三极管的检测方法

三极管的检测方法
三极管的检测方法

三极管的检测方法

1、中、小功率三极管的检测

A、已知型号和管脚排列的三极管,可按下述方法来判断其性能好坏

(a)、测量极间电阻。将万用表置于R×100或R×1k挡,按照红、黑表笔的六种不同接法进行测试。其中,发射结和集电结的正向电阻值比较低,其他四种接法测得的电阻值都很高,约为几百千欧至无穷大。但不管是低阻还是高阻,硅材料三极管的极间电阻要比锗材料三极管的极间电阻大得多。

(b)、三极管的穿透电流ICEO的数值近似等于管子的倍数β和集电结的反向电流ICBO的乘积。ICBO随着环境温度的升高而增长很快,ICBO的增加必然造成ICEO的增大。而ICEO的增大将直接影响管子工作的稳定性,所以在使用中应尽量选用ICEO小的管子。

通过用万用表电阻直接测量三极管e-c极之间的电阻方法,可间接估计ICEO的大小,具体方法如下:

万用表电阻的量程一般选用R×100或R×1k挡,对于PNP管,黑表管接e 极,红表笔接c极,对于NPN型三极管,黑表笔接c极,红表笔接e极。要求测得的电阻越大越好。e-c间的阻值越大,说明管子的ICEO越小;反之,所测阻值越小,说明被测管的ICEO越大。一般说来,中、小功率硅管、锗材料低频管,其阻值应分别在几百千欧、几十千欧及十几千欧以上,如果阻值很小或测试时万用表指针来回晃动,则表明ICEO很大,管子的性能不稳定。

(c)、测量放大能力(β)。目前有些型号的万用表具有测量三极管hFE的刻度线及其测试插座,可以很方便地测量三极管的放大倍数。先将万用表功能开关拨至 挡,量程开关拨到ADJ位置,把红、黑表笔短接,调整调零旋钮,使万用

表指针指示为零,然后将量程开关拨到hFE位置,并使两短接的表笔分开,把被测三极管插入测试插座,即可从hFE刻度线上读出管子的放大倍数。

另外:有此型号的中、小功率三极管,生产厂家直接在其管壳顶部标示出不同色点来表明管子的放大倍数β值,其颜色和β值的对应关系如表所示,但要注意,各厂家所用色标并不一定完全相同。

B、检测判别电极

(a)、判定基极。用万用表R×100或R×1k挡测量三极管三个电极中每两个极之间的正、反向电阻值。当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b。黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测三极管为PNP型管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN 型管。

(b)、判定集电极c和发射极e。(以PNP为例)将万用表置于R×100或R×1k挡,红表笔基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值会是一个大一些,一个小一些。在阻值小的一次测量中,黑表笔所接管脚为集电极;在阻值较大的一次测量中,黑表笔所接管脚为发射极。

C、判别高频管与低频管

高频管的截止频率大于3MHz,而低频管的截止频率则小于3MHz,一般情况下,二者是不能互换的。

D、在路电压检测判断法

在实际应用中、小功率三极管多直接焊接在印刷电路板上,由于元件的安装密度大,拆卸比较麻烦,所以在检测时常常通过用万用表直流电压挡,去测量被测三极管各引脚的电压值,来推断其工作是否正常,进而判断其好坏。

2、大功率晶体三极管的检测

利用万用表检测中、小功率三极管的极性、管型及性能的各种方法,对检测大功率三极管来说基本上适用。但是,由于大功率三极管的工作电流比较大,因而其PN结的面积也较大。PN结较大,其反向饱和电流也必然增大。所以,若像测量中、小功率三极管极间电阻那样,使用万用表的R×1k挡测量,必然测得的电阻值很小,好像极间短路一样,所以通常使用R×10或R×1挡检测大功率三极管。

3、普通达林顿管的检测

用万用表对普通达林顿管的检测包括识别电极、区分PNP和NPN类型、估测放大能力等项内容。因为达林顿管的E-B极之间包含多个发射结,所以应该使用万用表能提供较高电压的R×10k挡进行测量。

4、大功率达林顿管的检测

检测大功率达林顿管的方法与检测普通达林顿管基本相同。但由于大功率达林顿管内部设置了V3、R1、R2等保护和泄放漏电流元件,所以在检测量应将这些元件对测量数据的影响加以区分,以免造成误判。具体可按下述几个步骤进行:

A、用万用表R×10k挡测量

B、C之间PN结电阻值,应明显测出具有单向导电性能。正、反向电阻值应有较大差异。

B、在大功率达林顿管B-E之间有两个PN结,并且接有电阻R1和R2。用万用表电阻挡检测时,当正向测量时,测到的阻值是B-E结正向电阻与R1、R2阻值并联的结果;当反向测量时,发射结截止,测出的则是(R1+R2)电阻之和,大约为几百欧,且阻值固定,不随电阻挡位的变换而改变。但需要注意的是,有些大功率达林顿管在R1、R2、上还并有二极管,此时所测得的则不是(R1+R2)之和,而是(R1+R2)与两只二极管正向电阻之和的并联电阻值。

5、带阻尼行输出三极管的检测

将万用表置于R×1挡,通过单独测量带阻尼行输出三极管各电极之间的电阻值,即可判断其是否正常。具体测试原理,方法及步骤如下:

A、将红表笔接E,黑表笔接B,此时相当于测量大功率管B-E结的等效二极管与保护电阻R并联后的阻值,由于等效二极管的正向电阻较小,而保护电阻R的阻值一般也仅有20Ω~50Ω,所以,二者并联后的阻值也较小;反之,将表笔对调,即红表笔接B,黑表笔接E,则测得的是大功率管B-E结等效二极管的反向电阻值与保护电阻R的并联阻值,由于等效二极管反向电阻值较大,所以,此时测得的阻值即是保护电阻R的值,此值仍然较小。

B、将红表笔接C,黑表笔接B,此时相当于测量管内大功率管B-C结等效二极管的正向电阻,一般测得的阻值也较小;将红、黑表笔对调,即将红表笔接B,黑表笔接C,则相当于测量管内大功率管B-C结等效二极管的反向电阻,测得的阻值通常为无穷大。

C、将红表笔接E,黑表笔接C,相当于测量管内阻尼二极管的反向电阻,测得的阻值一般都较大,约300Ω~∞;将红、黑表笔对调,即红表笔接C,黑表

笔接E,则相当于测量管内阻尼二极管的正向电阻,测得的阻值一般都较小,约几Ω至几十Ω。

用万用表定性判断场效应管、三极管的好坏

1、定性判断MOS型场效应管的好坏

先用万用表R×10kΩ挡(内置有9V或15V电池),把负表笔(黑)接栅极(G),正表笔(红)接源极(S)。给栅、源极之间充电,此时万用表指针有轻微偏转。再改用万用表R×1Ω挡,将负表笔接漏极(D),正笔接源极(S),万用表指示值若为几欧姆,则说明场效应管是好的。

2、定性判断结型场效应管的电极

将万用表拨至R×100档,红表笔任意接一个脚管,黑表笔则接另一个脚管,使第三脚悬空。若发现表针有轻微摆动,就证明第三脚为栅极。欲获得更明显的观察效果,还可利用人体靠近或者用手指触摸悬空脚,只要看到表针作大幅度偏转,即说明悬空脚是栅极,其余二脚分别是源极和漏极。

判断理由:JFET的输入电阻大于100MΩ,并且跨导很高,当栅极开路时空间电磁场很容易在栅极上感应出电压信号,使管子趋于截止,或趋于导通。若将人体感应电压直接加在栅极上,由于输入干扰信号较强,上述现象会更加明显。如表针向左侧大幅度偏转,就意味着管子趋于截止,漏-源极间电阻RDS增大,漏-源极间电流减小IDS。反之,表针向右侧大幅度偏转,说明管子趋向导通,RDS

↓,IDS↑。但表针究竟向哪个方向偏转,应视感应电压的极性(正向电压或反向电压)及管子的工作点而定。

注意事项:

(1)试验表明,当两手与D、S极绝缘,只摸栅极时,表针一般向左偏转。但是,如果两手分别接触D、S极,并且用手指摸住栅极时,有可能观察到表针向右偏转的情形。其原因是人体几个部位和电阻对场效应管起到偏置作用,使之进入饱和区。(2)也可以用舌尖舔住栅极,现象同上。

3、晶体三极管管脚判别

三极管是由管芯(两个PN结)、三个电极和管壳组成,三个电极分别叫集电极c、发射极e和基极b,目前常见的三极管是硅平面管,又分PNP和NPN型两类。现在锗合金管已经少见了。

这里向大家介绍如何用万用表测量三极管的三个管脚的简单方法。

(1).找出基极,并判定管型(NPN或PNP)

对于PNP型三极管,C、E极分别为其内部两个PN结的正极,B极为它们共同的负极,而对于NPN型三极管而言,则正好相反:C、E极分别为两个PN结的负极,而B极则为它们共用的正极,根据PN结正向电阻小反向电阻大的特性就可以很方便的判断基极和管子的类型。具体方法如下:

将万用表拨在R×100或R×1K档上。红笔接触某一管脚,用黑表笔分别接另外两个管脚,这样就可得到三组(每组两次)的读数,当其中一组二次测量都是几百欧的低阻值时,若公共管脚是红表笔,所接触的是基极,且三极管的管型为

PNP型;若公共管脚是黑表笔,所接触的是也是基极,且三极管的管型为NPN 型。

(2).判别发射极和集电极

由于三极管在制作时,两个P区或两个N区的掺杂浓度不同,如果发射极、集电极使用正确,三极管具有很强的放大能力,反之,如果发射极、集电极互换使用,则放大能力非常弱,由此即可把管子的发射极、集电极区别开来。

在判别出管型和基极b后,可用下列方法来判别集电极和发射极。

将万用表拨在R×1K档上。用手将基极与另一管脚捏在一起(注意不要让电极直接相碰),为使测量现象明显,可将手指湿润一下,将红表笔接在与基极捏在一起的管脚上,黑表笔接另一管脚,注意观察万用表指针向右摆动的幅度。然后将两个管脚对调,重复上述测量步骤。比较两次测量中表针向右摆动的幅度,找出摆动幅度大的一次。对PNP型三极管,则将黑表笔接在与基极捏在一起的管脚上,重复上述实验,找出表针摆动幅度大的一次,对于NPN型,黑表笔接的是集电极,红表笔接的是发射极。对于PNP型,红表笔接的是集电极,黑表笔接的是发射极。

这种判别电极方法的原理是,利用万用表内部的电池,给三极管的集电极、发射极加上电压,使其具有放大能力。有手捏其基极、集电极时,就等于通过手的电阻给三极管加一正向偏流,使其导通,此时表针向右摆动幅度就反映出其放大能力的大小,因此可正确判别出发射极、集电极来。

三极管替换及常用开关三极管

三极管替换及常用开关三极管 三极管替换及常用开关三极管 gaost 发表于2009-5-4 8:44:00 8 推荐 一、三极管的类型及材料 初学者首先必须清楚三极管的类型及材料。常用三极管的类型有NPN型与PNP型两种。由于这两类三极管工作(工作总结)时对电压的极性要求不同,所以它们是不能相互代换的。 三极管的材料有锗材料和硅材料。它们之间最大的差异就是起始电压不一样。锗管PN结的导通电压为0.2V左右,而硅管PN结的导通电压为0.6~0.7V。在放大电路中如果用同类型的锗管代换同类型的硅管,或用同类型的硅管代换同类型的锗管一般是可以的,但都要在基极偏置电压上进行必要的调整,因为它们的起始电压不一样。但在脉冲电路和开关电路中不同材料的三极管是否能互换必须具体分析,不能盲目代换。 二、三极管的主要参数 选用三极管需要了解三极管的主要参数。若手中有一本晶体管特性手册最好。三极管的参数很多,根据实践经验,我认为主要了解三极管的四个极限参数:ICM、BVCEO、PCM及fT即可满足95%以上的使用需要。 1. ICM是集电极最大允许电流。三极管工作(工作总结)时当它的集电极电流超过一定数值时,它的电流放大系数β将下降。为此规定三极管的电流放大系数β变化不超过允许值时的集电极最大电流称为ICM。所以在使用中当集电极电流IC超过ICM时不至于损坏三极管,但会使β值减小,影响电路的工作(工作总结)性能。 2. BVCEO是三极管基极开路时,集电极-发射极反向击穿电压。如果在使用中加在集电极与发射极之间的电压超过这个数值时,将可能使三极管产生很大的集电极电流,这种现象叫击穿。三极管击穿后会造成永久性损坏或性能下降。 3. PCM是集电极最大允许耗散功率。三极管在工作(工作总结)时,集电极电流在集电结上会产生热量而使三极管发热。若耗散功率过大,三极管将烧坏。在使用中如果三极管在大于PCM下长时间工作(工作总结),将会损坏三极管。需要注意的是大功率三极管给出的最大允许耗散功率都是在加有一定规格散热器情况下的参数。使用中一定要注意这一点。 4. 特征频率fT。随着工作(工作总结)频率的升高,三极管的放大能力将会下降,对应于β=1时的频率fT叫作三极管的特征频率。 三、一般小功率三极管的选用 小功率三极管在电子电路中的应用最多。主要用作小信号的放大、控制或振荡器。选用三极管时首先要搞清楚电子电路的工作(工作总结)频率大概是多少。如中波收音机振荡器的最高频率是2MHz左右;而调频收音机的最高振荡频率为120MHz左右;电视机中VHF频段的最高振荡频率为250MHz左右;UHF 频段的最高振荡频率接近1000MHz左右。工程设计中一般要求三极管的fT大于3倍的实际工作(工作总结)频率。所以可按照此要求来选择三极管的特征频率fT。由于硅材料高频三极管的fT一般不低于50MHz,

三极管的测量方法

三级管的在路测量,(1).NPN管的电压正常是:VC>VB>VE.其中PN结电压是0.5V左右,也就是:VB>VE的电压是0.5V,明显大于2V或者VB∠VE,三极管是损坏,(注: VC的电压大小是不固定的,看这个管的承受多大的内压) (2).PNP管的电压正常是:VE>VB>VC. 其中PN结电压是0.5V左右, 也就是: VE>VB 的电压是0.5V,明显大于2V或者VE∠VB, 三极管是损坏,( VC的电压大小是不固定的,看偏置电路是要多大的电压,但一定适上面的VE>VB>VC电压的大小) 2.拆下来时的三极管测量(R*1K档来测量) 根据PN结的原理:和二极管一样,正向电阻一边用万用表测是相通,对调红.黑笔反向来测是不通.拆下来时的三极管,(1) NPN管:任意测三极管的两个脚,当发现固定黑笔接的一脚不动,用红笔分别接另外两脚时,万用表的指针摆动,电阻是相同.反过来对调表笔,红笔固定的一脚不动,用黑笔分别接另外两脚时,万用表的指针不摆动,电阻是无穷大.哪确定;固定的一脚确定是b极(坏的三极管是对调表笔也是相通的) . (2) PNP管:任意测三极管的两个脚,当发现固定红笔接的一脚不动, 用黑笔分别接另外两脚时,万用表的指针摆动,电阻是相同.反过来对调表笔,黑笔固定的一脚不动, 用红笔分别接另外两脚时,万用表的指针不摆动,电阻是无穷大.哪确定;固定的一脚确定是b极 3(确定C极和E极) 三极管好坏的判断(R*10K档来测量) (1)(确定C极和E极) NPN好坏的判断:上面已确定了B极,R*10K档来测量.用黑笔和红笔分别接触另外两极,保持红笔和黑笔现在状态不变用手指捏b极+红笔接的一极,发现指针摆动的幅度大,放大倍数大,黑笔接的是c极,红笔接的是e极(坏的三极管,用万用表的R*10K档来测量.红,黑笔测量c.e极,接法和二极管测量相同,一边相通,对调表笔另一边是不通,例如;R*10K档的黑笔接C极红笔接E极指针摆动一点,说明是漏电损坏.经验总结:如果是好的三级管,用万用表的R*10K档来测量c.e电阻一边不通,极笔对调后,另一边是相通的有电阻,电阻大的和原来没有用过的同型号的三极管对比.B极E极输出电压偏低的. (2) (确定C极和E极) PNP好坏的判断 R*10K档来测量.用黑笔和红笔分别接触另外两极保持红笔和黑笔现在状态不变用手指捏b极+黑笔接的一极,同时捏两极,发现指针摆动的幅度大,放大倍数大,黑笔接的是e极,红笔接的是c极(坏的三极管,用万用表的R*10K档来测量.红,黑笔测量c.e极,接法和二极管测量相同,一边相通,对调表笔另一边是不通,例如:R*10K档的黑笔接E极红笔接极

三极管的判断方法

三极管的判断方法一,三极管类型

1. 先判定基极b(一般中间的就是):先假定一个管脚是b,把 红表笔接这个b,用黑表笔分别接触另两个管脚,测得或者都是高阻值时,说明假定正确。 2.因为红表笔实际是表电源的负极,所以 当测得都是低阻值时,b是N型材料, 两端是P型材料,就是PNP型。 3.所以当测得都是高阻值时,b是P型材料, 两端是N型材料,就是NPN型。 4.我们一般可以容易找到基极b,但另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO 的方法确定集电极c和发射极e。 (1) 对于NPN型三极管,用手指捏住b极与假设的c极,管脚间利用我们的手指充当电阻的作用,用黑表笔接假设的c 极,红表笔接假设的e极,万用表打到*1K档测量两极间的电阻 Rce;之 后将假 设的c ,e 极对调 再测一

次。虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。 (2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极 管符号中的 箭头方向一 致,所以此时 黑表笔所接 的一定是发 射极e,红表 笔所接的一定是集电极c。 4.直流放大倍数的hFE的测量:先转动开关至晶体管调节 Adj位置上,将红黑测试笔短接,调节欧姆调零电位器,使指针对准300hFE刻度线上,然后转动开关到hFE位置,将要测的晶体管脚分别插入晶体管测试座的ebc管座内,指针偏转所示数值约为晶体管的直流放大倍数?值。N型插入N型插座,P型插入P型插座。 5.

二极管、三极管的性能检测

二极管、三极管的性能检测 1. 二极管性能的检测 1) 普通二极管性能的检测 晶体二极管具有单向导电特性。用万用表的欧姆挡测量二极管的正、反向电阻,就可以判断出二极管管脚的极性,还可以粗略地判断二极管的好坏。 用万用表欧姆挡测量二极管的正、反向电阻原理如图4.1所示。 对于稳定电压U Z 小于万用表欧姆挡高阻挡表电池电压U o 的稳压二极管,可通过测量稳压二极管的反向电阻,用下式估算出U Z(U Z 越接近U o ,估算出的U Z 误差越大): 用万用表欧姆挡测二极管 例如:用某万用表 R ×10 k Ω挡测一只2CW55二极管,实 测反向电阻Rx 为70 k Ω,已知 U o=15V, R o=10 Ω,则 2) 发光二极管性能的检测 发光二极管除测量正、反向电阻外,还应进一步检查其是否发光。发光二极管的工作电压一般在1.6 V 左右,工作电流在1 mA 以上时才发光。用R ×10 k Ω挡测量正向电阻时,有些发光二极管能发光即可说明其正常。对于工作电流较大的发光二极管亦可用实训图4.2所示电路进行检测。 发光二极管测试电路 3) 光电(敏)二极管性能的检测 光电二极管的反向电阻随着从窗口射入光线的强弱而发生显著变化。在没有光照时,光电二极管的正、反向电阻测量以及极性判别与普通二极管一样。 光电二极管光电特性的测量方法:用万用表R ×100 k Ω挡或R ×1 k Ω挡测它的反向电阻时,用手电筒照射光电二极管顶端的窗口,万用表指示的电阻值应明显减小。光线越强,光电二极管的反向电阻越小,甚至只有几百Ω。关掉手电筒,电阻读数应立即恢复到原来的阻值。这表明被测光电二极管是良好的。 3. 三极管的管脚和类型的判别 ο οnR R R U U X X Z +=V nR R R U U X X Z 2.610101070107015433≈?+???=+=οο

三极管工作原理介绍

三极管工作原理介绍,NPN和PNP型三极 管的原理图与各个引脚介绍 三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种电流控制电流的半导体器件·其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。 PNP与NPN两种三极管各引脚的表示: 三极管引脚介绍

NPN三极管原理图: PNP三极管原理图:

常见的三极管为9012、s8550、9013、s8050.单片机应用电路中三极管主要的作用就是开关作用。 其中9012与8550为pnp型三极管,可以通用。 其中9013与8050为npn型三极管,可以通用。 区别引脚:三极管向着自己,引脚从左到右分别为ebc,原理图中有箭头的一端为e,与电阻相连的为b,另一个为c。箭头向里指为PNP(9012或8550),箭头向外指为NPN(9013或8050)。 如何辨别三极管类型,并辨别出e(发射极)、b(基极)、c (集电极)三个电极 ①用指针式万用表判断基极b 和三极管的类型:将万用表欧姆挡置“R &TI mes; 100”或“R&TI mes;lk”处,先假设三极管的某极为“基极”,并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大(约为几千欧至几十千欧),则假设的基极是正确的,且被

三极管基本知识大全

三极管基本知识大全 半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。它最主要的功能是电流放大和开关作用。三极管顾名思义具有三个电极。二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。 三极管的种类很多,并且不同型号各有不同的用途。三极管大都是塑料封装或金属封装,常见三极管的外观如图,大的很大,小的很小。三极管的电路符号有两种:有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。实际上箭头所指的方向是电流的方向。 电子制作中常用的三极管有9 0**系列,包括低频小功率硅管9013(NPN)、9012(PNP),低噪声管9014(NPN),高频小功率管9018(NPN)等。它们的型号一般都标在塑壳上,而样子都一样,都是TO-92标准封装。在老式的电子产品中还能见到3DG6(低频小功率硅管)、3AX31(低频小功率锗管)等,它们的型号也都印在金属的外壳上。我国生产的晶体管有一套命名规则,电子爱好者最好还是了解一下: 第一部分的3表示为三极管。第二部分表示器件的材料和结构,A:PNP型锗材料B:NPN型锗材料C:PNP型硅材料D:NPN型硅材料第三部分表示种类:光电管K:开关管X:低频小功率管G:高频小功率管D:低频大功率管A:高频大功率管。另外,3DJ 型为场效应管,BT打头的表示半导体特殊元件。 三极管最基本的作用是放大作用,它可以把微弱的电信号变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把电源的能量转换成信号的能量罢了。三极管有一个重要参数就是电流放大系数β。当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是注入电流β倍的电流,即集电极电流。集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。 三极管还可以作电子开关,配合其它元件还可以构成振荡器。 半导体三极管除了构成放大器和作开关元件使用外,还能够做成一些可独立使用的两端或三端器件 1. 扩流。 把一只小功率可控硅和一只大功率三极管组合,就可得到一只大功率可控硅,其最大输出电流由大功率三极管的特性决定,见附图1 。图2 为电容容量扩大电路。利用三极管的电流放大作用,将电容容量扩大若干倍。这种等效电容和一般电容器一样,可浮置工作,适用于在长延时电路中作定时电容。用稳压二极管构成的稳压电路虽具有简单、元件少、制作经济方便的优点,但由于稳压二极管稳定电流一般只有数十毫安,因而决定了它只能用在负载电流不太大的场合。图 3 可使原稳压二极管的稳定电流及动态电阻范围得到较大的扩展,稳定性能可得到较大的改善。 2. 代换。 图4 中的两只三极管串联可直接代换调光台灯中的双向触发二极管;图5 中的三极管可代用8V 左右的稳压管。图 6 中的三极管可代用30V 左右的稳压管。上述应用时,三极管的基极均不使用。 3. 模拟。 用三极管够成的电路还可以模拟其它元器件。大功率可变电阻价贵难觅,用图7 电路可作模拟品,调节510 电阻的阻值,即可调节三极管C 、E 两极之间的阻抗,此阻抗变化即可代替可变电阻使用。图8 为用三极管模拟的稳压管。其稳压原理是:当加到A 、B 两端的输入电压上升时,因三极管的B 、E 结压降基本不变,故R2 两端压降上升,经过R2

常用开关管对照

常用开关管、场管、IC参数、国内外相似替换型号 分类:液晶屏维修实例 2009.7.9 12:15 作者:龙哥 | 评论:0 | 阅读:0 2SC1885 150V,0.05A 0.75,200MHZ BF297,BF422,BF391,3DG180K NPN 2SC2336 180V,1.5A,25W,95MHZ 2SC2238A,2SC2238B,2SC2660, NPN 2SD478,2SD608A,2SD760,2SD1138, 3DA25F 2SC3306 500V,10A,100W BUV48A,BUV48B,BUV48C,BUW13 NPN 2SC2740,2SC3042,2SC3277,2SC3365 2SC3842,2DK308C 2SC3461 1100V,8A,140W BU902,2SC3643,2SC3847,2SC3982, NPN 2SD1433 2SC3746 80V,5A,20W 2SC3253,2SC3258,2SC3540,2SC3691 NPN 2SC4549,2SD1270,2SC1832 2SC3866 900V,3A,40W 2SC2979,2SC3178,2SC3559,2SC3979 NPN 2SC4303 2SC3953 2SC3886 1400V,8A,50W BU508AF,2SC3847,2SC3896,2SD1850 NPN 2SD1886 2SC3997 1500V,20A,250W - NPN 2SC4111 1500V,10A,150W 2SC3307,2SC3897,2SC3995 N PN 2SC4159 180V,1.5A,15W 2SC3298A,2SC3298B,2SD1763A,2SD177 2 NPN 2SC4288 1400V,12A,200W 2SC3910,2SC3995 NPN 2SC4538 2SC4633 1500V,0.03A,7W 2SC4451,2SC4576 NPN 2SC4686A 1500V,0.05A,10W 2SC4578 NPN 2SC4833 500V,5A,35W BUT11AF,2SC3310,2SC3570,2SC4026 NPN 2SC4054,2SC4160,2SC4073,2SC4371 2SC4834 500V,8A,45W BU306F,BUT12AF,2SC3626,2SC4130, NPN

如何测量三极管的好坏

下面是三极管的架构以及在电路图中的各种标识方法

万用表打到二极管档(蜂鸣档)对三极管测量时...首先我们要确定哪只脚是b极.于是用红表笔接触其中任意一只脚不动.用黑表笔去接触另外两只脚.如果能够测得两组相近且小于1的数字.说明此时红笔接触的就是b极.如果测得两组数字不相近..那说明此时红笔接触的不是b极..应把红笔换一只脚..黑笔去测另外两只脚...直到找到b极为止...假设我们知道哪只脚是b极...怎样去判断另外两只脚c极和e极呢?如下图:

图中红笔为b极.黑笔在另外两脚分别没得两组相近的数据..其中有一组数据会稍微大一点...此脚即为e极.小的那脚则为c极....并且我们知道此管为NPN三极管.因为红笔在b 极! 而对于PNP型三极管的测量方法也一样...只不过是黑表笔在b极..红笔接触另外两脚能测得两组相近的数据.,如下图: 下面是对场效应管的测量方法 场效应管英文缩写为FET.可分为结型场效应管(JFET)和绝缘栅型场效应管(MOSFET),我们平常简称为MOS管.而MOS管又可分为增强型和耗尽型而我们平常主板中常见使用的也就是增强型的MOS管. 下图为MOS管的标识

我们主板中常用的MOS管G D S三个引脚是固定的。。。不管是N沟道还是P沟道都一样。。。把芯片放正。。。从左到右分别为G极D极S极!如下图: 用二极管档对MOS管的测量。。。首先要短接三只引脚对管子进行放电。。。 1然后用红表笔接S极.黑表笔接D极.如果测得有500多的数值..说明此管为N沟道..

2黑笔不动..用红笔去接触G极测得数值为1. 3红笔移回到S极.此时管子应该为导通...

三极管知识点的总结.docx

晶体三极管

晶体三极管 一.教学要求: 1 .了解三极管的基本构造、特点、符号、型号、分类等: 1 .前 1 、 2 个属 2 .理解三极管电流放大作用的实质和特性曲线及主要参数:于知识方面 3 .掌握三极管的识别和简单测试方法:的要求 2.最后 1 个属 于技能方面 的要求二.教学重点、难点分析: 1.教学重点是三极管的三个工作区域及其特点、三极管的电流放大 作用: 2.教学难点是三极管的伏-安特性 3.技能要求是掌握三极管的识别与简单测试: 三.教具: 1.晶体三极管: 2.万用表: 3.晶体管特性测试仪、双踪示波器:

四.教学过程: (一):复习提问,引入新课: 提问3-4位 学生回答1.二极管具有哪些特性? 2.常用的电子元器件有哪些? (二):新课教学: 一:三极管的结构、符号和类型: 1.结构:利用课件进行 C(集电极)C(集电极)讲解,然后总结归纳。 集电区集电区 集电结 P 集电结 N b(基极)集区b(基极)集区 P N N发射结P发射结 发射区发射区e(发射极)e(发射极)NPN型PNP型 总结:三极管的结构为:三区+ 两结 + 三电极: 三区:指发射区、基区、集电区 两结:指发射结、集电结: 三电极:指发射极、基极、集电极: 2.符号: C C B B E E NPN型PNP型

3.三极管具有放大作用的内部条件(结构特点): 发射区很厚,掺杂浓度最高; 基区很薄,掺杂浓度最小; 集电区很厚,掺杂浓度比较高。 4.三极管的型号及其意义:发给不同规格 的三极管让学生 判别。 区别代号(用大字母表示) 半导体的序号(用数字表示) 半导体的类型(用字母表示) 半导体的材料(用字母表示) 电极数目 二:三极管的电流放大作用:用双踪示波三极管具有放大作用,必须同时满足内部条件和外部条件,内部条件器演示输入信号一般由生产厂家保证。和输出信号的差1.三极管放大的外部条件:别,加强学生的发射结正偏;感性认识,然后 集电结反偏。再进行分析。 2.三极管的电流分配关系:I e I b I c 3.三极管电流放大作用的实质: “以小控大”——以基极小电流I b控制集电极大电流I c。因 此:双极型三极管属于“电流控制器件”。 三.三极管的连接方式: 1 .共发射极: 2 .共集电极:3.共基极: 三张图进行 比较,注意它们输出端输出端输入端输出端 输入端输入端 之间的特点四.三极管的伏安特性曲线 (一)输入特性曲线:

谈谈三极管的开关功能

谈谈三极管的开关功能 三极管的工作机理本质上就是通过be之间的电流来控制ce之间的电流。所以b极叫基极也叫控制极。本科生们关于三极管的一个粗糙的印象是三极管有放大作用,至于放大什么东西,可能有相当一部分人也含糊不清。我们这里说的放大,当然是指be间的电流来控制gemfield倍于它的流经ce之间的电流,这个gemfield,通常是100左右。形象的说,Ic就是将Ib放大100倍所得的电流。 三极管的工作有三种状态,即截止状态、线性放大状态、饱和状态。其实我本人是非常不喜欢这三个名字的。只是另起炉灶的话,会浪费更多的精力,也就罢了。不过深刻了解了这三种工作状态,以后便可以真正做到胸有成竹,从而看透电路中万变不离其宗的三级管用法。 那就先说截止状态吧。在描述三极管工作条件时,经常会蹦出正偏或者反偏这类词语,比如集电结反偏。这些词语也是令我很讨厌的一类词语,仿佛就是一个个骗子,将初始时我们对于森林的好奇最终引向了弥漫着雾气的杂草丛生的沼泽地带。所以我先费些笔墨来解释一下这个词语。所谓正偏,即两极间加的电压与PN结的导通方向一致,如本例中的2n5550 安森美NPN硅管,对于b、e构成的发射结来说,b极电位高于e极电位,就叫发射结正偏,相反则叫反偏!而对于b、c构成的集电结来说,b极电位高于c极电位,就叫集电结正偏,相反就叫反偏。 那么这个2n5550三极管什么时候处于截止状态呢?我们说当我们打开三极管的钥匙——be间的电压,有一个开启的电压,大约在0.5到0.6v之间。注意是b比e高0.5到0.6v,也就是说当b的电位比e 的电位高不出这个电压时,比如是0.4v或者0.1v或者-0.1v,我们就说三极管陷入了截止状态。这个时候,从c流向e的电流很小——只有1微安以下,因为我们还不具备开启三极管的钥匙。在multisim 10的电路仿真中,当ce间的电压为5v,Vbe钥匙电压为0.4v时,流经ce电流(Ic)为800多纳安。ce之间5v 这个还算可以的电压才仅仅产生了Ic纳安级渺小的电流。只能说ce间的电阻太大了。所以说,这个时候的ce间电阻很大,我们把它近似于开路。 所以对截止状态做个总结时,我们就说当be这把开启钥匙没有达到开启电压时(0.5到0.6)时,ce开路。这时的三极管你可以说它是装饰物,也可以说它是石头,甚至你把它从电路中拿走也没关系。这就是第一个我们要阐述的三极管的官员状态——我在休息,什么也不做。 不过不幸的是,下面还有一大段话要啰嗦。这些谆谆教诲对于三极管的任意一种工作状态都是适用的: 截止状态也不是说因为不用工作,所以就没有什么参数限制了。这是不对的,就像官员上班时间也在休息,甚至都有人在打麻将,ok,这是没关系的,反正也不会丢掉乌纱帽。但你不能放火烧房子,这个就不行了。同样,三极管在be的电位差不足前面提到的那个钥匙电压时不工作,但是be之间的电位差也不能太低了。比如,是一个很大的负值,这就是说e的电位反而比b的电位高很多。我们都知道三极管的be之间像一个pn结,那么毫无疑问也有一个反向耐压值。所以这块儿也有一个这样的值,就是说发射极的电位不能比基极高出那么多的一个值,是多少呢?对于2N5550来说,是6v,也就是说当Vbe<-6v时,三极管的发射结可能会被反向击穿。

如何检测三极管的三个极

如何检测三极管的三个极 可以用万用表来初步确定三极管的好坏及类型(NPN 型还是PNP 型), 并辨别出e(发射极)、b(基极)、c(集电极)三个电极。测试方法如下: ①用指针式万用表判断基极 b 和三极管的类型:将万用表欧姆挡置"R ×100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧 至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧), 则假设的基极是正确的,且被 测三极管为PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e:仍将指针式万用表欧姆挡置"R × 100"或"R × 1k" 处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极( 不能使b、c直接接触), 通过人体, 相当 b 、C 之间接入偏置电阻, 读出表头所示的阻值, 然后将两表笔反接重测。若第一次测得的阻值比第二次小, 说明原假设成立, 因为 c 、 e 问电阻值小说明通过万用表的电流大, 偏置正常。 ③用数字万用表测二极管的挡位也能检测三极管的PN结,可以很方便地确定三极管的好坏及类型,但要注意,与指针式万用表不同,数字式万用表红表笔为 内部电池的正端。例:当把红表笔接在假设的基极上, 而将黑表笔先后接到其余两个极上, 如果表显示通〈硅管正向压降在0.6V 左右), 则假设的基极是正确的, 且被测三极管为NPN 型管。 数字式万用表一般都有测三极管放大倍数的挡位(hFE), 使用时, 先确认晶体管类型, 然后将被测管子 e 、b 、c三脚分别插入数字式万用表面板对应的三极管插孔中,表显示出hFE 的近似值。 三极管的管型及管脚的判别 为了迅速掌握测判方法,结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面进行解释。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管; 测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位,红表笔正,黑表笔负。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的

通俗易懂的三极管工作原理

通俗易懂的三极管工作原理 1、晶体三极管简介。晶体三极管是p 型和n 型半导体的有机结合,两个pn 结之间的相 互影响,使pn 结的功能发生了质的飞跃,具有电流放大作用。晶体三极管按结构粗分有npn 型和pnp 型两种类型。如图2-17所示。(用Q 、VT 、PQ 表示) 三极管之所以具有电流放大作用,首先,制造工艺上的两个特点:(1)基区的宽度做的非常薄;(2)发射区掺杂浓度高,即发射区与集电区相比具有杂质浓度高出数百倍。 2、晶体三极管的工作原理。 其次,三极管工作必 要条件是(a)在B 极和 E 极之间施加正向电 压(此电压的大小不能 超过1V);(b )在C 极 和E 极之间施加反向 电压(此电压应比eb 间电压较高);(c )若 要取得输出必须施加 负载。 图2-17 三极管的构造示意图 最后,当三极管满足必要的工作条件后,其工作原理如下: (1) 基极有电流流动时。由于B 极和E 极之间有正向电压,所以电子从发射极向基极移动,又因为C 极和E 极间施加了反向电压,因此,从发射极向基极移动的电子,在高电压的作用下,通过基极进入集电极。于是,在基极所加的正电压的作用下,发射极的大量电子被输送到集电极,产生很大的集电极电流。 (2)基极无电流流动时。在B 极和E 极之间不能施加电压的状态时,由于C 极和E 极 间施加了反向电压,所以集电极的 电子受电源正电压吸引而在C 极和E 极之间产生空间电荷区,阻碍了从发射极向集电极的电子流动,因而就没有集电极电流产生。 综上所述,在晶体三极管中 很小的基极电流可以导致很大的 集电极电流,这就是三极管的电 流放大作用。此外,三极管还能通过基极电流来控制集电极电流的导通和截止,这就是三极管的开关作 图2-18 晶体三极管特性曲线 用(开关特性)。参见晶体三极管特性曲线2-18图所示: 3、晶体三极管共发射极放大原理如下图所示: A 、vt 是一个npn 型三极管,起放大作用。

三极管的检测及其管脚的判别

三极管的检测及其管脚的判别 使用数字万用表判断三极管管脚(图解教程) 现在数字式的万用表已经是很普及的电工、电子测量工具了,它的使用方便和准确性受到得维修人员和电子爱好者的喜爱。但有朋友会说在测量某些无件时,它不如指针式的万用表,如测三极管。我倒认为数字万用表在测量三极管时更加的方便。以下就是我自己的一些使用经验,我是通常是这样去判断小型的三极管器件的。大家不妨试试看是否好用或是否正确,如有意见或问题可以发信给我。 手头上有一些BC337的三极管,假设不知它是PNP管还是NPN 管。 图1三极管 我们知道三极管的内部就像二个二极管组合而成的。其形式就像下图。中间的是基极(B极)。

图2三极管的内部形式 首先我们要先找到基极并判断是PNP还是NPN管。看上图可知,对于PNP管的基极是二个负极的共同点,NPN管的基极是二个正极的共同点。这时我们可以用数字万用表的二极管档去测基极,看图3。对于PNP管,当黑表笔(连表内电池负极)在基极上,红表笔去测另两个极时一般为相差不大的较小读数(一般0.5-0.8),如表笔反过来接则为一个较大的读数(一般为1)。对于NPN表来说则是红表笔(连表内电池正极)连在基极上。从图4,图5可以得知,手头上的BC337为NPN管,中间的管脚为基极。

图3万用表的二极管测量档 图4判断BC337的B极和管型(1)

图4判断BC337的B极和管型(2) 找到基极和知道是什么类型的管子后,就可以来判断发射极和集电极了。如果使用指针式万用表到了这个步可能就要用到两只手了,甚至有朋友会用到嘴舌,可以说是蛮麻烦的。而利用数字表的三伋管hFE档(hFE 测量三极管直流放大倍数)去测就方便多了,当然你也可以省去上面的步骤直接用hFE去测出三极管的管脚极性,我自己则认为还是加上上面的步骤方便准确一些。 把万用表打到hFE档上,BC337卑下到NPN的小孔上,B极对上面的B字母。读数,再把它的另二脚反转,再读数。读数较大的那次极性就对上表上所标的字母,这时就对着字母去认BC337的C,E 极。学会了,其它的三极管也就一样这样做了,方便快速。 图5万用表上的hFE档

三极管基本知识全归纳

1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue 发射极正偏。总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。 NPN和PNP主要是电流方向和电压正负不同。 NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。

PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC发射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ub。放大条件:NPN管:Uc>Ub>Ue;PNP管:Ue>Ub>Uc。 (2)饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。即饱和导通条件:NPN管:Ub>Ue,Ub>Uc,PNP型管:Ue>Ub,Uc>Ub。饱合状态的特征是:三极管的电流Ib、Ic 都很大,但管压降Uce 却很小,Uce≈0。这时三极管的c、e 极相当于短路,可看成是一个开关的闭合。饱和压降,一般在估算小功率管时,对硅管可取0.3V,对锗管取0.1V。此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。 (3)截止区:发射结反偏,集电结反偏。由于两个PN 结都反偏,使三极管的电流很小,Ib≈0,Ic≈0,而管压降Uce 却很大。这时的三极管c、e 极相当于开路。可以看成是一个开关的断开。 3、三极管三种工作区的电压测量 如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Ube。 饱和状态eb有正偏压约0.65V左右,ce电压接近0V. 放大状态eb有正偏压约0.6V,ce电压大于0.6V小于电源电压. 截止状态eb电压低于0.6V,ce电压等于或接近电源.

三极管和MOS管做开关用时的区别

三极管和MOS管做开关用时的区别 ?我们在做电路设计中三极管和MOS管做开关用时候有什么区别工作性质: 1.三极管用电流控制,MOS管属于电压控制. 2、成本问题:三极管便宜,MOS管贵。 3、功耗问题:三极管损耗大。 4、驱动能力:MOS管常用来电源开关,以及大电流地方开关电路。 实际上就是三极管比较便宜,用起来方便,常用在数字电路开关控制。 MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。 一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管 实际上说电流控制慢,电压控制快这种理解是不对的。要真正理解得了解双极晶体管和MOS晶体管的工作方式才能明白。三极管是靠载流子的运动来工作的,以npn管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此pn结处会感应出由发射区指向基区的静电场(即内建电场),当基极外加正电压的指向为基区指向发射区,当基极外加电压产生的电场大于内建电场时,基区的载流子(电子)才有可能从基区流向发射区,此电压的最小值即pn结的正向导通电压(工程上一般认为0.7v)。但此时每个pn结的两侧都会有电荷存在,此时如果集电极-发射极加正电压,在电场作用下,发射区的电子往基区运动(实际上都是电子的反方向运动),由于基区宽度很小,电子很容易越过基区到达集电区,并与此处的PN的空穴复合(靠近集电极),为维持平衡,在正电场的作用下集电区的电子加速外集电极运动,而空穴则为pn结处运动,此过程类似一个雪崩过程。集电极的电子通过电源回到发射极,这就是晶体管的工作原理。三极管工作时,两个pn结都会感应出电荷,当做开关管处于导通状态时,三极管处于饱和状态,如果这时三极管截至,pn结感应的电荷要恢复到平衡状态,这个过程需要时间。而MOS三极管工作方式不同,没有这个恢复时间,因此可以用作高速开关管。 ?(1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。

使用模拟万用表测定三极管各个管脚的方法

模拟万用表内部有一个电源,外面的黑表笔连接的是电源的正极,外面的红表笔连接的是电源的负极。 (1)在测定NPN型三极管基极,发射极和集电极时步骤如下: 先确定基极(b):先把万用表调到欧姆档,用黑表笔固定连接一个管脚,再用红表笔分别接触其他两个管脚,若万用表均有很大的偏转,则黑表笔连接的管脚即为基极(b)。若现象不为此,则互换管脚,直至产生此现象为止。 再确定发射极(e)和集电极(c):基极确定后,用红黑表笔分别接触另外的两个管脚,并在基极和黑表笔之间接上人体电阻,若万用表有很大的偏转,则黑表笔接的就是集电极,红表笔接的就是发射极。若没有此现象,将红黑表笔反接直至出现此现象为止。 (2)在测定PNP型三极管基极,发射极和集电极时步骤如下: 先确定基极(b):先把万用表调到欧姆档,用红表笔固定连接一个管脚,再用黑表笔分别接触其他两个管脚,若万用表均有很大的偏转,则红表笔连接的管脚即为基极(b)。若现象不为此,则互换管脚,直至产生此现象为止。 再确定发射极(e)和集电极(c):基极确定后,用红黑表笔分别接触另外的两个管脚,并在基极和黑表笔之间接上人体电阻,若万用表有很大的偏转,则红表笔接的就是集电极,黑表笔接的就是发射极。若没有此现象,将红黑表笔反接直至出现此现象为止。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/6d7833047.html,/

最新三极管知识简介00571

三极管知识简介 00571

三极管知识简介 概述 半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。它最 主要的功能是电流放大和开关作用。三极管顾名思义具有三个电极。二极管是由一 个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极 (用字母b表示)。其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表 示)。由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三 极管。 三极管的种类很多,并且不同型号各有不同的用途。三极管大都是塑料封装或金属封装,常见三极管的外观,有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。实际上箭头所指的方向是电流的方向。 电子制作中常用的三极管有90××系列,包括低频小功率硅管9013(NPN)、9012(PNP),低噪声管9 014(NPN),高频小功率管9018(NPN)等。它们的型号一般都标在塑壳上,而样子都一样,都是TO-92标准封装。在老式的电子产品中还能见到3DG6(低频小功率硅管)、3AX31(低频小功率锗管)等,它们的型号也都印在金属的外壳上。我国生产的晶体管有一套命名规则,电子工程技术人员和电子爱好者应该了解三极管符号的含义。 符号的第一部分“3”表示三极管。符号的第二部分表示器件的材料和结构:A——PNP型锗材料;B——NPN型锗材料;C——PNP型硅材料;D——NPN型硅材料。符号的第三部分表示功能:U ——光电管;K——开关管;X——低频小功率管;G——高频小功率管;D——低频大功率管;A——高频大功率管。另外,3DJ型为场效应管,BT打头的表示半导 体特殊元件。

模电中三极管饱和及深度饱和状态的界定

模电中三极管饱和及深度饱和状态的界定 三极管饱和问题总结: 1.在实际中,常用Ib*β=V/R作为判断临界饱和的条件。根据Ib*β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能达到真正的饱和;倍数越大,饱和程度就越深。 2.集电极电阻越大越容易饱和; 3.饱和区的现象就是:二个PN结均正偏,IC不受IB之控制 问题:基极电流达到多少时三极管饱和? 解答:这个值应该是不固定的,它和集电极负载、β值有关,估算是这样的:假定负载电阻是1K,VCC是5V,饱和时电阻通过电流最大也就是5mA,用除以该管子的β值(假定β=100)5/100=0.05mA=50μA,那么基极电流大于50μA就可以饱和。 对于9013、9012而言,饱和时Vce小于0.6V,Vbe小于1.2V。下面是9013的特性表: 问题:如何判断饱和?

判断饱和时应该求出基级最大饱和电流IBS,然后再根据实际的电路求出当前的基级电流,如果当前的基级电流大于基级最大饱和电流,则可判断电路此时处于饱和状态。 饱和的条件: 1.集电极和电源之间有电阻存在且越大就越容易管子饱和;2.基集电流比较大以使集电极的电阻把集电极的电源拉得很低,从而出现b较c 电压高的情况。 影响饱和的因素:1.集电极电阻越大越容易饱和;2.管子的放大倍数放大倍数越大越容易饱和;3.基集电流的大小; 饱和后的现象:1.基极的电压大于集电极的电压;2.集电极的电压为0.3左右,基极为0.7左右(假设e极接地) 谈论饱和不能不提负载电阻。假定晶体管集-射极电路的负载电阻(包括集电极与射极电路中的总电阻)为R,则集-射极电压Vce=VCC-Ib*hFE*R,随着Ib的增大,Vce减小,当Vce<0.6V时,B-C结即进入正偏,Ice已经很难继续增大,就可以认为已经进入饱和状态了。当然Ib如果继续增大,会使Vce再减小一些,例如降至0.3V甚至更低,就是深度饱和了。以上是对NPN型硅管而言。 另外一个应该注意的问题就是:在Ic增大的时候,hFE会减小,所以我们应该让三极管进入深度饱和Ib>>Ic(max)/hFE,Ic(max)是指在假定e、c极短路的情况下的Ic极限,当然这是以牺牲关断速度为代价的。 注意:饱和时Vb>Vc,但Vb>Vc不一定饱和。一般判断饱和的直接依据还是放大倍数,有的管子Vb>Vc时还能保持相当高的放大倍数。例如:有的管子将Ic/Ib<10定义为饱和,Ic/Ib<1应该属于深饱和了。 从晶体管特性曲线看饱和问题:我前面说过:谈论饱和不能不提负载电阻。现在再作详细一点的解释。 以某晶体管的输出特性曲线为例。由于原来的Vce仅画到2.0V为止,为了说明方便,我向右延伸到了4.0V。 如果电源电压为V,负载电阻为R,那么Vce与Ic受以下关系式的约束:Ic = (V-Vce)/R 在晶体管的输出特性曲线图上,上述关系式是一条斜线,斜率是 -1/R,X轴上的截距是电源电压V,Y轴上的截距是V/R(也就是前面NE5532第2帖说的“Ic(max)是指在假定e、c极短路的情况下的Ic极限”)。这条斜线称为“静态负载线”(以下简称负载线)。各个基极电流Ib值的曲线与负载线的交点就是该晶体管在不同基极电流下的工作点。见下图:

三极管的识别与检测方法(2)

三极管的识别与检测方法(2) 课型:理论+实践 教学目标 1、熟悉三极管外形,图形符号和文字符号; 2、了解三极管的种类与特点; 3、了解三极管的特性与参数; 4、掌握常用三极管的命名方法; 教学重点与难点 1、掌握三极管的外形,图形符号和文字符号; 2、了解三极管的种类与特点; 教学方法 讲授法、演示法 教学安排:2课时 教学过程 一、项目实施 任务一:普通三极管的识别与检测 工作任务: 1.识别不同类别的三极管 2.测量三极管 工作步骤: 1.识别各种三极管(按功率) (1)普通小功率三极管 普通小功率三极管通常采用TO-92封装,如图所示为9013三极管,其引脚顺序为E、B、C(引脚向下,面向元件型号)。 (2)中功率三极管 图所示为NPN型中功率三极管TIP41,其引脚顺序为B、C、E(引脚向下,面向元件型号),中功率三极管通常采用TO-220封装。 (3)金属外壳三极管 如图所示为开关三极管2N2222A,该三极管为NPN型三极管,采用金属外壳封装TO-18或TO-39,其引脚顺序如图所示,引脚向下,从凸起位置依次为E、B、C。

(4)大功率金属外壳三极管 图为大功率金属外壳三极管,其封装形式通常为TO-3,其外壳通常为集电极(C),另外两个引脚分别为基极(B)和发射极(E)。 (5)贴片三极管 图为贴片三极管8550,8550为小功率PNP三极管,其贴片型号为2TY,引脚顺序如图所示。 2、识别各种三极管(按引脚的现状) (1)色点标志 (2)凸形标记 (3)三角排列 (4)三脚等距平面性 (5)带散热片的三极管 3.用指针式万用表测量三极管 步骤一:判断三极管的基极(B) 用万用表R×1K档或R×100档依次测量三极管各极之间的正反向阻值,并将测得阻值填入表中。然后分析表中测得数据,观察哪一个引脚与其他两个引脚之间的测得的阻值均较小,如果符合这一条件,则这个引脚就是三极管的基极(B)。 步骤二:判断三极管的管型(PNP还是NPN) 将万用表置于R×1K档或R×100档,将万用表的黑表笔接三极管的基极,红表笔在其他极,如果阻值均较小,则表明这是一个NPN型三极管。如果是高阻值,改用红表笔接三极管的基极,黑表笔在其他引脚,若阻值均较小,则表明这是一个PNP型三极管。 步骤三:辨别三极管的集电极(C)和发射极(E) 方法一:将万用表置于R×1K档或R×100档,用“鳄鱼夹”夹持管脚,或用两手分别捏住表笔和管脚,然后用舌尖舔基极,利用人体电阻作为基极偏流电阻,也可进行测量。指针偏转较大的那一次,黑表笔所接为集电极(NPN管),红表笔所接为发射极。PNP管正好相反。 方法二:将万用表置于HFE档,将三极管管按假定的E、C插入万用表的“三极管测量

相关文档
最新文档