一不是后继数的数;1是自然数集N中的最小数。公理4说明,除1以外,每个自然数都是一个唯一确定的自然数的后继数。公理5说明,从1开始,一直数下去,以至无穷,便得到所有的自然数。这个公理5,又称为归纳公理,它就是数学归纳法最原始的理论依据。 二、最小数原理与数学归纳法原理。 依皮亚诺公理,自然数集N有最小数1。这个性质加以推广,便得“最小数原理”。 定理一、自然数集的任意非空子集必有一个最小数。 证明:设A是自然数集的任意非空子集。在A中任意取出一个数m。依皮亚诺公理,从1到m共有m个自然数,则A中不超过m的数最多有m个。因为这是有限个数,则其中必有一个最小数K。K对于A中不超过m的数来说最小。而A中其余的数都比m大,因而更比K大,所以,K就是A中的最小数。 例1、用“最小数原理”证明 证明:假设至少存在一个自然数m,使得上述等式P(m)不成立。令S 表示所有使等式P(m)不成立的那些自然数m的集合。因为当n=1时,等式 P(1)显然成立,则,所以,S是N的一个真子集。又由假设得,S是非空的。依最小数原理,S中必有一个最小数K,使得P(K)不成立。且K>1。 因为K-1

相关文档
最新文档