中药提取方法大全

中药提取方法大全
中药提取方法大全

一、概述 (11)

二、各提取方法的适用性 (12)

三、设计中药浸提工艺时应考虑哪些方面 (13)

四、煎煮法 (14)

五、浸渍法 (18)

六、渗漉法 (19)

七、回流法 (20)

八、水蒸汽蒸馏法 (21)

九、半仿生提取法 (23)

十、超声波提取法 (23)

十一、浸提生产时遇到的问题 (24)

十二、中药浸提设备 (25)

十三、超临界流体萃取 (26)

十四、微波萃取 (30)

一、概述:

浸提技术是应用溶剂提取固体原料中某一或某类成分的提取分离操作,又称固液萃取。目前在中药生产过程中常用的中药浸提方法有煎煮法、浸渍法、渗漉法、回流法、水蒸汽蒸溜法等。近年来新方法新技术也不断涌现和广泛应用,如半仿生提取法、旋流提取法、加压逆流提取法、酶提取法及超临界流体萃取技术、超声提取技术、微波萃取技术及高速逆流色谱提取技术等。

确定某一组方的浸提工艺时,必须进行工艺条件的优选设计,以将有效成分及辅助成分最大限度地浸提出来,无效成分及药材组织物尽可能地少提出来。常用的方法有正交设计法和均匀设计法。

浸提设备按其操作方式可分为间歇式、半连续式和连续式。常用设备有:多能提取罐、球形煎煮罐、连续提取器、渗漉柱、微波萃取罐和超临界流体萃取器等。

二、各提取方法的适用性:

1、煎煮法:用水作溶剂,将药材加热煮沸一定的时间以提取其所含成分的一种方法。适用于有效成分能溶于水,且对湿热稳定的药材。

2、浸渍法:用定量的溶剂,在一定温度下,将药材浸泡一定的时间,以提取药材成分的一种方法。适用于黏性药物、无组织结构的药材、新鲜及易膨胀的药材、价格低廉的芳香性药材。不适于贵重药材、毒性药材及高浓度的制剂。

3、渗漉法:是将药材粗粉置于渗漉器内,溶剂连续地从渗漉器上部加入,渗漉液不断地从下部流出,从而浸出药材中有效成分的一种方法。该法适用于贵重药材、毒性药材及高浓度的制剂;也可用于有效成分含量低的药材的提取。

4、回流法:是以乙醇等易挥发的有机溶剂提取药材成分,其中挥发性成分被冷凝,重复回流到浸出器中浸提药材,这样周而复始,直至有效成分回流提取完全时为止。该法适用于热稳定药材的提取。

5、水蒸汽蒸馏法:是应用相互不溶也不起化学反应的液体,遵循混合物的蒸汽总压等天该温度下各组分饱和蒸汽压(即分压)之和的道尔顿定律,以蒸馏的方法提取有效成分,该法适用于具有挥发性、能随水蒸汽蒸馏而不被破坏、与水不发生反应、又难溶或不溶于水的化学成分的提取、分离。

6、超临界流体提前取法:该法是将临界状态下的流体如CO2,以一定温度下通入提取器中,可溶组分溶解在超临界流体中,并且随同该流体一起经过减压阀降压后进入分离器,溶质从气体中分离出来。超临界流体与提取物分离

后,经压缩后可循环再使用。该法主要适用于挥发性成分和脂溶性成分的提取以及“热敏性”成分的提取。

三、设计中药浸提工艺时应考虑哪些方面

首先应考虑的是如何最大限度地提取得到起药效作用、能发挥临床疗效的物质基础,即有效成分、有效部位或提取物,同时最大限度地除去无效杂质。

具体是根据处方组成及所含主要成分性质选择提取溶剂及提取方法,分析是单味还是复方,该方君、臣、佐、使的性质,预选溶剂及确定是群药共提还是分类单独提取。

浸提工艺的设计首先要考虑是否适合大工业生产。从中药浸提的原理考虑应采用“相似相溶”原理选择不同的溶剂提取有效成分,但对大工业生产,尤其是浸提工艺,一般很少采用亲脂性有机溶剂,特别低沸点的易燃、易爆溶剂,而且除了乙醇如采用其它有机溶剂,质量标准上都必须增加残留量的检测。

四、煎煮法

1、工艺条件的选择

根据煎煮时是否加压,又可分为常压煎煮法和加压煎煮法,后者适于常压下不易煎透的药材。

浸提是中药成分由药材固相转移到溶剂液相中的传质过程。其中包括润湿、渗透、解吸、溶解及扩散等阶段。对上述各浸提阶段的浸提效率有影响的因素如:药村粒径、煎煮用水量、煎煮次数与时间等工艺条件必须研究、比较、筛选,优选出合理可行的煎煮工艺。

一般采用正交试验法,常用的是L9(34)表和L18(37)表。前表主要以加水量、煎煮次数、煎煮时间为因素。后表可增加药材粉碎度、煎煮温度及药液PH或动态搅拌速度等因素。确定加水量的水平时应参考药材浸泡时间与吸水率。各因素下可设3个水平,按表列分别进行9次或18次试验,比较各试验组的评价指标值(试验数据),优选出各因素下的最佳水平,结合对试验数据的方差分析明确各因素对结果的影响大小或主次,优选出最佳工艺条件,经验证试验后确定。

正交试验对评价指标的选择也要科学合理,对煎煮法而言,以水为溶剂群药共煎,提取液中多种成分混杂,往往浸膏得率高并不代表其有效成分含量亦高,故一般应采用多指标评价,即除比较提取物得率外,采用检测有效成分含量的化学方法和考察主要药效学指标的生物学方法来综合评价。

2、工艺研究中考察指标的设计

1、浸泡时间:浸泡时一般宜用冷水,如果开始就用沸水浸泡或煎煮,则药材表面组织所含蛋白质受热凝固,淀粉糊化,妨碍水分浸入药材细胞内部,影响有效成分的煎出。浸涣时间必须经过预试,大多数中药材浸提前需浸泡30~60分钟。

2、煎煮用水:用净化水。正常水量为药材量的6~8倍。

3、煎煮次数:单用一次煎煮有效成分丢失很多,一般煎2~3次。对组织致密或有效成分难于浸出的药材,也可酌情增加煎煮次数或延长煎煮时间。

4、煎煮时间:一般以30~60分钟为宜。

5、药材粒径:从理论上讲,药材粒径越小成分浸出率越高。但是,粉粒过细会给滤过带来因难。实际制备时,对全草、花、叶及质地疏松的根及根茎类药材,可直接入煎或切段、厚片入煎,对质地坚硬、致密的根及根茎类药材,应切薄片或粉碎成粗颗粒入煎;对含黏液质、淀粉较多的药材,不宜粉碎而宜切片入煎,以防煎液黏度增大,妨碍成分扩散,甚至焦化糊底。

对以上五个影响因素通常用正交试验确定3~4个因素,同时对各因素选择3个水平进行正交试验,结合煎出液中的能够进行含量测定的成分,以确定最佳工艺。

3、合理运用单煎或合煎

中药复方一般采用混煎的方法,但对混煎产生沉淀反应的情况应单煎:

①含鞣质药材(大黄、麦冬、麻黄)与含生物碱药材(附子、延胡索、黄连)混煎时产生沉淀反应。

②酸性较强的苷能与生物碱结合而成沉淀。甘草皂苷与小檗碱、甘草酸与紫堇碱/奎宁/利血平、大黄与黄连/小檗碱③有机酸(金银花)与生物碱(小檗碱、延胡索)的沉淀作用。

④鞣质与蛋白质生成沉淀。

⑤鞣质(拳参)与皂苷(柴胡)结合成沉淀。

⑥无机离子钙(石膏)与有机酸(甘草酸、绿原酸、黄芩苷)产生沉淀。

为提高浸提液的质量,有时需把药材在不同的时间放入:

①先煎药:凡矿物药、贝壳、甲、骨类质地坚硬,须先煎40~60分钟,再加入其它药物共煎至需要的时间。如自然铜、石膏、珍珠母、蛤壳、鹿角、草乌、生附子、三七等。

②后下药:药材有效成分易挥发逸散,或受热时间稍长容易分解破坏者,应在煎煮好前10分钟加入共煎。如苏合香、五、浸渍法:

是指用一定量的溶剂、在一定的温度下、将药材浸泡一定的时间,以浸提药材有效成分的一种方法。

特点:①简单易行,制得的制剂澄明度好;②适用于黏性药物、无组织结构的药材、新鲜或易膨胀的药材以及价格低廉的芳香性药材;③溶剂用量大且呈静止状态,利用率低,有效成分浸出不完全,浸提效率差,不适宜贵重药材、毒性及高浓度的制剂;④浸渍时间较长,一般不宜用水作溶剂,常用不同浓度的乙醇或白酒。

提高效率的办法:①促进溶剂循环和搅拌、多次浸渍。②升高温度加大扩散系数,使扩散速度加快。③将药材粉碎至适宜的粒度,使药材具有较大的扩散面积。

六、渗漉法:

溶剂自上而下由稀至浓,不断造成浓度差,渗漉法相当于无数次浸渍,是一个动态过程可连续操作。

装料不匀:①药粉是由二种以上质地差异较大的药材组成,制粉时又未能混匀;②渗漉前药粉未能均匀润湿致使在渗漉过程中润湿不足的部分过度分胀;

溶剂用量多而渗漉不完全:①装料不匀或装填过松,使溶剂在空隙间流速过快;②装料完毕加入溶剂后,未进行浸渍或浸渍时间过短;③渗漉药柱长度过短。提高渗漉效率的方法有①重渗漉法;②加压渗漉法;③逆流渗漉法;

④热渗漉法。

热渗漉法:温度升高能使植物组织软化,促进膨胀,加快可溶性成分的溶解和扩散速度。但由于渗漉时所用溶剂一般为不同浓度的乙醇等有机溶剂,温度过高会加剧溶剂损失,因此渗漉温度一般以40℃左右为宜。热渗漉法除了造成溶剂的大量损失的缺点外,还会使杂质的浸出量明显增加,给以后的分离和精制造成困难。

渗漉液流出不畅:①药粉过细;应选择适宜的药粉粒度。②装料前药粉润湿、膨胀不充分;③药粉装填完毕加入溶剂时未能很好的排气;

渗漉工艺的选择:要考虑有效成分浸出的难易、有无热不稳定成分,在保证浸完全的前提下尽量减少溶剂用量。①渗漉容器;②药材的粉碎度;③渗漉液的流出速度;④渗漉液的收集量。

七、回流法:

特点:①提取成分谱宽,但提取液澄明度较差;②溶剂能循环使用;③浸提液受热时间长,不适于受热易破坏的药材。

乙醇挥发问题:一是设备原因,冷凝器传热面积小传热系数低;二是操作原因,蒸汽流量大使提取液剧烈沸腾,冷凝水流量过小,提取液置于未密闲容器中自然降温。

有机溶剂的燃、爆:静电和操作中金属器具的碰撞火花是主要原因。静电火花的能量虽小但温度却高达1000℃以上,在大量使用有机溶剂的岗位,工作服宜用绵布而避免化纤,电器开关不安装在现场或选用专用的防静电开关。

回流提取时的溢料:原因有二①加热蒸汽流量太大,提取液剧烈沸腾;②所提取药材中含有较多皂苷、蛋白质、树胶等高分子化合物,这些具有一定表面活性的物质起到了“发泡剂”的作用。对后一种原因引起的溢料可考虑向提取液中加入少量的乙醚、硅酮或亲水亲油平衡值(HLB值)较小的表面活性剂等,以破坏泡沫。

八、水蒸汽蒸馏法

水蒸汽蒸馏法系指将含有挥发性成分的药材与水共蒸馏,使挥发性成分随水蒸汽一并馏出,并经冷凝分取挥发性成分的一种浸提方法。中药材经适当前处理放入蒸馏器中,加入适量水,浸泡一定时间(30~60分钟)然后①共水蒸馏法是直接加热,将中药与水共煎煮沸;②通水蒸汽蒸馏法:将水蒸汽直接通入蒸馏器中,使挥发油随导入的蒸汽一并馏出;③水上蒸馏法:在水浴上蒸馏挥发性成分。

提油率低、难分离的问题:①对于药材本身含挥发油少,要注意药材特定的采收季节,在炮制过程中的干燥温度不宜超过60℃,含挥发油的药材一般采用低温40℃密闭吸潮干燥法。②当挥发油的相对密度与水相近时,工业上一般采用蒸馏法,经油水分离器提取挥发油。③考虑药材的合适粒径和浸泡时间。

相对密度不同的挥发油的分离:一般多功能提取罐上均配有油水他离装置,它是根据相对密度是大于1还是小于1而分别设计成了二种油水分离装置。工业提取挥发油的方法有四种①蒸馏法;②溶剂法;③压榨法;④超临界CO2九、半仿生提取法:

是模拟口服给药后药物经胃肠道转运的环境,药料先用一定PH的酸水提取,继而以一定PH的碱水提取。本法的应用主要是对提取用水的最佳PH和其他提取条件(温度、时间、酶/底物浓度)进行选择。可用一种或几种有效成分或辅以药效试验为指标,采用比例分割法、正交试验或均匀设计法优选。一般分别用近似胃和肠道的酸碱水溶液煎煮2~3次,或加以搅拌设备(模拟胃肠道蠕动)。

十、超声波提取法:

超声波萃取的强化主动力来源于超声空化效应,超声空化产生的声冲流和冲击波可引起体系的宏观湍动和固体颗粒的高速碰撞,使传质边界层变薄、传质速率增大。

超声萃取的效果不仅取决于其强度和频率,而且和药材的组织结构有关,同时超声波的次级效应,如机械振动、乳化、扩散、击碎及化学效应等也能加速欲提取物的扩散释放。

十一、浸提生产时遇到的问题

1、酶法提取的主要工艺因素

大部分中药材的细胞壁是由纤维素构成,有效成分往往被包裹在细胞壁内,用纤维素酶能破坏细胞壁进而有利于有效成分的提取。

2、有效成分浸出转移率低

①提取方法的选用:有效成分是否热敏性的。②提取溶剂的选择:有效成分是脂溶性还是水溶性。③工艺条件的优选:如采用正交设计优选,应经测试选择因素、水平,因素必须是影响浸提效率的主要工艺环节,设置的水平应能在该因素下显示出影响差异。

3、质地致密的药材煎煮转移率低

提高转移率就是解决水分“渗不透”的矛盾,一是缩小药材的块、粒径,增大表面积;二是采用加压煎煮法,加强溶剂的穿透力。

4、煎煮含皂苷成分较多的药材时的溢锅问题

皂苷成分由于具有较强的表面活性,能够降低液体的表面张力,而具有强烈的“起泡”性质;解决溢锅问题的关键就在于消除泡沫。大生产中常用的消泡方法一是加入“消泡剂”(表面活性更大,与皂苷类起泡剂争夺液膜表面,而其本身却不能形成稳定的液膜),一般为硅酮、辛醇或其他HLB值为1~3的表面活性剂;二是机械消泡,在敞口式容器上方安装由电动机带动的“消泡栅”。

十二、中药浸提设备

①多能提取罐:罐体采用不锈钢,药材经加料口加入罐内,提取液从活底上的滤板滤过后排出,夹层可通蒸汽加热或通水冷却,排渣的底盖可用气动装置自动启闭。为防止提取器内药渣加桥,罐内装有料叉可借助气动装置自动提升排渣。

多能提取罐可以单独使用,也可以串连成罐组式逆流提取。

②微倒锥形多能提取罐:为防止架桥阻塞而设计出底口大的倒锥形。

③翻斗式提取罐:罐全权可旋转180°,属于动态提取适用于中小型生产。

④搅拌式提取器:

⑤连续提取器:加料和排渣过程可以连续进行,溶剂以连续的方式与药材接触,提取率高提取速率快。

十三、超临界流体萃取

1、超临界流体萃取技术(Supercritical fluid extration,SFE):

在临界压力和临界温度以上相区内的气体称为超临界流体(SF)。超临界流体的性质既非液体也非气体,而是介于二者之间的一种状态,即一方面SF的扩散系数和黏度接近气体,另一方面SF的溶剂性能类似液体,物质在SF中的溶解度由于压缩气体与溶质分子间相互作用增强而大大增加,使某些化合物可以在低温条件下,被超临界流体溶出和传递。用超临界条件下的流体作为萃取剂,从液体或固体中萃取某些有效成分离的技术。

2、可用作超临界流体的气体:

气体沸点(℃)临界温度(℃)临界压力(bar)临界点比重(g/ml)

二氧化碳-78 31.04 73 0.468

氧化二氮-89 36.5 71 0.457

乙烯-103.7 9.5 50 0.2

三氟甲烷-82.2 25 46 0.516

六氟化硫-63.8 45.56 37.7 0.73

氮气-195.8 -147 32.8 0.31

氩气-185.7 -122.3 47 0.434

3、CO2作为超临界流体的应用特点:

①操作范围广,便于调节;②可通过控制压力和温度,改变超临界CO2的密度从而改变其对物质的溶解能力,有针对性的萃取中草药中的某些成分;

③操作温度低,在接近定温条件下萃取,适宜于热敏性成分的提取;④萃取过程密闭、连续进行,排除了遇空气氧化和见光反应的可能性,使萃取物稳定;

⑤萃取分离可一步完成;⑥CO2价廉易得,且可循环利用;⑦可调节萃取物的粒度;⑧属于高压技术,工艺过程技术要求高,设备投资费用较大,目前较多用于含量低、产值高、高质量成分的提取。

4、超临界CO2萃取技术适用于哪些中药成分的提取:

由于CO2的极性较低,根据“相似相溶”原理,中药中各种成分的可萃取性与其化学结构有关,单独采用SFE-CO2萃取具有如下的经验规律:①碳氢化合物及其它极性小的亲脂性化合物,如脂、醚、内酯和含氧化合物可在较低压力(7~10MPa)下被萃取出来;②极性集团如羟基、羧基增加,可使其在同系物中的可萃取性降低;③极性化合物如苷类、糖和氨基酸等强极性的物质在

40MPa以内不能被萃取出。

单独采用SFE- CO2萃取生理活性物质,一般只对于分子量较小和极性不大的挥发油,小分子萜类及部分生物碱有效,而对于分子量较大和极性基团较多的活性物质则需加入极性夹带剂,调节萃取剂的极性,改善对极性成分的溶解性能。

5、常用的夹带剂有哪些:

由于CO2是一对称分子,偶极距为0,且极性随压力增大无明显增加,故大多数极性较强的组分就难溶于超临界状态下的CO2之中,于是就有了在超临界CO2中加入极性溶剂的混合超临界流体萃取技术。加入的极性溶剂称夹带剂。

常用的夹带剂有甲醇、水、乙醇、丙酮、乙酸乙酯等,一般夹带剂的加入量不超过物料总量的50%。

6、超临界流体萃取装置的基本构成和工艺参数:

超临界流体萃取装置量由气柜(CO2储罐)、高压泵、萃取釜、解析釜、连接管道和阀门组成。物料置于萃取釜中,气柜中的CO2通过高压泵加压至所需压力后送入已预加热至一定温度的萃取釜中,循环萃取一定时间,含被萃取成分的超临界流体进入解析釜中,通过升温减压,超临界CO2与被萃取物分离,最后经解析釜放料口将萃取所得物放出。

应用超临界流体萃取工艺需考察的工艺参数有:①物料颗粒的大小:可将中药材或饮片粉碎至20~60目为宜;②萃取压力的影响:弱极性物质压力一秀为7~10 MPa,而对强极性物质压力要达50 MPa以上才能萃取出来;③萃取温度的影响:在一定压力下,温度升高一方面使被萃取物的挥发性增加,另一方面,又使超临界流体的溶解能力下降;④夹带剂的选择:适宜的夹带剂可使萃取条件更加温和。

7、超临界流体萃取技术操作中常见故障:

高压泵开启后压力不上升:①萃取器内残留有空气、水等,重新排气至排空阀排出连续的白色气体;②CO2冷冻时间不够或冷冻压力过小;③CO2气瓶压力太小;应保持在5 MPa以上;④进气阀门损坏或被杂物堵塞。

刚开机时运转正常,过一段时间后高压控制开关却自动关闭:是由于冷却水压力不够,不能充分冷却,致使压缩机内

十四、微波萃取(Micowave-assisted Extraction,MAE)

1、对中药成分的选择性及适用范围:

中的某些组分被选择性加热,从体系中分离进入到萃取剂中。

MAE的选择性主要取决于目标物质和溶剂性质的相似性,必须根据被提取物的性质选择极性(水、醇)或非极性(正己烷)溶剂。但由于非极性溶剂不

能吸收微波通常要在其中加入极性溶剂;如果样品和溶剂都不吸收微波,则MAE无法进行。

2、微波萃取的原理及特点:

微波是频率约在300MHz~300GHz,即波长在1mm~1m之间的电磁波。微波以直线方式传播,并具有反射、折射、衍射等光学特性;微波遇金属被反射,遇非金属则能穿透或被吸收。微波萃取的高效率主要是利用了微波强烈的热效应(实际上是介质分子获得微波能并转化为热能)。

微波加热的特点是:①选择性:极性较大的分子可获得较多的微波能因而运动速度较快。②快速:被加热的样品往往放在微波能透过且不吸热的容器中,所以微波不需要加热容器而直接加热样品。③加热均匀:微波的穿透性可以在物质不同的深度同时加热,在均匀的微波场中样品受热也是均匀的。④高效。⑤清洁、不造成污染。

由于细胞内的水等极性物质吸收微波后产生热量,使细胞内温度迅速升高,水汽化产生压力使细胞膜(壁)破裂,产生微孔或裂纹,从而使细胞内物质更容易溶出。

3、微波萃取设备:

目前世界上主要有两家:美国CEM公司和意大利的Milestone公司。国内只有中国科学院深圳南方大恒微波化学研究所生产。

第三章分离纯化技术

一、综述

二、薄膜滤过的方法

(一)微孔滤膜过滤法(二)纳米滤过

(三)陶瓷膜微滤技术精制中药提取液

(四)超滤技术(五)离心机分离

三、凝胶滤过法

1、在中药分离中的应用

2、凝胶的类型及选用

3、凝胶滤过的操作

4、对分离效果不理想的处理

5、对流速慢且不稳定的处理

四、聚酰胺吸附法五、硅胶吸附柱色谱

六、水提醇沉与醇提水沉七、絮凝澄清技术

八、壳聚糖

九、大孔吸附树脂

1、技术概述

2、吸附能力

3、怎样用大孔吸附树脂进行分离、纯化?

4、吸附树脂的筛选

5、解吸条件的确定

6、树脂吸附过程中遇到的问题(1)吸附困难的原因与解决办法

(2)树脂分离纯化后药物成分收率降低的问题

(3)树脂处理过的浸膏收率仍然过高(4)泄漏点的测定

十、离子交换树脂

1、离子交换法的原理

2、对离子交换树脂的要求

3、如何提高交换速度

4、在实际生产中应用的类型

十一、分子蒸馏技术十二、酶法

十三、透析法

一、综述

分离纯化技术是将中药提取液与药渣、沉淀物和固体杂质进行分离,进而采用适当的方法最大限度地去除无效成分、保留有效成分和辅助成分的技术。

常用的纯化方法有:水提醇沉法(水醇法)、醇提水沉法(醇水法)、絮凝沉淀法、膜分离法、透析法、盐析法、离子交换法、大孔树脂吸附法、凝胶滤过法、聚酰胺吸附法、硅胶吸附柱色谱法、分子蒸馏法、酶法等。

分离纯化法的选用,应根据药材所含成分理化性质、制剂所选剂型及成型工艺要求综合考虑,并需进行必要的实验研究才能确定。

二、薄膜滤过的方法

按膜材料划分有金属膜、无机膜、高分子膜;按分离功能划分,以压力差为推动力的常用薄膜滤过操作有:①微滤(孔径0.025~14μm),可从待滤的水性混悬液中除去粒径0.025~14μm的悬浮颗粒;②超滤(孔径

0.001~0.02μm),可截留分子量为300~300000的大分子;

③反渗透(孔径0.0001~0.001μm),除去大于0.001μm的溶质分子,主要用于水的脱盐;

④纳滤(平均孔径2nm),从溶液中分离出300~1000小分子量的物质。

这四种操作均属膜分离,都是将溶质通过一层具有选择性的薄膜从溶液中分离出来,分离的推动力都是压强。目前这四种压力驱动型膜分离技术以微孔滤膜滤过的应用最广。

(一)、微孔滤膜过滤法

1、正确使用微孔滤膜滤过法:微孔滤膜可透过溶液、截留除去悬浮颗粒,在制药生产中主要用于水针及大输液的精滤,也有用于提取液纯化、热敏性药物的除菌、空气的净化或液体中微粒含量的分析等。

为防中药液料中的杂质如鞣质、蛋白质、多糖等大分子和混悬微粒、亚微粒、絮状物将微孔堵塞,液料必须先经预滤处理;一般是将膜滤器串连在常规滤器后作为末端滤过用,即液料先经常规滤器如砂滤棒、垂熔玻璃漏斗、板框压滤或高速离心进行预滤后,再用微孔滤膜滤过;生产中以药液先经板框压滤后高速离心(6000r/min),再微孔滤膜滤过为多。

2、微孔滤膜的选择:微孔滤膜是由不同性质(对酸、碱,高、低温的耐受性;脂溶性)的材料制成,是以其自身孔径的大小来分筛与取舍溶液中的微粒。

(二)纳米滤过

是介于反渗透与超滤之间的一种以压力为驱动的新型膜分离技术,纳米滤过膜的截留分子量范围一般小于1000而大于300,即纳米滤膜可以截留能通过超滤膜的溶质而让不能通过反渗透膜的溶质通过。其特点是①截留小分子有机物而透析出盐,集浓缩与透析于一体。②渗透压远比反渗透为低,操作压力小。

纳米膜的平均孔径为2nm,应具有良好的热稳定性、PH稳定性和对有机溶剂的稳定性,好的膜能承受800℃的温度,在PH0~14范围内工作,对许多溶剂有较强的抵抗作用。

(三)陶瓷膜微滤技术精制中药提取液

无机陶瓷膜拥有有机膜无法比拟的优势:耐高温、抗污染性强、耐腐蚀、易清洗、机械强度高。其耐高温可达800℃能用高温蒸汽对膜进行灭菌,耐酸碱和有机溶剂清洗膜的化学药品选择面宽。主要用于对气态、液态混合物的滤过分离。

目前在中药提取液的分离纯化方面应用也日趋增多,中药水提液含有大量细微颗粒(药渣、泥砂、油滴)、细菌(0.3~10μm)、酵母和真菌

(1~10μm)、大分子胶体(0.1~1μm)等杂质,故可选择孔径为0.2μm的无机陶瓷膜做滤材。微滤结束后的污染膜可用物理方法(高速流水冲洗、海绵球机械清洗、反冲)和化学方法(1~3%的NaOH液清洗30分钟)

(四)超滤技术

超滤就是能使溶剂及小分子物质通过,高分子物质和微粒子如蛋白质、水溶性高聚物、细菌等被滤膜阻留;截留分子量一般在300~300000或滤过精度在0.005~0.01μm范围内。超滤的应用范围包括①大分子产品的浓缩。②不同分子

量产品或杂质(如氨基酸、蛋白质、低聚糖、鞣质等)的分离、纯化。③药液的澄清或除菌、去热原。

影响超滤操作的因素:①浓度:浓度高的溶液易形成凝胶层阻碍过滤。②黏度:黏度高滤速慢;提取液可经絮凝澄清、离心滤过进行预处理除去黏性杂质。③分子形状和大小:④温度:⑤压力:在溶液浓度较低时,增加压力才会加快滤过速度;由于超滤截留大分子物质会在膜的表面积累成高浓度区,这种高浓区起到次级膜的作用对溶剂的流动形成阻力,此时增加压力并不能使滤速加快。只能用强化搅拌的措施来降低高浓层的厚度加快流速。⑥膜的性质:⑦搅拌速度:⑧PH值:蛋白质类的等电点。滤之前应预滤。②超滤后产品含量可能显著下降:江膜孔径不合适,在截留杂质的同时也截留了有效成分。③超滤器使用后反冲清洗较困难,使用寿命短,不宜长期保存:选择合适的超滤器,首首先根据产品特性选择什么样的介质(中空纤维型、聚丙烯型),再根据主药成分和杂质分子量的大小选用多大分子量截留值的超滤膜,最后根据处理量的大小决定选用何种规模的超滤器。

用板框压滤机预滤时漏炭:炭末很细,最小的仅1~2μm,而滤布的毛细孔径在40μm以上。解决办法是二次或多次循环滤过,若还有炭应检查滤布是否有破损。

(五)离心机分离

1、管式超速离心机

分离因数a:

a=C/G=(2π/60)2Mrn2/Mg=(2π/60)2rn2/g

式中:C为物料在离心场中所受离心力,G为重力;M为固体粒子的质量,r为离心机的半径,n为离心机的转速。

管式超速离心机是工业用离心机中公离因数a最高的机种,它能分离一般离心机难以分离的物料。属于连续分离、停机清渣的超高速分离机器,在使用中应注意:①液料须经澄清或预滤处理,使所含杂质在0.5%以下,则能发挥理想的分离效果。②进料压力和速度:随着沉渣的增加转鼓内径也越来越小。从

分离因数表示式可见,为保持同样的分离效果a,分离操作时的进料量应在开始时大,而最后较小为好。③减少路途停机,除非沉淀太多已无法分离。

2、真空冷冻离心机

其转速一般在40000~80000r/min,由于转速很高因此要求特别注意防止转头因金属疲劳或机械疲劳造成的损坏。①选择合适的材料:高速旋转的转头由于受强大离心力的作用,在转子内部形成很大压力,导致转子径向扩展、轴向缩短,并产生弹性应变。一般钛合金材料的转头比最好的铝合金材料的转头所能经受的离心力场大1倍。②防止超速:离心机内部装有光学测速装置,并通过它检测、限制转子速度。③装料时要注意保持样品离心管的最佳平衡。

④防止化学腐蚀。⑤加强对转头的维护保养。

3、合理选用离心机

用于制备固体制剂的提取液→先用普通三角离心机除去纤维性杂质和较大的颗粒→再用高速管式离心机除去稀薄、微细悬浮颗粒。

在口服液、酒剂、露剂等液体制剂中,用蝶片离心机(常用于分离含有两种不同密度液体的浮浊液和澄清固相含量很少的悬浮液)除去液体中悬浮的细微颗粒。

对于一些颗粒较大、含固量较大且密度差大于0.05g/cm3的悬浮液,可选用螺旋沉降卧式自动离心机进行分离。

三、凝胶滤过法

凝胶粒子具有立体的网状结构和许多孔隙,当含有不同分子大小的物质的混合液通过微孔结构的凝胶颗粒的缝隙时,比网眼小的小分子物质都能自由或较容易进入颗粒内,大分子物质不能或不容易进入网眼,便被排阻于凝胶颗粒外;加入洗脱剂后溶液向下推移,大分子及剩余小分子物质进入下层新的凝胶相中,重复上述扩散和排阻过程,如此则大小分子可彼此筛分。这种进入到凝胶颗粒孔腔内部的作用,对极性分子和饱和分子有优先吸附性。

凝胶滤过法主要用于水溶性物质的分离,如糖、多糖、氨基酸、多肽、蛋白质、酶,也可用于生物碱、黄酮类和甾体等化合物的分离。

1、在中药分离中的应用:①在复杂的化学成分中分离有效成分。②脱盐。③脱色:凝胶滤过法有时优于其他方法,透析法需长时间处理而还不能满意地除去色素,用活性炭脱色有时会引起有效成分的明显损耗。

2、凝胶的类型及选用:

①葡聚糖凝胶及其衍生物:葡聚糖凝胶是非离子型的不溶于水的白色珠状颗粒,在水、盐溶液及弱酸、弱碱溶液中稳定,葡聚糖凝胶具亲水性但如在葡聚糖分子上引入有机基团则可增大其有机性质而使其呈亲脂性,可以在多种有机溶剂中溶胀后使用。

②聚丙烯胺凝胶:一般的性能及应用均与葡聚糖凝胶相仿,但其稳定性要好些,葡聚糖凝胶在洗脱过程中会有少量糖被洗脱掉,而聚丙烯胺就不会有溶解的物质,聚丙烯胺在PH2~11范围内稳定。

③琼脂糖凝胶:与前述两种凝胶不同,它不是以共价键交联而是以氢键交联,不同孔隙程度是以改变浓度而达到的,它没有干的凝胶必须以溶胀状态保存,遇脱水剂、冷冻和一些有机溶剂即破坏,但遇丙酮或乙醇则无影响。

PH4.5~9④疏水性凝胶:常用的有聚甲基丙烯酸酯凝胶、以二乙烯苯为交联剂的聚苯乙烯凝胶。

凝胶的选用:

被分离化合物性质水溶性葡聚糖凝胶、聚丙酰胺凝胶

脂溶性疏水性凝胶、葡聚糖凝胶

提纯要求自大分子中除小分子~脱盐用交联度较高的凝胶

自小分子中除大分子~去热原用交联度小的

对蛋白质、多肽、聚核苷酸、多糖、酶的分离,用交联度小的。

对植物色素的分离脱色,用高交联度和亲脂性凝胶

3、凝胶滤过的操作:干燥凝胶→浸泡,吸水膨胀→反复倾泻除去不易下沉的颗粒→管柱中放水,装柱→2~3倍柱床体积的洗脱液洗脱使柱床稳定,凝胶柱表面放滤纸或塑料网,保持柱中水面不低于凝胶表面以防干燥→样品以水溶液形式加入→洗脱液用水或一定PH的缓冲液→洗脱液分段收集。

4、对分离效果不理想的处理

①检查所选凝胶型号和性能是否与所要分离化合物相适应。

②凝胶粒度是否过大。粒度大流速高,但洗脱峰较为扁平分离效果不好。粒度小流速低但分离效果好。

③装柱时要防止色谱管柱下端出口处死腔过大,否则洗脱液在死腔混合和稀释影响分离效果。一般是在下端缩口底部放一玻璃棉,或填充小玻珠上盖垂熔玻璃板。

5、对流速慢且不稳定的处理:在能达到分离目的的前提下,不要选择粒度过小的凝胶,同时凝胶柱管也不宜过长,一般柱长不超过1m。柱的长度也要考虑到待分离物质分子大小相差的多少,从中药有效成分脱盐时,柱高与直径的比例为5∶1~10∶1即可。

四、聚酰胺吸附法

聚酰胺是通过酰胺基聚合而成的一类高分子化合物,分子结构中的酰胺基可与酚类、酸类、醌类和硝基化合物等形成氢键结合而被吸附,从而与不能形成氢键的化合物分离。

从聚酰胺上洗脱化合物的过程是通过溶剂分子取代被吸附的化合物分子来完成的,即一种新的作用更强的氢键代替原有氢键的脱吸附过程。

聚酰胺吸附法的操作步骤:①装柱。②稀释适当浓度上样,一般样品浓度约为20~30%,每100ml聚酰胺上样

1.5~

2.5g。③水洗。④醇洗:在水中递增乙醇浓度至浓乙醇溶液。⑤找到最佳吸附比,先小量试验找。⑥放大。⑦聚酰胺的回收。先用5%氢氧化钠洗,然后水洗,再用10%醋酸洗,最后用蒸馏水洗至中性。

五、硅胶吸附柱色谱

色谱硅胶为一多孔性物质,由于其骨架表面具有的硅醇基基团能够通过氢键与极性或不饱和分子相互作用,同时能吸附多量的水分。硅胶的吸附能力取决于硅羟基的数目,其次是含水量。

操作要点:①装柱:将硅胶混悬于溶剂中,不断搅拌除尽气泡。②上样。

③溶剂:极性相近相溶,梯度洗脱。④硅胶粒度细时可加压。⑤因硅胶的吸附能力较弱,故用量一般为样品的30~60倍。

六、水提醇沉与醇提水沉

水提醇沉法:中药中含有的生物碱类、苷类、蒽醌类、有机盐类、多糖等易溶于水,水提后浓缩然后用适量乙醇反复数次溶解,合不溶于乙醇的杂质如蛋白质、粘液质、糊化淀粉、树脂或多糖等沉淀。

醇提水沉法:中药中含有的生物碱、游离蒽醌、苷类、鞣质、树脂等在乙醇中溶解,回收乙醇后加入适量的水使有效成分与一些不溶性杂质分离开来。

水提醇沉法存在的问题:①成本高:耗醇量大,耗能多,固定投资增加,生产周期延长,劳动强度提高。②药物成分损失:研究发现,醇沉对生物碱类、黄酮类、有机酸、多糖、无机成分等都有损失。③影响疗效:醇沉可能使一部分具有生理活性或可起协同作用的成分被除去。④制剂不便:随醇沉浓度升高,干膏收率降低,吸湿率升高。

七、絮凝澄清技术

散系,它本身存在巨大的表面能具自发聚集大颗粒而产生沉淀的趋势,只有当分散度极高或有高分子化合物等保护剂加以“保护”时,才能相对稳定存在。传统的醇沉工艺不能起到稳定作用。

絮凝沉淀法是通过絮凝剂与蛋白质、果胶等发生分子间吸附架桥和电中和作用使之沉降,它除去了溶液中的粗粒子,保留了高分子多糖类,并利用高分子多糖、天然亲水胶体的保护作用,提高中药制剂的稳定性。

中药提取技术

1、简述生物酶辅助提取中药成分的原理 中药的生物酶辅助提取法是在传统提取方法的基础上,根据植物药材细胞壁的构成,利用酶反应所具有的极高催化活性和高度专一性等特点,选择相应的生物酶,将细胞壁的组成成分纤维素、半纤维素、果胶质等水解,从而使植物细胞内有效成分更容易溶解、扩散的一种提取方法。 2、酶解技术在中药提取中的应用 (一)多糖 甘草多糖的酶辅助提取 运用正交设计法设计酶法提取工艺,采用分光光度法测定多糖含量。 多糖的酶及超声联合提取 采用正交试验,优化玉米须多糖的酶及超声提取方案,并研究这两种方案的结合效果.结果三种提取工艺中联合提取多糖得率最高,酶辅助提取次之,超声提取最低.结论联合提取是一条高效的提取路线. (二)、酶解技术在中药成分转化中的应用 研究证明,白藜芦醇具有抗菌、抗癌、抗炎、抗过敏、降血脂和抗氧化等多方面的药理活性,是目前研究较热门而有希望的抗癌药剂之一。 白藜芦醇在虎杖中主要以苷的形式存在,因此,作者考虑将白藜芦醇苷转化成白藜芦醇苷元,这将大大提高白藜芦醇的得率。(虎杖提取用乙醇) (三)、酶解技术在中药提取液精制与纯化的应用 中药水提液含有多种类型的杂质,如淀粉、蛋白质、鞣质、果胶等。采用常规提取法时,煎煮过程中药材里的蛋白质遇热凝固、淀粉糊化,影响有效成分煎出,分离困难。针对中药水提液中所含的杂质类型,采用相应酶将其降解为小分子物质或分解除去,可解决上述问题,并改善中药口服液、药酒等液体制剂的澄清度,提高成品质量 3.利用酶解法、超声波法、微波法、超高压法提取多糖或黄酮类成分的设计方案。 酶解法-----单因素考查法: (一)温度 (二)酶用量 酶解温度55,pH6.5酶解2小时纤维素酶

中药提取工艺研究发展

综述 中药提取工艺研究发展 临床药学2008-1班 百合提努尔·胡达拜地 学号:200807100801131 摘要:中药提取工艺路线设计直接影响到中药制剂的有效安全。本文综合分析了当前中药提取工艺设计思路,并经通塞脉微丸中间提取物制备工艺的比较研究,提出中药提取工艺设计应以复方整体作为研究对象,按照传统汤剂制备方法制备提取物,进而针对复方组成药物所含有的活性成分类型,选择性采用适宜的分离精制方法,逐步排除无效物质、非疗效相关物质,最终获得能够保持原方疗效和安全性的中间提取物。[1] 关键词: 中药;提取工艺,研究发展 前言:提取是从药材原料中分离有效成分的单元操作,直接关系到产品有效成分的含量,影响内在质,量、临床疗效、经济效益及GMP的实施。中药制剂的研究和生产从传统制剂原粉成型的丸、散到浸提型制剂如颗粒剂、浸膏片、胶囊、口服液、注射液等的兴起和发展,是半个世纪来中药制剂进步的特征,应属于从传统制剂进入改进制剂的时期[2]。本文对近年来传统与现代中药提取工艺进行归纳概述。 基本内容: 1.传统工艺 传统工艺包括浸渍法, 水提醇沉工艺,水煎煮法, 渗漉法, 回流法, 水蒸汽蒸馏法。下面我们简单的介绍一下几个传统工艺: 1.1 浸渍法 浸渍法按提取的温度和浸渍次数可分为:冷浸渍法、热浸渍法、重浸渍法。浸渍法适用于粘性药物、无组织结构的药材、新鲜及易于膨胀的药材、价格低廉

的芳香性药材。不适于贵重药材、毒性药材及高浓度的制剂。 1.2 水提醇沉工艺 中药水提液经浓缩后在常温或低温下加入乙醇进行醇沉,乙醇既作为溶剂来溶解浓缩液中的有效成分,又作为沉淀剂来沉淀某些杂质。 1.3 水煎煮法是在草本植物中加入适量的水,然后加热至一定温度并保持一定时间后滤出煮液的方法。该方法不仅简便易行,而且能煎出大部分有效成分,是最常用的提取草本植物中活性成分的方法之一[3]。 煎药机优于传统煎煮法。杨璐璐等[4]发现用GNG 中药抽出机比直火加热法和蒸气煎药法制备汤剂的总固体含量高出2倍以上, 且保质时间长。张晓燕[5]等发现中药抽出机制备的槐花散汤中芦丁含量明显大于常压直火煎煮法。梁文能[6]等发现煎药机煎煮的黄连解毒汤中黄芩苷的含量高于传统煎煮法。 2.新工艺 新工艺包括:微波萃取, 超临界流体萃取(SFE), 酶法提取, 超声提技术, 罐组式动态逆流提取工艺, 半仿生提取法 2.1 超滤 超滤(Ultrafiltration)技术是一种膜滤法,也有错流过滤(Cross Filtration)之称。它能从周围含有微粒的介质中分离出10~100A的微粒,这个尺寸范围内的微粒,通常是指液体内的溶质。其基本原理是在常温下以一定压力和流量,利用不对称微孔结构和半透膜介质,依靠膜两侧的压力差作为推动力,以错流方式进行过滤,使溶剂及小分子物质通过,大分子物质和微粒子如蛋白质、水溶性高聚物、细菌等被滤膜阻留,从而达到分离、分级、纯化、浓缩目的的一种新型膜分离技术[7]。 2.2 超临界流体萃取 超临界流体萃取( supercr itical fluid ex traction, SFE )技术是以超临界流体CO2 、NH 3 、H 2O、C2H 5OH 、C2H6等代替常规有机溶剂, 在超临界状态下, 将超临界流体与待分离的物质接触, 通过控制不同的温度、压力以及不同种类及含量的夹带剂, 使超临界流体有选择性的把极性大小、沸点高低和分子

中草药提取方法——溶剂提取法

⑴溶剂提取法原理及常用溶剂溶剂提取法是根据中草药中各种成分在溶剂中的溶解性质,选用对活性成分溶解度大,对不需要溶出成分溶解度小的溶剂,而将有效成分从药材组织内溶解出来的方法。当溶剂加到中草药原料(需适当粉碎)中时,溶剂由于扩散、渗透作用逐渐通过细胞壁透入到细胞内,溶解了可溶性物质,而造成细胞内外的浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入药材组织细胞中,如此多次往返,直至细胞内外溶液浓度达到动态平衡时,将此饱和溶液滤出,继续多次加入新溶剂,就可以把所需要的成分近于完全溶出或大部溶出。中草药成分在溶剂中的溶解度直接与溶剂性质有关。运用溶剂提取法的关键,是选择适当的溶剂。溶剂选择适当,就可以比较顺利地将需要的成分提取出来。选择溶剂要注意以下三点:①溶剂对有效成分溶解度大,对杂质溶解度小;②溶剂不能与中药的成分起化学变化;③溶剂要经济、易得、使用安全等。选用什么样的溶剂提取中药成分,取决于溶剂的性质和被提取成分的化学结构及溶解性。溶剂可分为水及酸水或碱水。亲水性有机溶剂、亲脂性有机溶剂。根据“相似相溶原理”,欲提取亲脂性成分应选用亲脂性溶剂,欲提取亲水性成分则选用水及亲水性溶剂。应注意的是乙醇、甲醇虽然属于亲水性溶剂,它们可与水随便混溶,但很多亲脂性成分可溶于乙醇、甲醇,所以乙醇或甲醇溶液中既有水溶性成分,也有很多脂溶性成分。乙醇或甲醇中可加入水配成不同浓度的乙醇或甲醇,根据提取成分的情况可选用适当浓度的醇进行提取。⑵提取方法用溶剂提取中药成分,常用浸渍法、渗漉法、煎煮法、回流提取法、连续提取法等。同时,原料的粉碎度、提取时间、提取温度、设备条件等因素也都能影响提取效率,必须加以考虑。①浸渍法:浸渍法是将处理过的药材,用适当的溶剂在常温或温热(60~80℃)的情况下浸渍以溶出其中成分。本法适用于有效成分遇热易破坏以及含多量淀粉、树胶、果胶、粘液质的中药的提取。比较简单易行,但浸出率较差,特别是用水为溶剂,其提取液易于发霉变质,须注意加入适当的防腐剂。②渗漉法:渗漉法是将中草药粉末装在渗漉器中,不断添加新溶剂,使其渗透过药材便可认为基本上已提取完全。在大量生产中常将收集的稀渗淮液作为另一批新原料的溶剂之用。本法浸出效率较高,浸出液较澄清,但溶剂消耗量大、费时长、操作仍嫌麻烦。③煎煮法:煎煮法是我国最早使用的传统的浸出方法。所用容器一般为陶器、砂罐或铜制、搪瓷器皿,不宜用铁锅,以免药液变色。直火加热时最好时常搅拌,以免局部药材受热太高,容易焦糊。有蒸汽加热设备的药厂,多采用大反应锅、大铜锅、大木桶,或水泥砌的池子中通入蒸汽加热。还可将数个煎煮器通过管道互相连接,进行连续煎浸。此法简便,药中大部分成分可被不同程度地提出,但含挥发性成分及有效成分遇热易破坏的中药不宜用此法,对含有多糖类中药,煎煮后,药液比较粘稠,过滤比较困难。④回流提取法:应用有机溶剂加热提取,需采用回流加热装置,以免溶剂挥发损失。小量操作时,可在圆底烧瓶上连接回流冷凝器。溶剂浸过药材表面约1~2cm。在水浴中加热回流,一般保持沸腾约1小时放冷过滤,再在药渣中加溶剂,作第二、三次加热回流分别约半小时,或至基本提尽有效成分为止。此法提取效率较冷浸法高,大量生产中多采用连续提取法。但受热易破坏的成分不宜用此法,且溶剂消耗量仍大,操作亦麻烦。⑤连续提取法:为了弥补回流提取法中需要溶剂量大、操作较烦的不足,可采用连续提取法。实验室常用脂肪提取器或称索氏提取器。应用挥发性有机溶剂提取中草药有效成分,不论小型实验或大型生产,均以连续提取法为好,而且需用溶剂量较少,提取成分也较完全。连续提取法,一般需数小时才能提取完全。提取成分受热时间较长,遇热不稳定易变化的成分不宜采用此法。上述几种为提取中药的传统方法,存在的缺点主要有:(1)煎煮法有效成份损失较多,尤其是水不溶性成份;(2)提取过程中有机溶剂有可能与有效成分作用,使其失去原有效用;(3)非有效成分不能被最大限度的除去,浓缩率不够高;(4)提取液中除有效成分外,往往杂质较多,尚有少量脂溶性成分,给精制带来不利;

中药提取分离技术

中药提取分离纯化 中草药提取液或提取物仍然是混合物,需进一步除去杂质,分离并进行精制。具体的方法随各中草药的性质不同而异,以后将通过实例加以叙述,此处只作一般原则性的讨论。 一、溶剂分离法: 一般是将上述总提取物,选用三、四种不同极性的溶剂,由低极性到高极性分步进行提取分离。水浸膏或乙醇浸膏常常为胶伏物,难以均匀分散在低极性溶剂中,故不能提取完全,可拌人适量惰性填充剂,如硅藻土或纤维粉等,然后低温或自然干燥,粉碎后,再以选用溶剂依次提取,使总提取物中各组成成分,依其在不同极性溶剂中溶解度的差异而得到分离。例如粉防己乙醇浸膏,碱化后可利用乙醚溶出脂溶性生物碱,再以冷苯处理溶出粉防己碱,与其结构类似的防己诺林碱比前者少一甲基而有一酚羟基,不溶于冷苯而得以分离。利用中草药化学成分,在不同极性溶剂中的溶解度进行分离纯化,是最常用的方法。 广而言之,自中草药提取溶液中加入另一种溶剂,析出其中某种或某些成分,或析出其杂质,也是一种溶剂分离的方法。中草药的水提液中常含有树胶、粘液质、蛋白质、糊化淀粉等,可以加入一定量的乙醇,使这些不溶于乙醇的成分自溶液中沉淀析出,而达到与其它成分分离的目的。例如自中草药提取液中除去这些杂质,或自白及水提取液中获得白及胶,可采用加乙醇沉淀法;自新鲜括楼根汁中制取天花粉素,可滴人丙酮使分次沉淀析出。目前,提取多糖及多肽类化合物,多采用水溶解、浓缩、加乙醇或丙酮析出的办法。 此外,也可利用其某些成分能在酸或碱中溶解,又在加碱或加酸变更溶液的pH 后,成不溶物而析出以达到分离。例如内酯类化合物不溶于水,但遇碱开环生成羧酸盐溶于水,再加酸酸化,又重新形成内酯环从溶液中析出,从而与其它杂质分离;生物碱一般不溶于水,遇酸生成生物碱盐而溶于水,再加碱碱化,又重新生成游离生物碱。这些化合物可以利用与水不相混溶的有机溶剂进行萃取分离。一般中草药总提取物用酸水、碱水先后处理,可以分为三部分:溶于酸水的为碱性成分(如生物碱),溶于碱水的为酸性成分(如有机酸),酸、碱均不溶的为中性成分(如甾醇)。还可利用不同酸、碱度进一步分离,如酸性化台物可以分为强酸性、弱酸性和酷热酚性三种,它们分别溶于碳酸氢钠、碳酸钠和氢氧化钠,借此可进行分离。有些总生物碱,如长春花生物碱、石蒜生物碱,可利用不同rH值进行分离。但有些特殊情况,如酚性生物碱紫董定碱(corydine)在氢氧化钠溶液中仍能为乙醚抽出,蝙蝠葛碱(dauricins)在乙醚溶液中能为氢氧化钠溶液抽出,而溶于氯仿溶液中则不能被氢氧化钠溶液抽出;有些生物碱的盐类,如四氢掌叶防己碱盐酸盐在水溶液中仍能为氯仿抽出。这些性质均有助于各化合物的分离纯化。 二、两相溶剂萃取法: 1.萃取法:两相溶剂提取又简称萃取法,是利用混合物中各成分在两种互不相溶的溶剂中分配系数的不同而达到分离的方法。萃取时如果各成分在两相溶剂中分配系数相差越大,则分离效率越高、如果在水提取液中的有效成分是亲脂性的物质,一般多用亲脂性有机溶剂,如苯、氯仿或乙醚进行两相萃取,如果有效成分是偏于亲水性的物质,在亲脂性溶剂中难溶解,就需要改用弱亲脂性的溶剂,例如乙酸乙酯、丁醇等。还可以在氯仿、乙醚中加入适量乙醇或甲醇以增大其亲水性。提取黄酮类成分时,多用乙酸乙脂和水的两相萃取。提取亲水性强的皂甙则多选用正丁醇、异戊醇和水作两相萃取。不过,一般有机溶剂亲水性越大,与水作两相萃取的效果就越不好,因为能使较多的亲水性杂质伴随而出,对有效成分进一步精制影响很大。

中药提取方法

综述中药提取方法 摘要以中药提取方法得本质与影响提取作业得因素为理据,分析国内中药厂提取方法 关键词中药提取方法 1前沿 近年来有关中药提取方法得论述有很多,然而有效成 分得提取率仍然就是现今国内中药制药工业现代化得瓶颈。尽管近年来国内在中药提取生产中推出了一些新工艺,如超声场强化提取、微波提取、超临界流体提取等,但当下得主流仍就是浸提技术。浸提技术就是应用溶剂提取固体原料中某一或某类成分得提取分离操作,又称固液萃取。目前在中药生产过程中,常用得中药浸提方法有煎煮法、浸渍法、渗漉法、回流法、水蒸气蒸馏法等。 面对众多中药提取方法如何抉择就是一个复杂得问题,因为它牵涉到生产设备与生产条件等许多因素。加上如今中药提取得规模较大,尤其考虑到连续生产,即使在实验 中取得成果,在实际情况下还要经过长时间得实践检验。还有前面提到过得提取新工艺,其提取物往往就是化学结构明确得物质,与传统中药生产完全就是两回事,所以生 产传统中药得厂家下不了决心去尝试新工艺,生产者情愿随大流,以避免风险。 提取方法得不同,提取等量有效成分所需原料与能源

也不尽相同,资源与能源对世界经济与人类生存环境得影响越来越被重视。可持续发展经济与资源节约型社会得概念已经被全世界广泛认同,中国也不例外。在市场竞争激烈异常得今天,生产成本得控制就就是企业得生命,而对世界能源价格上涨得现实,生产者应该节约每一滴水,每一度电。中药生产厂家必须努力挑选出最好得中药提取方法,改变目前中药提取效率低、高能耗、高污染所造成得负面影响。 2选择原则 与所有得工程项目一样,选择中药提取方法必要考虑得条件也就是:被处理物料得性质、数量,产品得价值操作人员得技术水平,现实得设备安装场地,生产成本得控制,投资得预算。所追求得目标也就是最高得投资回报率,最低得能耗,最简单得操作,最理想得提取率。降低生产成本,提高产品质量,从而提升本企业得市场竞争力。舍此不会有 良好得后果。 3中药提取本质 中药提取本质上就是一种固液萃取作业,任何化工原理教科书与化工手册对固液萃取得机理都有详尽得阐明。为了便于分析国内中药厂现有提取装置得状况,有必要将其与中药提取有关得结论摘录于此。

中药提取方法汇总

综述中药提取方法 摘要以中药提取方法的本质和影响提取作业的因素为理据,分析国内中药厂提取方法 关键词中药提取方法 1前沿 近年来有关中药提取方法的论述有很多,然而有效成分的提取率仍然是现今国内中药制药工业现代化的瓶颈。尽管近年来国内在中药提取生产中推出了一些新工艺,如超声场强化提取、微波提取、超临界流体提取等,但当下的主流仍是浸提技术。浸提技术是应用溶剂提取固体原料中某一或某类成分的提取分离操作,又称固液萃取。目前在中药生产过程中,常用的中药浸提方法有煎煮法、浸渍法、渗漉法、回流法、水蒸气蒸馏法等。 面对众多中药提取方法如何抉择是一个复杂的问题,因为它牵涉到生产设备和生产条件等许多因素。加上如今中药提取的规模较大,尤其考虑到连续生产,即使在实验中取得成果,在实际情况下还要经过长时间的实践检验。还有前面提到过的提取新工艺,其提取物往往是化学结构明确的物质,与传统中药生产完全是两回事,所以生产传统中药的厂家下不了决心去尝试新工艺,生产者情愿随大流,以避免风险。 提取方法的不同,提取等量有效成分所需原料和能源

也不尽相同,资源和能源对世界经济和人类生存环境的影响越来越被重视。可持续发展经济和资源节约型社会的概念已经被全世界广泛认同,中国也不例外。在市场竞争激烈异常的今天,生产成本的控制就是企业的生命,而对世界能源价格上涨的现实,生产者应该节约每一滴水,每一度电。中药生产厂家必须努力挑选出最好的中药提取方法,改变目前中药提取效率低、高能耗、高污染所造成的负面影响。 2选择原则 和所有的工程项目一样,选择中药提取方法必要考虑的条件也是:被处理物料的性质、数量,产品的价值操作人员的技术水平,现实的设备安装场地,生产成本的控制,投资的预算。所追求的目标也是最高的投资回报率,最低的能耗,最简单的操作,最理想的提取率。降低生产成本,提高产品质量,从而提升本企业的市场竞争力。舍此不会有 良好的后果。 3中药提取本质 中药提取本质上是一种固液萃取作业,任何化工原理教科书和化工手册对固液萃取的机理都有详尽的阐明。为了便于分析国内中药厂现有提取装置的状况,有必要将其与中药提取有关的结论摘录于此。

中药提取方法大全

中药提取方法大全 第二章中药浸提技术一、概述………………………………………………………11 二、各提取方法的适用性……………………………………12 三、设计中药浸提工艺时应考虑哪些方面…………………13 四、煎煮 法……………………………………………………14 五、浸渍 法……………………………………………………18 六、渗漉 法……………………………………………………19 七、回流 法……………………………………………………20 八、水蒸汽蒸馏法……………………………………………21 九、半仿生提取 法……………………………………………23 十、超声波提取 法……………………………………………23 十一、浸提生产时遇到的问题………………………………24 十二、中药浸提设 备…………………………………………25 十三、超临界流体萃 取………………………………………26 十四、微波萃 取………………………………………………30 一、概述浸提技术是应用溶剂提取固体原料中某一或某类成分的提取分离操作又称固液萃取。目前在中药生产过程中常用的中药浸提方法有煎煮法、浸渍法、渗漉法、回流法、水蒸汽蒸溜法等。近年来新方法新技术也不断涌现和广泛应用如半仿生提取法、旋流提取法、加压逆流提取法、酶提取法及超临界流体萃取技术、超声提取技术、微波萃取技术及高速逆流色谱提取技术等。确定某一组方的浸提工艺时必须进行工艺条件的优选设计以将有效成分及辅助成分最大限度地浸提出来无效成分及药材组织物尽可能地少提出来。常用的方法有正交设计法和均匀设计法。浸提设备按其操作方式可分为间

歇式、半连续式和连续式。常用设备有多能提取罐、球形煎煮罐、连续提取器、渗漉柱、微波萃取罐和超临界流体萃取器等。二、各提取方法的适用性 1、煎煮法用水作溶剂将药材加热煮沸一定的时间以提取其所含成分的一种方法。适用于有效成分能溶于水且对湿热稳定的药材。 2、浸渍法用定量的溶剂在一定温度下将药材浸泡一定的时间以提取药材成分的一种方法。适用于黏性药物、无组织结构的药材、新鲜及易膨胀的药材、价格低廉的芳香性药材。不适于贵重药材、毒性药材及高浓度的制剂。 3、渗漉法是将药材粗粉置于渗漉器内溶剂连续地从渗漉器上部加入渗漉液不断地从下部流出从而浸出药材中有效成分的一种方法。该法适用于贵重药材、毒性药材及高浓度的制剂也可用于有效成分含量低的药材的提取。 4、回流法是以乙醇等易挥发的有机溶剂提取药材成分其中挥发性成分被冷凝重复回流到浸出器中浸提药材这样周而复始直至有效成分回流提取完全时为止。该法适用于热稳定药材的提取。 5、水蒸汽蒸馏法是应用相互不溶也不起化学反应的液体遵循混合物的蒸汽总压等天该温度下各组分饱和蒸汽压即分压之和的道尔顿定律以蒸馏的方法提取有效成分该法适用于具有挥发性、能随水蒸汽蒸馏而不被破坏、与水不发生反应、又难溶或不溶于水的化学成分的提取、分离。 6、超临界流体提前取法该法是将临界状态下的流体如CO2以一定温度下通入提取器中可溶组分溶解在超临界流体中并且随同该流体一起经过减压阀降压后进入分离器溶质从气体中分离出来。超临界流体与提取物分离后经压缩后可循环再使用。该法主要适用于挥发性成分和脂溶性成分的提取以及“热敏性”成分的提取。三、设计中药浸提工艺时应考虑哪些方面首先应考虑的是如何最大限度地提取得到起药效作用、能发挥临床疗效的物质基础即有效成分、有 效部位或提取物同时最大限度地除去无效杂质。具体是根据处方组成及所含主要成分性质选择提取溶剂及提取方法分析是单味还是复方该方君、臣、佐、使的配伍和药性特点找出组方各药材所含众多成分中具生物活性的药效成分或主要指标

浅谈常用中药的的提取分离纯化技术

题目:浅谈常用中药的提取分离纯化技术摘要:为了使中药业不断地发展,本文主要对常用中药的传统提取方法和现在提取方法都做了介绍,对中药的分离纯化技术业做了简单介绍。主要是为中药制剂的研究提供参考依据。 关键字:提取;分离纯化;中药

discuss the commonly Chinese medicine extraction and purification technology Abstract: In order to make the pharmaceutical development unceasingly, this article mainly are introduced the traditional Chinese medicine extracting method and extracting method, the separation and purification of Chinese medicine technology made simple introduction. Mainly to provide a reference basis of traditional Chinese medicine preparation research. Keywords:E xtraction; Separation and purification; Traditional Chinese medicine

目录 第一章引言 (3) 第二章中药的提取技术 (3) 2.1传统的提取技术 (3) 2.2现在的提取技术 (3) 2.2.1 超临界流体萃取技术 (3) 2.2.2生物酶解提取技术 (4) 2.2.3半仿生提取技术 (4) 2.2.4超声提取技术 (4) 2.2.5微波提取技术 (5) 第三章中药的分离纯化方法 (6) 3.1几种应用广泛的传统分离纯化方法 (6) 3.1.1色谱分离技术(chromatography): (6) 3.1.2两相溶剂萃取法 (7) 3.1.3沉淀法 (7) 3.1.4结晶与重结晶法 (8) 3.1.5盐析法 (8) 3.2 目前引进中药领域并发展较成熟的几种新兴纯化方法 (8) 3.2.1 大孔树脂分离技术(MacroAbsorptionResin) (8) 3.2.2膜分离技术(Membrane Seperation Technology) (9) 3.2.3高速逆流色谱分离(High-speed Countercurrent Chro--matography,HSCCC) (9) 3.2.4微波分离法(microwave extraction) (9) 3.2.5分子蒸馏法 (9) 第四章小结 (10) 参考文献 (10)

中药材提取方法大全

中草药有效成分的提取 本文只做了解和参考,我们需要根据中药材不同有效成分或活性成分选择不同的提取方法,每种方法也有优劣之分,例如索氏提取适用于提取溶解度较小的物质,但当物质受热易分解和萃取剂沸点较高时,不宜用此种方法,而且提取时间较长,而超声提取法,可以进行清洗、干燥、杀菌、雾化及无损检测等,但是超声波的提取原理与水提不同,所以也要根据实际情况选择。 此处涵盖当代中药提取各种方法,分而述之。 (一)溶剂提取法: 1.溶剂提取法的原理:溶剂提取法是根据中草药中各种成分在溶剂中的溶解性质,选用对活性成分溶解度大,对不需要溶出成分溶解度小的溶剂,而将有效成分从药材组织内溶解出来的方法。当溶剂加到中草药原料(需适当粉碎)中时,溶剂由于扩散、渗透作用逐渐通过细胞壁透入到细胞内,溶解了可溶性物质,而造成细胞内外的浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入药材组织细胞中,如此多次往返,直至细胞内外溶液浓度达到动态平衡时,将此饱和溶液滤出,继续多次加入新溶剂,就可以把所需要的成分近于完全溶出或大部溶出。 中草药成分在溶剂中的溶解度直接与溶剂性质有关。溶剂可分为水、亲本性有机溶剂及亲脂性有机溶剂,被溶解物质也有亲水性及亲脂性的不同。 有机化合物分子结构中亲水性基团多,其极性大而疏于油;有的亲水性基团少,其。极性小而疏于水。这种亲水性、亲脂性及其程度的大小,是和化合物的分子结构直接相关。一般来说,两种基本母核相同的成分,其分子中功能基的极性越大,或极性功能基数量越多,则整个分子的极性大,亲水性强,而亲脂性就越弱,其分子非极性部分越大,或碳键越长,则极性小,亲脂性强,而亲水性就越弱。 各类溶剂的性质,同样也与其分子结构有关。例如甲醇、乙醇是亲水性比较强的溶剂,它们的分子比较小,有羟基存在,与水的结构很近似,所以能够和水任意混合。丁醇和戊醇分子中虽都有羟基,保持和水有相似处,但分子逐渐地加大,与水性质也就逐渐疏远。所以它们能彼此部分互溶,在它们互溶达到饱和状态之后,丁醇或戊醇都能与水分层。氯仿、苯和石油醚是烃类或氯烃衍生物,分子中没有氧,属于亲脂性强的溶剂。 这样,我们就可以通过时中草药成分结构分析,去估计它们的此类性质和选用的溶剂。例如葡萄糖、蔗糖等分子比较小的多羟基化合物,具有强亲水性,极易溶于水,就是在亲水性比较强的乙醇中也难于溶解。淀粉虽然羟基数目多,但分子大大,所以难溶解于水。蛋白质和氨基酸都是酸碱两性化合物,有一定程度的极性,所以能溶于水,不溶于或难溶子有机溶剂。甙类都比其甙元的亲水性强,特别是皂甙由于它们的分子中往往结合有多数糖分子,羟基数目多,能表现出较

中药提取分离新技术研究进展

中药提取分离新技术研究进展 41366055 黄婷 摘要:提取是中药制药过程的关键环节,直接影响着药品的质量,提取新技术的发展是中药制造工业技术转型升级的关键,关系着中药现代化的进程。本篇综述主要介绍了广泛使用的几种中药提取分离新技术,超临界流体分离技术、生物酶解提取技术、大孔树脂分离技术及半仿生提取等分离提取技术的现状及研究进展。 关键字:中药提取分离新技术进展 中药是中华民族几千年文明中灿烂的瑰宝,对中华民族的繁衍昌盛有着不可磨灭的作用。但是由于中药成分十分复杂且很多贵重有效成分含量很低,为微量甚至痕量,因此,有效成分的提取与分离纯化是中药开发中的关键工序。但传统的提取分离方法(如煎煮法、浸渍法、渗滤法、回流法等)存在有效成分提取率不高、杂质清除率低等问题,这些根本问题制约着中药开发的进程。近年来,一些新的技术,如超声场强化、超临界流体萃取以及微波辅助提取技术等被广泛应用于中药有效成分的提取过程中。研究结果表明,应用这些新技术提取中药有效成份的方法具有产率高、纯度高、提取速度快等优点,有着广阔的应用前景。本文就目前中药提取分离新技术做简单的综述。 1.提取分离与纯化技术在中药制剂中的重要作用 固液分离是中药制剂常用并重要的工艺过程,现代化中药制剂工艺中的第一步操作多用液体浸取法,然后将液体与固体分离[1]。分离与纯化技术的效能直接影响中药制剂的纯度、收率、效率、安全、节能和环保。提取、分离和纯化中药中的化学成分,是进一步测定其化学结构、研究其药理作用和毒性的首要条件,也是进行化学结构改造、化学合成、研究化学结构与疗效关系的前提[2]。因此,中药研究的水平及中药制剂质量的保障在很大程度上依赖于中药有效成分提取分离和纯化的结果。 中药分离与纯化工艺包括两个方面:一是应根据粗提取药物性质,选择相应的分离方法与条件,提取药用物质;二是除去无效和有害组分,尽量保留有效成分或有效部位,可采用各种净化、纯化、精制的方法[3]。下面结合典型的中药液体制剂和中药固体制剂工艺阐明提取、分离与纯化技术在中药制剂中的重要作用。 1.1中药液体制剂关键工艺过程 液体药剂主要剂型有针剂、水剂、醑剂、酏剂、胶剂和浮剂等。中药液体制剂的常用工艺是萃取、浓缩、超滤等。超滤技术用于制取中药注射液(如:复方单参、五味消毒饮注射液)、中药口服液等[4]。 为了防止药液析出胶体使药汁变浑,常用“絮凝-精密微孔过滤”净化技术,清除 药汁中的胶体成分。为了消除药液中的细菌,常用微孔膜过滤或带正电荷的过滤介质等。为了消除药液中的热原(内毒素),常用蒸馏法、吸附法、膜过滤法、超滤膜分离技术等[5]。 1.2中药固体制剂关键工艺过程 固体药剂主要剂型有片剂、膏剂、丹剂、栓剂、散剂、锭剂、茶剂和颗粒剂等。在中药 固体制剂的原料药生产中,大部分产品都是结晶体。结晶体必须先通过过滤机脱水,然后干燥,最后获得最终原料药品[6]。 综上所述,提取分离与纯化技术在中药制剂过程中的地位显赫和作用显著。 2.中药提取分离新技术现状

中药提取复习题

中级工(中药提取)理论考试参考题 一、单项选择题 1.下列不属于常用浸出方法的是 A.煎煮法 B.渗漉法 C.浸渍法 D.醇提水沉法 2.微波干燥箱干燥是 A.常压干燥 B.减压干燥 C.高压干燥 D.流通蒸汽干燥 3. 药材的浸提过程不正确的是 A.浸润与渗透 B.解吸与溶解 C.扩散与置换 D.蒸发与萃取 4. 水是最常用的极性浸出溶剂之一,下面叙述它的优点不正确的是 A.溶解范围广 B.没有药理作用 C.经济易得 D. 有药理作用 5.渗漉法的特点不正确的是 A.动态浸出,保持良好的浓度差 B.适用于过硬过黏的药材 C.适用于贵重药材 D. 溶剂用量少 6.浸渍法的特点正确的 A.适宜带黏性的药材 B.无组织结构的药材 C.新鲜及易膨胀的药材 D.以上均是 7.微波干燥的优点不正确的 A. 时间长 B.干燥温度低、不影响干燥品的性状 C.穿透作用强 D. 高效节能 8.多少含量的乙醇的浸出液具有防腐作用 A.20% B.30% C.25% D. 35% 9. 那一项不是影响药材浸提的因素 A.药材的粒度 B.药材的价格 C.浸提的温度 D.浸提的时间

10. 煎煮法药材煎煮的时间与次数正确的 A.1-2h,2-3 B.0.5-1h,2-3 C.2-3h,2-3 D.1-2h,1-2 11. 那一种不是常见的浸提辅助剂有 A.酸 B.碱 C.甘油 D.乙醇 12. 药材最易被浸提的形状那一项不正确 A. 极细颗粒 B.薄片 C.粗粒 D. 小段 13. 下述不是滤过分离法常用的方法是 A.常压过滤 B.离心过滤 C.减压过滤 D.加压过滤 14. 水是最常用的极性浸出溶剂之一,它的缺点是 A.溶解范围广 B.没有药理作用 C.经济易得 D. 选择性差 15. 你一项不是微波干燥箱干燥的优点 A.干燥时间短,速度快 B.干燥时温度低,可以避免有效成分被破坏 C.产品质地疏松,易于粉碎 D.易被拉泡(浓缩液满出器皿,造成浪费) 16. 那一项不是常压干燥法的常用设备是 A.烘箱 B.烘房 C.喷雾干燥器 D.滚筒式干燥器 17.中药浸提液物料干燥的目的不正确的 A.便于制剂加工 B.便于浓缩 C.便于储存、运输 D.便于提高药物的稳定性 18.下列那一项不是控制药材浸出质量的基础

三级常用中药提取分离纯化技术.doc

常用中药提取分离纯化技术 1 提取技术提取是中药制剂生产过程中最基本最重要的环节之一,提取的目的是最大限度地提取药材中的药效成分,避免药效成分的分解流失和无成分的溶出。提取技术的优劣直接影响到药品质量和药材资源的利用率和生产效率及经济效益。煎煮法、渗漉法、浸渍法、回流法、水蒸汽蒸馏法等方法是中药提取的常用方法,这些方法不同程度的存在有效成分提取不完全。提取过程有效成分损失较大。提取物中存在较多无效成分等缺点。导致药效不明显。影响中药制剂的开发。为了解决中药提取过程存在的问题。一些新技术、新方法开始应用。 1.1 超临界流体萃取技术是一种以超临界流体代替常规有机溶剂对中药有效成分进行萃取的新型技术。超临界流体是物质处于超临界温度和临界压力以上的体,性质介于气体和液体之间。有与液体相接近的密度,与气体相接近粘度及高的扩散系数。故具有很高的溶解能力及好的流动、传递性能。可代替传统的有毒、易燃、易挥发的有机溶剂。在中药生产领域应用最多的是SF「CO技术。因其临界条件温和。对大部分物质显化学惰性,有效地防止热敏性成分和化学不稳定性成分高温分解与氧化;易于控制、不污染样品,易于安全地从混合物中分离出来。目前。通过调节温度、压力、加入适宜夹带剂等方法,SFE-CO己成功地从中药中提得挥发油、生物碱、苯丙素、黄酮类、有机酚酸、苷类、萜类以及天然色素等成分。超临界流体萃取技术用于中药有效成分提取的研究很多,但主要局限于单味中药有效成分的提取,其中能够实现工业规模生产的仅是少数。超临界流体萃取装置属高压设备,其工程化面临着基础研究薄弱,以及设备压力高、投资大等问题。因此,要

加强复方超临界流体萃取的工艺研究和超临界流体萃取过程中的放大研究及其配套设备的开发,以推动超临界流体萃取过程的工程化。 1.2 生物酶解提取技术生物酶解提取的原理是利用酶反应的高度专一性,将细胞壁的组成成分水解或降解,破坏细胞壁,从而提高有效成分的提取率。酶法处理一方面通过降解植物细胞壁使有效成分更易提取从而达到提高提取收率或减低溶剂消耗量的目的;另一方面可以针对植物药中的大多数杂质(淀粉、果胶、蛋白质等)选择性降解。以利于提取分离更易进行。同时还综合利用药渣。变废为宝。目前。用于中药提取方面研究较多的酶是纤维素酶,大部分中药材的细胞壁主要是由纤维素类物质构成的,植物的有效成分往往包裹在细胞内部。用纤维素酶酶解可以使植物细胞壁破坏。有利于对有效成分的提取。实验人员以黄芪提取液的总糖和还原糖为考察指标。确定纤维素酶处理工艺,探讨纤维素酶处理的效果。结果纤维素酶处理与对照工艺相比得率由24.4%提高至30.3%。而多糖的质量分数基本不变,扫描电镜观察表明,纤维素酶明显地分解了黄芪原料中的部分结构多糖,药渣中的网状结构变得十分清晰。说明纤维素酶处理有助于黄芪多糖的提取,能显著提高黄芪多糖的得率。酶解提取要求酶有极高的活性、高度的专一性和温和反应条件。酶解提取的效果主要取决于酶的种类、用量、酶解时间、温度、酸碱度、物料细度、搅拌等多种因素,应针对具体药物,研究确定酶反应的最佳工艺条件。生物酶解提取技术对设备无特殊要求,适用于工业化生产。 1.3 半仿生提取技术 半仿生提取技术(SBE)是将整体药物研究法与分子药物研究法相结合,从生

三级 常用中药提取分离纯化技术

常用中药提取分离纯化技术 1 提取技术 提取是中药制剂生产过程中最基本最重要的环节之一,提取的目的是最大限度地提取药材中的药效成分,避免药效成分的分解流失和无成分的溶出。提取技术的优劣直接影响到药品质量和药材资源的利用率和生产效率及经济效益。煎煮法、渗漉法、浸渍法、回流法、水蒸汽蒸馏法等方法是中药提取的常用方法,这些方法不同程度的存在有效成分提取不完全。提取过程有效成分损失较大。提取物中存在较多无效成分等缺点。导致药效不明显。影响中药制剂的开发。为了解决中药提取过程存在的问题。一些新技术、新方法开始应用。 1.1 超临界流体萃取技术 是一种以超临界流体代替常规有机溶剂对中药有效成分进行萃取的新型技术。超临界流体是物质处于超临界温度和临界压力以上的体,性质介于气体和液体之间。有与液体相接近的密度,与气体相接近粘度及高的扩散系数。故具有很高的溶解能力及好的流动、传递性能。可代替传统的有毒、易燃、易挥发的有机溶剂。在中药生产领域应用最多的是SFE—CO:技术。因其临界条件温和。对大部分物质显化学惰性,有效地防止热敏性成分和化学不稳定性成分高温分解与氧化;易于控制、不污染样品,易于安全地从混合物中分离出来。目前。通过调节温度、压力、加入适宜夹带剂等方法,SFE—CO:己成功地从中药中提得挥发油、生物碱、苯丙素、黄酮类、有机酚酸、苷类、萜类以及天然色素等成分。超临界流体萃取技术用于中药有效成分提取

的研究很多,但主要局限于单味中药有效成分的提取,其中能够实现工业规模生产的仅是少数。超临界流体萃取装置属高压设备,其工程化面临着基础研究薄弱,以及设备压力高、投资大等问题。因此,要加强复方超临界流体萃取的工艺研究和超临界流体萃取过程中的放 大研究及其配套设备的开发,以推动超临界流体萃取过程的工程化。 1.2生物酶解提取技术 生物酶解提取的原理是利用酶反应的高度专一性,将细胞壁的组成成分水解或降解,破坏细胞壁,从而提高有效成分的提取率。酶法处理一方面通过降解植物细胞壁使有效成分更易提取从而达到提高提取 收率或减低溶剂消耗量的目的;另一方面可以针对植物药中的大多数杂质(淀粉、果胶、蛋白质等)选择性降解。以利于提取分离更易进行。同时还综合利用药渣。变废为宝。目前。用于中药提取方面研究较多的酶是纤维素酶,大部分中药材的细胞壁主要是由纤维素类物质构成的,植物的有效成分往往包裹在细胞内部。用纤维素酶酶解可以使植物细胞壁破坏。有利于对有效成分的提取。实验人员以黄芪提取液的总糖和还原糖为考察指标。确定纤维素酶处理工艺,探讨纤维素酶处理的效果。结果纤维素酶处理与对照工艺相比得率由24.4%提高至30.3%。而多糖的质量分数基本不变,扫描电镜观察表明,纤维素酶明显地分解了黄芪原料中的部分结构多糖,药渣中的网状结构变得十分清晰。说明纤维素酶处理有助于黄芪多糖的提取,能显著提高黄芪多糖的得率。酶解提取要求酶有极高的活性、高度的专一性和温和反应条件。酶解提取的效果主要取决于酶的种类、用量、酶解时间、

中草药的提取与分离方法

中草药的提取与分离方法 中草药所含成分十分复杂,既有有效成分,又有无效成分和有毒成分。为了提高中草药的治疗效果,就要尽最大限度从复杂的均相或非均相体系中提取有效成分,然后通过分离和去除杂质以达到提纯和精制的目的。 植物有效成分分离方法很多,其中历史较长,应用较多的是溶剂提取法、水蒸汽蒸馏、萃取、结晶、吸附等。随着科学技术的发展,在中药提取方面出现了许多新技术、新方法,主要是超临界流体萃取技术,超声提取技术,微波萃取技术,酶法等。 1.2.1溶剂提取法 溶剂的选择:运用溶剂提取法的关键,是选择适当的溶剂。溶剂选择适当,就可以比较顺利地将需要的成分提取出来。选择溶剂要注意以下三点:①溶剂对有效成分溶解度大,对杂质溶解度小; ②溶剂不能与中药的成分起化学变化;③溶剂要经济、易得、使用安全等。 有机化合物分子结构中亲水性基团多,其极性大而疏于油;有的亲水性基团少,其极性小而疏于水。这种亲水性、亲脂性及其程度的大小,是和化合物的分子结构直接相关。一般来说,两种基本母核相同的成分,其分子中功能基的极性越大,或极性功能基数量越多,则整个分子的极性大,亲水性强,而亲脂性就越弱,其分子非极性部分越大,或碳键越长,则极性小,亲脂性强,而亲水性就越弱。各类溶剂的性质,同样也与其分子结构有关。例如甲醇、乙醇是亲水性比较强的溶剂,它们的分子比较小,有羟基存在,与水的结构很近似,所以能够和水任意混合。丁醇和戊醇分子中虽都有羟基,保持和水有相似处,但分子逐渐地加大,与水性质也就逐渐疏远。所以它们能彼此部分互溶,在它们互溶达到饱和状态之后,丁醇或戊醇都能与水分层。氯仿、苯和石油醚是烃类或氯烃衍生物,分子中没有氧,属于亲脂性强的溶剂。 溶剂提取法的原理:溶剂提取法是根据中草药中各种成分在溶剂中的溶解性质,选用对活性成分溶解度大,对不需要溶出成分溶解度小的溶剂,而将有效成分从药材组织内溶解出来的方法。当溶剂加到中草药原料(需适当粉碎)中时,溶剂由于扩散、渗透作用逐渐通过细胞壁透入到细胞内,溶解了可溶性物质,而造成细胞内外的浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入药材组织细胞中,如此多次往返,直至细胞内外溶液浓度达到动态平衡时,将此饱和溶液滤出,继续多次加入新溶剂,就可以把所需要的成分近于完全溶出或大部溶出。中草药成分在溶剂中的溶解度直接与溶剂性质有关。溶剂可分为水、亲本性有机溶剂及亲脂性有机溶剂,被溶解物质也有亲水性及亲脂性的不同。 水:水是一种强的极性溶剂。中草药中亲水性的成分,如无机盐、糖类、分子不太大的多糖类、鞣质、氨基酸、有机酸盐、生物碱盐及甙类等都能被水溶解。为了增加某些成分的溶解度,也常采用酸水及碱水作为提取溶剂。酸水提取,可使生物碱与酸生成盐类而溶出,碱水提取可使有机酸、黄酮、蒽醌、内酯、香豆素以及酚类成分溶出。 亲水性的有机溶剂:也就是一般所说的与水能混溶的有机溶剂,如乙醇、甲醇等,以乙醇最常用。乙醇的溶解性能比较好,对中草药细胞的穿透能力较强。难溶于水的亲脂性成分,在乙醇中的溶解度也较大。还可以根据被提取物质的性质,采用不同浓度的乙醇进行提取。用乙醇提取比用水量较少,提取时间短,溶解出的水溶性杂质也少。 亲脂性的有机溶剂:也就是一般所说的情形水不能混溶的有机溶剂,如石油醚、苯、氯仿、乙醚、乙酸乙酯等。这些溶剂的选择性能强。但这类溶剂挥发性大,多易燃,一般有毒,价格贵,设备要求较高,透入植物组织的能力弱,需长时间反复提取,故此法较少用。 1.3.2水蒸气蒸馏法 适用于能随水蒸气蒸馏而不被破坏的中草药成分的提取。此类成分的沸点多在100℃以上,与水不相混溶或仅微溶,且在约100℃时存一定的蒸气压。当与水在一起加热时,其蒸气压和水的蒸汽压总和为一个大气压时,液体就开始沸腾,水蒸气将挥发性物质一起带出。例如中草药中的挥发油,某些小分子生物碱——麻黄碱、萧碱、槟榔碱,以及某些小分子的酚性物质。

中药提取新技术研究概述

中药提取新技术研究概述 (作者:___________单位: ___________邮编: ___________) 作者:李军红刘淑芝金日显 【关键词】中药提取提取工艺综述 中药材提取是中药生产过程中最基本和最重要的环节之一。中药提取的目的是最大限度地提取出药材中的目标物质,避免药效成分的分解流失,并且最低限度地浸出无效甚至有害的成分。药材的浸取过程是由湿润、渗透、解吸、溶解及扩散、置换等几个相互联系、相互交错的阶段所组成的。不同的提取技术影响到提取的不同阶段,对提取过程中溶剂对目标成分的溶解性、药材状态、浸取的温度、压力、浓度差、固液两相的相对运动速度等产生影响,导致不同的提取速度和效果,也直接影响到药材资源的利用率和生产效率及经济效益,最终影响的是药品质量。笔者现对近年研究较多的几种新技术新工艺在中药提取中的应用作一概述。 1 超临界CO2流体萃取技术 超临界流体萃取(SFE)是一种以超临界流体(SF)代替常规有机溶剂对中草药有效成分进行提取和分离的新型技术。超临界流体(溶剂)在临界点附近某区域(超临界区)内与待分离混合物中的溶质具有异

常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动,利用这种SF作溶剂,可以从多种液态或固态混合物中萃取出所需成分。常用的SF为CO2,无毒无害、不易燃易爆、低粘度、低表面张力、低沸点、有较低的临界压力和温度,是最为常用的超临界流体。超临界CO2萃取法对于挥发性成分、脂溶性成分、小分子萜类及热敏物质等的提取较之传统方法有很多优越性,但CO2超临界流体限制了对分子量较大或极性较强物质的应用。加入夹带剂能够调节流体的极性,提高溶解能力,拓宽萃取目标组分的极性范围[1]。超临界CO2萃取法最大的优点是可以在近常温的条件下提取分离,几乎保留产品中全部有效成分,萃取效率高,无有机溶剂残留,选择性好,产品纯度高,节能, CO2价廉易得,并可循环利用,环境污染小。 影响超临界流体萃取效果的因素主要有:①萃取条件,包括压力、温度、时间、溶剂流量等;②原料的性质,如颗粒大小、水分含量、细胞破裂程度;③目标组分的极性;④夹带剂的性质及加入量。 超临界CO2流体萃取法已被研究用于挥发油、黄酮类、生物碱、香豆素及醌类等多类成分的提取和分析中。宋氏等[2]用超临界CO2流体萃取法从川芎中提取挥发油,萃取压力10~25 MPa、萃取温度33~48 ℃、CO2流量2~4 L/min,并考察了萃取压力、温度、流量对萃取过程的影响,对萃取过程进行了模型描述。唐氏等[3]用正交试验优选了超临界流体萃取地鳖虫活性物质的工艺,并与水提物做了药效学比较,认为超临界流体萃取物剂量小,药效强,有应

相关文档
最新文档