半导体材料发展情况

半导体材料发展情况
半导体材料发展情况

1、硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ - Si)单晶的直

径和减小微缺陷的密度仍是今后CZ-Si 发展的总趋势。目前直径为8 英寸(200mm )的Si 单晶已实现大规模工业生产,基于直径为12英寸(300mm )硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm , 0.18阿工艺的硅ULSI生产线已经投入生产,300mm , 0.13阿工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S 的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI 材料,包括智能剥离(Smart cut )和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI 材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm 左右将是硅MOS 集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2 自身性质的限制。尽管人们正在积极寻找高K 介电绝缘材料(如用Si3N4等来替代SiO2 ),低K介电互连材料,用Cu代替Al 引线以及采用系统集成芯片技术等来提高ULSI 的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA 生物计算等之外,还把目光放在以GaAs、InP 为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi 合金材料等,这也是目前半导体材料研发的重点。

2、GaAs 和InP 单晶材料

GaAs 和InP 与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs 单晶的总年产量已超过200 吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB )方法生长的2 —3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI —GaAs 发展很快。美国莫托罗拉公司正在筹建6英寸的SI—GaAs 集成电路生产线。InP 具有比GaAs 更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP 单晶的关键技术尚未完全突破,价格居高不下。

GaAs 和InP 单晶的发展趋势是:

( 1 )。增大晶体直径,目前4英寸的SI—GaAs 已用于生产,预计本世纪初的头几年直径为6英寸的SI—GaAs 也将投入工业应用。

( 2 )。提高材料的电学和光学微区均匀性。

( 3 )。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技

术。

3、半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD )的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁” 为特征的新范畴,是新一代固态量子器件的基础材料。

(1)川一V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs /GaAs,AIGaInP /GaAs;GalnAs/InP,

AlInAs

/ InP InGaAsP /InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得

相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电

子迁移率晶体管(HEMT),贋配高电子迁移率晶体管(P-HEMT )器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db ;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz , HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3阿和1.5阿的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化; 表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5阿分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80 X40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源

器件,但由于其有源区极薄(?0.01阿)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999 年,就研制成功980nm InGaAs 带间量子级联激光器,输出功率达5W 以上; 2000 年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN 结半导体激光器的能隙对激光器波长范围的限制,1994 年美国

贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs /InAlAs / InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs 在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001 年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1卩m的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87 ^m ),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。

中科院上海微系统和信息技术研究所于1999年研制成功120K 5叩和250K 8卩m的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7阿室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,m-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE 和M0CVD 设备已研制成功并投入使用,每台年生产能力可高达3.75 X104片4英寸或1.5 X104片6英寸。英国卡迪夫的MOCVD 中心,法国的Picogiga MBE 基地,美国的QED 公司,Motorola 公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD 设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人

们目前正致力于探索硅基纳米材料(纳米Si/SiO2 ),硅基SiGeC体系的Si1 -yCy/Si1 -xGex 低维结构,Ge/Si 量子点和量子点超晶格材料,Si/SiC 量子点材料,GaN/BP/Si 以及GaN /Si 材料。最近,在GaN /Si 上成功地研制出LED 发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si 应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSi MODFET 和MOSFET 的最高截止频率已达200GHz ,HBT 最高振荡频率为160GHz ,噪音在10GHz 下为

0.9db,其性能可与GaAs器件相媲美。尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora 等公司宣称,他们在12 英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs 外延薄膜,取得了突破性的进展。

4、宽带隙半导体材料

宽带隙半导体材料主要指的是金刚石,III 族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO 等)及固溶体等,特别是SiC、GaN 和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III 族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN 材料的P 型掺杂突破,GaN 基材料成为蓝绿光发光材料的研究热点。目前,

GaN 基蓝绿光发光二极管己商品化,GaN 基LD 也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax )已达140GHz,fT=67 GHz,跨导为260ms /mm ; HEMT器件也相继问世,发展很快。此外,256 X256 GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo 电子工业有限公司2000 年宣称,他们采用热力学方法已研制成功2英寸GaN 单晶材料,这将有力的推动蓝光激光器和GaN 基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN ,InGaAsN ,GaNP 和GaNAsP 材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6H SiC 单晶与外延片,以及3英寸的4H SiC 单晶己有商品出售;以SiC 为GaN 基材料衬低的蓝绿光LED 业已上市,并参于与以蓝宝石为衬低的GaN 基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II—VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II —VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE 技术率先宣布了电注入(Zn,Cd)Se/ZnSe 兰光激光器在77K(495nm )脉冲输出功率100mW 的消息,开始了II—VI 族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II —VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN 基材料的迅速发展和应用,使II —VI 族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实

用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN /蓝宝石( Sapphire ),SiC/Si 和GaN /Si 等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC 单晶衬低材料,GaN 基蓝光LED 材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问

题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N 型掺杂,II-VI 族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

ZnO 是一种优良的多功能材料.作为压电材料的ZnO 压敏陶瓷,因其优良的非线性导电特性、大电流和高能量承受能力等优点而被广泛应用于抑制电力系统雷过电压和操作过电压,抑制电磁脉冲和噪音,防止静电放电等方面.ZnO 单晶在可见光透过率达到90 %,在室温下(或低温下) ZnO 及纳米ZnO 光致发光谱( PL) 普遍存在2个较宽的发光带,在520 nm 附近的宽绿色发光带和在380 nm 附近一系列施主束缚激子峰的紫色发光带 [1]. 绿色发光带有时也存在丰富的结构 [12 ] .关于绿色发光带一般被认为是杂质或缺陷态(O空缺、Zn填隙)的发光,但是相关机理还有待进一步研究.文献[13 ]报道目前常在制备时添加一些有效物质,通过不同制备方法和条件处理,使ZnO 表面吸附或包裹上一层“外衣” ,以改善其无规则的表面层,钝化表面

半导体行业(细分领域芯片、设备材料)深度报告

半导体行业(细分领域芯片、设备材料)深度报告 一、半导体行业概况 国内半导体行业市场规模快速增长,但需求供给严重不平衡,高度依赖进口,国产核心芯片自给率不足10%。 2000年和2020年中国集成电路市场占全球份额 5G和AI技术

科创板提供了硬科技企业投资退出渠道,资本市场积极布局包括半导体在内的科创板热点赛道 科创板行业分布 二、半导体行业产业链结构 半导体行业产业链 三、AI芯片行业

AI芯片主要包括GPU、FPGA、ASIC三种技术路线,分为云端训练芯片、云端推理芯片和边缘推理芯片 AI芯片下游应用 AI芯片在边缘侧主要包括物联网、移动互联网、智能安防、自动驾驶四大应用场景

AI芯片下游应用 四、5G芯片 手机射频前端芯片市场规模受单机射频芯片价值增长的驱动 ? 在移动终端设备稳定出货的背景下,随着通信网络向5G升级,射频器件的数量和价值量都在增加,射频前端芯片行业的市场规模将持续快速增长,从2010年至2018年全球射频前端市场规模以每年约13.10%的速度增长,到2020年接近190亿美元 ? 射频前端各组件增速不同。滤波器作为射频前端最大的细分市场,市场空间将从2018年的80亿美元增长到2023年的225亿美元,年增长率19%,这一增长主要来自高质量BAW滤波器的渗透;PA的市场空间将会从50亿美金增长到70亿美金,年增长率7%,主要是高端和超高频段PA市场的增长,将弥补2G/3G市场的萎缩 全球射频前端芯片市场竞争格局

? 目前,射频前端市场集中度高,国外厂商占据了绝大部分的市场份额,贸易战带来的国产化需求是国内射频厂商最大的机会 ? 射频前端的集成化使得未来收购、并购成为资本重要的退出手段,收购、并购也是芯片企业做大做强的途径之一 五、物联网芯片 物联网高速发展,具有通用性以及与物联网连接相关的上游产业最先受益? 随着相关的通信标准的落地、通信和云计算技术的发展,物联网已从最初的导入期进入现在的成长期 ? 从产业链传导的角度看,物联网将从“快速联网”到“规模联网+应用服务”,具有通用性以及与物联网连接相关的上游产业链环节将最先受益,包括通信芯片、传感器、无线模组等

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

2020年半导体材料行业分析报告

2020年半导体材料行业分析报告 2020年12月

目录 一、半导体硅片规模持续扩大,国内企业加速追赶 (6) 1、半导体硅片市场规模持续扩大 (6) (1)半导体硅片处于产业链上游,发挥着重要的行业基础支撑作用 (6) (2)全球半导体硅片小幅波动,近来行业回暖后趋向稳态 (8) (3)受益下游应用需求拉动,中国半导体硅片行业市场规模持续扩大 (8) 2、境外企业垄断,国内企业加快追赶世界水平 (9) (1)半导体硅片行业壁垒高,长期被境外先进企业垄断 (9) (2)国内企业加大研发与投资,努力追赶世界先进水平 (10) 3、受益企业:立昂微 (10) 二、湿电子化学品集中度高,替代空间较大 (11) 1、湿电子化学品市场发展迅速,集中度较高 (11) 2、受益企业:晶瑞股份 (14) 三、特种气体国内空间巨大,国产替代大势所趋 (14) 1、特种气体市场增长迅速 (14) (1)半导体领域对特种气体的需求最大 (15) (2)电子气体分为电子特种气体和电子大宗气体 (16) (3)全球工业气体市场近年来呈现稳步增长的态势 (17) (4)我国人均工业用气水平较低,预计未来仍将保持两位数以上增长 (17) (5)特种气体市场规模发展迅速,预计未来仍将高速增长,空间广阔 (18) (6)电子气体是仅次于大硅片的第二大市场需求半导体材料 (19) (7)下游产业技术快速更迭,对特种气体产品技术要求持续提高 (19) 2、市场集中度较高,寡头垄断明显 (20) (1)特种气体市场具有较高的技术、客户认证、资金壁垒 (20) (2)较高的壁垒导致全球竞争格局高度集中 (21)

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体材料的应用及产业现状

半导体材料的应用及产业现状 摘要:超晶格概念的提出及其半导体超晶格的研制成功,彻底改变了光电器件的设计思想。本文将讲述半导体的特征及地位和作用,国内外产业化现状和进展情况等。 关键词:半导体材料,电阻率,多晶硅,单晶硅,砷化镓,氮化镓 1半导体材料的应用 1.1半导体材料的特征:半导体材料是指电阻率在107Ω?cm~10-3Ω?cm,界于金属和绝缘体之间的材料。半导体材料虽然种类繁多但有一些固有的特性,称为半导体材料的特性参数。这些特性参数不仅能反映半导体材料与其他非半导体材料之间的差别,而且更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下特性上的量的差别。常用的半导体材料的特性参数有:禁带宽度、电阻率、载流子迁移率(载流子即半导体中参加导电的电子和空穴)、非平衡载流子寿命、位错密度。禁带宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。电阻率、载流子迁移率反映材料的导电能力。非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部的载流子由非平衡状态向平衡状态过渡的弛豫特性。位错是晶体中最常见的一类晶体缺陷。位错密度可以用来衡量半导体单晶材料晶格完整性的程度。当然,对于非晶态半导体是没有这一反映晶格完整性的特性参数的。 半导体材料的特性参数对于材料应用甚为重要。因为不同的特性决定不同的用途。晶体管对材料特性的要求:根据晶体管的工作原理,要求材料有较大的非平衡载流子寿命和载流子迁移率。用载流子迁移率大的材料制成的晶体管可以工作于更高的频率(有较好的频率响应)。晶体缺陷会影响晶体管的特性甚至使其失效。晶体管的工作温度高温限决定于禁带宽度的大小。禁带宽度越大,晶体管正常工作的高温限也越高。 光电器件对材料特性的要求:利用半导体的光电导(光照后增加的电导)性能的辐射探测器所适用的辐射频率范围与材料的禁带宽度有关。材料的非平衡载流子寿命越大,则探测器的灵敏度越高,而从光作用于探测器到产生响应所需的时间(即探测器的弛豫时间)也越长。因此,高的灵敏度和短的弛豫

半导体材料行业全景分析(1)--市场空间

半导体材料投资地图 光刻胶湿制程化学品 硅片靶材CMP抛光材料电子特气光掩膜113.8亿美元13.7亿美元20.1亿美元17.3亿美元16.1亿美元42.7亿美元40.4亿美元

沪硅产业硅片沪硅产业是中国大陆规模最大的半导体硅片企业之一,在中国大陆率先实现300mm半导体硅片规模化销售。主要产品为提供的产品类型涵盖300mm抛光片及外延片、200mm及以下抛光片、外延片及SOI硅片,在特殊硅基材料SOI硅片领域具有较强的竞争力。客户包括台积电、中芯国际、华虹宏力、华力微电子、长江存储、武汉新芯、华润微等。 半导体材料投资地图 CMP抛光材料鼎龙股份是国产CMP抛光垫领域的龙头企业,主要产品包括用于半导体晶圆的打磨和抛光过程的化学机械CMP抛光垫、清洗液和用于柔性面板显示产业的基材PI浆料,以及打印复印通用耗材,产品销往欧美、日韩、东南亚市场,拥有包括众多世界五百强在内的国内外知名大企业。公司2019年CMP材料客户拓展顺利,未来有望带来业绩增量。 鼎龙股份 安集科技CMP抛光材料安集科技主营产品为抛光液和光刻胶去除剂,客户包括中国大陆的中芯国际、长江存储、华虹宏力、华润微电子和中国台湾的台积电等。公司光刻胶去除剂具有国内领先技术水平;机械抛光液已在130-28nm技术节点实现规模化销售,14nm技术节点产品已进入客户认证阶段,10-7nm技术节点产品正在研发中。 靶材有研新材是国内规模最大、材料种类最齐全的高端电子信息用材料研发制造商,其核心业务为高纯金属材料/靶材业务和稀土业务,产品广泛应用于半导体、平板显示、太阳能等领域。公司技术实力雄厚,在高纯金属材料领域,已实现从高纯金属材料到靶材生产的一体化模式,靶材客户覆盖中芯国际、大连Intel、TSMC、UMC、北方华创等多家高端客户。 有研新材 江丰电子靶材主要产品为各种高纯溅射靶材,包括铝靶、钛靶、钽靶、钨钛靶等,产品广泛应用于半导体、平板显示、太阳能等领域。目前,公司的超高纯金属溅射靶材产品在全球先端7nm FinFET(FF+)技术超大规模集成电路制造领域批量应用,成功参与电子材料领域的国际市场竞争。 公司主要从事掩膜版的研发、设计、生产和销售业务,产品根据基板材质的不同主要可分为石英掩膜版、

2016年半导体封装专用材料键合丝行业分析报告

2016年半导体封装专用材料键合丝行业分析报告 2016年9月

目录 一、行业市场规模 (5) 1、半导体行业整体市场规模 (5) (1)全球半导体行业市场规模 (5) (2)国内半导体行业市场规模 (6) 2、键合丝行业市场规模 (6) 二、行业发展趋势 (7) 1、半导体行业发展趋势 (7) (1)新材料、新技术不断发展和应用 (7) (2)半导体进入库存周期时代,随着去库存结束,最坏的时候已经过去 (7) (3)国内封装业者加速全球化趋势 (8) 2、键合丝行业发展趋势 (8) (1)新材料开发 (8) 三、行业监管体系与相关法规政策 (10) 1、行业监管体制 (10) (1)行业主管部门、监管体制 (10) (2)自律管理机构 (10) 2、相关法规及行业政策 (11) 四、影响行业发展的因素 (14) 1、有利因素 (14) (1)下游产业发展提升市场需求 (14) (2)国家政策的有力支持 (15) 2、不利因素 (15) (1)贸易保护主义的限制 (15) (2)人才短缺 (16) (3)价格竞争 (16) 五、行业主要企业简况 (17)

1、田中电子(杭州)有限公司 (17) 2、贺利氏招远(常熟)电子材料有限公司 (17) 3、杭州日茂新材料有限公司 (17) 六、行业上下游的关系 (18) 1、与上游行业的关系 (18) 2、与下游行业的关系 (18) 七、进入本行业的主要壁垒 (19) 1、技术和研发壁垒 (19) 2、品牌和资格认证壁垒 (19) 3、资金壁垒 (19)

半导体封装用键合丝(bonding wire in semiconductor devices)作为芯片与外部电路主要的连接材料,具有良好的力学性能、电学性能和第二焊点稳定性,广泛替代键合金丝应用于微电子工业。键合丝主要应用于晶体管、集成电路等半导体器件和微电子封装的电极部位或芯片与外部引线的连接。 随着集成电路的发展,先进封装技术不断发展变化以适应各种半导体新工艺和新材料的要求和挑战。半导体封装内部芯片和外部管脚以及芯片之间的连接起着确立芯片和外部的电气连接、确保芯片和外界之间的输入/输出畅通的重要作用,是整个后道封装过程中的关键。引线键合以工艺实现简单、成本低廉、使用多种封装形式而在连接方式中占主导地位,目前所有封装管脚的90%以上采用引线键合连接。在全球范围内,从50年代开始发展了引线键合技术,六七十年代以来发展了载带自动键合、倒装焊以及梁式引线等连接技术。未来半导体键合内引线连接的主要方式仍将是引线键合和倒装焊两类连接。 电子产品向微型化、薄型化、智能化和高可靠性方向发展,为人们的生产和生活带来了极大的便利。为了适应电子产品多功能、小型化、便携性等需要,新的封装技术不断涌现。新的封装技术也对键合丝性能提出了更高的要求,促使新的键合材料产生,而新的键合材料的产生又推动了封装技术的进步,两者相辅相成、互相促进,推动了整个半导体封装行业的发展。

(新)半导体材料发展现状及趋势 李霄 1111044081

序号:3 半导体材料的发展现状及趋势 姓名:李霄 学号:1111044081 班级:电科1103 科目:微电子设计导论 二〇一三年12 月23 日

半导体材料的发展进展近况及趋向 引言:随着全球科技的飞速发展成长,半导体材料在科技进展中的首要性毋庸置疑,半导体的发展进展历史很短,但半导体材料彻底改变了我们的生活,从半导体材料的发展历程、半导体材料的特性、半导体材料的种类、半导体材料的制备、半导体材料的发展。从中我们可以感悟到半导体材料的重要性 关键词:半导体、半导体材料。 一、半导体材料的进展历程 20世纪50年代,锗在半导体产业中占主导位置,但锗半导体器件的耐高温和辐射性能机能较差,到20世纪60年代后期逐步被硅材料代替。用硅制作的半导体器件,耐高温和抗辐射机能较好,非常适合制作大功率器件。因而,硅已经成为运用最多的一种半导体材料,现在的集成电路多半是用硅材料制作的。二是化合物半导体,它是由两种或者两种以上的元素化合而成的半导体材料。它的种类不少,主要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。此中砷化镓是除了硅以外研讨最深切、运用最普遍的半导体材料。氮化镓可以与氮化铟(Eg=1.9eV)、氮化铝(Eg=6.2eV)构成合金InGaN、AlGaN,如许可以调制禁带宽度,进而调理发光管、激光管等的波长。三是非晶半导体。上面介绍的都是拥有晶格构造的半导体材料,在这些材料中原子布列拥有对称性和周期性。但是,一些不拥有长程有序的无定形固体也拥有显著的半导体特征。非晶半导体的种类繁多,大体上也可按晶态物质的归类方式来分类。从现在}研讨的深度来看,很有适用价值的非晶半导体材料首推氢化非晶硅(α-SiH)及其合金材料(α-SiC:H、α-SiN:H),可以用于低本钱太阳能电池和静电光敏感材料。非晶Se(α-Se)、硫系玻璃及氧化物玻璃等非晶半导体在传感器、开关电路及信息存储方面也有普遍的运用远景。四是有机半导体,比方芳香族有机化合物就拥有典范的半导体特征。有机半导体的电导特征研讨可能对于生物体内的基础物理历程研究起着重大推进作用,是半导体研讨的一个热点领域,此中有机发光二极管(OLED)的研讨尤为受到人们的看重。 二、半导体材料的特性 半导体材料是常温下导电性介于导电材料以及绝缘材料之间的一类功效材

半导体制造行业产业链研究报告

半导体制造行业产业链 研究报告 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

半导体制造行业研究报告2017 1 对半导体制造设备行业的整体研究 通过对参加这次展会厂商的总体范围的了解,对半导体制造产业链的总体情况有了基本的认识,半导体制造涉及以下几个相关的细分行业。 晶圆加工设备 在半导体制造中专为晶圆加工的工序提供设备及相关服务的供应商,包括光刻设备、测量与检测设备、沉积设备、刻蚀设备、化学机械抛光(CMP)、清洗设备、热处理设备、离子注入设备等。 厂房设备 包括工厂自动化、工厂设施、电子气体和化学品输送系统、大宗气体输送系统等。晶圆加工材料 在半导体制造中提供原材料和相关服务的供应商,包括多晶硅、硅晶片、光掩膜、电子气体及化学、光阻材料和附属材料、CMP 料浆、低 K 材料等。 测试封装设备 在半导体测试和封装过程中提供设备及其他相关服务的供应商。主要涉及晶圆制程的后道工序,就是将制成的薄片“成品”加工为独立完整的集成电路。包括切割工具及材料、自动测试设备、探针卡、封装材料、引线键合、倒装片封装、烧焊测试、晶圆封装材料等。 测试封装材料 在半导体测试和封装过程中提供材料和相关服务的供应商,包括悍线、层压基板、引线框架、塑封料、贴片胶、上料板等。 子系统、零部件和间接耗材 为设备和系统制造提供子系统、零部件、间接材料及相关服务的厂商,包括质量流量控制、分流系统、石英、石墨和炭化硅等。 2 对电子气体和化学品输送系统行业的详细研究

电子气体和化学品输送系统涉及上游的电子气体产品提供商,半导体行业用阀门管件提供商,常规阀门管件提供商,气体供应设备提供商,气体输送系统设计、施工单位以及下游的后处理设备厂商。 电子气体 电子气体在半导体器件的生产过程中起着非常重要的作用,几乎每一步、每一个生产环节都离不开电子气体,并且电子气体的质量在很大程度上决定了半导体器件性能的好坏。 电子气体的纯度是一个非常重要的指标,其纯度每提高一个数量级,都会极大地推动半导体器件质的飞跃。同时,电子气体纯度也是区分气体厂商技术水平和生产能力的一个重要考量指标。 目前主要的气体产品公司多为欧美公司在中国的分公司,主要有法国液化空气公司,美国普莱克斯,德国林德公司,美国空气产品公司等。国内的品牌有苏州金宏气体,广东华特气体等。 半导体阀门管件 半导体阀门管件是气体输送系统和设备中重要的原材料,阀门管件的性能和质量水平也直接影响着气体输送系统的送气能力和运行稳定性,也会影响半导体产品的质量和性能。严重的情况下,一个阀门出现质量问题可能造成严重的生产事故。 半导体阀门管件的重要性也体现在其成本上,目前阀门管件等原材料的成本占据了气体输送系统和设备的大部分成本,但是,目前绝大部分供应要依赖进口品牌,并且是供不应求(货期较长),这造成了目前系统和设备厂商的运营成本居高不下。 此领域知名的厂商有APTECH,TESCOM,PARKER,SWAGELOK,KITZ,Valex等,但都为进口品牌,价格贵,交货期长(目前一般要2个月以上)。国产品牌目前主要的问题是半导体阀门管件产品种类少,并且产品并不成熟。通过和杰瑞,赛洛克等厂商的交流,了解到目前这些国内厂家公司规模多在一百人左右,新产品的研发能力和研发投入都十分有限,很难在短期内保质保量的供应市场上需求的半导体阀门管件。这也预示着电子气体输送系统和设备厂商在很长一段时间内还是要依赖进口品牌提供相应的材料,这种现状就要求系统和设备厂商有更好的成本和交货周期的管控能力,甚至在承接项目时做好提高其成本预算和延长交货期的准备。

中国半导体材料行业市场调研报告

2011-2015年中国半导体材料行业市场调 研及投资前景预测报告 半导体材料是指电阻率在10-3~108Ωcm,介于金属和绝缘体之间的材料。半导体材料是制作晶体管、集成电路、电力电子器件、光电子器件的重要基础材料,支撑着通信、计算机、信息家电与网络技术等电子信息产业的发展。电子信息产业规模最大的是美国。近几年来,中国电子信息产品以举世瞩目的速度发展,半导体材料及应用已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。 中国报告网发布的《2011-2015年中国半导体材料行业市场调研及投资前景预测报告》共十六章。首先介绍了半导体材料相关概述、中国半导体材料市场运行环境等,接着分析了中国半导体材料市场发展的现状,然后介绍了中国半导体材料重点区域市场运行形势。随后,报告对中国半导体材料重点企业经营状况分析,最后分析了中国半导体材料行业发展趋势与投资预测。您若想对半导体材料产业有个系统的了解或者想投资半导体材料行业,本报告是您不可或缺的重要工具。 本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。 第一章半导体材料行业发展概述 第一节半导体材料的概述 一、半导体材料的定义 二、半导体材料的分类 三、半导体材料的特点 四、化合物半导体材料介绍 第二节半导体材料特性和制备 一、半导体材料特性和参数 二、半导体材料制备

第三节产业链结构及发展阶段分析 一、半导体材料行业的产业链结构 二、半导体材料行业发展阶段分析 三、行业所处周期分析 第二章全球半导体材料行业发展分析 第一节世界总体市场概况 一、全球半导体材料的进展分析 二、全球半导体材料市场发展现状 三、第二代半导体材料砷化镓发展概况 四、第三代半导体材料GaN发展概况 第二节世界半导体材料行业发展分析 一、2010年世界半导体材料行业发展分析 二、2011年世界半导体材料行业发展分析 三、2011年半导体材料行业国外市场竞争分析 第三节主要国家或地区半导体材料行业发展分析 一、美国半导体材料行业分析 二、日本半导体材料行业分析 三、德国半导体材料行业分析 四、法国半导体材料行业分析 五、韩国半导体材料行业分析 六、台湾半导体材料行业分析 第三章我国半导体材料行业发展分析 第一节2010年中国半导体材料行业发展状况 一、2010年半导体材料行业发展状况分析 二、2010年中国半导体材料行业发展动态 三、2010年半导体材料行业经营业绩分析 四、2010年我国半导体材料行业发展热点 第二节2011年半导体材料行业发展机遇和挑战分析一、2011年半导体材料行业发展机遇分析

2020年半导体材料深度报告

2020年半导体材料行业深度报告 一、为什么看好半导体材料投资机会 目前,新冠肺炎疫情正在全球蔓延。欧美、日本以及韩国等国家正经受疫情爆发的考验,而我们国内由于得到国家的强力控制,目前疫情已初步得到控制。国外疫情的爆发,将对半导体行业的格局造成一定影响,特别是日本及欧美疫情的加剧,将影响半导体材料供给。而国内疫情由于得到良好的控制,并且在一些半导体材料的细分领域,国内的公司已实现部分国产替代,在供给方面我们先发优势,解晶圆代工厂燃眉之急。 据中证报消息,国家大基金二期三月底可以开始实质投资。国家大基金是半导体行业风向标,国家大基金二期将更加注重对半导体材料及设备的投资。大基金二期以半导体产业链最上游的材料及设备为着力点,推动整个半导体行业的发展,加速国产替代的进程,国内半导体材料公司将迎来黄金发展期。 (一)欧美及日本疫情加剧半导体材料供给或将受限 截至 3 月 14 日 14:30 分,海外新冠肺炎确诊病例累计确诊 64617 例,较上日增加 10393 例,累计死亡2236 例。海外疫情正处于爆发期,特别

是意大利、日本、美国、德国、法国及韩国等国家,新冠疫情正愈演愈烈。 1、在全球半导体材料领域,日本占据绝对主导地位。去年日韩贸易战中,日本限制含氟聚酰亚胺、光刻胶,以及高纯度氟化氢这三种材料的对韩出口,引起了整个半导体领域的震动。在2019 年前 5 个月,日本生产的半导体材料占全球产量的52%。同期,韩国从日本进口的光刻胶价值就达到 1.1 亿美元。据韩国贸易协会报告显示,韩国半导体和显示器行业在氟聚酰亚胺、光刻胶及高纯度氟化氢对日本依赖度分别为 91.9%、43.9%及 93.7%。 在半导体制造过程包含的19 种核心材料中,日本市占率超过 50%份额的材料就占到了 14 种,在全球半导体材料领域处于绝对领先地位。 2、欧美及日本疫情的加剧,将影响全球半导体材料的供给。目前虽然没有欧美及日本半导体公司受疫情影响的官方报道,但我们认为疫情必将影响这些地区半导体公司的经营情况。在疫情影响下,韩国的三星、SK 海力士等半导体公司多次停产隔离,国内的众多公司也延迟复工。因此,这些处于疫情爆发期国家的公司也必将受疫情影响。当地时间13 日下午 3 点30 分,美国总统特朗普已宣布进入“国家紧急状态”以应对新冠肺炎疫情。

(完整版)半导体材料及特性

地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。 无机化合物半导体: 四元系等。二元系包括:①Ⅳ-Ⅳ族:SiC 和Ge-Si合金都具有闪锌矿的结构。②Ⅲ -Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In 和V族元素P、As、Sb组成,典型的代表 为GaAs。它们都具有闪锌矿结构,它们在 应用方面仅次于Ge、Si,有很大的发展前 途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和 Ⅵ族元素S、Se、Te形成的化合物,是一 些重要的光电材料。ZnS、CdTe、HgTe具 有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素C u、Ag、Au和Ⅶ族元素Cl、Br、I形成的 化合物,其中CuBr、CuI具有闪锌矿结构。 半导体材料 ⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族

院士讲材料——半导体材料的发展现状与趋势汇总

主持人: 观众朋友,欢迎您来到CETV学术报告厅,最近美国的一家公司生产出一千兆的芯片,它是超微技术发展史上的一个分水岭,个人电脑业的发展,也将步入一个新的历史阶段,对整个信息业来说,它的意义不亚于飞行速度突破音速的极限,当然整个技术上的突破,也要依赖于以硅材料为基础的大规模集成电路的进一步微型化,50年代以来,随着半导体材料的发现与晶体管的发明,以硅为主的半导体材料,成为整个信息社会的支柱,成为微电子、光电子等高技术产业的核心与基础,这个情况,将会持续到下个世纪的中叶,当然,面对更大信息量的需求,硅电子技术也有它的极限,将会出现新的、替补性的半导体材料。关于半导体材料的发展现状与发展趋势,请您收看中国科学院王占国院士的学术报告。 王占国: 材料已经成为人类历史发展的里程碑,从本世纪的中期开始,硅材料的发现和硅晶体管的发明以及五十年代初期的以硅为基的集成电路的发展,导致了电子工业大革命。今天,因特网、计算机的到户,这与微电子技术的发展是密不可分的,也就是说以硅为基础的微电子技术的发展,彻底地改变了世界的政治、经济的格局,也改变着整个世界军事对抗的形式,同时也深刻影响着人们的生活方式。今天如果没有了计算机,没有了网络,没有了通信,世界会是什么样子,那是可想而知的。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。 70年代超晶格概念的提出,新的生长设备,像分子束外延和金属有机化合物化学汽相淀积等技术的发展,以及超晶格、量子阱材料的研制成功,使半导体材料和器件的设计思想发生了彻底的改变。就硅基材料的器件和电路而言,它是靠P型与N型掺杂和PN结技术来制备二极管、晶体管和集成电路的。然而基于超晶格、量子阱材料的器件和电路的性质,则不依赖于杂质行为,而是由能带工程设计决定的。也就是说,材料和器件的光学与电学性质,可以通过能带的设计来实现。设计思想从杂质工程发展到能带工程,以及建立在超晶格、量子阱等半导体微结构材料基础上的新型量子器件,极有可能引发新的技术革命。从微电子技术短短50年的发展历史来看,半导体材料的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 现在,我来讲一讲几种重要的半导体材料的发展现状与趋势。我们首先来介绍硅单晶材料。硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。根据预测,到2000年底,它的规模将达到60多亿平方英寸,整个硅单晶材料的产量将达到1万吨以上。目前,8英寸的硅片,已大规模地应用于集成电路的生产。到2000年底,或者稍晚一点,这个预计可能会与现在的情况稍微有点不同,有可能完成由8英寸到12英寸的过渡。预计到2007年前后,18英寸的硅片将投入生产。我们知道,直径18英寸相当于45厘米,一个长1米的晶锭就有几百公斤重。那么随着硅单晶材料的进一步发展,是不是存在着一些问题亟待解决呢?我们知道硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂

半导体材料发展史

1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。 不久, 1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。 在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。 1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。 前言 自从有人类以来,已经过了上百万年的岁月。社会的进步可以用当时人类使用的器物来代表,从远古的石器时代、到铜器,再进步到铁器时代。现今,以硅为原料的电子元件产值,则超过了以钢为原料的产值,人类的历史因而正式进入了一个新的时代,也就是硅的时代。硅所代表的正是半导体元件,包括记忆元件、微处理机、逻辑元件、光电元件与侦测器等等在内,举凡电视、电话、电脑、电冰箱、汽车,这些半导体元件无时无刻都在为我们服务。 硅是地壳中最常见的元素,许多石头的主要成分都是二氧化硅,然而,经过数百道制程做出的积体电路,其价值可达上万美金;把石头变成硅晶片的过程是一项点石成金的成就,也是近代科学的奇蹟! 在日本,有人把半导体比喻为工业社会的稻米,是近代社会一日不可或缺的。在国防上,惟有扎实的电子工业基础,才有强大的国防能力,1991年的波斯湾战争中,美国已经把新一代电子武器发挥得淋漓尽致。从1970年代以来,美国与日本间发生多次贸易摩擦,但最后在许多项目美国都妥协了,但是为了半导体,双方均不肯轻易让步,最后两国政府慎重其事地签订了协议,足证对此事的重视程度,这是因为半导体工业发展的成败,关系着国家的命脉,不可不慎。在台湾,半导体工业是新竹科学园区的主要支柱,半导体公司也是最赚钱的企业,台湾如果要成为明日的科技硅岛,半导体工业是我们必经的途径。

2019年半导体材料行业深度报告

2019年半导体材料行业深度报告 导语 在整个半导体产业链中,半导体材料处于产业链上游,是整个半导体行业的重要支撑。在集成电路芯片制造过程中,每一个步骤都需要用到相应的材料,如光刻过程需要用到光刻胶、掩膜版,硅片清洗过程需要用的各种湿化学品,化学机械平坦化过程需要用的抛光液和抛光垫等,都属于半导体材料。 1. 为什么看好半导体材料投资机会 目前,新冠肺炎疫情正在全球蔓延。欧美、日本以及韩国等国家正经受疫情爆发的考验,而我们国内由于得到国家的强力控制,目前疫情已初步得到控制。国外疫情的爆发,将对半导体行业的格局造成一定影响,特别是日本及欧美疫情的加剧,将影响半导体材料供给。而国内疫情由于得到良好的控制,并且在一些半导体材料的细分领域,国内的公司已实现部分国产替代,在供给方面我们先发优势,解晶圆代工厂燃眉之急。 据中证报消息,国家大基金二期三月底可以开始实质投资。国家大基金是半导体行业风向标,国家大基金二期将更加注重对半导体材料及设备的投资。大基金二期以半导体产业链最上游的材料及设备为着力点,推动整个

半导体行业的发展,加速国产替代的进程,国内半导体材料公司将迎来黄金发展期。 1.1 欧美及日本疫情加剧半导体材料供给或将受限 截至3 月14 日14:30 分,海外新冠肺炎确诊病例累计确诊64617 例,较上日增加10393 例,累计死亡2236 例。海外疫情正处于爆发期,特别是意大利、日本、美国、德国、法国及韩国等国家,新冠疫情正愈演愈烈。 在全球半导体材料领域,日本占据绝对主导地位。去年日韩贸易战中,日本限制含氟聚酰亚胺、光刻胶,以及高纯度氟化氢这三种材料的对韩出口,引起了整个半导体领域的震动。在2019 年前5 个月,日本生产的半导体材料占全球产量的52%。同期,韩国从日本进口的光刻胶价值就达到1.1 亿美元。据韩国贸易协会报告显示,韩国半导体和显示器行业在氟聚酰亚胺、光刻胶及高纯度氟化氢对日本依赖度分别为91.9%、43.9%及93.7%。 在半导体制造过程包含的19 种核心材料中,日本市占率超过50%份额的材料就占到了14 种,在全球半导体材料领域处于绝对领先地位。 欧美及日本疫情的加剧,将影响全球半导体材料的供给。目前虽然没有欧美及日本半导体公司受疫情影响的官方报道,但我们认为疫情必将影响这些地区半导体公司的经营情况。在疫情影响下,韩国的三星、SK 海力士等半导体公司多次停产隔离,国内的众多公司也延迟复工。因此,这些处

半导体制造行业产业链研究报告

半导体制造行业产业链研 究报告 Prepared on 24 November 2020

半导体制造行业研究报告2017 1 对半导体制造设备行业的整体研究 通过对参加这次展会厂商的总体范围的了解,对半导体制造产业链的总体情况有了基本的认识,半导体制造涉及以下几个相关的细分行业。 晶圆加工设备 在半导体制造中专为晶圆加工的工序提供设备及相关服务的供应商,包括光刻设备、测量与检测设备、沉积设备、刻蚀设备、化学机械抛光(CMP)、清洗设备、热处理设备、离子注入设备等。 厂房设备 包括工厂自动化、工厂设施、电子气体和化学品输送系统、大宗气体输送系统等。晶圆加工材料 在半导体制造中提供原材料和相关服务的供应商,包括多晶硅、硅晶片、光掩膜、电子气体及化学、光阻材料和附属材料、CMP 料浆、低 K 材料等。 测试封装设备 在半导体测试和封装过程中提供设备及其他相关服务的供应商。主要涉及晶圆制程的后道工序,就是将制成的薄片“成品”加工为独立完整的集成电路。包括切割工具及材料、自动测试设备、探针卡、封装材料、引线键合、倒装片封装、烧焊测试、晶圆封装材料等。 测试封装材料 在半导体测试和封装过程中提供材料和相关服务的供应商,包括悍线、层压基板、引线框架、塑封料、贴片胶、上料板等。 子系统、零部件和间接耗材 为设备和系统制造提供子系统、零部件、间接材料及相关服务的厂商,包括质量流量控制、分流系统、石英、石墨和炭化硅等。 2 对电子气体和化学品输送系统行业的详细研究 电子气体和化学品输送系统涉及上游的电子气体产品提供商,半导体行业用阀门管件提供商,常规阀门管件提供商,气体供应设备提供商,气体输送系统设计、施工单位以及下游的后处理设备厂商。

半导体材料的历史现状及研究进展(精)

半导体材料的历史现状及研究进展(精)

半导体材料的研究进展 摘要:随着全球科技的快速发展,当今世界已经进入了信息时代,作为信息领域的命脉,光电子技术和微电子技术无疑成为了科技发展的焦点。半导体材料凭借着自身的性能特点也在迅速地扩大着它的使用领域。本文重点对半导体材料的发展历程、性能、种类和主要的半导体材料进行了讨论,并对半导体硅材料应用概况及其发展趋势作了概述。 关键词:半导体材料、性能、种类、应用概况、发展趋势 一、半导体材料的发展历程 半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。宰二十世纪初,就曾出现过点接触矿石检波器。1930年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。1947年锗点接触三极管制成,成为半导体的研究成果的重大突破。50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为IT产业的新发动机。 新型半导体材料的研究和突破,常常导致新的技术革命和新兴产业的发展.以氮化镓为代表的第三代半导体材料,是继第一代半导体材料(以硅基半导体为代表和第二代半导体材料(以砷化镓和磷化铟为代表之后,在近10年发展起来的新型宽带半导体材料.作为第一代半导体材料,硅基半导体材料及其集成电路的发展导致了微型计算机的出现和整个计算机产业的飞跃,并广泛应用于信息处理、自动控制等领域,对人类社会的发展起了极大的促进作用.硅基半导体材料虽然在微电子领域得到广泛应用,但硅材料本身间接能带结构的特点限制了其在光电子领域的应用.随着以光通

相关文档
最新文档