输电线路工程杆塔基础

输电线路工程杆塔基础
输电线路工程杆塔基础

输电线路工程杆塔基础

输电线路杆塔的地下部分的总体统称为基础。它的作用是用来输电线路的杆塔

输电线路基础施工的任务就是按设计进行施工。普通土坑的开挖前都必须做好复测和分坑工作。

输电线路施工复测是指线路施工前,施工单位对设计部门已测定线路中心线上的各直线桩,杆塔位中心桩及转角塔位桩位置,档距和断面高程进行全面复核测量。若偏差超过允许范围时,必须查明原因并予以纠正。其后,根据定位的中心桩位,根据基础类型依照设计图纸规定的尺寸进行坑口放样工作,称次为分坑测量。通常把这两步工作统称为复测分坑。分坑,可用经纬仪及皮尺进行分坑。

基础形式可分为以下几种:

1.岩石嵌固基础该基础型式适用于覆盖层较浅或无覆盖层的强风化岩石地基,其特点是底板不配筋,基坑全部掏挖。上拔稳定,具有较强的抗拔承载能力。需要时,可将主柱的坡度设置与塔腿主材坡度相同,以减小偏心弯矩,还可省去地脚螺栓。由于该基型充分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。

2.岩石锚杆基础该基型适用于中等风化以上的整体性好的硬质岩。该基础型式是在岩石中直接钻孔、插入锚杆,然后灌浆,使锚杆与岩石紧密粘结,充分利用了岩石的强度,从而大大降低了基础混凝土和钢材量。但岩石锚杆基础需逐基鉴定岩石的完整性。

3.掏挖基础该基型分全掏挖和半掏挖两种,适用无地下水的硬塑粘性土地基。在基坑施工可成型的情况下,开挖基坑时不扰动原状土,避免大开挖后再填土。基础承受上拔荷载时,原状土的内摩擦角和凝聚力得以充分发挥作用。这种基础型式也显示了较高的经济效益和环境效益,根据以往工程的统计,由于各线路地质条件的不同等原因,采用全掏挖基础比用阶梯型基础节约钢材和混凝土分别为3~7%和8~20%。掏挖基础有直柱式和斜插式两种型式。斜插式掏挖基础将主柱的坡度设置与塔腿主材坡度相同,减小了基础水平力产生的偏心弯矩,还可省去地脚螺栓

4.阶梯型基础该基础是传统的基础型式,适用各类地质、各种塔型,其特点是大开挖,采用模板浇制,成型后再回填土,利用土体与混凝土重量抗拔,基础底板刚性抗压,不配钢筋。由于阶梯型基础混凝土量较大,埋置较深,易塌方及有流砂地区难以达到设计深度,因此在此类地区应尽量少用。

5.大板基础大板基础的主要设计特点是:底板大、埋深浅、底板较薄,*底板双向配筋承担由铁塔上拔、下压和水平力引起的弯矩和剪力,主柱计算与阶梯基础相同。与阶梯基础相比,埋深浅,易开挖成形,混凝土量能适当降低,但钢筋量增加较多。与灌注桩相比,在软弱地基中应用较为广泛。它施工方便,特别是对于软、流塑粘性土、粉土及粉细砂等基坑不易成型的塔位。设计时,对底板的高厚比应进行一定的控制(悬臂长度:底板厚<3:1)不足时可在主柱下增加台阶,以减少板的悬臂长度和底板厚度,为了减小混凝土量,主柱中心与底板中心设置偏心,抵消水平弯矩,达到减小底板及配筋的效果。大板基础设计时应控制沉降及不均匀沉降,对转角塔及负荷较大的直线塔进行地基沉降变形验算,施工时应尽量少扰动地基土,清除开挖的全部浮土并做好垫层,必要时使用块石灌浆。

6.斜插板式基础该基础的主要特点是基础主柱坡度与塔腿主材坡度一致,塔腿主材角钢直接插入基础混凝土中,使基础水平力对基础底板的影响降至最低。在正常条件下,基础土体上拔稳定、下压稳定和基础强度计算可忽略水平力的影响。与大板基础相比,由于偏心弯矩大大减小,下压稳定控制的基础底板尺寸可相应减小,从而降低了混凝土量和底板配筋量。由于省去了塔座板和地脚螺栓,其钢材的综合指标降低了25%左右。斜插板式基础在平原、河网地区使用较多,其最大优点就是节省基础材料,施工较为方便。其缺点是施工精度要求高。对于高压缩性软弱土地区,其基础底面地基处理一定要重视基础垫层和基坑排水,并应严格按照有关规定执行。因为一旦发生扰动基底软土或排水不及时,就可能引起基础的不均匀沉降,再很难进行处理。

7.灌注桩基础对于地质条件为流塑、地基持力层较深且基础作用力较大的耐张塔或直线塔,使用钻孔灌注桩基础是设计中广泛采用的一种方法。它主要*桩周与土的摩擦力和桩端承载力承担基础上拔力和下压力,施工方便,安全可*。缺点是施工费用较高。

8.联合基础联合基础主要适用于基础根开较小且基坑难以开挖、板式基础上拔土体重叠的软弱土塔位,其设计特点是埋深较浅,四个基础整体浇制,*基础底板上面的纵、横向加劲混凝土梁承担由基础上拔力、下压力和水平力引起的弯矩,底板与纵、横向加劲肋配筋,整体性好。缺点是基础材料用量较大,施工较为烦琐,设计不易成系列。

9.复合式沉井基础复合式沉井基础是针对地下水位较高的软土地基,尤其是容易产生“流砂”现象的软土地基的一种新型的基础型式。复合式沉井基础是由上、下两部分组成:上部分是方型台阶基础,下部是环形钢筋砼沉井,沉井顶端露出钢筋埋入台阶基础连成整体。基础的埋深在4m左右,沉井筒直径为2.5m左右,从基础深宽比来看(一般为1.5左右),仍属于浅基础。基础使用材料有:钢材:I、II级钢筋,Q345(插入式角钢),35#钢,Q235(地脚螺栓) 混凝土:阶梯基础、沉井基础:C15级岩石、掏挖、插入板式基础、大板基础、联合基础:C20级岩石锚杆基础、灌注桩基础:C25级垫层、护面、保护帽:C10级

铁塔组立施工方案94328

青海玉树娘拉乡35kv输变电工程二标段 铁 塔 组 立 施 工 方 案 甘肃金胜电力工程有限公司 青海玉树娘拉乡35kv输变电工程

铁塔组立施工方案 一、编制说明: 为保证白扎-娘拉35kV线路组立铁塔施工的顺利进行,确保工程质量、安全和进度目标的完成,特编制本施工方案,指导本工程在铁塔组立时的施工。 二、制依据: 1、《电力建设工程施工技术管理制度(GB/T50326-2001)》; 2、《110~500千伏架空电力线路工程质量及评定规程(DL/T5168-2002)》; 3、《娘拉乡35kv变配电工程施工组织设计》; 4、线路经过地区的调查资料及地方法规等; 5、国家颁布的有关法律、法规及其它相关规范。; 6、国家电网公司质量、职业健康安全管理体系程序文件; 7、架空送电线路施工及验收规范(GB 50233-2005) 三、工程概况 1、本标段交通便道路面较差,运输条件比较困难;主要跨越扎曲河两次,10kv线路一次,通讯线路七次,线路自白扎35kv变电站开关柜室西数第一个预留洞电缆出线至新建娘拉乡35kv变电站,本标线路全长约12km。海波高度在3600m-4400m左右,表层地质为中密碎石混粉土,底部为风化砂板石,局部地面风化岩裸露,岩石工程性良好。全线均为铁塔,共计59基,基础均为现浇混凝土基础。由

于地形复杂,在半坡或山顶,机械运输无法进行。塔材运输大部分靠人力和畜力, 四、铁塔组立 1、铁塔组立前期准备 (1)技术准备 ①组立铁塔前,必须对混凝土基础根开、高差、扭转进行复检,检查合格后方准组立铁塔。现浇基础的混凝土强度要求:整体组立时为设计强度的100%;分解组塔应达到设计强度的70%,混凝土龄期最小不得少于10天。 ②应准备好技术资料,包括杆塔明细表、铁塔安装图、铁塔组立施工方案及措施等。工程技术负责人应组织有经验的技术人员和技术工人进行现场调查,熟悉铁塔图纸,确定合理的组立方法。并对全体施工人员进行技术交底。 (2)人员准备 ①根据本工程工期要求,项目部将按基本工作量组织施工人员,组塔计划成立2个组塔队,参加组立铁塔的人员必须经过技术交底。 ②组立铁塔操作的重要岗位应由有经验的送电技工担任,机动绞磨操作业人员均经培训合格后上岗。 ③组塔的人员配备见下表: 组塔劳动力组织

架空输电线路杆塔基础的几种形式图文【最新版】

架空输电线路杆塔基础的几种形式图文 输电线路杆塔的地面以下部分的总体统称为杆塔基础。它的作用是用来稳定输电线路的杆塔,防止杆塔因为承受导地线、风、覆冰、断线张力等垂直荷载、水平荷载和其他外力作用而产生的上拔、下压或倾覆。 基础形式可分为以下几种: 1.岩石嵌固基础

岩石嵌固基础适用于覆盖层较浅或无覆盖层的强风化岩石地基,其特点是底板不配筋,基坑全部掏挖。上拔稳定,具有较强的抗拔承载能力。 需要时,可将主柱的坡度设置与塔腿主材坡度相同,以减小偏心弯矩,还可省去地脚螺栓。由于该基型充分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。 岩石嵌固基础分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。但对勘测深度要求较高,要求逐基鉴定岩石的稳定性、覆盖层厚度、岩石的坚固及风化程度情况,准确落实相关设计参数。 2.岩石锚杆基础

岩石锚桩基础适用于中等风化以上的整体性好的硬质岩。该基础型式是在岩石中直接钻孔、插入锚杆,然后灌浆,使锚杆与岩石紧密粘结,借岩石本身、岩石与砂浆间和锚筋的粘结力来抵抗上部杆塔结构传来的外力, 以保证对杆塔结构的锚固稳定,从而大大降低了基础混凝土和钢材量。岩石锚桩基础一般宜用于未风化、微风化和中等风化程度的岩石地基, 但随着现在实验和实践经验的积累, 强风化岩石地区亦可做岩石基础。岩石锚桩基础常用型式有直锚式、斜锚式、承台式、嵌固式、半嵌固式5种类型, 应用较为成功。直锚式岩石锚桩基础具有工艺简便、灵活性高、适用性强、造价低等优势, 适用于基础作用力较小的直线塔;斜锚式岩石锚桩基础使用于基础作用力较小的直线水泥杆或直线拉线塔等塔型; 而承台式岩石锚桩基础和嵌固式、半嵌固式岩石锚桩基础使用于基础作用力较大的耐张塔等塔型。 3.掏挖基础

铁塔组立施工要求

第条1?10kV线路每相引流线、引下线与邻相的引流线、引下线或导线之间,安装后的净空距离 不应小于300mm;1kV 以下电力线路,不应小于150mm。第条线路的导线与拉线、电杆或构架之间安装后的净空距离,35kV 时,不应小于600mm;1?10kV 时,不应小于200mm;1kV 以下时,不应小于100mm ?铁塔地面组装技术要求:一现场布置要求:1 .施工前负责人应勘察现场地形, 确定铁塔组立方案,根据不同的组立方案确定现场布置方案。2.根据铁塔结构及组立现场布置图 作好场地平整。清除影响组装和立塔的障碍物。 3 .地锚坑的定位要求:拉线地锚坑的位置应与线路方向成45°角;地锚坑应尽量避开低洼积水地带; 4 .地锚坑开挖应满足下列要求:⑴?地锚坑 深度应根据土质和受力大小确定:拉线、牵引地锚:坚土或普土埋深米,流沙土质米;⑵?地 锚坑必须开挖马道。马道对地面夹角应与受力方向一致,一般不应大于40°。马道宽度不得太大,以100?300mm 为宜。5 .当地锚坑位于松软地质或泥沼地带时,必须采取以下加固措施:增加地锚坑深度;加大地锚规格或用双地锚;在地锚的受力侧加角铁桩或挡板。二地面组装的一般规定: 1 .铁塔地面组装前应做好下述准备工作:⑴ 送到桩位的塔料经过清点,应确认符合组装要求。⑵ 参加地面组装的施工人员均经组塔工序的技术交底并经考试合格。⑶ 参加地面组装的民 工由现场施工负责人交待安全施工注意事项及现场操作基本知识。⑷ 根据现场地形,确定铁塔组 立方法。⑸ 熟悉铁塔各段重量,按照允许起吊重量确定地面组装塔段高度(铁塔分段示意图和图 纸重量明细表)。⑹ 根据现场地形及设备条件确定地面组装方法。⑺ 根据确立的铁塔组立方法及地面组装方法,选择配套合适的工器具。各类工器具使用前均应认真检查,不合格者不得使用。三分解组塔的地面组装要求: 1 .地面组装前,应进行构件布置。构件布置应遵循下述原则。⑴根据抱杆可能提升的高度、抱杆的允许承载能力等,合理确定吊装构件的分段、分片及应带附铁(即辅助材)的数量。⑵ 根据现场地形,塔段本身有无方向限制,以及地面组装与构件吊装是否同时进行等,确定构件的布置方位。⑶ 构件的分段,原则上按铁塔主材的分段进行组装,当抱杆提升高度及承载能力允许时,也可将两段主材组成一片进行吊装,减少吊装次数。 2 .组装构件的场地应尽量平整,或加物垫平,以免构件受力变形。 3 .吊装的构件要尽可能组装于塔基周围,不可 距塔基过远或过近。 4 .组装断面宽大的构件时,为防止构件受弯变形,用钢管或圆木补强。 5 .每段塔片两主材之间的各种辅助材应尽可能装齐,连接螺栓要拧紧。两塔片之间的各种辅助材尽可能连带在主材上。附铁在两片之间的分配要均衡。附铁与主材连接螺栓不要拧得太紧,螺帽带平即可。附铁与主材应用麻绳绑扎在一起。 6 .塔片吊装前,应按设计图纸作一次检查,发现问题要及时在地面进行处理,切忌留待高空作业处理。7 .组装中,脚钉安装位置、螺栓规格、螺栓穿向、垫圈安装位置及数量等均应符合图纸及规范要求。8 .地面组装时,单片高度不得大于15 米,如超过应增加吊点并针对受力点进行补强,防止主材弯距过大造成变形。电力建设安全工作规程(架

输电线路杆塔及基础课程设计说明书

输电线路杆塔基础课程设计说明书 一、设计题目:刚性基础设计 (一)任务书 (二)目录 (三)设计说明书主体 设计计算书是设计计算的整理和总结,是图纸设计的理论依据,也是审核设计的技术文件之一,因此编写设计说明书是设计工作的非常重要的一部分。 1、设计资料整理 (1)土壤参数 (2)基础的材料 (3)柱的尺寸 (4)基础附加分项系数 2、杆塔荷载的计算 (1)各种比载的计算 (2)荷载计算 1)正常大风情况 2)覆冰相应风 3)断边导线情况 要求作出三种情况的塔头荷载图 3、基础作用力计算 计算三种情况荷载作用下基础的作用力,选择大者作为基础设计的条件。 4、基础设计计算 (1)确定基础尺寸 1)基础埋深h0确定 2)基础结构尺寸确定 A、假定阶梯高度H1和刚性角 B、求外伸长度b' C、求底边宽度B D、画出尺寸图 (2)稳定计算 1)上拔稳定计算 2)下压稳定计算 (3)基础强度计算 5、画基础施工图和铁塔单线图 用A3纸(按制图标准画图)见参考图 6、计算可参考例11-3

《输电杆塔及基础设计》课程设计任务书 一、设计的目的。 《输电杆塔及基础设计》课是输电线路专业重要的专业课之一,《输电杆塔及基础设计》课程设计是本门课程教学环节中的重要组成部分。通过课程设计,使学生能系统学习和掌握本门课程中所学的内容,并且能将其它有关先修课程(如材料力学、结构力学、砼结构,线路设计基础、电气技术)等的理论知识在实际的设计工作中得以综合地运用;通过课程设计,能使学生熟悉并掌握如何应用有关资料、手册、规范等,从设计中获得一个工程技术人员设计方面的基本技能;课程设计也是培养和提高学生独立思考、分析问题和解决问题的能力。 二、设计题目钢筋混凝土刚性基础设计 三、设计参数 直线型杆塔:Z1-12铁塔(单线图见资料,铁塔总重56816N,铁塔侧面塔头顶宽度为400mm) 电压等级:110kV 绝缘子: 7片×-4.5 地质条件:粘土,塑性指标I L=0.25,空隙比e=0.7 基础柱的尺寸:600mm×600mm 1.荷载计算(正常情况Ⅰ、Ⅱ,断边导线三种情况) 2.计算基础作用力(三种情况) 3.基础结构尺寸设计 4.计算内容 (1)上拔稳定计算 (2)下压稳定计算 (3)基础强度计算 五、设计要求 1.计算说明书一份(1万字左右) 2.图纸2张 (1)铁塔单线图 (2)基础加工图

35杆塔组立施工方案之欧阳歌谷创编

朔州市平鲁区卧龙洞150MW风电 项目线路工程 欧阳歌谷(2021.02.01) 35kV集电线路杆塔组立施工方案 施工单位(章) 年月日 批准:年月日 审核:年月日 编写:年月日

目录 第一章工程概况1 1.1、编制依据 (1) 1.2、工程概况1 1.3、施工方案2 1.4、劳动力组织2 第二章杆塔统计汇总4 2.1、杆塔统计汇总4 2.2、各种型号铁塔尺寸4 第三章铁塔组立施工质量及工艺要求6 3.1、施工质量要求6 3.2施工工艺要求8 第四章铁塔组立质量保证措施9 4.1、铁塔组立质量保证措施9 第五章铁塔组立安全及文明施工保证措施11 5.1、安全及文明施工保证措施11 5.2、主要危险点(源)及针对措施13 5.3铁塔组立安全、文明施工控制图15 第六章施工进度保证措施16 6.1、计划进度:16 6.2.工器具配备16 6.3人员配备:16 6.4物资供应:16 6.5对外联系:16 第七章外拉线悬浮抱杆分解组立铁塔17 7.1、施工准备:17 7.2、适用范围:17 7.3、施工措施:19 7.4、有关施工要求及关键工艺要点说明:22 7.5、主要工器具配置表23 第八章内拉线悬浮抱杆分解组立铁塔25 8.1、施工准备25 8.2、现场布置及有关施工要求:25 8.3、主要工器具配置表26 第九章吊车整体组立铁塔28 9.1、施工准备28 9.2、施工方

法 (28) 9.3、施工安全28 第十章质量方针、质量目标、安全方针、安全目标30 10.1、质量方针:30 10.2、质量目标:30 10.3、安全方针:30 10.4、安全目标: (30)

输电线路设计基础概念题

一、基本概念题 1、简述输电线路各组成部分及其作用。 1、导线 导线用来传输电流,输送电能 2、避雷线 (1)起到防雷保护作用,使线路绝缘免遭雷电过电压的破坏,保证线路安全运行。 (2)当采用带有放电间隙的避雷线绝缘子时,可用作载流线,起熔冰、检修电源、载波通信通道等。 3、杆塔 杆塔用来支持导线和避雷线及其附件,并使导线、避雷线、杆塔之间,以及导线和地面及交叉跨越物或其他建筑物之间保持一定的安全距离。 4、绝缘子和绝缘子串 绝缘子是线路绝缘的主要元件,用来支承或悬吊导线使之与 杆塔绝缘,保证线路具有可靠的电气绝缘强度。 5、金具 架空线路上使用的金属部件,统称为线路金具。起支持、紧固、连接、保护导线和避雷线作用。 2、简述输电线路的任务和作用 输电线路的任务是: 把发电厂、变电站及用户有机的联系起来,是输送电能的纽带,是电力系统的大动脉,起着输送分配和交换功率的作用。作用如下: 1、输电线路解决了发电厂远离用电中心的问题,能充分利用动力能源,特别是水力资源,减少了煤耗和运输压力 2、把若干个孤立的发电厂及地方电力网连接成较大的电力系统,可以减少系统中总的装置容量;可以安装大容量的机组来代替小机组,减少单位容量建设投资,提高机组效率,减少消耗; 3、能把若干个孤立的地区电力网连接成为大的电力系统,有效地提高了运行的经济性和供电 3、输电线路研究对象是什么?为何架空线路比电缆线路应用广泛? 研究对象: 1、架空线路导线和避雷线的机械计算; 2、杆塔及其基础计算; 3、线路选线与杆塔定位以及施工计算。 架空线路优点: 结构简单、施工周期短、建设费用低、技术要求低、检修维护方便。散热性能好、输送容量大等。 4.什么叫档距,弧垂及限距?三者有何关系? 基本概念: 1、档距:相邻两直线杆塔中心线间的水平距离称为档距。 2、弧垂:导线悬挂点到导线最低点的垂直距离称为弧垂。 3、限距:导线到地面或其他被跨越物之间的垂直距离称 为限距。

110kV铁塔(组立)施工方案

. 2015年神木县绿源新能源电力110kV升压站 送出线路工程 铁塔组立施工方案 批准: 安全审核: 质量审核: 技术审核: 编制:

编制时间:2015年9月―――――神木县绿源新能源电力有限公司――――― 2015年10月 目录 第一章编制依据、工程概况 (2) 第二章施工现场组织机构 (2) 第三章组塔工程一般说明 (3) 第四章技术要求及措施 (13) 第五章质量管理 (15) 第六章安全保证措施及管理目标 (17)

第一章编制依据、工程概况 1.1 编制依据 1.1.1 依据工程设计单位编制的《工程设计说明书》、《施工图》 1.1.2《110-750KV架空电力线路施工及验收规范》(GB-50545-2010) 1.1.3《安全生产法》、《国家电网公司安全生产规程、规定》。 1.2 工程概况 本工程为神木县绿源新能源电力有限公司110kV升压站送出线路工程,全线路为单回塔,架空线路21.905km,共转角21次,铁塔共81基(其中直线塔60基,转角塔21基),分别塔型有:1C3-ZM1(15m1基、18m15基、21m13基、24m11基);1C3-ZM2(18m1基、27m8基、27m8基、30m6基);1C3-ZM3(27m1基、33m3基、

36m3基);1C3-J1(15m2基、18m6基、21m2基、24m1基);1C3-J2(15m2基、18m2基、21m1基、24m1基);1C3-J3(18m1基、21m1基);1C3-DJ (18m2基)铁塔防盗采用基础顶面以上8米范围内钮滑式防盗螺栓。 本工程线路方向规定:所有铁塔,均以线路方向为编制的正方向,并以此区分前后各左右,大号侧塔腿规定为Ⅰ腿,在本段的组塔过程中,铁塔塔腿编号统一,均以面向前进方向(受电侧)为准,顺时针方向转动分别为A 、B 、C 、D 号,线路左、右转角亦以面向前进方向为准,具体情况如下图所示: 110kVXXXXXXXX 变 第二章 施工现场组织机构 2.1现场施工人员职责: 2.1.1项目经理——担任施工总指挥,对现场宏观调控; 2.1.2项目总工——担任技术负责人,研究解决现场出现的问题,并进行技术监督和指导; 110kVXXXXXXXX 变 左 右

关于杆塔基础

于杆塔基础 杆塔, 基础 输电线路杆塔的地下部分的总体统称为基础。它的作用是用来输电线路的杆塔。 输电线路基础施工的任务就是按设计进行施工。普通土坑的开挖前都必须做好复测和分坑工作。 输电线路施工复测是指线路施工前,施工单位对设计部门已测定线路中心线上的各直线桩,杆塔位中心桩及转角塔位桩位置,档距和断面高程进行全面复核测量。若偏差超过允许范围时,必须查明原因并予以纠正。其后,根据定位的中心桩位,根据基础类型依照设计图纸规定的尺寸进行坑口放样工作,称次为分坑测量。通常把这两步工作统称为复测分坑。分坑,可用经纬仪及皮尺进行分坑。 基础形式可分为以下几种: 1.岩石嵌固基础 该基础型式适用于覆盖层较浅或无覆盖层的强风化岩石地基,其特点是底板不配筋,基坑全部掏挖。上拔稳定,具有较强的抗拔承载能力。需要时,可将主柱的坡度设置与塔腿主材坡度相同,以减小偏心弯矩,还可省去地脚螺栓。由于该基型充分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。 2.岩石锚杆基础 该基型适用于中等风化以上的整体性好的硬质岩。该基础型式是在岩石中直接钻孔、插入锚杆,然后灌浆,使锚杆与岩石紧密粘结,充分利用了岩石的强度,从而大大降低了基础混凝土和钢材量。但岩石锚杆基础需逐基鉴定岩石的完整性。 3.掏挖基础 该基型分全掏挖和半掏挖两种,适用无地下水的硬塑粘性土地基。在基坑施工可成型的情况下,开挖基坑时不扰动原状土,避免大开挖后再填土。基础承受上拔荷载时,原状土的内摩擦角和凝聚力得以充分发挥作用。这种基础型式也显示了较高的经济效益和环境效益,根据以往工程的统计,由于各线路地质条件的不同等原因,采用全掏挖基础比用阶梯型基础节约钢材和混凝土分别为3~7%和8~20%。掏挖基础有直柱式和斜插式两种型式。斜插式掏挖基础将主柱的坡度设置与塔腿主材坡度相同,减小了基础水平力产生的偏心弯矩,还可省去地脚螺栓 4.阶梯型基础 该基础是传统的基础型式,适用各类地质、各种塔型,其特点是大开挖,采用模板浇制,成型后再回填土,利用土体与混凝土重量抗拔,基础底板刚性抗压,不配钢筋。 由于阶梯型基础混凝土量较大,埋置较深,易塌方及有流砂地区难以达到设计深度,因此在此类地区应尽量少用。 5.大板基础 大板基础的主要设计特点是:底板大、埋深浅、底板较薄,*底板双向配筋承担由铁塔上拔、下压和水平力引起的弯矩和剪力,主柱计算与阶梯基础相同。与阶梯基础相比,埋深浅,易开挖成形,混凝土量能适当降低,但钢筋量增加较多。与灌注桩相比,在软弱地基中

杆塔组立施工方案

芦花—北塔Ⅰ回改接丰登变110kV线路工程(架空部分)杆塔工程施工措施 宁夏天净元光电力有限公司 芦花—北塔Ⅰ回改接丰登变110kV线路工程(架空部分)施工项目部 __2013_年_02_月_25_日

批准:____________ ________年____月____日审核:____________ ________年____月____日编写:____________ ________年____月____日

编制目的: 为规范本工程杆塔组立施工行为,统一落实标准化施工工艺及,确保本工程“安全无事故”安全目标及“零缺陷移交”质量目标的圆满实现,为业主提供放心满意的工程产品,特针对本工程杆塔特点,依据本工程杆塔组装图以及有关规范、规程,特编写杆塔组立施工工艺措施,以指导本工程铁塔组立施工。 编制依据: 1、《110kV~500kV架空电力线路工程施工质量及评定规程(杆塔部分)》(DL/T5168-2002) 2、《110KV~500kV架空送电线路施工及验收规范》[GB50233-2005] 3、《电力建设安全工作规程》(第2部分:架空电力线路) DL5009.2-2004 4、《国家电网公司电力建设安全健康与环境管理工作规定》 5、芦花—北塔Ⅰ回改接丰登变110kV线路工程(架空部分)铁塔施工图 6、芦花—北塔Ⅰ回改接丰登变110kV线路工程(架空部分)施工图会审纪要 7、国家电网公司输变电工程《施工工艺示范手册》 编制说明: 1、本措施只用于指导本工程铁塔组立施工,在本工程铁塔组立施工 完毕后自行失效。 2、本措施有关条款或要求若与规范、规程及公司《杆塔施工工艺标

输电线路杆塔基础设计分析

输电线路杆塔基础设计分析 摘要:电力是现代社会发展中不可或缺的重要能源,输电线路建设情况直接关 系到供电质量。杆塔是输电线路的重要组成部分,根据相关调查显示,在以往诸 多输电线路安全事故中,基础设计不良是一大重要因素,对此必须做好输电线路 杆塔基础设计工作,切实保证整个电力系统的安全稳定运行。 关键词:输电线路;杆塔;塔基;施工 一、高压输电线路杆塔基础选型分析 现浇台阶基础 此类基础属于刚性基础类型,能应用的地质条件非常的广泛,适用于各种类型的铁塔。 该基础类型的主要特点:混凝土方量较多,但钢材的耗费量较少,且施工工艺简单,为工程 施工的质量提供了很好的保障。以往的工程施工中应用较多,但近年来,为减少混凝土的使 用量,限制了该基础型式大范围应用,仅在受力较大的转角塔中应用,或者是在地下水丰富 容易引起塌方问题的地段中应用。 板式直柱基础 此类基础属于柔性板式基础,采用直立式主柱,连接铁塔时需使用塔脚板和地脚螺栓, 同样适用于各种类型的铁塔。按土重法计算,底板厚度由冲切计算和伸出部分宽厚比小于 2.5 控制,板的上部与下部均配置钢筋。其优点是基础混凝土方量较少,开挖方便,可进行浅埋,在较容易出现流砂或者是地下水位较高的地基中应用居多,能避免基坑坍塌的危险,还可降低深挖水坑的工作难度;缺点是基坑土石方开挖量较大,钢材耗量大。 插入式基础 此类基础不需要地螺和塔脚坂连接,将铁塔塔腿的主材直接插入到主柱之中并在端部进 行锚固。该基础受力简单,基础所承受的偏心弯矩和水平方向作用力较小,底板和立柱处于 压受力状态,该种基础改善了受力状况并且节约材料。另外,由于基础水平力减小,故基础 侧向的稳定性有所提高。该基础适用于有无地下水地段、地基土为硬塑情况。在山区塔位, 由于交通运输条件差,插入式基础弥补了交通运输上的缺陷,是一种更为经济实用、施工简 单方便的基础型式。若按铁塔主材形式划分,可分为钢管类插入式基础和角钢类插入式基础,其中角钢类插入式基础应用较为广泛。 二、输电线路杆塔基础施工要点 基坑开挖前的调查工作 基坑开挖施工之前,必须要对基坑开挖处的环境及地下设施做一个全面的分析调查,开 挖的时候不能破坏各类地线管线设施,特别是国防通讯光缆,保证它们不会遭到破坏。 人工挖孔桩技术 从现阶段输电线路杆塔基础施工的实际状况来看,人工挖孔桩施工是一项复杂且涉及施 工内容较多的一项施工技术。应用人工挖孔桩施工技术进行施工前,相关的施工人员需要明 确当前工程施工的实际状况及施工要求,做好相关的工程施工控制工作,为了确保混凝土的 质量,需要合理的控制混凝土浇灌的时间与力度,尽量避免出现裂缝的情况,如果出现裂缝,

架空输电线路铁塔结构与基础设计

架空输电线路铁塔结构与基础设计 发表时间:2019-09-18T16:59:35.737Z 来源:《电力设备》2019年第7期作者:侯少龙 [导读] 摘要:在我国现代经济社会发展水平不断提升的背景下,电力系统在设计与运行过程中所依赖的基础条件也发生了相应的改变。 (国网乌鲁木齐供电公司新疆维吾尔自治区乌鲁木齐新市区 830000) 摘要:在我国现代经济社会发展水平不断提升的背景下,电力系统在设计与运行过程中所依赖的基础条件也发生了相应的改变。作为我国当前电力供应的基础保障性设施,架空输电线路在电力供应系统中所发挥的作用是非常重要的。但结合我国电力行业实际情况来看,企业目前仍然是电力供应的主要对象,因此,在电力供应经济改善方面的需求仍然是非常明确的。在对架空输电线路铁塔的设计中,除需保障铁塔结构的安全、稳定以外,还需综合考虑设计的经济效益。在目前已发生的各类输电线路安全事故中,因铁塔结构设计不合理所致事故的比例是非常高的。因此,为提高架空输电线路运行安全性和稳定性,做好对铁塔结构与基础的设计、优化工作有着非常重要的意义与价值。 关键词:架空输电线路;铁塔设计;优化 一、架空输电线路铁塔塔型设计 在对架空输电线路铁塔进行内力分析时,可以将铁塔杆系节点看作成铰接点,进而进行有效的内力分析。由于架空输电线路铁塔的工作环境一般较为复杂,为了确保铁塔能够顺利的进行有效的工作,要对铁塔的塔型进行技术经济分析,优选最适宜的塔型。架空输电线路铁塔塔型的选择要充分考虑输电线的导线型号、铁塔的工作环境以及线路的敷设路径等因素,根据铁塔所承受的机械外负荷条件进行塔型的计算和设计工作,进而确保铁塔结构的刚度、强度、稳定性等满足实际工作的要求。 根据铁塔底部宽度的不同,可以将架空输电线路的铁塔分为:窄基铁塔和宽基铁塔两种类型。其中,窄基铁塔的底部宽度与塔体的高度之比介于1/14~1/12之间,而宽基铁塔的底部宽度相对较大,其比值介于1/6~1/4之间。窄基铁塔的底部宽度相对较小,在同样的塔高条件下,其主材所承受的各种作用力相对较大,为了确保塔体的安全性,对主材的要求相对较高,该种类型的铁塔设计主要用于档距较小的铁塔之中,其挡距要小于100m;而宽基铁塔其底部宽度较大,能够将铁塔的作用力进行有效的分解,其主材所受到的作用力相对较小,该种类型的铁塔设计主要用于档距较大的铁塔之中,其档距不小于100m。 二、架空输电线路铁塔结构设计 不同类型的铁塔其架空输电线路的结构设计不尽相同,其具体的结构设计如下: 2.1窄基铁塔的结构设计 依据横担以及铁塔支架的通用程度可以采用以下两种类型的结构布置方案:(1)可以将窄基铁塔的塔头区域设置为垂直的形式,对口宽进行固定,塔身开始逐渐起坡,其铁塔的整体高度与底部的宽度参数设置一致,不考虑输电线路回路数量划分的影响;铁塔横担具有良好的通用性,铁塔中所设置的横担数量要根据架空输电线路中实际的回路数量进行有针对性的设计。(2)铁塔塔身与塔头均按照要求设置一定的通用坡度,铁塔的总高度与铁塔的上口和底部宽度保持一致;横担设置成固定形式不进行通用设计,根据导线的数量可以分为单导线回路和 双导线回路两种不同的形式。 2.2宽基铁塔的结构设计 根据铁塔中导线回路数量的不同可以采取不同类型的结构设计方案。其中,对于使用单导线回路的铁塔,其结构布置具有“上”字型的特点;对于使用双导线回路的铁塔,其结构布置上具有鼓型的特点。 三、架空输电线路铁塔基础设计的技术优化措施 3.1加强铁塔的基础 在输电线路铁塔结构设计中,杆塔基础分类三类合计三十三种:①水泥杆基础:分为非原状土无拉线盘基础和非原状土有拉线盘基础两种;②钢管杆基础:分为非原状土台阶式基础、非原状土直柱式柔性基础和非原状土素混凝土基础三种;分为原状土掏挖式基础、原状土套筒式基础、原状土卡盘式基础和原状土复合沉井基础四种;及原状土灌注桩长桩单桩基础、原状土灌注桩长桩多桩承台基础、原状土灌注桩短桩抗倾覆基础、原状土灌注桩短桩位移基础、原状土灌注桩美国算法基础、原状土灌注桩钢管短桩位移基础和原状土灌注桩钢管短桩抗倾覆基础十一种;小计十四种;③直立式铁塔系列基础:非原状土刚性台阶式基础、非原状土直柱式柔性基础、非原状土斜柱式柔性基础、非原状土素混凝土(回填土)基础、非原状土联合式基础和非原状土窄基塔独立式刚性台阶式基础六种;及原状土素混凝土(原状土)基础、原状土灌注桩长桩-单桩带连梁基础、原状土灌注桩长桩-多桩带承台基础、原状土灌注桩短桩抗倾覆基础、原状土灌注桩短桩位移基础、原状土掏挖式基础、原状土岩石基础、原状土复合沉井基础、原状土窄基塔独立式长桩单桩灌注桩基础和原状土窄基塔独立式长桩多桩带承台基础十种;小计十六种。 对于运输或浇制混凝土有困难的地区,可采用预制装配式基础或金属基础;对电杆及拉线宜采用预制装配式基础。设计方案中还要正确分析铁塔基础受力,应首先保证安全,针对轴心受压基础、轴心受拉基础,分别选取不同的K值。对于新基础计算的前提条件是地基承载力满足设计要求,若地质属淤泥或淤泥质土,则必须进行重新设计。总之,基础型式应综合沿线地质、施工条件和杆塔型式并综合考虑基础稳定、承载力、不均匀沉降、基础位移、采空区、基础上拔土重度、上拔角、倾覆、冻土和洪泛区等诸多因数。 3.2降低杆塔的接地电阻 高压送电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,这是提高耐雷水平的基础,也是最经济、有效的手段。即:①杆塔所在地若有水平放设的条件,可水平外延接地,这样不但可降低工频接地电阻,还可有效地降低冲击接地电阻。②增加埋设深度接地极,就近增加垂直接地极的运用。③合理敷设降阻剂。④增加盐、酸、碱、盐及木炭等物质。如地下较深处的土壤电阻率较低,可用竖井式或深埋式接地极。 3.3优选路径和塔型的最佳搭配 城市紧凑型多回路钢管杆走廊、或钢管塔走廊,它在技术上能满足输电线路的实际要求,且钢管杆造型美观,安装快捷,占地面积省,还与城市地势较为平坦,走廊宽度小,线路施工方便等特点相适应,故得以迅速发展。输电线路的走廊宽度由塔头尺寸、风偏、安全距离三部分组成。减少线路走廊宽度的关键在于控制塔头尺寸和风偏。采用固定挂点的直线杆塔以及固定跳线的耐杆塔,是减少塔头尺寸

输电杆塔及基础设计复习

1. 直线型杆塔:①仅承受垂直荷载及横向水平风荷载,不承受顺线 路方向张力的杆塔②采用悬垂绝缘子串③在承受不平衡张力时,允许杆塔发生倾斜或杆塔上某个构件允许破坏。 2. 耐张型杆塔①不仅承受垂直荷载及横向水平荷载,而且承受很大 的纵向水平荷载②采用耐张绝缘子串③发生断线事故时,不允许发生杆塔倾斜 3. 耐张段:两个耐张杆塔之间的档距构成一个耐张段。设置耐张段 的原因:因为耐张杆塔能限制事故断线影响范围。 4. 荷载的分类:(1)永久荷载:包括杆塔自重荷载、导线、地线、 绝缘子、金具的重力及其他固定设备的重力,土压力和预应力等。 (2)可变荷载:包括风荷载、导线、地线和绝缘子上的覆冰荷载,导线地线张力、人工和工具等附加荷载,事故荷载、安装荷载和验算荷载等。(3)特殊荷载:地震引起的地震荷载,以及在山区或特殊地形地段,由于不均匀结冰所引起的不平衡张力等荷载。 5. 荷载标准值:用于变形和裂缝计算。荷载设计值:用于强度计 算。永久荷载分项系数γG=1.2 可变荷载分项系数γQ=1.4 6. 角度荷载:对于转角杆塔及有小转角的直线塔,导线张力在横担 方向的矢量和。 7. S=γG·C G·G K+ψΣγQi·C Qi·Q ik C G、C Qi 永久和可变荷载的荷载效应系数。G K、Q ik永久、可变荷载标准值。 8. 呼称高度H=λ+f max+h x+Δ h 9. f tk 抗拉强度标准值。f t抗拉强度设计值。f c抗压强度设计值。f ck抗

压强度标准值。f cm 混凝土弯曲抗压设计值。f cmk混凝土弯曲抗压标准值。f y受拉区钢筋强度设计值。f yk 受拉区钢筋强度标准值。3φ16Ⅰ 级钢筋。3Φ16Ⅱ级钢筋。φ16@120直径为16mm 的Ⅰ级钢筋按间距为120mm 布置。 10. 环形截面强度计算引用α值其定义是:受压区面积和构件环形面积的比率是为了限制超筋的验算。α=ψ/z=f y·A s/(f cm·A+2f y·A s) 11. 抗扭计算中有两个界限0.7ft 和0.25ft分别起什么作用?答:τ≤ 0.7ft时按构造配箍筋(螺旋钢筋),τ>0.7ft 时按计算配置螺旋钢筋和纵筋。τ≤ 0.25fc 按受弯构件设计的截面尺寸满足要求,τ>0.25fc 按受弯构件设计的截面尺寸不满足要求。 12. 如何判断环形截面大偏心、小偏心?答:(1)大偏心受压:出现拉环当2φ≤180 (φ≤90 或N/f cm·A≤0.5 时为大偏心(2) 小偏心受压:出现压环,一般不会出现裂缝当φ>90 N/f cm·A>0.5 时为小偏心。 13. 预应力钢筋混凝土电杆的主要优点:①在使用荷载下不出现裂缝或大大地延迟裂缝的出现,减少了在使用荷载下钢筋拉应力搞的构件的裂缝宽度;因此对裂缝要求较高的构件特别适用。②可以合理利用高强度钢筋和高强度等级的混凝土,从而节省材料和减轻自重。 ③由于提高了抗裂度,从而提高了构件的刚度和耐久性。 14. 拉线单杆直线电杆为何要按压弯构件计算?最大弯矩核能发生在什么部位?答:由于单杆直线电杆在加拉线后,改变了拉线点以 下杆柱的受力情况(即将杆身所受弯距转化为压力)最大弯矩可能发生

输电线路的基本知识线路

输电线路的基本知识线路 一、送电线路的主要设备: 送电线路是用绝缘子以及相应金具将导线及架空地线悬空架设在杆塔上,连接发电厂和变电站,以实现输送电能为目的的电力设施。主要由导线、架空地线、绝缘子、金具、杆塔、基础、接地装置等组成。 1.导线:其功能主要是输送电能。线路导线应具有良好的导电性能,足够的机械强度,耐振动疲劳和抵抗空气中化学杂质腐蚀的能力。线路导线目前常采用钢芯铝绞线或钢芯铝合金绞线。为了提高线路的输送能力,减少电晕、降低对无线电通信的干扰,常采用每相两根或四根导线组成的分裂导线型式。 2.架空地线:主要作用是防雷。由于架空地线对导线的屏蔽,及导线、架空地线间的藕合作用,从而可以减少雷电直接击于导线的机会。当雷击杆塔时,雷电流可以通过架空地线分流一部分,从而降低塔顶电位,提高耐雷水平。架空地线常采用镀锌钢绞线。目前常采用钢芯铝绞线,铝包钢绞线等良导体,可以降低不对称短路时的工频过电压,减少潜供电流。兼有通信功能的采用光缆复合架空地线。 3.绝缘子:是将导线绝缘地固定和悬吊在杆塔上的物件。送电线路常用绝缘子有:盘形瓷质绝缘子、盘形玻璃绝缘子、棒形悬式复合绝缘子。 (1)盘形瓷质绝缘子:国产瓷质绝缘子,存在劣化率很高,需检测零值,维护工作量大。遇到雷击及污闪容易发生掉串事故,目前已逐步被淘汰。 (2)盘形玻璃绝缘子:具有零值自爆,但自爆率很低(一般为万分之几)。维护不需检测,钢化玻璃件万一发生自爆后其残留机械强度仍达破坏拉力的80%以上,仍能确保线路的安全运行。遇到雷击及污闪不会发生掉串事故。在Ⅰ、Ⅱ级污区已普遍使用。 (3)棒形悬式复合绝缘子:具有防污闪性能好、重量轻、机械强度高、少维护等优点,在Ⅲ级及以上污区已普遍使用。 4.金具 送电线路金具,按其主要性能和用途可分为:线夹类、连接金具类、接续金具类、防护金具类、拉线金具类。 (1)线夹类: 悬式线夹:用于将导线固定在直线杆塔的悬垂绝缘子串上,或将架空地线悬挂在直线杆塔的架空地线支架上。 耐张线夹:是用来将导线或架空地线固定在耐张绝缘子串上,起锚固作用。耐张线夹有三大类,即:螺栓式耐张线夹;压缩型耐张线夹;楔型线夹。

铁塔组立施工要求

第条1~10kV 线路每相引流线、引下线与邻相的引流线、引下线或导线之间,安装后的净空距离不应小于300mm;1kV 以下电力线路,不应小于150mm。第条线路的导线与拉线、电杆或构架之间安装后的净空距离,35kV 时,不应小于600mm;1~10kV 时,不应小于200mm;1kV 以下时,不应小于100mm。铁塔地面组装技术要求:一现场布置要求:1.施工前负责人应勘察现场地形,确定铁塔组立方案,根据不同的组立方案确定现场布置方案。2.根据铁塔结构及组立现场布置图作好场地平整。清除影响组装和立塔的障碍物。3.地锚坑的定位要求:拉线地锚坑的位置应与线路方向成45°角;地锚坑应尽量避开低洼积水地带;4.地锚坑开挖应满足下列要求: ⑴地锚坑深度应根据土质和受力大小确定:拉线、牵引地锚:坚土或普土埋深米,流沙土质米; ⑵地锚坑必须开挖马道。马道对地面夹角应与受力方向一致,一般不应大于40°。马道宽度不得太大,以100~300mm 为宜。5.当地锚坑位于松软地质或泥沼地带时,必须采取以下加固措施:增加地锚坑深度;加大地锚规格或用双地锚;在地锚的受力侧加角铁桩或挡板。二地面组装的一般规定:1.铁塔地面组装前应做好下述准备工作:⑴送到桩位的塔料经过清点,应确认符合组装要求。⑵参加地面组装的施工人员均经组塔工序的技术交底并经考试合格。⑶参加地面组装的民工由现场施工负责人交待安全施工注意事项及现场操作基本知识。⑷根据现场地形,确定铁塔组立方法。⑸熟悉铁塔各段重量,按照允许起吊重量确定地面组装塔段高度(铁塔分段示意图和图纸重量明细表)。⑹根据现场地形及设备条件确定地面组装方法。⑺根据确立的铁塔组立方法及地面组装方法,选择配套合适的工器具。各类工器具使用前均应认真检查,不合格者不得使用。三分解组塔的地面组装要求:1.地面组装前,应进行构件布置。构件布置应遵循下述原则。⑴根据抱杆可能提升的高度、抱杆的允许承载能力等,合理确定吊装构件的分段、分片及应带附铁(即辅助材) 的数量。⑵根据现场地形,塔段本身有无方向限制,以及地面组装与构件吊装是否同时进行等,确定构件的布置方位。⑶构件的分段,原则上按铁塔主材的分段进行组装,当抱杆提升高度及承载能力允许时,也可将两段主材组成一片进行吊装,减少吊装次数。2.组装构件的场地应尽量平整,或加物垫平,以免构件受力变形。3.吊装的构件要尽可能组装于塔基周围,不可距塔基过远或过近。4.组装断面宽大的构件时,为防止构件受弯变形,用钢管或圆木补强。5.每段塔片两主材之间的各种辅助材应尽可能装齐,连接螺栓要拧紧。两塔片之间的各种辅助材尽可能连带在主材上。附铁在两片之间的分配要均衡。附铁与主材连接螺栓不要拧得太紧,螺帽带平即可。附铁与主材应用麻绳绑扎在一起。6.塔片吊装前,应按设计图纸作一次检查,发现问题要及时在地面进行处理,切忌留待高空作业处理。7.组装中,脚钉安装位置、螺栓规格、螺栓穿向、垫圈安装位置及数量等均应符合图纸及规范要求。8.地面组装时,单片高度不得大于15 米,如超过应增加吊点并针对受力点进行补强,防止主材弯距过大造成变形。电力建设安全工

输电线路杆塔基础形式及适用条件

输电线路工程杆塔基础 输电线路基础施工的任务就是按设计进行施工。普通土坑的开挖前都必须做好复测和分坑工作。 输电线路施工复测是指线路施工前,施工单位对设计部门已测定线路中心线上的各直线桩,杆塔位中心桩及转角塔位桩位置,档距和断面高程进行全面复核测量。若偏差超过允许范围时,必须查明原因并予以纠正。其后,根据定位的中心桩位,根据基础类型依照设计图纸规定的尺寸进行坑口放样工作,称次为分坑测量。通常把这两步工作统称为复测分坑。分坑,可用经纬仪及皮尺进行分坑。 基础形式可分为以下几种: 1.岩石嵌固基础 该基础型式适用于覆盖层较浅或无覆盖层的强风化岩石地基,其特点是底板不配筋,基坑全部掏挖。上拔稳定,具有较强的抗拔承载能力。需要时,可将主柱的坡度设置与塔腿主材坡度相同,以减小偏心弯矩,还可省去地脚螺栓。由于该基型充分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。 2.岩石锚杆基础 该基型适用于中等风化以上的整体性好的硬质岩。该基础型式是在岩石中直接钻孔、插入锚杆,然后灌浆,使锚杆与岩石紧密粘结,充分利用了岩石的强度,从而大大降低了基础混凝土和钢材量。但岩

石锚杆基础需逐基鉴定岩石的完整性。 3.掏挖基础 该基型分全掏挖和半掏挖两种,适用无地下水的硬塑粘性土地基。在基坑施工可成型的情况下,开挖基坑时不扰动原状土,避免大开挖后再填土。基础承受上拔荷载时,原状土的内摩擦角和凝聚力得以充分发挥作用。这种基础型式也显示了较高的经济效益和环境效益,根据以往工程的统计,由于各线路地质条件的不同等原因,采用全掏挖基础比用阶梯型基础节约钢材和混凝土分别为3~7%和8~20%。掏挖基础有直柱式和斜插式两种型式。斜插式掏挖基础将主柱的坡度设置与塔腿主材坡度相同,减小了基础水平力产生的偏心弯矩,还可省去地脚螺栓 4.阶梯型基础 该基础是传统的基础型式,适用各类地质、各种塔型,其特点是大开挖,采用模板浇制,成型后再回填土,利用土体与混凝土重量抗拔,基础底板刚性抗压,不配钢筋。由于阶梯型基础混凝土量较大,埋置较深,易塌方及有流砂地区难以达到设计深度,因此在此类地区应尽量少用。 5.大板基础 大板基础的主要设计特点是:底板大、埋深浅、底板较薄,底板双向配筋承担由铁塔上拔、下压和水平力引起的弯矩和剪力,主柱计算与阶梯基础相同。与阶梯基础相比,埋深浅,易开挖成形,混凝土量能适当降低,但钢筋量增加较多。与灌注桩相比,在软弱地基中应

杆塔组立施工方案计划

渔港35kV电源线工程杆塔组立施工方案 天津兆沣电力工程有限公司 年月日

批准:日期:审核:日期:编写:日期:

一、工程概况: 1、工程名称:渔港35kV电源线工程 2、工程编号: 3、工程介绍 (1).线路路径: 南双、南友线路破口路径 自现状南友11#杆大号侧117米处与137米处分别新建35JGu33-9m塔(无地线塔头)二基(B1、B2),自现状南友、南双线分别T接一回电缆线路引下(现状四回路中上侧的两回110kV线路不做改动),新建双回电缆线路穿过大丰路后沿汉蔡路架设,线路改为双回35kV架空线路与四回110KV架空线路沿汉蔡路架设,钻越疆滨500kV线路,至C18杆后,线路再次改为电缆引下,沿汉蔡支路以及纬三路敷设至渔港站内结束。 2.新组立杆塔20基,其中新组立钢杆18基,新组立铁塔2基 2.电压等级:35KV 、110kV 3.回路数:双回线路、四回线路 4.架空线路长度:3300m 5.导线型号:JL/LB20A-400/35,JL/LB20A-300/40 6.地线型号:48芯OPGW,JLB20A-50 7.电缆型号:ZCYJY22-26/35kV-3*300mm2,YJY22-26/35kV-3*300mm2 8.电缆长度:电缆为9630米 9.工程地点:汉沽区 10.地形地貌:改造线路位于天津市滨海新区,沿线地貌单一,为冲积平原地貌,地形总体为平坦,受人工填挖影响,局部地段略有起伏. 4、交叉跨越情况 1.天津市泰达工程设计有限公司提供的施工图及说明书;

2.施工图设计审核会议纪要; 3.本工程路径和现场调查资料。 三、施工依据和标准 1.天津市泰达工程设计有限公司提供的施工图; 2.GB50233-2005《110-500kV架空电力线路施工及验收规范》;(参考) 3.GB50173-92《电气装置安装工程 35kV及以下架空电力线路施工 及验收规范》; 4.GB26859-2011《电力安全工作规程电力线路部分》(线路部分); 5.《国家电网公司电力安全工作规程(线路部分)》; 6.《国家电网公司电力建设工程质量监理管理办法》; 7.参照与本工程有关的国家现行施工验收规范和标准。; 四、监理、设计、建设单位 建设单位:天津市电力公司滨海供电分公司 监理单位:天津市电力工程监理有限公司 设计单位:天津市泰达工程设计有限公司 施工单位:天津兆沣电力工程有限公司 五、施工人员 六、主要工具:

输电线路工程杆塔基础

输电线路工程杆塔基础 输电线路杆塔的地下部分的总体统称为基础。它的作用是用来输电线路的杆塔 输电线路基础施工的任务就是按设计进行施工。普通土坑的开挖前都必须做好复测和分坑工作。 输电线路施工复测是指线路施工前,施工单位对设计部门已测定线路中心线上的各直线桩,杆塔位中心桩及转角塔位桩位置,档距和断面高程进行全面复核测量。若偏差超过允许范围时,必须查明原因并予以纠正。其后,根据定位的中心桩位,根据基础类型依照设计图纸规定的尺寸进行坑口放样工作,称次为分坑测量。通常把这两步工作统称为复测分坑。分坑,可用经纬仪及皮尺进行分坑。 基础形式可分为以下几种: 1.岩石嵌固基础该基础型式适用于覆盖层较浅或无覆盖层的强风化岩石地基,其特点是底板不配筋,基坑全部掏挖。上拔稳定,具有较强的抗拔承载能力。需要时,可将主柱的坡度设置与塔腿主材坡度相同,以减小偏心弯矩,还可省去地脚螺栓。由于该基型充分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。 2.岩石锚杆基础该基型适用于中等风化以上的整体性好的硬质岩。该基础型式是在岩石中直接钻孔、插入锚杆,然后灌浆,使锚杆与岩石紧密粘结,充分利用了岩石的强度,从而大大降低了基础混凝土和钢材量。但岩石锚杆基础需逐基鉴定岩石的完整性。 3.掏挖基础该基型分全掏挖和半掏挖两种,适用无地下水的硬塑粘性土地基。在基坑施工可成型的情况下,开挖基坑时不扰动原状土,避免大开挖后再填土。基础承受上拔荷载时,原状土的内摩擦角和凝聚力得以充分发挥作用。这种基础型式也显示了较高的经济效益和环境效益,根据以往工程的统计,由于各线路地质条件的不同等原因,采用全掏挖基础比用阶梯型基础节约钢材和混凝土分别为3~7%和8~20%。掏挖基础有直柱式和斜插式两种型式。斜插式掏挖基础将主柱的坡度设置与塔腿主材坡度相同,减小了基础水平力产生的偏心弯矩,还可省去地脚螺栓 4.阶梯型基础该基础是传统的基础型式,适用各类地质、各种塔型,其特点是大开挖,采用模板浇制,成型后再回填土,利用土体与混凝土重量抗拔,基础底板刚性抗压,不配钢筋。由于阶梯型基础混凝土量较大,埋置较深,易塌方及有流砂地区难以达到设计深度,因此在此类地区应尽量少用。 5.大板基础大板基础的主要设计特点是:底板大、埋深浅、底板较薄,*底板双向配筋承担由铁塔上拔、下压和水平力引起的弯矩和剪力,主柱计算与阶梯基础相同。与阶梯基础相比,埋深浅,易开挖成形,混凝土量能适当降低,但钢筋量增加较多。与灌注桩相比,在软弱地基中应用较为广泛。它施工方便,特别是对于软、流塑粘性土、粉土及粉细砂等基坑不易成型的塔位。设计时,对底板的高厚比应进行一定的控制(悬臂长度:底板厚<3:1)不足时可在主柱下增加台阶,以减少板的悬臂长度和底板厚度,为了减小混凝土量,主柱中心与底板中心设置偏心,抵消水平弯矩,达到减小底板及配筋的效果。大板基础设计时应控制沉降及不均匀沉降,对转角塔及负荷较大的直线塔进行地基沉降变形验算,施工时应尽量少扰动地基土,清除开挖的全部浮土并做好垫层,必要时使用块石灌浆。

相关文档
最新文档