现代分离技术论文

现代分离技术论文
现代分离技术论文

《现代分离技术》课程论文

膜分离技术的研究与应用

摘要:近几年来,随着科技的发展,膜分离技术以其装置简单,操作方便的优点在各行各业得到广泛应用。本文主要阐述了膜分离技术的原理、特点、发展历史及其在工业生产、食品工业、制药行业和海水淡化等领域的应用,并简述了膜分离技术的未来发展方向。

关键词:膜分离技术;膜分离技术的应用;微滤;纳滤;超滤;反渗透

1 膜分离技术的国内外研究历史[1]

膜分离现象早在250多年以前就被发现, 但是膜分离技术的工业应用是在20世纪60年代以后。其大致的发展史为: 20世纪30年代微孔过滤;40年代渗析;50年代电渗析;60年代反渗透;70年代超滤; 80 年代气体分离;90年代渗透汽化。数十年来, 膜分离技术发展迅速, 特别90年代以后,随着膜 (TFC 膜) 的研制成功, 膜分离技术的应用领域已经渗透到人们生活和生产的各个方面。膜分离技术作为一种新兴的高效分离技术, 已经被广泛应用于化工、环保、电子、轻工、纺织、石油、食品、医药、生物工程、能源工程等。

我国膜技术始于上世纪 50 年代末,1966年聚乙烯异相离子交换膜在上海化工厂正式投产。1967年用膜技术进行海水淡化工作。我国在70年代对其它膜技术相继进行研究开发( 电渗析、反渗透、超滤、微滤膜) ,80年代进入应用推广阶段。中国科学院大连化物所在 1985年首次研制成功中空纤维氮气氢气分离器,现已投入批量生产。我国在1984年进行渗透汽化研究,1998年我国在燕山化工建立第一个千吨级苯脱水示范工程。中国科技部把渗透汽化透水膜、低压复合膜、无机陶瓷膜及天然气脱湿膜等列入”九五”重点科技攻关计划,分别由清华大学、南京化工大学及中科院大连化物所、杭州水处理中心承担,进行重点开发公关。1998年10月国家发改委在大连投资兴建国家膜工程中心,技术上以中国科学院大连化物所为依托。

经过20年的努力, 中国在膜分离技术的研究开发方面已涌现出一批具有实用价值, 接近或达到国际先进水平的成果。但从总体上讲, 中国的膜分离技术和世界先进水平相比还有不小的差距, 需进一步研究开发。

2 膜分离技术概述

2.1膜分离技术原理

膜分离技术是一种使用半透膜的分离方法,在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术。

2.2膜分离技术分类

微滤: 膜孔径大约 0.1 μm,主要从气相和液相物质中截留微米及亚微米的细小悬浮物、微生物、微粒、细菌、酵母、红血球、污染物等,以达到净化和浓缩的目的。它属于压力驱动型的膜分离过程,工作时,在膜两侧静压差的作用下,小于膜孔的粒子透过膜,大于膜孔的粒子则被截留在膜的表面上,使大小不同的粒子得以分离。微滤分离的实质是利用膜的“筛分”作用来进行的。“筛分”作用的普遍看法是:比膜孔大的颗粒的机械截留、颗粒间相互作用及颗粒与膜表面的吸附、颗粒间的桥架作用这三种方式来实现的。

超滤: 膜孔径在 10-100 nm,主要用于分离液相物质中诸如蛋白质、核酸聚合物、淀粉等大分子化合物、胶体分散液和乳液等。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,但膜表面的化学物质也是影响分离的一个重要因素。超滤过程与微滤类似,也是膜表面上的机械截留( 筛分) 、在膜孔中的停留( 阻塞) 、在膜表面及膜孔内的吸附三种形式。不过其膜孔更小、过滤精度更高, 实际操作压力比微滤略高。

纳滤: 膜孔径在 1-10 nm, 是一种介于反渗透和超滤之间的压力驱动膜分离过程,主要用于二价或多价离子及分子量介于200-500之间的有机物的脱除。纳滤膜的分离机理模型目前的看法有: 空间位阻—孔道模型,溶解扩散模型、空间扩散模型、空间电荷模型、固定电荷模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的,因此其分离机理在存在共性的同时,也存在差异。

反渗透: 膜孔径小为 1 nm,它仍是一种压力驱动的膜过程, 与其他压力驱动的膜过程相比,反渗透是最精细的过程,因此又称“高滤”。它过滤的实质是利用反渗透膜具有选择性透过溶剂而截留离子物质的性质。分离的过程是依靠膜两侧的静压力差为推动力,用以克服溶剂的渗透压,使溶剂通过反渗透膜而实现对液体混合物进行分离。它主要用于水的脱盐、软化、除菌等。它的分离机理与其它压力驱动膜过程有所不同,分离过程除与孔的大小有关外,还取决于对透过组分在膜中的溶解、吸附和扩散,因此与膜的化学、物理性质以及透过组分与膜之间的相互作用有很大关系。此外,还有其他几种膜,如表一所示:

表一其他膜分离技术

膜分离技术原理推动力(压力

差)/kpa

透过组分截留组分膜类型处理物质形态

电渗透离子交换电化学势-渗

透小离子组分大离子和水离子交

换膜

液体

膜蒸馏传质分离蒸汽压差挥发性组分离子、胶体、

大分子等不会

挥发组分和无

法扩散组分多孔疏

水膜

液体或者气体

液膜溶解扩散浓度差可透过组分无法透过组分液膜液体

渗透汽化溶解扩散浓度差膜内易溶解

或易挥发组

分不易溶解或不

易挥发组分

均质膜、

复合膜

或非对

称膜

进料为液态,渗

透为气态

3 膜分离技术在各行业的应用及研究进展

3.1膜分离技术在化工生产的应用

含氟化合物去除中的应用。目前很多磷肥生产企业会利用膜微滤技术将磷石膏废水中的一些含氟化合物去除,膜分离技术可以有效截留大分子溶质,微粒在0.05-10um左右也可以去除。以往在废水中加入石灰乳,废水中的氟化合物中和以及沉淀的效果并不理想,很难符合标准的排放要求(10mg/L)。而且传统的石灰乳处理废水的过程相当繁琐,时间也比较长。但是通过将膜微滤技术处理废水中的含氟化合物,只需要在膜分离器中放置石灰乳,还有废水进行中和反应后的微粒即可。通过膜微滤技术处理的废水含氟量大概只有6mg/L左右,远远小CaF

2

于10mg/L,符合废水排放标准,这样废水也可以循环应用。

在废气粉尘回收中的应用。在工业生产过程中很容易产生大量的粉尘,对周围环境会造成严重的污染。比如,若采用旋风分离器或者普通袋滤器来处理水泥窑尾气,尾气的粉尘含量经处理后大概是90-115mg/m3,这样形成的系统阻力介于1.5-2.0kPa左右,并不满足国家排放标准,同时由于尾气含水量较大,若短时间内温度急剧下降,极易导致生产设备堵塞,对生产造成严重影响。但是若采用膜微滤分离技术处理,废气粉尘含量可降低至 4.3mg/m3,而系统阻力只是在1.00kPa左右,完全满足国家排放标准要求,同时可减少生产设备堵塞现象,大大提高生产效率。其次,膜微滤分离器至少会有3年以上使用寿命,比较经济、节能。在磷肥生产、磷酸氢钙干燥窑尾气、石灰窑、钛白粉生产、磷铵生产等诸多方面粉尘处理中都有所应用。

此外,在工业废水如含油废水、染料废水、造纸废水、重金属废水、高浓度的有机废水处理过程中,膜分离技术都有广泛应用。

3.2膜分离技术在食品工业的应用[2]

反渗透、超滤技术在乳制工业中的应用的最主要是:乳清蛋白的回收、脱盐和牛乳的浓缩。此外,膜分离技术在饮料工业中的应用也十分广泛:以普通蒸发法浓缩的果汁,在蒸发过程中,原果汁所含的水溶性方向物质及维生素等几乎全部被破坏、损失。当采用反渗透设备在10MPa的操作压力下处理柑橘和苹果等果汁,得到固形物损失率小于1%的浓缩果汁,其芳香物及维生素等得到很好的保存。而超滤主要用于果汁的澄清:如靠压榨生产的苹果汁,含有12%的固体包括糖、苹果酸、淀粉、果胶和酚类化合物。超滤后果汁的得率可达到96%以上,且超滤加工时间很短,操作简单,节省人力和储罐设备。同时,通过超滤也除去了果汁中的细菌、霉菌、酵母和果胶等,故超滤后的果汁可有2年的货架寿命,保存时间远远超过通过传统工艺制作的产品。

此外,膜分离技术在油脂加工、豆制品加工、淀粉加工、制糖工业、酿酒工业等方面,膜分离技术都有应用。

3.3膜分离技术在制药行业中的应用

近几年,国内应用膜分离纯化微生物药物主要有以下几种方式:一是用溶剂萃取抗生素后,萃取液用疏水性纳滤膜处理,浓缩抗生素,可改善操作环境;二用亲水性纳滤膜对未经萃取的抗生素发酵滤液进行浓缩,除去水和无机盐,再用萃取剂萃取,可大幅度提高萃取过程的生产能力,减少萃取剂的用量。还有多层液膜分离技术的应用,同时还有组合分离: 超滤和纳滤膜组合分离、超滤、纳滤和转相组合分离、超滤和反渗透膜组合分离等。[3]

但是目前膜分离技术在该行业中应用仍十分受限。原因有:一是作为一种迅速发展起来的新型分离技术,膜分离过程本身仍存在许多技术问题,诸如高分离因子及高渗透通量膜的制备,高稳定性,耐污染清洗膜组件的研制;二是发酵液

是一种复杂的介质

,黏度、浓度和颗粒大小都不一样,甚至会有多种与主产品高度相似的副产品,对膜分离的选择性有很高要求;三是医药行业对卫生要求极严,膜容易被污染;最后试验采用的膜组件应由自制转向标准化,这将有利于试验结果的可靠性的提高。

另外,膜分离技术还应用于中药生产,它具有许多传统方法无法比拟的优点:分离过程简便,且不需加热,适用于热敏性物质的分离;分离效率高;不消耗有机溶剂,可以缩短生产周期,降低成本,降低环境污染;分离选择性高;可实现连续化和自动化操作,满足中药现代化生产的要求。膜分离技术在中药领域中的应用将推动中药现代化发展进程,同时还能提高我国中药的附加值,有利于中药出口。

3.4膜分离技术在海水淡化中的应用[4]

渗透膜分离技术主要包括正渗透技术(Forward osmosis,FO)和反渗透技术(Reverse osmosis,RO)。目前的海水淡化处理主要是RO 技术,但是RO技术需要高压操作,能耗较高,且对预处理要求严格,运行成本高,还伴有二次污染,而FO技术只依靠渗透压,无需外界压力,能耗低,无二次污染,有望共同解决淡水资源问题。目前,RO技术每生产 1000加仑纯水是2-4美元,能耗10-60 kJ,能耗很高;FO技术能耗为0.84 k Wh· m-3,比RO低72.1%。我国浙江舟山六横岛和河北曹妃甸日产10万吨 RO技术相继投产,1990年美国RO技术水处理量每天逾300万吨。但是,由于正渗透膜过程存在的内浓差极化,膜污染和溶质逆向扩散等问题,使得该技术的工业化尚有一定距离。

4 膜分离技术特点及发展方向

从膜分离技术的工作原理和实际应用可以归结出膜分离技术的特点。

优点:(1)膜分离技术是一种节能技术,膜分离过程不发生相变化;(2)膜分离过程是在压力驱动下,在常温下进行分离过程,特别适合于对热敏感物质,如酶、果汁、某些药品分离、浓缩、精制等;(3)膜分离技术适用分离范围极广,从微粒级到微生物菌体,甚至离子级等都有其用武之地,其关键在于选择不同的膜类型;(4)膜分离技术由于只是以压力差作为驱动力。因此,该项技术所采用装置简单,操作方便。

缺点:膜容易污染和劣化。处理物料中的微粒、胶体粒子或溶质分子与膜发生物理化学相互作用或因浓度极化使某些溶质在膜表面浓度超过其溶解度及机械作用而引起膜表面或膜孔内吸附、沉积造成膜孔径变小或堵塞,使膜产生透过流量与分离特性的不可逆变化。

所以,今后的研究趋势将是分离技术的高效集成化。从影响膜分离在实际操作中迅速应用发展的主要障碍出发,解决膜的污染、堵塞问题。由于原料液的粘度很高,使膜通量衰减严重,无法继续分离,更不用说投入工业化大生产。要实现生物制品提纯的规模性应用,还要取决于相关方面的发展,如膜污染机制研究,性能优良、抗污染膜材料的研究。多种类型的膜分离技术在生化产品应用中协同发展,超滤、纳滤、微滤技术联用,取长补短,实行多级分离是发展的趋势。

5 结语

经过近半个世纪的发展,膜分离技术已完成了从实验室到大规模工业应用的转变,开始在工业生产中发挥举足轻重的作用。但它毕竟是一门涉及多学科的高新技术边缘学科,在理论和实际应用方面还需要进一步研究。

膜分离技术作为一种新型和高效的水处理技术受到各国水处理研究者的普遍重视,并取得了许多成功经验。今后随着膜制备技术的不断提高膜分离在环境化工、食品医药等领域必将得到更为广泛的应用。

参考文献:

[1] 岳志新,马东祝,赵丽娜,等.膜分离技术的应用及发展趋势[M].云南地理环境研究: 2006.9(5):52-57.

[2]陈海军.膜分离技术及其在食品工业中的应用[J]. 恩施职业技术学院学报:综合版:2008(2):53-55.

[3]顾觉奋.膜分离技术在微生物制药中的应用[M].中国抗生素杂志:2005.1(1):26-31.

[4]陶宇,李亚冰.正渗透膜分离技术在海水淡化中的应用[M]. 广州化工:2015.1(1):22-25.

(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注!)

分析化学中的分离技术课程论文。

离子液体及其在萃取中的应用 姓名: 许文洁专业: 物理化学学号: 030130248 摘要:环境问题日益成为人们关注的焦点。离子液体作为一种绿色溶剂可以较好的解决原有的挥发性有机溶剂造成的环境污染问题。本文阐述了离子液体在萃取分离中的应用进展。重点介绍了离子液体在萃取分离有机物、金属离子和生物分子及燃料脱硫方面的应用研究。 关键词:离子液体;绿色溶剂;金属离子;萃取;分离 Abstract:Environmental problem is increasingly become the focus of attention. As a green solvent, ionic liquid is a good solution to the original environment pollution problem caused by the volatile organic solvents. This paper expounds the application of ionic liquids in extraction and separation. Focus on the ionic liquids applied research in extraction and separation of organic matter, metal ions and biological molecules and fuel desulfurization aspects. Key Words:ionic liquid;green solvent;metal ions;extraction;separation 1.离子液体 离子液体是指呈液态的离子化合物,最简单常见的离子液体是处于熔融状态的氯化钠。由于一般的离子化合物都是固体,所以在以往的印象中离子液体必然是与高温相联系的。但高温状态下物质的活性大、易分解,很少可以作为反应、分离溶剂使用。室温离子液体是指在室温附近很大的温度范围内均为液体的离子化合物,它很好的解决了高温条件下的不稳定问题,因此室温离子液体具有很大的潜力作为溶剂使用。现在在研究当中称离子液体一般即指室温离子液体。离子液体体系中没有分子而均为离子,因此液体具有很高的导电性,常被用于作为电池的电解液[1,2]。由于离子液体是离子态的物质,挥发性很低,不易燃,对热稳定,这就保证了它对环境没有以往挥发性有机溶剂(VOC)所无法避免的污染。正是如此,它被称为是一种绿色溶剂,可以被用来替代原有的有机溶剂作为反应和分离介质来开发清洁工艺[2,3]。由于环境的压力在逐渐加大,室温离子液体的研究开发逐渐得到更多的重视。 2.离子液体的合成方法 离子液体的合成步骤一般包括阴离子和阳离子的合成以及阴阳离子的反应结合。以烷基咪唑类离子液体为例,合成时首先在咪唑的1,3 位上引入烷基基团变成氯化1-甲基-3-乙基咪唑,然后与目标阴离子进行阴离子交换反应形成所需产物。以往一般使用银作为与目标阴离子配对的阳离子,然后银盐和氯化1-甲基-3-乙基咪唑在水相或者在甲醇水体系中进行离子交换。这种方法的缺点在于它需要使用价格较高的银。现在的离子交换反应一般在非水相中进行,也就是采用将氯化1-乙基-3-甲基咪唑溶解在丙酮或乙腈中,然后将铵化阴离子再溶解到其中形成需要的离子液体化合物,这一步的关键是在于NH4Cl 在有机相中不溶,从而可以推动整个反应趋向平衡[5]。 3.离子液体的性质研究 室温离子液体研究的一个关键问题是如何降低体系的熔点,这直接关系到离子液体的使用温度范围。离子液体的熔点是通过选用不同的阴阳离子来调节的,为了削弱离子键,一般都使阳离子在结构上不对称,分子尺寸相对较大。对于烷基咪唑类和烷基吡啶类的离子液体,烷基侧链的分子数越多,则分子尺寸越大,熔点就越低,然而当分子数增加到一定时,不同的烷基链间的分子间作用力加强,有可能会抵消离子键的削弱,反而会导致熔点升高。J.D.Holbrey 等[4]对1,3-二烷基咪唑类离子液体中烷基的碳原子个数多少对熔点的影响作了研究。以[BF4]- 为阴离子的1-烷基-甲基咪唑,碳原子数目在5~9时熔点最低达到- 90。C,如果再增加碳原子的数目熔点反

生物大分子分离技术综述

生物大分子分离技术综述 摘要:生物大分子包括核酸DNA和RNA、多糖、酶、蛋白质以及多肽等。生物大分子分离技术是生物研究中的核心技术之一,当前医学,药学及生命科学学科之间的交叉渗透为大分子分离技术的发展提供了更多的契机。本文对以沉淀、透析、超滤和溶剂萃取为代表的传统分离技术, 以及色谱, 电泳等现代分离技术的发展概况、方法、特点及应用进行了综述。 关键字:分离技术生物大分子 1前言 生命科学的发展给生物大分子的分离技术提出了新的要求。各种生化、分子研究要求提取分离高纯度,结构完整和具有生物活性的活性的生物大分子样品,这就使得分离技术在各项研究中起着至关重要的作用。对生物大分子分离技术的研究也就随之产生。同时,随着各学科之间的交叉渗透,纳米材料、计算机自动化等技术的发展也为生物大分子技术的发展提供了更多的空间。 生物大分子的制备具有如下特点:生物样品的组成极其复杂,许多生物大分子在生物样品中的含量极微,分离纯化的步骤繁多,耗时长;许多生物大分子在分离过程中就非常容易失活,因此分离过程中如何保证生物大分子的活性,也是提取制备的困难之处;生物大分子的制备几乎都是在溶液中进行的,温度、PH值、离子强度等各种参数对溶液中各种组成的综合影响,很难准确估计和判断。这些都要求生物大分子的分离技术以此为依据,突破这些难点,优化分离程序以获得符合要求的生物大分子试剂。 2传统分离技术 被广泛应用传统的生物大分子分离方法有透析、溶剂萃取、沉淀和超滤等,它们都是一些较早就建立起来比较完善的的分离方法。 2.1透析法 1861年Thomas Graham发明透析方法,已成为生物化学实验中最简易常用的分离纯化技术之一。在生物大分子的分离过程中,除盐、少量有机溶剂、生物小分子杂质和浓缩样品等都需用到透析。现在,除半透膜的材料更加多样化,透析方式也更加多样。透析法主要是利用小分子物质在溶液中可通过半透膜,而大分子物质不能通过半透膜的性质,达到分离的方法。例如分离和纯化DNA、蛋白质、多肽、多糖等物质时,可用透析法以除去无机盐、单糖、双糖等杂质。反之也可将大分子的杂质留在半透膜内,而将小分子的物质通过半透膜进入膜外溶液中,而加以分离精制:透析是否成功与透析膜的规格关系极大。透析膜的膜孔有大有小,要根据欲分离成分的具体情况而选择。透析膜有动物性膜、火棉胶膜、羊皮纸膜、蛋白质胶膜、玻璃纸膜等。分离时,加入欲透析的样品溶液,悬挂在纯化水容器中,经常更换水加大膜内外溶液浓度压,必要时适当加热,并加以搅拌,以利透析更快。最后,透析是否完全,须对透析膜内溶液进行检测。

新型绿色化工分离技术及其应用

新型绿色化工分离技术及其应用 摘要:伴随着能源危机、环境污染,现在对资源利用与清洁生产提出较高要求,此也推动了新型绿色分离技术的快速发展。文章则主要介绍了膜分离技术、分子蒸馏技术及超临界萃取技术的原理及应用。 关键字:新型绿色分离技术膜分离技术分子蒸馏技术超临界萃取技术 前言 化工分离技术是化学工程的一个重要分支,石油炼制、塑料化纤、同位素分离,以及生物制品的精制、纳米材料的制备、烟道气的脱硫和化肥农药的生产等等都离不开化工分离技术。化工生产中的原料和产物绝大多数都是混合物, 需要利用体系中各组分物性的差别或借助于分离剂使混合物得到分离提纯,它往往是获得合格产品、充分利用资源和控制环境污染的关键步骤。伴随着煤炭与石油危机引起的能源危机,对资源利用与清洁生产也提出了要求,这就对分离技术的要求越来越高。正是人们希望采用更高效的节能、优产的方法以及所采用的过程与环境友好,推动了新型分离技术的快速发展。文章对膜分离技术、分子蒸馏技术和超临界萃取的应用进行阐述。 1膜分离技术 近20年来膜技术发展及其迅速,已从单独的海水与苦咸水脱盐,纯水及超纯水的制备,工业用水的回用,逐步拓展到环保、化工、医药、食品等领域中,发展前景备受关注。膜分离技术具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势[1],是现代分离技术中一种效率较高的分离手段[1,2,3]。目前常见的膜分离过程课分为以下几种:微滤(Microfiltration,MF),超滤(Ultrafiltration,UF),纳滤(Nanofilatration,NF),反渗透(Reverseosmosis,RO),电渗析(Electrodialysis,ED)等。 1.1微滤 1.1.1微滤原理 微滤又称精过滤,其基本原理属于筛网状过滤,在静压差的作用下,利用膜的“筛分”作用,小于膜孔的粒子通过滤膜,大于膜孔的粒子则被截留到膜面上,

现代分离技术论文

分离技术的发展现状和展望 摘要: 简要阐述了分离技术的产生和发展概况,各主要常规和新型分离技术的发展现状、研究前沿及未来的发展方向,并讨论了分离技术将继续推动现代化工和相关工业的发展,并在高新技术领域的发展中大显身手。 关键词:分离技术;发展现状;展望 Development Status and prospect on separation technology Abstract:The history of produce and development on separation engineering is briefly introduced. The status and study advance of most traditional and new separation techniques and its developing direction in future is briefed. In the past, separation technology brought into important play in chemical engineering.It is discussed that it will also impel modern chemical engineering and relative industries in future. Moreover it will strut its stuff in high technology. Key words: separation technology; development; prospect 本文从分离技术的产生和发展概况入手,综述了精馏、吸附、干燥等常规分离技术和超临界流体分离、膜分离、耦合分离等新型分离技术的研究,并分析了各种技术在现代化工中的重要作用。

分离技术论文

分离技术论文 目录 一.超临界萃取技术的简介 二.超临界萃取技术的原理 三.超临界萃取技术的特点 四.超临界萃取技术的技术应用 五.超临界萃取技术的装置 六.综述 一.超临界萃取技术的简介 超临界为超临界流体,是介于气液之间的一种既非气态又非液态的物态,这种物质只能在其温度和压力超过临界点时才能存在。超临界流体的密度较大,与液体相仿,而它的粘度又较接近于气体。因此超临界流体是一种十分理想的萃取剂。 超临界流体的溶剂强度取决于萃取的温度和压力。利用这种特性,只需改变萃取剂流体的压力和温度,就可以把样品中的不同组分按在流体中溶解度的大小,先后萃取出来,在低压下弱极性的物质先萃取,随着压力的增加,极性较大和大分子量的物质与基本性质,所以在程序升压下进行超临界萃取不同萃取组分,同时还可以起到分离的作用。 温度的变化体现在影响萃取剂的密度与溶质的蒸汽压两个因素,在低温区(仍在临界温度以上),温度升高降低流体密度,而溶质蒸汽压增加不多,因此,萃取剂的溶解能力时的升温可以使溶质从流体萃取剂中析出,温度进一步升高到高温区时,虽然萃取剂的密度进一步降低,但溶质蒸汽压增加,挥发度提高,萃取率不但不会减少反而有增大的趋势。 除压力与温度外,在超临界流体中加入少量其他溶剂也可改变它对溶质的溶解能力。其作用机理至今尚未完全清楚。通常加入量不超过10%,且以极性溶剂甲醇、异丙醇等居多。加入少量的极性溶剂,可以使超临界萃取技术的适用范围进一步扩大到极性较大化合物。二.超临界萃取技术的原理 所谓超临界流体,是指物体处于其临界温度和临界压力以上时的状态。这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而急剧增大。这些特性使得超临界流体成为一种好的萃取剂。而超临界流体萃取,就是利用超临界流体的这一强溶解能力特性,从动、植物中提取各种有效成份,再通过减压将其释放出来的过程。 超临界流体萃取法是一种物理分离和纯化方法,它是以CO2为萃取剂,在超临界状态下,加压后使其溶解度增大。将物质溶解出来,然后通过减压又将其释放出来。该过程中CO2循环使用。在压力为8--40MPa时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极化物。该技术除可替代传统溶剂分离法外,还可以解决生物大分子、热敏性和化学不稳定性物质的分离,因而在食品、医药、香料、化工等领域受到广泛重视。超临界流体的萃取流程 三.超临界萃取技术的特点 (1)、超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来; (2)、使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天

泡沫分离技术综述论文

泡沫浮选分离技术--曹肖烁 摘要:综述了泡沫浮选技术的定义、分类以及原理,介绍了泡沫浮选分离技术中使用的试剂(捕收剂、起泡剂、活化剂、无机调整剂、有机调整剂)、浮选机械等因素对分离效果的影响,并介绍了泡沫浮选分离技术的应用,指出了泡沫浮选分离技术的发展前景。 一.泡沫浮选的定义与分类 泡沫浮选是以气泡分离介质来浓集表面活性物质的一种新型分离技术,主要特点是利用气泡的气-液界面,分离被水润湿性不同的物料。疏水的物料随气泡漂浮到水面上,形成含某种成分很高的泡沫层;而被水润湿的物料,沉于水中,因而可以把它们分开[1]。人们通常把凡是利用气体在溶液中鼓泡,以达到分离或浓缩目的的这类方法总称为泡沫浮选分离技术,简称泡沫浮选技术。 根据被分离物质的不同,它可以分为两类:一类是本身具有表面活性物质的分离以及各种天然或合成表面活性剂的分离,例如医药生物工程中蛋白质、酶、病毒的分离;另一类是本身为非表面活性剂,但可以通过配合或其它方法使其具有表面活性,这类体系的分离被广泛地用于工业污水中各种金属离子如铜、锌、铁、汞、银等的分离回收。 根据被分离物质的溶解性,泡沫分离也可以分为不溶物的浮选和溶解物的浮选两大类。矿物浮选在不溶物浮选中最重要,也是最成熟的。表面活性剂在固体颗粒的表面形成半胶束单分子吸附层,且呈亲水基向里憎水基向外的状态,从而降低固体表面的润湿性,表现出疏水性吸附至气泡界面的倾向,使浮选得以进行。离子浮选是溶解物浮选的一类。其过程和前述过程十分相似,所不同的是表面活性剂并非吸附在被浮选物的表面。气泡形成时气液界面有表面活性剂吸附层,被浮选的离子通过静电吸引被束缚在气泡的界面上而随气泡上升。分子浮选是溶解物浮选的另一类别,是将少量溶解的分子如点白纸、醇等有机物从水中分离的过程。被分离物被气泡气液界面表面活性剂半胶束单分子层增溶富集而随气泡上升,得以浮选[2]。

现代分离技术复习思考题及答案

第一章膜分离 1.什么是分离技术和分离工程? 分离技术系指利用物理、化学或物理化学等基本原理与方法将某种混合物分成两个或多个组成彼此不同的产物的一种手段。 在工业规模上,通过适当的技术与装备,耗费一定的能量或分离剂来实现混合物分离的过程称为分离工程。 2.分离过程是如何分类的? 机械分离、传质分离(平衡分离、速率控制分离)、反应分离 第二章膜分离 1.按照膜的分离机理及推动力不同,可将膜分为哪几类? 根据分离膜的分离原理和推动力的不同,可将其分为微孔膜、超过滤膜、反渗透膜、纳滤膜、渗 析膜、电渗析膜、渗透蒸发膜等。 2.按照膜的形态不同,如何分类? 按膜的形态分为平板膜、管式膜和中空纤维膜、卷式膜。 3.按照膜的结构不同,如何分类? 按膜的结构分为对称膜、非对称膜和复合膜。 4.按照膜的孔径大小不同,如何分类? 按膜的孔径大小分多孔膜和致密膜。 5.目前实用的高分子膜膜材料有哪些? 目前,实用的有机高分子膜材料有:纤维素酯类、聚砜类、聚酰胺类及其他材料。 6.MF(微孔过滤膜),UF(超过滤膜),NF(纳滤膜),RO(反渗透膜)的推动力是什么? 压力差。 7.醋酸纤维素膜有哪些优缺点? 醋酸纤维素是当今最重要的膜材料之一。醋酸纤维素性能稳定,但在高温和酸、碱存在下易发生水解。纤维素醋类材料易受微生物侵蚀,pH值适应范围较窄,不耐高温和某些有机溶剂或无机溶剂。 8.醋酸纤维素膜的结构如何? 表皮层,孔径(8-10)×10-10m。过渡层,孔径200×10-10m。多孔层,孔径(1000-4000)×10-10m 9.固体膜的保存应注意哪些问题? 分离膜的保存对其性能极为重要。主要应防止微生物、水解、冷冻对膜的破坏和膜的收缩变形。微生物的破坏主要发生在醋酸纤维素膜;而水解和冷冻破坏则对任何膜都可能发生。温度、pH值不适当和水中游离氧的存在均会造成膜的水解。冷冻会使膜膨胀而破坏膜的结构。膜的收缩主要发生在湿态保存时的失水。收缩变形使膜孔径大幅度下降,孔径分布不均匀,严重时还会造成膜的破裂。当膜与高浓度溶液接触时,由于膜中水分急剧地向溶液中扩散而失水,也会造成膜的变形收缩。 10.工业上应用的膜组件有哪几种? 工业上应用的膜组件主要有中空纤维式、管式、螺旋卷式、板框式等四种型式。 11.在上述膜组件中装填密度最高的是那种?料液流速最快的是那种? 中空纤维式,管式。 12.什么叫浓差极化?如何消除浓差极化现象? 在膜分离操作中,所有溶质均被透过液传送到膜表面上,不能透过膜的溶质受到膜的截留作用,在膜表面附近浓度升高。这种在膜表面附近浓度高于主体浓度的现象称为浓度极化或浓差极化。 它是一个可逆过程。只有在膜运行过程中产生,停止运行,浓差极化逐渐消失。

节能新技术在化工分离工程中的应用

节能新技术在化工分离 工程中的应用 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

论文题目节能新技术在化工分离工程中的应用

摘要 近年来,随着市场经济的快速发展,化工行业也迅速崛起。但是,由于化工行业巨大的污染性,而使其成为我国环境污染的源头之一,在当前追求低碳经济和绿色经济的大环境下,化工行业的发展受到了一定的限制。 关键词 化工分离节能新技术研究进展 引言 当前,随着社会的发展和进步,越来越多的人认识到节约资源、保护环境的重要性。国家的“十二五”规划纲要指出:“十二五”期间要大力开发和积极推广低碳技术,节能减排工作不断深入,“十二五”末高耗能产品单耗达到国际先进水平,能耗在“十一五”末的基础上再下降10%,主要产品实现清洁生产,主要污染物排放总量在“十一五”末的基础上再下降10%。进一步提高高耗能、高排放和产能过剩行业准入门槛。这就意味着当前高污染、高耗能的化工行业的节能减排进程必须加快。 正文 我国化工行业主要是从事化学工业生产和开发的能源工业以及基础原材料工业。化工行业是我国国民经济体系中的一个重要部门,它对经济发展、国防事业以及人们的社会生活都发挥着极其重要的作用。改革开放以来,我国的石油化工产业取得了巨大的成就。但是由于化学工业本身的缺点和局限,导致在生产过程中排放的污染物种类多、数量大、

毒性高,严重影响生态环境和人类的身体健康。当前,由于在节能减排技术开发上的滞后,导致我国化工行业节能减排和环保技术水平落后,也使得化工行业生产过程中的高耗能、高污染现状持续得不到缓解。从而导致我国化工行业的能耗量始终排在全国工业领域的前列。而化工行业的废水排放量甚至长期高居全国工业领域的第1位。 化工分离过程是将混合物分离成各组分组成各不相同的两种(或几种)产品的操作。一套标准的化工生产装置,应包括一个反应器和具有提纯原料、中间产物与产品以及后处理的多个分离设备构成。首先,分离过程必须能够去除原料杂质,为化学反应提供纯度达到工业生产要求的原料,减少杂质带来的影响(副反应增加,催化剂中毒等);再者,分离过程能够对反应产物进行处理,获得所需产品的同时分离出未完全反应的反应物,循环利用;此外,分离过程还需要在工业废水处理与环境保护方面发挥作用,减少工业三废的排放。因此,我们看到化工分离过程在化学工业生产中占据着非常重要的地位。 膜分离技术是利用特定膜的渗透作用,在外界能量或化学位差的推动下。对气相或液相混合物进行分离、分级、提纯和富集,膜分离过程大多尤相变,常温操作,高效、节能、工艺简便、污染小。20世纪80年代以来我国膜技术跨入应用阶段,同时也是新膜过程的开发阶段。在这一时期,膜技术在食品加工、海水淡化、纯水、超纯水制备、医药、生物、环保等领域得到了较大规模的开发和应用。 离子膜烧碱不但能生产出高纯度烧碱和氢气,而且节能效果显着,比隔膜法节约能耗约30%。因此,离子膜法将逐步取代隔膜法生产烧

三种新型分离技术的综述

1引言 国内外对分离技术的发展十分重视,但由于应用领域十分广泛,原料、产品和对分离操作的要求多种多样,决定了分离技术的多样性。按机理划分,可大致分为五类:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离);用固体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等。现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术。 2超临界流体萃取技术及其应用 超临界流体萃取是_种以超临界流体代替常规有机溶剂对目标组分进行萃取和分离的新型技术。其原理是利用流体(溶剂)在临界点附近区域(超临界区)内与待分离混合物中的溶质具有异常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动来实现分离的。由于二氧化碳具有无毒、不易燃易爆、廉价、临界压力低、易于安全地从混合物中分离出来,所以是最常用的超临界流体。相对于传统提取分离方法(煎煮、醇沉、蒸发浓缩等)具 作者简介:周芙蓉,女,中北大学化工与环境学院研究生有以下优点:萃取效率高、传递速度快、选择性高、提取物较干净、省时、减少有机溶剂及环境污染、适合于挥发油等脂溶性成分的提取分离。 超临界流体萃取技术特点 ⑴由于在临界点附近,流体温度或压力的微小变化会引起溶解能力的极大变化,使萃取后溶剂与溶质容易分离。 ⑵由于超临界流体具有与液体接近的溶解能力,同时又保持了气体所具有的传递性,有利于高效分离的实现。 (3)利用超临界流体可在较低温度下溶解或选择性地提取出相应难挥发的物质,更好地保护热敏性物质。 (4)萃取效率高,萃取时间短。可以省却清除溶剂的程序,彻底解决了工艺繁杂、纯度不够且易残留有害物质等问题。 (5)萃取剂只需再经压缩便可循环使用,可大大降低成本。 (6)超临界流体萃取能耗低,集萃取、蒸馏、分离于_体,工艺简单,操作方便。 (7)超临界流体萃取能与多种分析技术,包括气相色谱、高效液相色谱、质谱等联用,省去了传统方法中蒸馏、浓缩溶剂的步骤。避免样品的损失、降解或污染,因而可以实现自动化。

[化工分离技术论文]膜分离技术

[化工分离技术论文]膜分离技术 化工分离技术是通过采用化工设备的专有作用,对相应的化合物质利用其表现出来的物理特性和化学特性对整体化合物就行有效分离的一个技术,下面是由小编整理的化工分离技术论文,谢谢你的阅读。 化工分离技术论文篇一 化工分离技术新技术研究与进展 [摘要]本文主要从现今化工分离技术的应用范围和化工分离技术的新进展方向进行分析,并结合市场社会的要求,对化工分离技术的成本要求进行评价,并最终以活性炭纤维(ACF)投入市场应用的例子来阐明化工分离技术新技术的具体应用。 [关键词]化工分离技术;新技术;应用前景 中图分类号:TQ028 文献标识码:A 文章编号:

化工分离技术是通过采用化工设备的专有作用,对相应的化合物质利用其表现出来的物理特性和化学特性对整体化合物就行有效分离的一个技术,是化工研究整体的一个重要分支,在所有的化工生产中,化工分离这一技术都贯穿在整个的生产过程中。从化工分离技术的发展历史来看,化工分离技术逐渐原来的单一理论研究逐渐转变为理论和实践的有效结合,并在能源、生物、环境等领域进行切实有效的化工分离技术实践,把理论知识利用到现实生活中,方便人们的生活和工作效率的提高。而在此基础上,化工分离技术又产生了新的分离技术方式,可以运用于更多的领域,这种更大程度上的化工分离技术的普及使得化工分离技术的发展逐渐变得成熟。 一、现今化工分离技术新技术的应用范围 1、环境保护工程 随着人类社会发展的原来越成熟和科技运用的越来越普及,人们的生活水平得到了极大的提升,但环境污染的现实情况却是很让人担忧。各种废水及其他污染物的肆意排放使得人们的生活环境质量不断下降,甚至因为有些废气、废水的慢性污染,人们还会因此患上一些不治之症。例如上世纪很有名的日本水俣病。从化工分离的角度来看,在很多工业制造过程中排出的各种废气、废水并不是别无它用的,无论是硫

结晶分离技术

结晶分离技术 摘要:概述了结晶分离技术的原理, 综述了冷却剂直接触冷却结晶、反应结晶、蒸馏结晶耦合、氧化还原结晶液膜、萃取结晶、磁处理结晶等结晶分离方法。并且介绍了结晶分离新技术在一些领域的应用。 关键词:结晶;分离;应用; 溶液结晶在物质分离纯化过程中有着重要的作用, 随着工业的发展, 高效低耗的结晶分离技术在石油、化工、生物技术及环境保护等领域的应用越来越广泛, 工业结晶技术及其相关理论的研究亦被推向新的阶段, 国内外新型结晶技术及新型结晶器的开发设计工作取得了较大进展。 结晶理论的发展 结晶分离过程为一同时进行的多相非均相传热与传质的复杂过程。多年来,众多研究者在结晶热力学、结晶成核、晶体生长动力学、结晶习性、晶体形态及杂质对结晶过程的影响等方面进行了大量基础性研究并提出了描述结晶过程的理论[1 ] ,例如,粒数衡算理论及其相关理论、评价熔融结晶过程以及熔化过程的一些关系式的提出等; Kirwan 和Pigford 基于活化状态模型发展了熔融液中晶体生长的界面动力学绝对速度理论[2 ] ;将计算流体力学的方法与粒数衡算理论相结合,通过模拟的方法揭示沉析动力学和流体力学之间的相互作用等。结晶是一个重要的化工过程,溶质从溶液中结晶出来要经历两个步骤:晶核生成和晶体生长。晶核生成是在过饱和溶液中生成一定数量的晶核;而在晶核的基础上成长为晶体,则为晶体生长。影响整个结晶过程的因素很多,如溶液的过饱和度、杂质的存在、搅拌速度以及各种物理场等。例如声场对结晶动力学的影响,张喜梅等[3 ]就系统地研究了声场对溶液成核、溶液稳定性及晶体生长的影响,并深入探讨了其影响机理,为创造一种靠外力场强化工业结晶过程新单元操作提供了理论依据,将促进溶液结晶理论的发展。在过饱和溶液中附加声场,会产生空化气泡,气泡的非线性振动以及气泡破灭时产生的压力,使体系各点的能量发生变化。体系的能量起伏很大,使分子间作用力减弱,溶液粘度下降,增加了溶质分子间的碰撞机会而易于成核,且气泡破灭时除产生的压力外,会产生云雾状气泡,这有助于降低界面能,使具有新生表面的晶核质点变得较为稳定,得以继续长大为晶核。这些都丰富了结晶理论,为结晶理论的进一步发展开辟了新领域。结晶过程所形成的组织结构主要由结晶过程固液界面的形态、晶体生长特征所决定。近年来,国际上越来越多的研究者认识到,开展对结晶过程晶体形貌结构特征的研究,对控制晶体的微观结构并获得所期望的材料性能具有重要意义。 1.结晶分离技术的研究进展 结晶分离技术近年来发展很快,传统结晶法进一步得到发展与完善,新型结晶技术也正在工业上得到应用或推广。随着国际化工市场的竞争日趋激烈,要求化工产品的质量不断提高而成本则不断降低,因此,人们在研究开发新的结晶技术过程中更加重视结晶方法的选择、新型结晶器的开发及结晶工艺的设计。 2.结晶分离技术的分类 结晶分离技术近年来发展很快, 传统结晶法进一步得到发展与完善, 新型结晶技术也正在工业上得到应用或推广。随着国际化工市场的竞争日趋激烈, 要求化工产品的质量不断提高而成本则不断降低, 因此, 人们在研究开发新的结晶技术过程中更加重视结晶方法的选择、

分离纯化技术及应用论文

分离纯化工艺的运用及发展综述 作者:王亚森 分离纯化工艺的运用及发展综述 摘要:随着药物研究、开发和生产中常用的分离纯化技术的原理、工艺、特点和应用,为了更好的利用分离纯化技术为社会创造更高的经济价值,本文综合概述了分离纯化技术的基本原理及其应用。 关键词:分离纯化技术,应用,发展,原理,应用。 引言:分离纯化过程就是通过物理、化学或生物等手段,或将这些方法结合,将某混合物系分离纯化成两个或多个组成彼此不同的产物的过程。通俗地讲,就是将某种或某类物质从复杂的混合物中分离出来,通过提纯技术使其以相对纯的形式存在。实际上分离纯化只是一个相对的概念,人们不可能将一种物质百分之百地分离纯化。例如电子行业使用的高纯硅,纯度为99.9999%,尽管已经很纯了,但是仍然含有0.0001%的杂质。被分离纯化的混合物可以是原料、反应产物、中间体、天然产物、生物下游产物或废物料等。如中药、生物活性物质、植物活性成分的分离纯化等,要将这些混合物分离,必须采用一定的手段。在工业中通过适当的技术手段与装备,耗费一定的能量来实现混合物的分离过程,研究实现这一分离纯化过程的科学技术称为分离纯化技术。通常,分离纯化过程贯穿在整个生产工艺过程中,是获得最终产品的重要手段,且分离纯化设备和分离费用在总费用中占有相当大的比重。所以,对于药物的研究和生产,分离纯化方法的选择和优化、新型分离设备的研制开发具有极重要的意义。分离纯化技术在工业、农业、医药、食品等生产中具有重要作用,与人们的日常生活息息相关。例如从矿石中冶炼各种金属,从海水中提取食盐和制造淡水,工业废水的处理,中药有效成分及保健成分的提取,从发酵液中分离提取各种抗生素、食用酒精、味精等,都离不开分离纯化技术。同时,由于采用了有效的分离技术,能够提纯和分离较纯的物质,分离技术也在不断地促进其他学科的发展。如由于各种色谱技术、超离心技术和电泳技术的发展和应用,使生物化学等生命科学得到了迅猛的发展。同时由于人类成功分离、破译了生物的遗传密码,促进了遗传工程的发展。另外,随着现代工业和科学技术的发展,产品的质量要求不断提高,对分离技术的要求也越来越高,从而也促进了分离纯化技术的不断提高。产品质量的提高,主要借助于分离纯化技术的进步和应用范围的扩大,这就促使分离纯化过程的效率和选择性都得到了明显的提高。例如应用现代分离技术可以把人和水稻等生物的遗传物质提取出来,并且能将基因准确地定位。…… 一,分离纯化技术的几种常用技术 液液萃取技术、浸取分离技术、超临界流体萃取分离技术、双水相萃取技术、制备色谱分离技术、大孔吸附树脂分离技术、分子印迹技术、离子交换分离技术、分子蒸馏技术、膜分离技术、喷雾干燥和真空冷冻干燥技术等内容。内容全面、简练,层次清晰,涵盖了化学合成药、生物药、植物药的分离纯化。 随着医学技术的发展对医用纯化水的要求也在逐步的提高。从以前的蒸馏工艺制纯化水到现阶段的反渗透脱盐程序的应用,我们可以看见在医学技术进步的同时,医用纯化水制取工业也在飞速的发展中。水是所有生活细胞不可缺少的成份,细胞的新陈代谢,必须有水方能进行,是细胞吸收、渗透、分泌和排泄等作用的介质。所谓纯水主要是指水中各种导电介质(即水中各种盐类阳、阴离子)和水中所含溶解气体及挥发物质等非导电介质的含量的大小,是相对而言的。医用纯水设备采用膜分离技术作为一种新型的流体分离单元操作技术,从上世纪五十年代末六十年代初发展以来,已经取得了令人瞩目的巨大发展,目前膜分离技术已经很成熟、可靠,并广泛应用于食品饮料、医药、环保及市政等行业中,尤其在医用纯

新型分离技术综述-分离技术在各方面的应用

河北工业大学结课论文 课程名称:新型分离技术基础 课程编号:14B15C0103 姓名:唐猛 学号:201511501014 班级:化学工程与技术 学院:化工学院

新型分离技术综述 ——分离技术在各方面的应用 摘要:现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术,他们在中药制药、农产品加工和环保工程中都得到了广泛应用。 主题词:中药制药农产品加工环保工程超临界流体萃取分子蒸馏膜分离 正文: 国内外对分离技术的发展十分重视,但由于应用领域十分广泛,原料、产品和对分离操作的要求多种多样,这就决定了分离技术的多样性。按机理划分,可大致分为五类,即:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离);用固体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等。现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术。 1、超临界流体萃取技术及其应用 超临界流体萃取是一种以超临界流体代替常规有机溶剂对目标组分进行萃取和分离的新型技术,其原理是利用流体(溶剂)在临界点附近区域(超临界区)内与待分离混合物中的溶质具有异常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动来实现分离的。 超临界流体具有一系列重要的性质: 1)超临界流体相当粘稠,其密度接近于液体,具有较大的溶解能力; 2)超临界流体的扩散系数比液体大23个数量级,其粘度类似于气体,远小于液体。这对于分离过程的传质极为有利,缩短了相平衡所需时间,大大提高了分离效率,是高效传质的理想介质; 3)具有不同寻常的、巨大的压缩性,使得压力的微小变化将会引起流体密度和介电常数的很大变化。 由于二氧化碳具有无毒、不易燃易爆、廉价、临界压力低、易于安全地从混合物中分离出来,所以是最常用的超临界流体。相对于传统提取分离方法(煎煮、醇沉、蒸发浓缩等)具有以下优点:萃取效率高、传递速度快、选择性高、提取物较干净、省时、减少有机溶剂及环境污染、适合于挥发油等脂溶性成分的提取分离。 1.1 超临界流体萃取技术特点 1)由于在临界点附近,流体温度或压力的微小变化会引起溶解能力的极大变化,使革取后溶剂与溶质容易分离。

考核:化工分离工程和化工技术经济论文通用格式

化工分离工程的考核:按本文的论文格式书写,自行拟定与课程相关的题目,或从以下方向选择题目:膜分离、特殊精馏、色谱分离、吸附过程、超临界流体萃取等。 化工技术经济的考核:按本文的论文格式书写,自行拟定与课程相关的题目,或从以下方向选择题目:中国的化学工业、化工厂经济效益分析、化工投资项目的财务评价、化工建设项目的可行性研究等。 全文1.25倍行距 标题标题标题标题(三号宋体,居中,加粗)【说明: 标题是能反映论文中特定内容的恰当、简明的词语的逻辑组合,应避免使用含义笼统、泛指性很强的词语(一般不超过20字,必要时可加副标题,尽可能不用动宾结构,而用名词性短语,也不用“……的研究”,“基于……”)。】 作者,学号(四号楷体,居中) (1. 学校院、系名,省份城市邮编)(五号楷体,居中) 摘要:(小五号黑体,缩进两格)摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容摘要内容……(小五号楷体) 【说明:摘要应具有独立性和自含性,即不阅读全文,就能获得必要的信息。要使用科学性文字和具体数据,不使用文学性修饰词;不使用图、表、参考文献、复杂的公式和复杂的化学式,非公知公用的符号或术语;不要加自我评价,如“该研究对…有广阔的应用前景”,“目前尚未见报道”等。摘要能否准确、具体、完整地概括原文的创新之处,将直接决定论文是否被收录、阅读和引用。摘要长度200~300字。摘要一律采用第三人称表述,不使用“本文”、“文章”、“作者”、“本研究”等作为主语。】 关键词:(小五号黑体,缩进两格)关键词;关键词;关键词;关键词(小五号楷体,全角分号隔开) 【说明:关键词是为了便于作文献索引和检索而选取的能反映论文主题概念的词或词组,每篇文章标注3~8个关键词,词与词之间用全角分号隔开。中文关键词尽量不用英文或西文符号。注意:关键词中至少有两个来自EI控词表。一般高校数字图书馆均可查到。】 中图分类号:(小五号黑体,缩进两格)TM 344.1(小五号Times New Roman体,加粗)文献标志码:(小五号黑体,前空四格)A(小五号Times New Roman体,加粗) 【说明:请查阅中国图书馆分类法(第4版)(一般要有3位数字,如TM 344.1)】 作者简介:姓名(出生年-),(Tel);(E-mail)。

膜分离技术综述

膜分离技术应用综述 摘要:膜分离工程技术是一项新兴的高效分离技术,已广泛应用于化工、电子、轻工、纺织、石油、食品、医药等工业,被认为是20世纪末到21世纪中期最有发展前途的高技术之一。由于膜分离的优势,越来越多的中药研究者正致力于开发膜技术在中药工业中的应用。膜分离技术 (微滤、超滤、纳滤、反渗透膜技术)在中药领域中发挥着非常重要的作用,可应用于中药提取液的纯化、浸膏制剂的制备、口服液的生产、注射剂的制备以及热原的去除等。膜分离技术将在中药现代化进程中发挥重大作用,并对中药的规范化和标准化生产起到一定的促进作用。由于历史的原因,生物技术发展初期,绝大多数的投资是在上游过程的开发,而下游处理过程的研究投入要比上游过程少得多,因而使得下游处理过程的研究明显落后,已成为生物技术整体优化的瓶颈,严重地制约了生物技术工业的发展,因此,当务之急是要充实和强化下游处理过程的研究,以期有更多的积累和突破,使下游处理过程尽快达到和适应上游过程的技术水平和要求。 关键词:生物分离下游工程膜分离 正文: 1、常用的膜分离过程 1.1微滤 鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 具体涉及领域主要有:医药工业、食品工业(明胶、葡萄酒、白酒、果汁、牛奶等)、高纯水、城市污水、工业废水、饮用水、生物技术、生物发酵等。 1.2超滤 早期的工业超滤应用于废水和污水处理。三十多年来,随着超滤技术的发展,如今超滤技术已经涉及食品加工、饮料工业、医药工业、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收、环境工程等众多领域。1.3纳滤 纳滤的主要应用领域涉及:食品工业、植物深加工、饮料工业、农产品深加工、生物医药、生物发酵、精细化工、环保净水和污水处理及其资源化工业。1.4反渗透 由于反渗透分离技术的先进、高效和节能的特点,在国民经济各个部门都得到了广泛的应用,主要应用于水处理和热敏感性物质的浓缩,主要应用领域包括以下:食品工业、牛奶工业、饮料工业、植物(农产品)深加工、生物医药、生物发酵、制备饮用水、纯水、超纯水、海水、苦咸水淡化、电力、电子、半导体工业用水、医药行业工艺用水、制剂用水、注射用水、无菌无热源纯水、食品饮料工业、化工及其它工业的工艺用水、锅炉用水、洗涤用水及冷却用水。 1.5其他常用膜分离过程 除了以上四种常用的膜分离过程,另外还有渗析、控制释放、膜传感器、膜法气体分离等。

新型化工分离技术论文

化学分离技术 化学与环境工程学院14应化三班扈文甲学号:140703021311 摘要:描述了新型分离技术——超临界流体萃取和膜分离技术的最新研究进展。介绍了超临界流体萃取技术的工作原理、技术特点、工艺流程及其在某些领域中的应用。介绍膜分离技术的分离机理、特点,国内外膜分离技术的研究进展及其在各个领域的应用现状。另外还介绍了膜蒸馏技术最新研究进展。 关键字:超临界流体萃取;膜分离技术;分离技术 1 超临界流体萃取技术 1.1 技术原理 超临界流体的密度和溶剂化能力接近液体,粘度和扩散系数接近气体,在临界点附近流体的物理化学性质随温度和压力的变化极其敏感,超临界流体萃取技术就是利用上述超临界流体的特殊性质, 将其在萃取塔的高压下与待分离的固体或液体混合物接触, 调节系统的操作温度和压力, 萃取出所需组分; 进入分离塔后, 通过等压升温、等温降压或吸附等方法, 降低超临界流体的密度, 使该组分在超临界流体中的溶解度减小而从中分离出来。 1.2 技术特点[1] ( 1) 萃取分离效率高; ( 2) 可在较低温度下进行, 适用于分离热敏性物料; ( 3) 与传统的分离方法相比, 能耗低; ( 4) 易回收溶剂和溶质; ( 5) 溶剂无毒, 使用于食品加工和医药工业。 1.3 技术工艺流程 超临界流体萃取工艺一般是由超临界流体萃取和分离两部分组成,由于萃取都是在萃取槽中进行的,所以萃取步骤大致都相同,而分离的方法主要包括:(1)依靠压力变化的萃取分离法(等温变压法或绝热法)。在一定温度下,使超临界流体和溶质减压,经膨胀后分离,溶质由分离器下部取出,气体经压缩机返回萃取器循环使用。(2)依靠温度变化的萃取分离法(等压变温法) 经加热、升温使气体和溶质分离,从分离器下部取出萃取物,气体经冷却、压缩后返回萃取器循环使用。(3)用吸附剂进行的萃取分离法(恒温恒压法或吸附法) ,在分离器中经萃取出的溶质被吸附剂吸附,气体经压缩后返回萃取器循环使用[2,3]。 1.4 超临界流体萃取技术的应用 超临界流体萃取工艺可以不在高温下操作,因此特别适合于热稳定性较差的物质的分离,同时产品中无其他物质残留。超临界流体萃取是一项具有特殊优势的分离技术并特别适

膜分离技术应用综述

膜分离技术应用综述 The Standardization Office was revised on the afternoon of December 13, 2020

《食品科学概论》课程论文 论文题目:膜分离技术应用综述 学 院 :生物工程学院 专 业 :食品科学与工程 年级班别 :09级一班 学 号 :10122 学生姓名 :齐莹 学生 指导教师 :陈清禅 2011年 5 月 24 日 JINGCHU UNIVERSITY OF TECHNOLOGY

膜分离技术应用综述 齐莹 10122 摘要综述膜分离技术的特点、种类及分离机理,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。 关键词膜分离技术微滤超滤食品工业 膜分离是在20世纪初出现,上世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。 1膜分离的简介 1. 1 膜的定义 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。 1. 2 膜的种类 分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001 ~0. 005μm) 超滤膜(0. 001 ~0. 1μm) 微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、

相关文档
最新文档