如何培养高中数学分析和解决问题能力

如何培养高中数学分析和解决问题能力
如何培养高中数学分析和解决问题能力

如何培养高中数学分析和解决问题的能力分析和解决问题的能力是指能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述。它是逻辑思维能力、运算能力、空间想象能力等基本数学能力的综合体现。由于高考数学科的命题原则是在考查基础知识的基础上,注重对数学思想和方法的考查,注重数学能力的考查,强调了综合性。这就对考生分析和解决问题的能力提出了更高的要求,也使试卷的题型更新,更具有开放性。笔者就分析和解决问题能力的组成及培养谈几点刍见。

一、分析和解决问题能力的基本要素

(一)审题能力

审题是对条件和问题进行全面认识,对与条件和问题有关的全部情况进行分析研究,它是如何分析和解决问题的前提。审题能力主要是指充分理解题意,把握住题目本质的能力;分析、发现隐含条件以及化简、转化已知和所求的能力。如:

(二)合理应用知识、思想、方法解决问题的能力

高中数学知识包括函数、不等式、数列、三角函数、复数、立体几何、解析几何等内容;数学思想包括数形结合、函数与方程思想、分类与讨论和等价转化等;数学方法包括待定系数法、换元法、数学归纳法、反证法、配方法等基本方法。只有理解和掌握数学基

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

高中数学解题能力的培养方法

高中数学解题能力的培养方法 发表时间:2019-01-23T17:00:28.400Z 来源:《教育学》2019年1月总第166期作者:张丽杰 [导读] 在高中数学教学的过程中,促进学生解题能力提高的方式有很多,教师在实际教学的过程中应当结合学生实际和教学要求进行方式的选择。 辽宁省朝阳市朝阳县柳城高级中学122000 摘要:在高中数学教学中,培养学生的解题能力,不仅是促进素质教育进行的重要手段,同时还是培养学生数学知识应用能力、逻辑思维能力的重要方式。因此,在实际教学活动中,高中数学教师必须结合学生的综合情况,采用合理的方式提升学生解题能力,促使学生的解题能力逐步提升,以此满足学生的实际发展需求。 关键词:高中数学解题能力培养方法 在高中数学教学的过程中,促进学生解题能力提高的方式有很多,教师在实际教学的过程中应当结合学生实际和教学要求进行方式的选择,对学生进行有效的引导,激发学生的数学学习兴趣,引导学生进行思考和探究,调动学生的学习积极性,促进学生解题能力的提高。 一、培养审题能力 审题能力的高低直接决定了解题的正误。因此,要求学生必须审题细致,抓住题干中的所有条件与数据特点,分析会用到哪些知识点,所求问题是什么?将条件、所用知识点以及所求问题有机地结合在一起,形成宏观认识。之后,要分析条件、知识点与问题之间的内在联系,搞清解题方向。 在教学中,教师要有意识地培养学生的审题能力,使其灵活应用审题技巧,寻求问题的切入点,快速而准确地答题。另外,也可以搞个专题训练,设计一些典型题目,提升学生的审题意识。 二、强化分类讨论 在高中阶段学习当中,题海战术已经成为了一种死板和比较浪费时间的学习方式,教师在教学时就需要对学生分类能力进行培养,从解题角度出发进行数学知识针对性教学与讨论,这样能够培养学生的解题能力。 三、函数与方程结合解题 函数思想是基于函数知识的高层次概括,在高中数学中,有很多领域会用到函数思想,如方程、数列、解析几何、不等式等。方程思想是高中数学题目求解中比较常用的思想,也是学生运算的基本要求。在高考题目中,有很多知识点都涉及方程思想。对此,在实际教学过程中,教师可以指引学生将函数思想和方程思想结合在一起,通过函数与方程的结合实现问题求解。具体而言,要求学生对函数f(x)的基本性质有深入了解,如图像变化、最值、周期性、单调性等,这是学生运用函数与方程结合的基础。同时学生需要特别注重一元二次函数、一元二次方程、一元二次不等式的关联,这三个“二次”是高中数学的重要内容,学生只有对三个“二次”有了深入理解,才能更好地应用函数与方程结合解题。 四、有效引用图形与数量相结合的方法 数形结合是高中数学教学中非常重要的一种方式,通过数与形的配合,学生的分析与解决问题能力都能够得到相应提升。所以在教学当中,教师就需要将数形结合,贯穿到教学和解题能力培养当中,使学生能够在看到图形时就分析已经掌握的条件,从而对问题进行突破。在现代化教学当中,多媒体的运用已经非常普遍,教师就可以借助多媒体展示图形。这样不仅能够通过视觉刺激,使学生们注意力更为集中,同时还能够有效提高教学质量。 比如在学习《空间几何体》时,有些学生对于三视图的理解和运用比较困难,教师就可以将立体图形和三视图的表现,直观呈现到多媒体当中。在解决问题时,教师还可以让学生们自己进行图形折叠,在动手操作的过程当中,也能够培养学生的抽象思维和空间思维能力。 五、注重一题多解 在新课程改革背景下,高中数学对学生的多向性思维提出了更高要求。为此,教师在教学中要注重运用一题多解的教学技巧,引导学生从不同角度思考解题方法,锻炼学生的思维能力,拓展学生的数学思维,使其形成良好的解题能力。 六、鼓励学生准备错题本 进入高中后,数学难度加大,许多学生出现了大量错题,由此产生了巨大的心理压力,甚至出现了厌学倾向。其实大可不必,换个角度,如果能用好这些错题,对学生数学能力的培养会产生巨大的推动作用。教师要告诫学生,不要气馁,认真分析出错原因,将错题整理在本上,再重新做一遍,并在旁边标注自己的心得体会,平时多挤出一些时间,反复推敲这些错题,形成深刻认识,必然会提高数学解题能力。同时,教师要指导学生学会如何整理错题,对错题进行分类讲解,抓住题目的共同易错点,并以此为标题。同时要求学生记录在本上形成理论,后面再补充一些例题,理论与实例结合,从而,加深学生对易错点的理解,丰富解题方法、提高解题能力。 七、结束语 良好的数学解题能力是学生学好数学的关键。因此,高中数学教学中要通过各种策略培养学生的解题能力,让学生在扎实掌握数学基础知识的基础上形成数形结合思想、一题多解思维等,提高学生的解题能力,从而提升其数学学习效果。参考文献 [1]庄海军高中数学课堂教学中学生解题能力的培养策略[J].中国校外教育,2017,(8):142。 [2]孟宇浅谈高中数学教学中学生解题能力的培养策略[J].考试周刊,2017,(89):103。

高中数学解题中数学分析法的运用

高中数学解题中数学分析法的运用 摘要:数学在高中是一项重要的学科,所以一定要引起师生的高度重视。而在 通过研究后了解到,学生若想提升数学成绩,不要只是做大量的习题,因为这样 会让思维产生局限性,不能让学生真正地理解数学题的含义。所以一定要加强学 生数学分析思想的水平,从而确保课堂教学效果达到理想的要求。 关键词:高中数学;数学分析法 一、数学分析思想概述 数学分析思想主要是把数学题目分成几个部分,同时来对这些部分做好正确 的分类,最终根据认真的分析来找到最为合理的答题思路。而之所以要进行数学 分析,作用在于能够找到答题的基本脉络,为随后的解题带来清晰的思路。在学 习高中数学的过程中,学生不但要掌握书本上的知识,同时也要了解多种解题的 技巧,这就增加了他们的负担。所以学生有必要丰富数学分析思想,并合理地运 用到数学解题的过程当中,这样不但能够确保解题的正确率,还能够提高学生对 于学习的积极性,这样一来就可以为学生成为一名综合性的人才助力。 二、高中数学解题采用数学分析思想的作用 (一)能够开发学生的思想潜能 在高中数学课堂教学期间,如果可以在教师的引导中采用数学分析思想来解题,那么便可以锻炼发散思维,同时还可以合理地利用所掌握的知识。除此之外 也可以丰富学生的解题思路,这样一来就能提升学生的思维和创造水平。所以具 备合理的数学分析思想是加强学生数学学习效率的重要方式。 (二)能够锻炼学生的观察水平 在高中数学课堂教学期间,想提高学生的学习效率,前提是要锻炼他们的洞 察力,如果教师在进行课堂教学期间可以合理地采用数学分析思维,那么便可以 达到理想的教学效果。教师不要只限于理论内容,而是要从数学题中发现问题的 本质,这样便能够让学生全面掌握数学内容,成为一名具有综合素养的人才。 (三)能够把不熟悉的题型转变成熟悉的题型 尽管数学概念和原理不多,不过能够根据数学题型的转化去检验学生对概念 和原理的理解情况,所以学生在做新题型的过程中,或许会觉得是相同类型的题,不过实际上是不熟悉的题型。而在做不熟悉的题型的时候,一部分学生找不到解 题的思路,这样就会让解题变得更加困难。所以学生要具有把不熟悉的题型转变 成熟悉的数学分析思想,创建辅助元素、题目已知条件和问题之间所存在的关联性,这是非常实用的分析思想。 三、数学分析思想在高中解题中的应用 (一)通过数学分析思想来转变解题思路 在高中数学当中,和数学题相比,数学概念和原理会少一些,同时数学题的 类型时常会出现变化,这无疑增加了解题的困难性。学生对于新题型总是会手足 无措,无法滤清思路,从而运算不出正确的答案。所以在这样的状况下,学生要 增强对于数学题的理解力,而这就要求他们要具备完善的数学分析思想。着重分 析数学题中已知条件和问题间所存在的关联性,这样就可以形成清晰的思路。 (二)采用类比和归纳的方式来解题 类比指的是把两者所具有的相同性质采取比较,然后由此分析出其余的性质 中会包括的类似方面。而归纳指的是从局部到整体的一种推理过程,在大量的事 物里对普遍的概念进行分析,并给出最终的结论。而无论是以上哪种形式,在进

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高中数学解题反思能力的培养

高中数学解题反思能力 的培养 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

高中数学解题反思能力的培养 培养学生对解题过程的反思,是提高学生解题元认知水平的需要、是加深学生对数学知识的理解、是对数学方法运用的有效途径、是促进学生对解决问题由感性上升为理性的质变。 数学反思能力 培养学生对解题过程的反思,是提高学生解题元认知水平的需要、是加深学生对数学知识的理解、是对数学方法运用的有效途径、是促进学生对解决问题由感性上升为理性的质变。那么,如何培养高中升数学解题的反思能力呢 一、高中数学解题反思能力培养的积极意义 (一)积极反思,查缺补漏,确保解题的合理性和正确性 解数学题,有时由于审题不确,概念不清,忽视条件,套用相近知识,考虑不周或计算出错,难免产生这样或那样的错误,即学生解数学题,不能保证一次性正确和完善。所以解题后,必须对解题过程进行回顾和评价,对结论的正确性和合理性进行验证。可是一些同学把完成作业当成是赶任务,解完题目万事大吉,头也不回,扬长而去。这种错误思想和做法,像蛀虫一样严重蛀蚀着学生的思维品质,影响学生解题能力的提高。由此可见,解题反思的积极意义及其重要性,必须引起师生在教学中的足够重视。 (二)积极反思,探求一题多解和多题一解,提高综合解题能力数学知识有机联系纵横交错,解题思路灵活多变,解题方法途径繁多,但最终却能殊途同归。即使一次性解题合理正确,也未必能保证一次性解题就是最佳思路,最优最简捷的解法。不能解完题就此罢手,如

释重负。应该进一步反思,探求一题多解,多题一解的问题,开拓思路,勾通知识,掌握规律,权衡解法优劣,在更高层次更富有创造性地去学习、摸索、总结,使自己的解题能力更胜一筹。 (三)积极反思、系统小结,使重要数学方法、公式、定理的应用规律条理化,在解题中应用自如,有的放矢。 不少同学做题,易犯就事论事,就题论题,"铁路巡警,各管一段"的毛病,掌握的知识支离破碎,脑海一片空白。如果进行解题后反思,对重要数学方法、公式、定理仿上依法炮制,长此下去,肯定对新学知识的内在联系脉络清楚,运用规律了如指掌,解起题来得心应手,解题能力大有提高。 二、高中数学解题反思能力的培养策略 1、加强学生学习的主动性 学生解题反思能力的提高,还需要学生自己加强学习的主动性和积极性。学生学习的主动性是整个解题反思过程的核心,也是提高学生解题反思过程效果和质量的关键。然而在现实的教学过程中,由于受教师的观念、教学方法和教材内容呈现方式等多方面的影响,学生普遍对数学学习的兴趣普遍偏低,认为数学知识内容是枯燥、乏味的,从而造成他们对学习数学的主动性不强,这些都严重影响着学生学习数学的效果和质量。培养学生解题反思能力是一个“疑问――示范――训练――反思”的过程,通过这样一个过程,它能够使学生逐渐改变对数学的错误认识,也能够提高学生对学习数学的兴趣。而且,解题反思能力的提高对激发学生学习数学的主动性和创造性都是极其有帮助的。在培养学生

高中数学方法篇之配方法

高中数学方法篇之配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如: a2+b2=(a+b)2-2ab=(a-b)2+2ab; a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b 2 )2+( 3 2 b)2; a2+b2+c2+ab+bc+ca=1 2 [(a+b)2+(b+c)2+(c+a)2] a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα)2; x2+1 2 x =(x+ 1 x )2-2=(x- 1 x )2+2 ;……等等。 一、再现性题组: 1. 在正项等比数列{a n }中,a 1 ?a 5 +2a 3 ?a 5 +a 3 ?a 7 =25,则 a 3 +a 5 =_______。 2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k=1 4 或k=1 3. 已知sin4α+cos4α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log 1 2 (-2x2+5x+3)的单调递增区间是_____。 A. (-∞, 5] B. [5,+∞) C. (-1,5] D. [5,3) 5. 已知方程x2+(a-2)x+a-1=0的两根x 1、x 2 ,则点P(x 1 ,x 2 )在圆x2+y2=4上,则实 数a=_____。

培养学生思维能力,提高数学质量

培养学生思维能力,提高数学质量 发表时间:2015-02-03T11:08:26.400Z 来源:《少年智力开发报》2014-2015学年第5期供稿作者:白渠[导读] 思维是人脑对客观现实的概括和间接的反映,反映的是事物的本质及内部的规律性。 四川省巴中中学白渠 思维是人脑对客观现实的概括和间接的反映,反映的是事物的本质及内部的规律性。所谓高中学生数学思维,是指学生在对高中数学感性认识的基础上,运用比较、分析、综合、归纳、演绎等思维的基本方法,理解并掌握高中数学内容而且能对具体的数学问题进行推论与判断,从而获得对高中数学知识本质和规律的认识能力。高中数学的数学思维虽然并非总等于解题,但我们可以这样讲,高中学生的数学思维的形成是建立在对高中数学基本概念、定理、公式理解的基础上的;发展高中学生数学思维最有效的方法是通过解决问题来实现的。因此,探讨高中学生的数学思维培养对于增强高中学生数学教学的针对性和实效性有十分重要的意义。 一、高中学生数学思维不佳的表现 由于高中数学思维不佳产生的原因不尽相同,作为主体的学生的思维习惯、方法也都有所区别,所以,高中数学思维不佳的表现各异,具体为: 1.数学思维的肤浅性:由于学生在学习数学的过程中,对一些数学概念或数学原理的发生、发展过程没有深刻的去理解,一般的学生仅仅停留在表象的概括水平上,不能脱离具体表象而形成抽象的概念,自然也无法摆脱局部事实的片面性而把握事物的本质。 2.数学思维的差异性:由于每个学生的数学基础不尽相同,其思维方式也各有特点,因此不同的学生对于同一数学问题的认识、感受也不会完全相同,从而导致学生对数学知识理解的偏颇。这样,学生在解决数学问题时,一方面不大注意挖掘所研究问题中的隐含条件,抓不住问题中的确定条件,影响问题的解决。另一方面学生不知道用所学的数学概念、方法为依据进行分析推理,对一些问题中的结论缺乏多角度的分析和判断,缺乏对自我思维进程的调控,从而造成障碍。 3.数学思维定势的消极性:由于高中学生已经有相当丰富的解题经验,因此,有些学生往往对自己的某些想法深信不疑,很难使其放弃一些陈旧的解题经验,思维陷入僵化状态,不能根据新的问题的特点作出灵活的反应,常常阻抑更合理有效的思维甚至造成歪曲的认识。 由此可见,学生数学思维不佳的形成,不仅不利于学生数学思维的进一步发展,而且也不利于学生解决数学问题能力的提高。所以,在平时的数学教学中注重培养学生的数学思维就显得尤为重要。 二、高中学生数学思维的培养方法: 1.培养学生学习数学的兴趣。在高中数学起始教学中,教师必须着重了解和掌握学生的基础知识状况,尤其在讲解新知识时,要严格遵循学生认知发展的阶段性特点,照顾到学生认知水平的个性差异,强调学生的主体意识,发展学生的主动精神,培养学生良好的意志品质;同时要培养学生学习数学的兴趣。兴趣是最好的老师,学生对数学学习有了兴趣,才能激发数学思维的活动,也就是更大程度地使学生数学思维得到发展和提高。教师可以帮助学生进一步明确学习的目的性,针对不同学生的实际情况,因材施教,分别给他们提出新的更高的奋斗目标,使学生有一种“跳一跳,就能摸到桃”的感觉,提高学生学好高中数学的信心。 2.重视数学思想方法的教学,指导学生提高数学意识。数学意识是学生在解决数学问题时对自身行为的选择,它既不是对基础知识的具体应用,也不是对应用能力的评价,数学意识是指学生在面对数学问题时该做什么及怎么做,至于做得好坏,当属技能问题,有时一些技能问题不是学生不懂,而是不知怎么做才合理,有的学生面对数学问题,首先想到的是套那个公式,模仿那道做过的题目求解,对没见过或背景稍微陌生一点的题型便无从下手,无法解决,这是数学意识落后的表现。数学教学中,在强调基础知识的准确性、规范性、熟练程度的同时,我们应该加强数学意识教学,指导学生以意识带动双基,将数学意识渗透到具体问题之中。因此,在数学教学中只有加强数学意识的教学,如“因果转化意识”“类比转化意识”等的教学,才能使学生面对数学问题得心应手、从容作答。所以,提高学生的数学意识是培养学生数学思维的一个重要环节。 3.诱导学生暴露其原有的思维框架,消除思维定势的消极作用。在高中数学教学中,我们不仅仅是传授数学知识,培养学生的思维能力也应是我们的教学活动中相当重要的一部分。而诱导学生暴露其原有的思维框架,包括结论、例证、推论等对于培养学生的数学思维会起到重要的作用。使学生暴露观点的方法很多。例如,教师可以与学生谈心的方法,可以用精心设计的诊断性题目,事先了解学生可能产生的错误想法,要运用延迟评价的原则,即待所有学生的观点充分暴露后,再提出矛盾,以免暴露不完全,解决不彻底。有时也可以设置疑难,展开讨论,疑难问题引人深思,选择学生不易理解的概念,不能正确运用的知识或容易混淆的问题让学生讨论,从错误中引出正确的结论,这样学生的印象特别深刻。而且通过暴露学生的思维过程,能消除消极的思维定势在解题中的影响。当然,为了消除学生在思维活动中只会“按部就班”的倾向,在教学中还应鼓励学生进行求异思维活动,培养学生善于思考、独立思考的方法,不满足于用常规方法取得正确答案,而是多尝试、探索最简单、最好的方法解决问题的习惯,发展思维的创造性也是培养学生思维的一条有效途径。新课改已经向我们传统的高中数学教学提出了更高的要求。但只要我们坚持以学生为主体,以培养学生的思维发展为己任,则势必会提高高中学生数学质量,摆脱题海战术,真正减轻学生学习数学的负担。

如何提高高中数学的解题能力

如何提高高中数学的解题能力 数学家哈尔莫斯认为,“数学的真正的组成部分是问题和解,掌握数学就是意味着善于解题”。解题是使学生牢固掌握数学基础知识和基本技能的必要途径,也是检验知识、运用知识的基本形式。数学学习的好与坏,集中表现在解题能力上。有效地提高数学解题能力,有助于学生独立的有创造性的认识活动,也可以促进学生数学能力的发展。 但是学生的数学解题能力并非通过传授就可以完全获得的,如何在课堂教学中提高学生的解题能力呢?结合笔者多年的教学实践,可以从以下几个方面做起: 一、用好例题习题,培养学生应变能力。 课本的例题与习题是应用课本基础知识和基本方法的典型示范,让学生熟悉并掌握例题的解题模式、思路和步骤,从而实现解题的类化。纵观近几年的高考试题,不难发现试题中有许多题是课本书中的题或是将课本书上的题经过“改装”而得的。为什么还是有许多考生在这些题上失分呢?原因之一是学生平时做题一味求多,不求甚解,忽视了对自己的解题能力的提高。在教学中对例题的讲解采用“以一变应万变”的教学方法,具体地说,就是指在解一题后,恰当改换(变)一下题目的条件或结论,让学生类比、比较后获得解题思路,从而起到了“举一反三、触类旁通”的作用,达到了培养应变能力的目的。如我在讲基本不等式的应用时讲了一道

习题:(已知,0>x 当x 取什么值时,x x x f 1)(+= 有最小值?最小值是多少?) 讲完后,对上述习题进行变式: 变式1. 已知)1(11)(>-+=x x x x f ,求)(x f 的最小值; 变式2. )0(1)(2>++=x x x x x f ,求)(x f 的最小值; 变式3. )0(1)(2>++= x x x x x f ,求)(x f 的最大值; 变式4. 12 )(22++=x x x f ,求)(x f 的最小值. 由这些变式,可以培养学生的思维的灵活性,使学生掌握和理解构造使用基本不等式的条件和技巧。使学生的应变思维能力得到大大加强。 二、要充分展现解题的思维分析过程,尤其是暴露思维受阻过程或失败的探索过程,提高思考分析问题的有效性。 如我讲立体几何的一道复习题: 例2、如图,四棱锥P -ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°. (1)求证:平面PAB ⊥平面PAD ; (2)设AB =AP . (ⅰ)若直线PB 与平面PCD 所成的角为30°,求线段 AB 的长; (ⅱ)在线段AD 上是否存在一个点G ,使得点G 到点P 、

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

浅谈高中数学思维能力的培养

浅谈高中数学思维能力的培养 ——从一道高考试题谈起 福州市第十五中学代勇内容摘要:数学在培养和提高人的思维能力方面有着其它学科不可替代的独特作用,数学高考坚持的能力立意很好的体现了这一点。因此在数学教学中一定要下大气力来抓思维能力的培养,让学生在学习数学的过程中能迸发出更多的数学灵感。 关键词:数学思维能力、抽象概括能力、逻辑推理能力、选择判断能力、数学探索能力。 数学在培养和提高人的思维能力方面有着其它学科不可替代的独特作用,数学高考坚持的能力立意很好的体现了这一点。在整个高中数学,加上学生已有对数学的一些认识,牵涉到的概念、定理是不计其数的,不在理解的基础上,加以灵活应用,学生学的只是一些“死”的知识。有些学生只是记住一些题目,想想老师以前似曾这么讲过,这些都不能很好的学好数学,只要注重数学思维能力的培养,才能建立良好的学习态度,培养对数学的浓厚的兴趣,这才是学好数学的有效途径,那么,数学的思维能力,包括什么内容呢?在数学学习中可以直接培养的几种能力有:抽象概括能力、逻辑推理能力、选择判断能力和数学探索能力。现在的许多高考试题,一方面是老师认为出得好,出得妙,试题容易入手,运算量相应减小,另一方面却是老师教出来的学生认为出得难,出得怪,不知如何切题,有力使不上。如2005年高考数学试题(福建卷)选择题第12题:f(x)是定义在R上的以3为周期的偶函数,且f(2) = 0,则方程f(x) = 0在区间(0 , 6)内解的

个数的最小值是()A.5 B.4 C.3 D.2.高考中经常会出现一些平时学习、训练不曾出现的新面孔试题,学生不能采用“把问题放到严密的数学体系中,将思维重点放到如何剖去具体问题的外部伪装,将其中的数学本质挖掘出来,找到解决问题的关键”的作法。而想的更多是如何套上以往见过的哪一类题型,想来想去想不出,以致想到没有时间为止。因此在数学教学中一定要下大气力来抓思维能力的培养,让学生在学习数学的过程中能迸发出更多的数学灵感。(一)抽象概括能力 数学抽象概括能力是数学思维能力,也是数学能力的核心。它具体表现为对概括的独特的热情,发现在普遍现象中存在着差异的能力,在各类现象间建立联系的能力,分离出问题的核心和实质的能力,由特殊到一般的能力,从非本质的细节中使自己摆脱出来的能力,把本质的与非本质的东西区分开来的能力,善于把具体问题抽象为数学模型的能力等方面。在数学抽象概括能力方面,不同数学能力的学生有不同的差异。具有数学能力的学生在收集数学材料所提供的信息时,明显表现出使数学材料形式化,能迅速地完成抽象概括的任务,同时具有概括的欲望,乐意地、积极主动地进行概括工作。抽象概括能力是学习数学的基础,我们必须把握概念的本质,从而能够应用概念去解决问题,例如,求两个集合的交集,同学应该知道,交集是两个集合元素共同部分组成的一个集合,那么有针对性地应用这个概念去寻找两个集会的公共部分,问题就解决了,有些同学之所以不能区分,交集、并集的概念,就在于不注重对概念的理解,以致做很多的题目,也只能是事倍而功半了。 数学教学中如何培养学生的抽象概括能力呢?我认为从以下几方面入手: 1.教学中将数学材料中反映的数与形的关系从具体的材料中抽象出来,概括

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

高中数学教学中思维能力培养

高中数学教学中思维能力培养 【摘要】新的《课程标准》的制订,标志着我省高中数学课程改革进入了一个新起点。新一轮课改从理念、内容到实施都有很大的变化,要求数学教师要注重学生的数学创新能力培养。培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。下面我就如何培养学生思维能力谈几点看法。 【关键词】高中数学;数学思维;教学运用 数学教学目标之一就是培养学生的思维品质,提高学生的思维能力,使学生在掌握数学基础知识的基础上,体验数学思维过程,学习数学思维方法,从而达到勤于思考,独立探索,善于发现,探究创新,以更好的应用数学知识解决现实中的实际问题。数学思维能力是指会从数学角度观察,设计和进行数学实验,对数学现象和问题进行比较、猜想和分析,对数学现象问题和结论进行综合、抽象和概括;会对归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;能运用数学概念、思想和方法解决数学问题;辨明数量关系,形成良好的思维特性。 1 创设问题情境,培养学生的思维能力 数学课堂教学就是不断地提出问题并解决问题的过程,问题是数学的心脏。因此,无论是在数学教学的整个过程,还是在教学过程的某一环节,都应该十分重视数学问题情境的创设。在情境创设中要尽量创设一些与社会实践有关联的、符合学生认知水平的情境,把将要学习的新知识恰到好处地从生活中引入,引导学生生疑,从而提高学习数学的兴趣,有效地激活学生的思维,激发求知欲。例如在《等比数列》的引入中,我设计了如下情境:在我们的生活中常见的事故是交通事故,而酒后驾车是导致交通事故最重要的原因之一。交通法规定:每100ml 血液中,酒精含量达到20mg-79mg,属于酒后开车;酒精含量达到80mg以上,属于醉酒驾车。实验表明,用45分钟缓慢喝下一瓶啤酒,紧接着喝三杯茶,5分钟后测试结果,酒精含量就已达到60mg。如果这时开车,就已是酒驾。而喝完一大纸杯的红酒或白酒,便是醉酒。如果某人喝完酒后血液中的酒精含量为300mg,再不喝酒的前提下,血液中的酒精含量以每小时50%的速度减少,他至少要经过几个小时才可以驾驶机动车?这一现实问题的提出立马吸引了学生的注意力,从而引出和构建了等比数列的概念。 2 营造宽松氛围,开发创新潜能,培养学生的思维能力。 由于受高考升学率的影响,课堂教学容量大,严肃有余,亲切不足,学生不敢质疑问难,被动地接受知识。就算有创新的火花也在害怕中熄灭了。学生的创新潜得不到充分开发。要改变目前状况,教师必须营造宽松、积极、愉快、融恰的课堂氛围,消除学生畏惧的心理,鼓励学生发表独特的见解,并且有什么不同

全国高中生创新知识与能力培育计划能力测试(高一数学)

全国高中生创新知识与能力培育计划能力测试 高一数学 (时间:60分钟每小题5分,共100分) 数学符号说明:R 表示实数集,Z 表示整数集,Z +表示正整数集。 1. 已知{}A =博雅,优才,{}B =清华,北大,则一一映射:f A B →的个数为(). A .1 B .2 C .3 D .4 2. 如图,圆O 的内接正六边形 ABCDEF 的边心距OM =则弧 BC 的长为(). A .3π B .23π C .π D .43 π 3. 函数()lg(91)()f x x x = +-∈的定义域中所有元素之积为(). A .0 B .1 C .2 D .6 4. 称两条相互垂直的直线为一组垂线.平面内5条直线构成n 组垂线,n 不可能为(). A .3 B .4 C .5 D .6 5. 如图所示,有两种边长为1cm 的菱形框(选项A 腰长为1cm 的等腰三角形框(选项C ,D ),上点O 1cm 2cm 、的速度,行。记爬行时间为x 秒,两只蚂蚁的距离为cm y x A . B . C . D . A

6. 函数2()(13)3x x f x -=+?是(). A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇且偶函数 7. 平面直角坐标xOy 中,点集{} (,)1,1x y x y x y -+≤≤所覆盖的平面图形的面积为() . A .0.5 B .1 C .2 D .4 8. 已知2333log (2015)log log 62 y x +-=( ),x y + ∈ ,则x 的最小值的各位数字之和为() . A .2 B .4 C .6 D .8 9. 已知二次函数()y f x =过原点,且(1)()1f x f x x -=+-,则2 ()3 f 的值为(). A .1 3 B .19 C .13 - D .19- 10. 微积分思想的萌芽可以追溯到公元前200多年,古 希腊大数学家阿基米德在《抛物线求积》中研究了如下问题:如图,在平面直角坐标系xOy 中,抛物线2 y x =与直线1y =所围图形为弓形AOB 。求弓形 AOB 面积S 。 我们可以这样解决该问题:如图,设矩形ABCD 平分2n 份,过等分点作x 轴的垂线,将面积S '分割求和,则 22222222222222221012(1)112322n n S n n n n n n n n n n ???? -'??++++<

相关文档
最新文档