分治算法,贪心算法,动态规划,回溯法

分治算法,贪心算法,动态规划,回溯法
分治算法,贪心算法,动态规划,回溯法

实验报告

实验一

一、实验名称:

分治和动态规划算法实现

二、实验学时:4

三、实验内容和目的:

希望通过本次试验,加深对分治算法原理及实现过程的理解

(1) 二分法求方程近似解:求方程f(x) = x^3 + x^2 - 1 = 0在[0,1]上的近似解,精确度为0.01。

(2) 给定一个顺序表,编写一个求出其最大值和最小值的分治算法。

分析:

由于顺序表的结构没有给出,作为演示分治法这里从简顺序表取一整形数组数组大小由用户定义,数据随机生成。我们知道如果数组大小为 1 则可以直接给出结果,如果大小为 2则一次比较即可得出结果,于是我们找到求解该问题的子问题即: 数组大小 <= 2。到此我们就可以进行分治运算了,只要求解的问题数组长度比 2 大就继续分治,否则求解子问题的解并更新全局解以下是代码。

四、实验原理:

分治算法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题相互独立且与原问题相同。递归的解这些子问题,然后将各子问题的解合并到原问题的解。

在递归算法中,原问题和子问题的区别关键在于尺寸的不同,实际上解决的是同样的问题,对于分解了的子问题分别求解,也可以在此分割,如此递归下去。最后,自底向上逐步求出原问题的解。

五、实验器材(设备、元器件)

电子科技大学计算机学院实验中心

硬件环境:i5-2450M双核处理器,2.5GHz,NVIDIA GT630M独立显卡芯片,1GB独立显存,2GB DDR3内存,500GB硬盘空间

软件环境:Windows 7操作系统及以上,Microsoft Visual Studio 2010

六、实验步骤:

(一)给定一个顺序表,编写一个求出其最大值和最小值的分治算法。

编写实验源代码如下:

/*

给定一个顺序表编写一个求出其最大值和最小值的分治算法

*/

#include"stdafx.h"

#include

#include

#include

#include

#define Len 1000000

#define MIN(a,b)((a)>(b)?(b):(a))

#define MAX(a,b)((a)>(b)?(a):(b))

int a[Len] , n ;

int GetMin(int l,int r){

if (l==r) return a[l] ;

int mid = (l+r)>>1 ;

return MIN(GetMin(l,mid) , GetMin(mid+1,r)) ;

}

int GetMax(int l,int r){

if (l==r) return a[l] ;

int mid = (l+r)>>1 ;

return MAX(GetMax(l,mid) , GetMax(mid+1,r)) ;

}

int main()

{

int i ;

printf("请输入您顺序表中元素的个数:");

scanf("%d",&n);

printf("请依次输入您顺序表中的元素:");

for (i = 0 ; i < n ; i++)

scanf("%d",&a[i]);

printf("MinValue = %d\n",GetMin(0,n-1)) ;

printf("MaxValue = %d\n",GetMax(0,n-1)) ;

system("pause");

}

运行结果如下:

我们可以多次运行程序,更改我们的输入,来检查程序的正确性。

(二)二分法求方程近似解:求方程f(x) = x^3 + x^2 - 1 = 0在[0,1]上的近似解,精确度为0.01。

实验源程序如下:

/*

二分法求方程近¨似解求方程f(x) = x^3 + x^2 - 1 = 0在[0,1]上的近似解精确度为0.01。

*/

#include "stdafx.h"

#include

#include

#include

#include

double function(double x){

return x*x*x + x*x - 1 ;

}

int main()

{

double l = 0 , r = 1.0 , mid ;

while (r-l>0.01){

mid = (r+l)/2 ;

if (function(mid)>=0)

r = mid ;

电子科技大学计算机学院实验中心

else

l = mid ;

}

double ans = r ;

printf("%.2f\n",ans);

system("pause");

}

运行结果如下:

七、实验数据及结果分析:

程序的代码、数据、截图都放在实验步骤中具体体现,我们不妨来验证一下方程的解是否正确,将0.76带入函数中计算x^3+x^2-1中,得到结果为0.016576,这个结果在精度范围要求内是可以接受的,所以,我们可以说买这个程序得到的结果是可以接受的。

八、实验结论、心得体会和改进建议:

在本实验中,利用递归算法,很好地解决了求解序列表中最大、最小值以及求解方程的解的功能,当然递归算法虽然实现起来较为简单,但是效率上可能会造成一些资源的浪费,可能选用其他更高效的算法来解决这些问题。

实验报告

实验二

一、实验名称:

动态规划算法实现

二、实验学时:4

三、实验内容和目的:

加深对动态规划算法原理及实现过程的理解

理解动态规划算法的原理,用动态规划算法实现最长公共子序列问题。

四、实验原理:

在动态规划算法中,对分治算法的效率进行了改善,同时能够解决更多种类的问题,一般适用于解最优化的问题。

动态规划算法一般分为四个步骤:找出最优解的性质,并刻画其结构特征;递归的定义最优值;以自底向上的方式计算出最优值;根据计算最优值时所得到的信息,构造最优解。在这些步骤中,递归的定义最优值是动态规划算法的核心。

至于动态规划算法与分治算法的区别,动态规划算法一般解决分解出来的子问题数目太多,并且经分解的子问题往往不是相互独立的。

最长公共子序列问题描述:

若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。

设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk} ,则:

(1)若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。

(2)若xm≠yn且zk≠xm,则Z是xm-1和Y的最长公共子序列。

(3)若xm≠yn且zk≠yn,则Z是X和yn-1的最长公共子序列。

最优值的计算:

由于在所考虑的子问题空间中,总共有θ(mn)个不同的子问题,因此,用动态规划算法

电子科技大学计算机学院实验中心

动态规划算法实验

一、实验目的 (2) 二、实验内容 (2) 三、实验步骤 (3) 四.程序调试及运行结果分析 (5) 附录:程序清单(程序过长,可附主要部分) (7)

实验四动态规划算法的应用 一、实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 二、实验内容 1.问题描述: 题目一:数塔问题 给定一个数塔,其存储形式为如下所示的下三角矩阵。在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。请找出一条路径,使路径上的数值和最大。 输入样例(数塔): 9 12 15 10 6 8 2 18 9 5 19 7 10 4 16 输出样例(最大路径和): 59 题目二:最长单调递增子序列问题(课本184页例28) 设有由n个不相同的整数组成的数列,记为:a(1)、a(2)、……、a(n)且a(i)<>a(j) (i<>j) 若存在i1

题目三 0-1背包问题 给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c,。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量c,,物品的个数n。接下来的n 行表示n个物品的重量和价值。输出为最大的总价值。 输入样例: 20 3 11 9 9 10 7 5 输出样例 19 2.数据输入:个人设定,由键盘输入。 3.要求: 1)上述题目任选一做。上机前,完成程序代码的编写 2)独立完成实验及实验报告 三、实验步骤 1.理解算法思想和问题要求; 2.编程实现题目要求; 3.上机输入和调试自己所编的程序; 4.验证分析实验结果; 5.整理出实验报告。

(数学建模教材)4第四章动态规划

第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20 世纪50 年代初R. E. Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957 年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 图1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A 到G距离最短(或费用最省)的路线。 图1 最短路线问题 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3 (千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类根据过程的时间变量是离散的还是连续的,分为离散时间 决策过程(discrete-time -56-

动态规划教案

吉林师范大学计算机学院 教案 课程名称C程序设计(算法部分) 院系级计算机学院计算机科学与技术09级教研室(系、实验室)计算机基础教研室5101 授课班级09计算机科学与技术3班 实习生郑言 系指导教师滕国文 吉林师范大学计算机学院二○一二年四月二十五日(星期三5,6节)

课型章节: 动态规划基本思想 基要本参教考材资和料主: 算法设计与分析》 教学目的: 本课程以C语言为教授程序设计的描述语言,结合语言介绍程序设计的基本原理、技巧和方法。主要讲授内容包括程序设计动态规划基本概念,动态规划的基本步骤,动态规划问题的特征。通过本课程的学习,为算法更好的学习,以及能用计算机解决一些实际问题打下坚实的基础。 教学基本要求: 掌握C语言中动态规划的基本概念,动态规划的基本步骤,动态规划问题的特征。并能熟练使用C语言动态规划思想解决一些简单程序问题;掌握一些基本算法结构及相关方法;熟悉程序设计的思想和编程技巧。 重点: 动态规划基本概念,动态规划的基本步骤,动态规划问题的特征。 难点: 动态规划的基本步骤 课型: 理论课 教法: 1.多媒体讲解 2.举例讲解 教学内容及过程: 1.课前回顾: 枚举法:在进行归纳推理时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么这结论是可靠的,这种归纳方法叫做枚举法. 2.数塔问题 有形如下图所示的数塔,从顶部出发,在每一结点可以选择向左走或是向右走,一直走到底层,要求找出一条路径,使路径上的值最大。

简单的进行选举方法的引导,让同学们主动思考到动态规划的思想上了。 考虑一下: 从顶点出发时到底向左走还是向右走应取决于是从左走能取到最大值还是从右走能取到最大值,只要左右两道路径上的最大值求出来了才能作出决策。 同样,下一层的走向又要取决于再下一层上的最大值是否已经求出才能决策。这样一层一层推下去,直到倒数第二层时就非常明了。 如数字2,只要选择它下面较大值的结点19前进就可以了。所以实际求解时,可从底层开始,层层递进,最后得到最大值。 结论:自顶向下的分析,自底向上的计算。 #include #include int max(int x,int y) { if(x>y) return x; else return y; } main() { int a[100][100]; int i,j,n; scanf("%d",&n); for(i=0;i=0;i--) for(j=0;j<=i;j++) { a[i][j]+=max(a[i+1][j],a[i+1][j+1]); } printf("%d\n",a[0][0]); } 3.总结“动态规划的基本思想” 如果各个子问题不是独立的,不同的子问题的个数只是多项式量级,如果我们能够保存已经解决的子问题的答案,而在需要的时候再找出已求得的答案,这样就可以避免大量的重复计算。由此而来的基本思路是,用一个表记录所有已解决的子问题的答案,不管该问题以后是否被用到,只要它被计算过,就将其结果填入表中。 4.总结“动态规划的基本步骤” 动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值(最大值或最小值)的那个解。设计一

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

第四章 数学规划模型

第四章 数学规划模型 【教学目的】:深刻理解线性规划,非线性规划,动态规划方法建模的基本特点,并能熟练建立一些实际问题的数学规划模型;熟练掌握用数学软件(Matlab ,Lindo ,Lingo 等)求解优化问题的方法。 【教学重点难点】: 教学重点:线性规划和非线性规划的基本概念和算法,解决数学规划问题的一般思路和 方法,线性规划模型、整数规划模型、非线性规划模型的构建及其Matlab 与Lingo 实现。 教学难点:区分线性规划模型和非线性模型适用的实际问题,以及何时采用线性模型, 何时采用非线性模型,线性模型与非线性模型的转化。 【课时安排】:10学时 【教学方法】:采用多媒体教学手段,配合实例教学法,通过对典型例题的讲解启发学生思维,并给与学生适当的课后思考讨论的时间,加深知识掌握的程度。安排一定课时的上机操作。 【教学内容】: 在众多实际问题中,常常要求决策(确定)一些可控制量的值,使得相关的量(目标)达到最佳(最大或最小)。这些问题就叫优化问题,通常需要建立规划模型进行求解。称这些可控制量为决策变量,相关的目标量为目标函数;一般情况下,决策变量x 的取值是受限制的,不妨记为x ∈Ω,Ω称为可行域,优化问题的数学模型可表示为 Max(或Min)f(x), x ∈Ω 一般情况下,x 是一个多元变量,f(x)为多元函数,可行域比较复杂,一般可用一组不等式组来表示,这样规划问题的一般形式为 () x Min f x . ()0,1,2,,i st g x i m ≤= 虽然,该问题属于多元函数极值问题,但变量个数和约束条件比较多,一般不能用微分法进行解决,而通过规划方法来求解;这里讨论的不是规划问题的具体算法,主要是讨论如何将一个实际问题建立优化模型,并利用优化软件包进行求解。 根据目标函数和约束函数是否为线性,将规划模型分为线性规划和非线性规划。 4.1线性规划 线性规划(LP)研究的实际问题多种多样的,它在工农业生产、经济管理、优化设计与控

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

算法期末复习题final

算法分析与设计期末复习题目 一、选择题 1.下列算法中通常以自底向上的方式求解最优解的是( B )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 2、衡量一个算法好坏的标准是(C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 3、以下不可以使用分治法求解的是(D )。 A 棋盘覆盖问题 B 选择问题 C 归并排序 D 0/1背包问题 4.下列是动态规划算法基本要素的是( D )。 A、定义最优解 B、构造最优解 C、算出最优解 D、子问题重叠性质 5.采用广度优先策略搜索的算法是( A )。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 6、合并排序算法是利用( A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 7、下列不属于影响程序执行时间的因素有哪些?( C ) A.算法设计的策略 B.问题的规模 C.编译程序产生的机器代码质量 D.计算机执行指令的速度 8、使用分治法求解不需要满足的条件是(A )。 A 子问题必须是一样的 B 子问题不能够重复 C 子问题的解可以合并 D 原问题和子问题使用相同的方法解 9、下面问题(B )不能使用贪心法解决。 A 单源最短路径问题 B N皇后问题 C 最小花费生成树问题 D 背包问题 10. 一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。

A 、重叠子问题 B 、最优子结构性质 C 、贪心选择性质 D 、定义最优解 11. 以深度优先方式系统搜索问题解的算法称为 ( D ) 。 A 、分支界限算法 B 、概率算法 C 、贪心算法 D 、回溯算法 12. 实现最长公共子序列利用的算法是( B )。 A 、分治策略 B 、动态规划法 C 、贪心法 D 、回溯法 13.下列算法具有最优子结构的算法是 (D ) A .概率算法 B .回溯法 C .分支限界法 D .动态规划法 14.算法分析是( C ) A.将算法用某种程序设计语言恰当地表示出来 B.在抽象数据集合上执行程序,以确定是否会产生错误的结果 C.对算法需要多少计算时间和存储空间作定量分析 D.证明算法对所有可能的合法输入都能算出正确的答案 15 衡量一个算法好坏的标准是(C ) A.运行速度快 B. 占用空间少 C.时间复杂度低 D. 代码短 16.二分搜索算法是利用(A )实现的算法。 A.分治法 B.动态规划法 C.贪心法 D.回溯法 17.用贪心法设计算法的关键是( B )。 A.将问题分解为多个子问题来分别处理 B.选好最优量度标准 C.获取各阶段间的递推关系式 D.满足最优性原理 18.找最小生成树的算法Kruskal 的时间复杂度为( D )(其中n 为无向图的结点数,m 为边数) A .O(n 2) B .O(mlogn) C .O(nlogm) D .O(mlogm) 19.回溯法搜索状态空间树是按照(C )的顺序。 A.中序遍历 B.广度优先遍历 C.深度优先遍历 D.层次优先遍历 20.采用广度优先策略搜索的算法是( A )。 A.分支界限法 B.动态规划法 C.贪心法 D.回溯法 21.函数32n +10nlogn 的渐进表达式是( B ). A.O( 2n ) B. O( 32n ) C. O( nlog n ) D. O( 10nlog n ) 22.二分搜索算法的时间复杂性为( C )。 A.O(2n ) B.O(n ) C.O(n log ) D. O(n n log ) 23、快速排序算法的时间复杂性为( D )。 A.O(2 n ) B.O(n ) C.O(n log ) D. O(n n log ) 24、算法是由若干条指令组成的有穷序列,而且满足以下性质( D ) A.输入:有0个或多个输入 B.输出:至少有一个输出 C. 确定性:指令清晰,无歧义 D.有限性:指令执行次数有限,而且执行时间

第九章-数据结构与算法基础

解题思路 多代入法 二叉树 度 叶子结点就是没有孩子的结点,其度为0,度为二的结点是指有两个子数的结点。 注意树的度和图的度区别 叶子结点 二叉排序树 完全二叉树 若设二叉树的深度为h,除第h 层外,其它各层(1~h-1) 的结点数都达到最大个数,第h 层所有的结点都连续集中在最左边,这就是完全二叉树。 完全二叉树——只有最下面的两层结点度小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树;

最优二叉树(就是哈弗曼树) 平衡二叉树 平衡二叉树,又称AVL树。它或者是一棵空树,或者是具有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左子树和右子树的高度之差之差的绝对值不超过1.。 满二叉树 满二叉树——除了叶结点外每一个结点都有左右子叶且叶结点都处在最底层的二叉树,。 除最后一层无任何子节点外,每一层上的所有结点都有两个子结点(最后一层上的无子结点的结点为叶子结点)。也可以这样理解,除叶子结点外的所有结点均有两个子结点。节点数达到最大值。所有叶子结点必须在同一层上. 本题主要考查一些特殊二叉树的性质。 若二叉树中最多只有最下面两层的结点度数可以小于2,并且最下面一层的叶子结点都依次排列在该层最左边的位置上,则这样的二叉树称为完全二叉树,因此在完全二叉树中,任意一个结点的左、右子树的高度之差的绝对值不超过1。 二叉排序树的递归定义如下:二叉排序树或者是一棵空树;或者是具有下列性质的二叉树: (1)若左子树不空,则左子树上所有结点的值均小于根结点的值; (2)若右子树不空,则右子树上所有结点的值均大于根结点的值; (3)左右子树也都是二叉排序树。 在n个结点的二叉树链式存储中存在n+1个空指针,造成了巨大的空间浪费,为了充分利用存储资源,可以将这些空链域存放指向结点在遍历过程中的直接前驱或直接后继的指针,这种空链域就称为线索,含有线索的二叉树就是线索二叉树。 最优二叉树即哈夫曼树。

动态规划算法举例分析

动态规划算法 1. 动态规划算法介绍 基本思想是将待求解问题分解成若干子问题,先求解子问题,最后用这些子问题带到原问题,与分治算法的不同是,经分解得到的子问题往往是不是相互独立,若用分治则子问题太多。 2. 适用动态规划算法问题的特征 (1)最优子结构 设计动态规划算法的第一步骤通常是要刻画最优解的结构。当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。 在动态规划算法中,问题的最优子结构性质使我们能够以自底向下的方式递归地从子问题的最优解逐步构造出整个问题的最优解。同时,它也使我们能在相对小的子问题空间中考虑问题。 (2)重叠子问题 可用动态规划算法求解的问题应具备的另一基本要素是子问题的重叠性质。在用递归算法自顶向下解此问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只有简单地用常数时间查看一下结果。通常,不同的子问题个数随输入问题的大小呈多项式增长。因此,用动态规划算法通常只需要多项式时间,从而获得较高的解题效率。 (3)备忘录方法

动态规划算法的一个变形是备忘录方法。备忘录方法也是一个表格来保存已解决的子问题的答案,在下次需要解此子问题时,只要简单地查看该子问题的解答,而不必重新计算。与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。 备忘录方法为每个子问题建立一个记录项,初始化时,该记录项存入一个特殊的值,表示该子问题尚未求解。在求解过程中,对每个待求的子问题,首先查看其相应的记录项。若记录项中存储的是初始化时存入的特殊值,则表示该子问题是第一次遇到,则此时计算出该子问题的解,并保存在其相应的记录项中。若记录项中存储的已不是初始化时存入的特殊值,则表示该子问题已被计算过,其相应的记录项中存储的是该子问题的解答。此时,只要从记录项中取出该子问题的解答即可。 3. 基本步骤 a 、找出最优解的性质,并刻画其结构特征。 b 、递归地定义最优值。 c 、以自底向上的方式计算出最优值。 d 、根据计算最优值时得到的信息构造一个最优解。(可省) 例1-1 [0/1背包问题] [问题描述] 用贪心算法不能保证求出最优解。在0/1背包问题中,需要对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为i w ,价 值为 i v 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳 装载是指所装入的物品价值最高,即∑=n i i i x v 1 取得最大值。约束条件为 c x w n i i i ≤∑=1 , {}() n i x i ≤≤∈11,0。

算法分析与设计实验二:动态规划法

题目:用动态规划法实现求两序列的最长公共子序列。 程序代码 #include #include //memset需要用到这个库 #include using namespace std; int const MaxLen = 50; class LCS { public: LCS(int nx, int ny, char *x, char *y) //对数据成员m、n、a、b、c、s初始化{ m = nx; //对m和n赋值 n = ny; a = new char[m + 2]; //考虑下标为0的元素和字符串结束标记 b = new char[n + 2]; memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); for(int i = 0; i < nx + 2; i++) //将x和y中的字符写入一维数组a和b中a[i + 1] = x[i]; for(int i = 0; i < ny + 2; i++) b[i + 1] = y[i]; c = new int[MaxLen][MaxLen]; //MaxLen为某个常量值 s = new int[MaxLen][MaxLen]; memset(c, 0, sizeof(c)); //对二维数组c和s中元素进行初始化 memset(s, 0, sizeof(s)); } int LCSLength(); //求最优解值(最长公共子序列长度) void CLCS() //构造最优解(最长公共子序列) { CLCS(m, n); //调用私有成员函数CLCS(int,int) } private: void CLCS(int i, int j); int (*c)[MaxLen], (*s)[MaxLen]; int m, n;

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

动态规划习题精讲

信息学竞赛中的动态规划专题 哈尔滨工业大学周谷越 【关键字】 动态规划动机状态典型题目辅助方法优化方法 【摘要】 本文针对信息学竞赛(面向中学生的Noi以及面向大学生的ACM/ICPC)中的动态规划算法,从动机入手,讨论了动态规划的基本思想和常见应用方法。通过一些常见的经典题目来归纳动态规划的一般作法并从理论上加以分析和说明。并介绍了一些解决动态规划问题时的一些辅助技巧和优化方法。纵观全文可知,动态规划的关键在于把握本质思想的基础上灵活运用。 【目录】 1.动态规划的动机和基本思想 1.1.解决重复子问题 1.2.解决复杂贪心问题 2.动态规划状态的划分方法 2.1.一维状态划分 2.2.二维状态划分 2.3.树型状态划分 3.动态规划的辅助与优化方法 3.1.常见辅助方法 3.2.常见优化方法 4.近年来Noi动态规划题目分析 4.1 Noi2005瑰丽华尔兹 4.2 Noi2005聪聪与可可 4.3 Noi2006网络收费 4.4 Noi2006千年虫 附录参考书籍与相关材料

1.动态规划的动机和基本思想 首先声明,这里所说的动态规划的动机是从竞赛角度出发的动机。 1.1 解决重复子问题 对于很多问题,我们利用分治的思想,可以把大问题分解成若干小问题,然后再把各个小问题的答案组合起来,得到大问题的解答。这类问题的共同点是小问题和大问题的本质相同。很多分治法可以解决的问题(如quick_sort,hanoi_tower等)都是把大问题化成2个以内的不相重复的小问题,解决的问题数量即为∑(log2n / k)。而考虑下面这个问题: USACO 1.4.3 Number Triangles http://122.139.62.222/problem.php?id=1417 【题目描述】 考虑在下面被显示的数字金字塔。 写一个程序来计算从最高点开始在底部任意处结束的路径经过数字的和的最大。每一步可以走到左下方的点也可以到达右下方的点。 7 3 8 8 1 0 2 7 4 4 4 5 2 6 1 在上面的样例中,从7到3到8到7到5的路径产生了最大和:30。 【输入格式】 第一个行包含R(1<= R<=1000) ,表示行的数目。后面每行为这个数字金字塔特定行包含的整数。所有的被供应的整数是非负的且不大于100。 【输出格式】 单独的一行包含那个可能得到的最大的和。 【样例输入】 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 1 【样例输出】 30 显然,我们同样可以把大问题化成小问题来解决。如样例中最底层的6就可以从次底层

算法实验 动态规划上机

实验3动态规划上机 [实验目的] 1.掌握动态规划的基本思想和效率分析方法; 2.掌握使用动态规划算法的基本步骤; 3.学会利用动态规划解决实际问题。 [实验要求] 按以下实验内容完成题目,并把编译、运行过程中出现的问题以及解决方法填入实验报告中,按时上交。 [实验学时] 2学时。 [实验内容] 一、实验内容 利用动态规划算法编程求解多段图问题,要求读入多段图,考虑多段图的排序方式,求源点到汇点的最小成本路径。并请对自己的程序进行复杂性分析。 二、算法描述 先输入点的个数和路径数以及每段路径的起点、长度、终点,再计算所有路径的值大小,比较输出后最小值。 三、源程序 #define N 2147483647 #include #include void main() { int i,pointnum,j; cout<<"输入图中点的个数:"<>pointnum; int **array; //array数组描述多段图 int *array2; //array2记录距离起点的最小路径 int *array3; //array3记录上一点编号 array=new int*[pointnum]; array2=new int[pointnum+1]; array3=new int[pointnum+1]; for(i=0;i

} array2[pointnum]=N; array3[pointnum]=N; for(i=0;i>pathnum; int a,k; cout<<"依次输入图中每段路径"<>i; cin>>a; cin>>j; array[i][j]=a; if(array2[j]>(a+array2[i])) { array3[j]=i; array2[j]=a+array2[i]; } // cout<

动态规划算法及其应用

湖州师范学院实验报告 课程名称:算法 实验二:动态规划方法及其应用 一、实验目的 1、掌握动态规划方法的基本思想和算法设计的基本步骤。 2、应用动态规划方法解决实际问题。 二、实验内容 1、问题描述 1 )背包问题 给定 N 种物品和一个背包。物品 i 的重量是 C i ,价值为 W i ;背包的容量为 V。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品,对每种物品只有两个选择:装入或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量 V,物品的个数 N。接下来的 N 行表示 N 个物品的重量和价值。输出为最大的总价值。 2)矩阵连乘问题 给定 n 个矩阵:A1,A2,...,An,其中 Ai 与 Ai+1 是可乘的,i=1 , 2... , n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。 3 )LCS问题 给定两个序列,求最长的公共子序列及其长度。输出为最长公共子序列及其长度。 2、数据输入:文件输入或键盘输入。 3、要求: 1)完成上述两个问题,时间为 2 次课。 2)独立完成实验及实验报告。 三、实验步骤 1、理解方法思想和问题要求。 2、采用编程语言实现题目要求。 3、上机输入和调试自己所写的程序。 4、附程序主要代码: (1) #include int max(int a, int b) { return (a > b)? a : b; } int knapSack(int W, int wt[], int val[], int n) { if (n == 0 || W == 0) return 0;

算法设计第四章部分作业

算法第4-7章部分答案 第四章 第4题: 想法: 求两个正整数m和n的最小公倍数,由题目给出的提示可以知道,m和n的最小公倍数等于两个数的积除以它们的最大公约数。在第一张的事后要我们就已经用欧几里德算法求过两个数的最大公约数,所以对于题目4,我们就可以直接引用欧几里德算法辅助求最小公倍数。 算法: 输入:两个自然数m和n 输出:m和n的最小公倍数 1.r=m%n; 1.循环直到r=0 1.1m=n; 1.2n=r; 1.3r=m%n; 2.return n 3.调用2输出(m*n)/n 程序: #include int CommFactor2(int m, int n);//求两个数的最大公约数 int main() { int a, b, r,s;//r表示a,b两个数的最大公约数,s表示a,b的最大公倍数 cout<<"请输入两个自然数:"; cin>>a>>b; r = CommFactor2(a, b);//调用函数求最大公约数 cout<

{ m = n; n = r; r = m % n; } return n; } 第6题: 想法: 首先要建立一个大根堆,然后实现删除操作,关键是如何实现删除操作,我的想法是将要删除的元素和建立的大根堆的最后一个元素交换,然后再调用建立大根堆的函数将前n-1个函数进行大根堆操作 算法: 输入:要删除的元素的下标 输出:删除后排序好的大根堆 1.构造一个大根堆堆顺序函数SiftHeap() 2.构造一个大根堆函数初始建堆函数HeapSort(),调用函数SiftHeap() 3.建立初始大根堆 4.输入要删除的元素的下标 5.将要删除的元素与最后一个一个元素交换 6.建立前n-1个元素的大根堆 程序: //想法:先将已知序列排列成一个大根堆,删除某个元素后,将最后一个元素赋值给删除节点,然后再进行堆排序(堆排序只是有序排序中的一部分) #include void HeapSort(int r[ ], int n);//建立堆以及堆中元素整体排序 void SiftHeap(int r[ ], int k, int n);//堆排序函数 int main() { int m; int r[]={47,33,35,2,18,71,26,13}; int i,n=8; HeapSort(r, n);//调用函数建立一个大根堆 for( i=0;i<8;i++) cout<>m;//输入大根堆中要删除的元素的下标 if(m<0||m>=n)

动态规划法回溯法分支限界法求解TSP问题实验报告

TSP问题算法实验报告 指导教师:季晓慧 姓名:辛瑞乾 学号: 提交日期: 2015年11月 目录 总述...................................................................... 动态规划法................................................................ 算法问题分析............................................................ 算法设计................................................................ 实现代码................................................................ 输入输出截图............................................................ OJ提交截图.............................................................. 算法优化分析............................................................ 回溯法.................................................................... 算法问题分析............................................................ 算法设计................................................................ 实现代码................................................................ 输入输出截图............................................................ OJ提交截图.............................................................. 算法优化分析............................................................ 分支限界法................................................................ 算法问题分析............................................................

动态规划算法的应用

动态规划算法的应用 一、实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 二、实验内容 题目一:数塔问题 给定一个数塔,其存储形式为如下所示的下三角矩阵。在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。请找出一条路径,使路径上的数值和最大。 输入样例(数塔): 9 15 10 6 8 2 18 9 5 19 7 10 4 16 输出样例(最大路径和): 59 三、实验步骤 (1)需求分析 通过动态规划法解决数塔问题。从顶部出发,在每一节点可以选择向下或者向右走,一直走到底层,以找出一条数值最大的路径。 (2)概要设计 本次实验程序主要用到二维数组,以及通过动态规划法进行比较每个数的大小。主要运用两个for循环语句实现动态规划。

(3)详细设计 第一步,输入给定的二维数组并打印出相应的数组: int array[5][5]={{9}, /* */{12,15}, /* */{10,6,8}, /* */{2,18,9,5}, /* */{19,7,10,4,6}}; int i,j; for(i=0;i<5;i++) { for(j=0;j<5;j++) cout<0;j--) { for(i=0;i<=4;i++) { if(array[j][i]>array[j][i+1]) array[j-1][i]=array[j][i]+array[j-1][i]; else array[j-1][i]=array[j][i+1]+array[j-1][i]; } } 第三步,输出最大路径的值。 cout<

相关文档
最新文档