说说二次盐水精制所用的树脂塔

说说二次盐水精制所用的树脂塔
说说二次盐水精制所用的树脂塔

说说二次盐水精制所用的树脂塔,再生酸碱洗的时候为什么酸要顺流,碱要逆流?

酸洗的时候,树脂已经转化到氢型,体积比较小,而在碱洗过程中转化为钠型,体积要增大,如果碱从上向下,与树脂膨胀的方向相反,会不利于树脂全面转化。如果碱从下向上流动,不仅可以将树脂均匀鼓起,能够充分转化,还会与树脂膨胀方向一致,减少树脂破碎。

碱从下往上很好理解,在经过酸洗后,树脂体积比正常体积小,进行碱洗时,树脂溶胀,碱液从下部开始往上充入,下部树脂充分溶胀,蓬松上部树脂,当溢流后,破碎树脂随碱液一起流出树脂塔,碱液比重大,从下部进入流量稳定,不易将树脂冲出。

至于酸从上往下,我理解是酸洗主要是将树脂里面的钙镁离子置换出来,盐酸比重比氯化钙,氯化镁比重小,盐酸进入后,下部废液也是顺流进入废水池,因此,更容易将里面的杂质去除。

第一步是吸附,螯合树脂也是一种离子交换树脂,与普通的交换树脂不同的是,它吸附金属离子后形成环状结构。以亚胺基乙酸为例,吸附金属离子发生以下反应:CH2-COONa CH2-COO

R-N +M2+ R-N M+2Na+ CH2-COONa CH2-COO

第二步是脱吸,在一定的外界条件下(如PH值和浓度温度)改变金属螯合物的平衡条件而使金属离子离解开,本装置采用浓度为5%左右的高纯盐酸对树脂进行漂洗。以亚胺基乙酸为例,脱洗金属离子发生以下反应:

CH2-COO CH2-COOH

R-N M +2H+ R-N +M+

CH2-COO CH2-COOH

第三步是再生,在已经洗脱金属离子的“H”型树脂中加入4%的NaOH溶液,调节PH值为14,由于溶液中的H+大量减少,使平衡向右移动,树脂由H型变为钠型。以亚胺基乙酸为例,发生如下反应:

CH2-COOH CH2-COONa

R-N +2NaOH R-N +2H2O

CH2-COOH CH2-COONa

树脂又回到吸附前的状态。

盐水二次精制包括盐水中的阳离子被螯合树脂选择吸附进行交换和失去交换能力的螯合树脂进行再生处理两个部分。

(1)、螯合树脂离子交换反应原理:

螯合树脂是带有活性离子交换基因,并具有螯合结构的有机高分子聚合物,并带有固定的负电荷,这些固定的负电荷和带有正电荷的离子有相对亲和力。由于螯合树脂对盐水中的多价阳离子的吸附能力大于对一价离子的吸附能力,故含有Ca2+、Mg2+的盐水流经螯合树脂塔时,其中的Ca2+、Mg2+离子将取代树脂中的Na+,从而发生下列离子交换反应。(以CR -11螯合树脂吸附Ca2+、Mg2+ 为例):

CH2COONa CH2COO

R-CH2N +Ca2+ → R-CH2N Ca +2Na+

CH2COONa CH2COO

CH2COONa CH2COO

R-CH2N +Mg2+ → R-CH2N Mg +2Na+

CH2COONa CH2COO

经过上述反应后,盐水中的Ca2+、Mg2+ 被吸附,Ca2+、Mg2+ 总浓度低于0.02×10-6,达

到了盐水精制的目的,从而满足离子膜法电解工艺对盐水质量的要求。

(2)、螯合树脂再生反应原理:

螯合树脂处于Na型时才有离子交换能力,而经过交换反应后树脂变成了Ca型或Mg型,

失去了交换能力,这时树脂必须经过再生反应,重新转化成Na型,恢复其交换能力。

螯合树脂再生时,首先用高纯盐酸把Ca型或Mg型树脂转换成H+型,然后再用高纯碱进

行苛化处理,使其重新转化成Na型,循环使用。

CH2COO CH2COOH

R-CH2N Ca +2H+ → R-CH2N +Ca2+

CH2COO CH2COOH

CH2COOH CH2COONa

R-CH2N +2Na+ → R-CH2N +2H+

CH2COOH CH2COONa

1.盐水精制的原理

(1)次氯酸钠除菌藻类及其它有机物

盐水中的菌藻类被次氯酸钠杀死,腐殖酸等有机物被次氯酸钠氧化分解成为小分子。

(2)碳酸钠除钙离子

在盐水中加入碳酸钠溶液,使其和盐水中的Ca2+反应,生成不溶性的碳酸钙沉淀,其反应式如下:

Ca2++CO32-→CaCO3 ↓

为了将Ca2+除净,碳酸钠的加入量必须超过反应式的理论需要量,本工艺碳酸钠的过碱量200~400mg/l。

(3)氢氧化钠除镁离子

在盐水中加入NaOH溶液,使其和盐水中的Mg2+反应,生成不溶性的Mg(OH)2沉淀,其反应式如下:

Mg2++2OH-→ Mg(OH)2 ↓

为了将Mg2+除净,NaOH的加入量必须超过反应理论需要量,本工艺氢氧化钠过碱量为100~300mg/l。

(4)去除有机物、不溶性机械杂质

由于工业原盐中存在各种杂质,随化盐过程进入盐水中,盐水中的菌藻类、腐殖酸等天然有机物被次氯酸钠氧化分解成为小分子,最终通过FeCl3的吸附和共沉淀作用,在预处理器中预先除去,一部分不溶性机械杂质也被同时除去。

2.工艺流程简述

来自离子膜电解的淡盐水部分经1#折流槽,加入氯化钡溶液反应后流入澄清桶,从澄清桶上部流出的清液进入配水槽;另一部分与来自板框压滤机的滤液、工业水、再生系统回收盐水及冷凝液等杂水直接进配水槽进行配水,上述各部分水在配水槽中混合后,作为化盐水由化盐池给料泵送入化盐池,溶解原盐后得到饱和粗盐水,粗盐水自流进入前反应池,在进入前反应池之前于2#折流槽内按工艺要求分别加入精制剂氢氧化钠和次氯酸钠,粗盐水中的镁离子与精制剂氢氧化钠反应生成氢氧化镁,菌藻类、腐殖酸等有机物则被次氯酸钠氧化分解成为小分子有机物;然后用加压泵将前反应池内的粗盐水送出,在气水混合器中与空气混合后进入加压溶气罐再进入预处理器,并在预处理器进口加FeCl3,在预处理器中除去Mg(OH)2和有机小分子,经过预处理的盐水进入后反应槽,同时在第一后反应槽中加入碳酸钠,盐水中的钙离子与碳酸钠反应形成碳酸钙作为膜过滤的助滤剂,充分反应后的盐水自流进入中间槽,由过滤器给料泵送入进液高位槽,然后自流入膜过滤器,过滤后精盐水流入3#折流槽,3#折流槽中加入10[wiki]%[/wiki]亚硫酸钠溶液除去盐水中的游离氯,再加盐酸调节PH值后流入过滤精盐水贮槽。

盐泥被阻隔在滤膜表面,过滤一段时间后过滤器自动反清洗数秒钟将盐泥推离膜表面沉入过滤器底部,当盐泥浆达到一定量后过滤器自动排入渣池。渣池中的盐泥经盐泥泵送至盐泥压滤机压滤。经压滤洗涤除水后的滤饼含液率小于50%wt,被送出界区;滤液自流至滤液桶中,被滤液泵送回配水槽。

膜运行一段时间后(约二周),为了保持较高的过滤能力和较低的过滤压力需用约15%的盐酸进行化学再生,清洗液可循环使用。

这两种螯合树脂的主要物化性能指标如下。

螯合树脂的主要物化性能指标

种类Ca2+吸附容量/mol/L 水质量分数/% 粒径/mm 湿表

观密度/g/mL 适宜温度/℃n(H+)/n(Na+)/%

D-751 0.50 52-62 0.3-1.2 0.70-0.80 ≤80

CR-11 ≥0.50 60.1 0.3-1.2 0.73 ≤80

D-403 0.60 46-56 0.3-1.2 0.70-0.80 ≤80 0.75

D-412 0.35 50-60 0.3-1.2 0.74 45-50 0.70

ES-467 0.35 60-65 0.3-1.0 0.73 45-50 0.75

S-940 0.50 60-65 0.6-1.0 0.72-0.78 ≤90 0.69

TP-260 2.30 60 0.40-1.25 0.77 -20-85 0.75

以上仅供参考,通过对不同树脂的对比分析中不难发现,除TP-260型树脂的Ca2+吸附容量较高外,我们公司就用的是TP-260树脂,其他树脂的性能指标均比较接近,目前国内企业所用的树脂,不管是进口的还是国产的,只要工艺条件控制得较好,都能满足生产需要。

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。 逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量 ζ=h C K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3 η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3 (标状态) ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600× h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752 C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

化工原理课程设计-填料吸收塔的设计

化工原理课程设计-填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:化学工程与工艺(精细化工方向) 学号: 学生姓名: 指导教师: 2012 年 5 月31 日

《化工原理课程设计》任务书 2011~2012 学年第2学期 学生姓名:专业班级:化学工程与工艺(2009) 指导教师:工作部门:化工教研室 一、课程设计题目:填料吸收塔的设计 二、课程设计内容(含技术指标) 1. 工艺条件与数据 煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸 收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时 处理含苯煤气2000m3;冷却水进口温度<25℃,出口温度≤50℃。 2. 操作条件 吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充 新鲜吸收剂;过程中热效应忽略不计。 3. 设计内容 ①吸收塔、解吸塔填料层的高度计算和设计; ②塔径的计算; ③其他工艺尺寸的计算。 三、进度安排 1.5月14日:分配任务; 2.5月14日-5月20日:查询资料、初步设计; 3.5月21日-5月27日:设计计算,完成报告。 四、基本要求 1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明 书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程 和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计 算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。 设计说明书应附有带控制点的工艺流程图。 设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作 条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算; 设计结果概览;附录;参考文献等。 2. 图纸1套:包括工艺流程图(3号图纸)。 教研室主任签名: 年月日

一次盐水精制操作规程2

湖北宜化集团有限责任公司企业标准 Q/YH.JS22040-2003 一次盐水岗位操作规程 2003-10-1发布2003-12-25实施 宜化集团有限责任公司发布

前言 1.本标准根据宜化集团二零零三年标准制修订2.本标准负责起草单位:宜化集团氯碱化工事业部3.本标准负责起草人:吕飞 4.本标准负责审编人:舒晨

宜化集团企业标准 一次盐水精制岗位操作规程 1.适用范围 本规程规定了一次盐水精制工段的生产目的与任务,原盐、饱和食盐水的精制与特征,以及生产的基本原理,工艺流程,工艺控制指标,岗位操作法,事故处理等。 本规程适于宜化集团氯碱化工事业部一次盐水精制工段生产过程中的工艺管理和操作管理。 2.岗位范围 本岗位的操作范围包括:溶盐桶、精制桶、澄清桶、一次盐水过滤器、盐泥压滤机、盐酸中和槽、精盐水槽、TXY、BaCl2、Na2CO3配制槽及各盐水泵等设备的生产。 3.岗位任务 3.1 负责皮带运输机地下清盐和日常维护保养工作,保证皮带运输机的正常运行。 3.2 负责精制剂Na2CO3、BaCl2的正确配备与加入工作。 3.3 负责将粗盐水进行精制,保证Ca2+、Mg2+、SO42-等指标合乎工艺要求。 3.4 负责对盐水中不合格指标(NaCl浓度、SO42-含量)的协调与处理。 3.5 负责精制桶及澄清桶中盐泥的定期排放工作。 3.6 负责一次盐水过滤器的操作。 3.7 负责向二次精制输送合格的一次精制盐水。 3.8 负责各项参数的监控,按时巡检认真填写各种生产记录。3.9 负责本岗位管道、阀门、泵等设备的维护保养工作。3.10 负责生产用原辅材料、工具、器具(包括消防器材、公共劳保用品)等的保管与合理使用。 3.11 负责本岗位的环境工作,穿戴好劳保及其防护用品及协调

一次盐水考察报告

一次盐水陶瓷膜过滤考察报告 为了解一次盐水陶瓷膜过滤的运行状况,二〇〇九年十一月二十二日,鲁炼、钟雪飞二人对山东恒通化工有限公司和宁波镇洋化工有限公司陶瓷膜的使用情况进行考察。具体内容汇报如下: 一、久思陶瓷膜概况 久思陶瓷膜由江苏久吾高科技股份有限公司研究和开发,2007年开始运用于氯碱行业。久思陶瓷膜设备的膜元件由支撑体、过渡层、膜层组成。支撑体采用高纯度α- Al2O3,过渡层采用ZrO2,膜层采用改性ZrO2材料;膜元件的密封采用耐腐蚀耐温专用密封垫。陶瓷膜解决了有机聚合物膜对有机物、氢氧化镁絮状沉淀的敏感问题。 久思陶瓷膜盐水精制技术由三个单元构成:a、溶盐——经配水后的淡盐水调整温度,于化盐桶中加入原盐至饱和;b、精制反应——往饱和粗盐水中分别加入碳酸钠、氢氧化钠等精制剂后,进入到反应桶,充分反应后的粗盐水,用泵打入陶瓷膜过滤器;c、过滤分离——盐水通过陶瓷膜过滤分离后,精盐水自过滤器清液出口排出至精盐水槽,经泵直接送至离子膜电解;浓缩液自过滤器浓缩液出口排出,经泵的进口回到过滤器循环过滤,小部分浓缩液连续排入渣池。 二、厂家使用情况 此次考察了两个使用陶瓷膜厂家——山东恒通化工股份有限公司和

宁波镇洋化工有限公司。山东恒通化工生产规模为25万吨/年隔膜碱,原料为二级海盐,原采用道尔桶沉降生产精制盐水工艺,后将部分精制工艺改造为陶瓷膜精制。该厂陶瓷膜设计能力为2×80m3/h,2008年9月开车,经对反应桶和管道重新做防腐处理后,2009年5月重新开车运行,至今连续运行半年时间,目前盐水运行能力为2×75m3/h,盐水过滤后SS:3.89ppm(取样回厂分析结果)。 宁波镇洋化工生产规模为15万吨/年离子膜碱,原料为二级海盐,盐水精制采用凯膜工艺,为提升一次盐水缓冲能力,采用陶瓷膜精制技术增加一次盐水生产能力。该厂陶瓷膜设计能力为25m3/h,2008年12月开车,经对粗过滤器进行改造后,至今连续运行七个月时间,目前盐水运行能力为25m3/h,盐水过滤后SS:1.32ppm(取样回厂分析结果)。 三、陶瓷膜和凯膜对比 1、流程对比 (1)陶瓷膜盐水精制工艺 化盐桶出来的粗盐水加入精制剂后,流人中间槽,进行精制反应;然后直接进入陶瓷膜过滤器,过滤去除精制反应生成的全部悬浮粒子。过滤后,一次盐水中的SS质量分数低于1ppm(厂家介绍),可直接供给离子膜电解槽生产使用。工艺流程见图1 图1 陶瓷膜工艺流程示意图 (2)凯膜盐水精制工艺 化盐桶出来的粗盐水加入精制剂NaOH后,流入中间槽,在中间槽内,粗盐水中的Mg2+与精制剂NaOH反应,生成Mg(OH)2。然后,用粗盐水泵将中间槽内的粗盐水送入气水混合器内,进入加压溶气罐。减压后,加入FeCl3,进入预处理器,清液从上部溢流而出。加入精制剂Na2CO3及Na2SO3后,进入反应槽,再经加料泵加压后,进入凯膜过滤器。过滤后的精盐水由凯膜过滤器的上部流出,加盐酸调节pH值后流入精盐水贮槽。预处理器和凯膜过滤器底部排出的滤渣进入盐泥池统一处理。工艺

说说二次盐水精制所用的树脂塔

说说二次盐水精制所用的树脂塔,再生酸碱洗的时候为什么酸要顺流,碱要逆流? 酸洗的时候,树脂已经转化到氢型,体积比较小,而在碱洗过程中转化为钠型,体积要增大,如果碱从上向下,与树脂膨胀的方向相反,会不利于树脂全面转化。如果碱从下向上流动,不仅可以将树脂均匀鼓起,能够充分转化,还会与树脂膨胀方向一致,减少树脂破碎。 碱从下往上很好理解,在经过酸洗后,树脂体积比正常体积小,进行碱洗时,树脂溶胀,碱液从下部开始往上充入,下部树脂充分溶胀,蓬松上部树脂,当溢流后,破碎树脂随碱液一起流出树脂塔,碱液比重大,从下部进入流量稳定,不易将树脂冲出。 至于酸从上往下,我理解是酸洗主要是将树脂里面的钙镁离子置换出来,盐酸比重比氯化钙,氯化镁比重小,盐酸进入后,下部废液也是顺流进入废水池,因此,更容易将里面的杂质去除。 第一步是吸附,螯合树脂也是一种离子交换树脂,与普通的交换树脂不同的是,它吸附金属离子后形成环状结构。以亚胺基乙酸为例,吸附金属离子发生以下反应:CH2-COONa CH2-COO R-N +M2+ R-N M+2Na+ CH2-COONa CH2-COO 第二步是脱吸,在一定的外界条件下(如PH值和浓度温度)改变金属螯合物的平衡条件而使金属离子离解开,本装置采用浓度为5%左右的高纯盐酸对树脂进行漂洗。以亚胺基乙酸为例,脱洗金属离子发生以下反应: CH2-COO CH2-COOH R-N M +2H+ R-N +M+ CH2-COO CH2-COOH 第三步是再生,在已经洗脱金属离子的“H”型树脂中加入4%的NaOH溶液,调节PH值为14,由于溶液中的H+大量减少,使平衡向右移动,树脂由H型变为钠型。以亚胺基乙酸为例,发生如下反应: CH2-COOH CH2-COONa R-N +2NaOH R-N +2H2O CH2-COOH CH2-COONa 树脂又回到吸附前的状态。 盐水二次精制包括盐水中的阳离子被螯合树脂选择吸附进行交换和失去交换能力的螯合树脂进行再生处理两个部分。 (1)、螯合树脂离子交换反应原理: 螯合树脂是带有活性离子交换基因,并具有螯合结构的有机高分子聚合物,并带有固定的负电荷,这些固定的负电荷和带有正电荷的离子有相对亲和力。由于螯合树脂对盐水中的多价阳离子的吸附能力大于对一价离子的吸附能力,故含有Ca2+、Mg2+的盐水流经螯合树脂塔时,其中的Ca2+、Mg2+离子将取代树脂中的Na+,从而发生下列离子交换反应。(以CR -11螯合树脂吸附Ca2+、Mg2+ 为例):

吸收塔的设计

课程设计任务书 1.设计题目:水吸收二氧化硫过程填料吸收塔的设计 矿石焙烧炉送出的气体冷却到25℃后送入填料塔中,用20℃清水洗涤除去其中的SO2。 入塔的炉气流量为2250m3/h,其中进塔SO2的摩尔分数为0.05,要求SO2的吸收率为96%。 吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。 吸收剂的用量为最小量的1.4倍。 2.工艺操作条件: (1) 操作平均压力常压101.325kpa (2) 操作温度t=20℃ (4) 所用填料为D N38聚丙烯阶梯环形填料。 3.设计任务 完成填料吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统工艺流程图和吸收塔工艺条件图,编写设计说明书。

目录 摘要 (1) 1绪论 (2) 1.1吸收技术概况 (2) 1.2吸收过程对设备的要求及设备的发展概况 (2) 1.3吸收在工业生产中的应用 (2) 1.3.1吸收的应用概况 (3) 1.3.2典型吸收过程 (3) 2设计方案 (4) 2.1吸收方法及吸收剂的选择 (4) 2.1.1吸收方法 (4) 2.1.2吸收剂的选择: (4) 2.2吸收工艺的流程 (5) 2.2.1吸收工艺流程的确定 (5) 2.2.2吸收工艺流程图及工艺过程说明 (6) 2.3操作参数的选择 (6) 2.3.1操作温度的选择 (6) 2.3.2操作压力的选择 (6) 2.3.3吸收因子的选择 (7) 2.4吸收塔设备及填料的选择 (8) 2.4.1吸收塔的设备选择 (8) 2.4.2填料的选择 (8) 3吸收塔的工艺计算 (9) 3.1基础物性数据 (9) 3.1.1液相物性数据 (9) 3.1.2气相物性数据 (9) 3.1.3气液平衡数据 (9) 3.2物料衡算 (10) 3.3塔径的计算 (10) 3.3.1塔径的计算 (10) 3.3.2泛点率校核 (11) 3.3.3填料规格校核: (11) 3.3.4液体喷淋密度校核 (11) 3.4填料层高度计算 (11) 3.4.1传质单元高度 H计算 (11) OG

浅析一次盐水精制技术

中国氯碱 China Chlor-Alkali 第10期2009年10月 No.10Oct.,2009 通过用淡碱来调节溶剂的p H 值在规定范围内来配制聚丙烯酸钠溶液。 (5)改变聚丙烯酸钠溶液的添加方式。用两个高位槽取代原先的低位槽,取消泵的输送,利用位差加入,从而保证了链的长度不被破坏。 通过改造,降低了生产成本,延长了设备使用寿 命,盐水的质量维持在较高的水平,保障了离子膜法电解系统的平稳运行,取得了可观的经济效益。但也存在一些缺陷,如化盐水的碱性不太稳定、原盐的质量不稳定、精制盐的使用比例不高等,这些都是今后攻关的方向。 收稿日期:2009-05-31 浅析一次盐水精制技术 王玉娟,赵以文,郑卫生 (河北金牛化工股份有限公司,河北沧州061000) 摘要:介绍和分析了当前国内氯碱行业应用的一次盐水精制技术和过滤器。指出陶瓷膜过滤技术具 有广泛的应用前景。 关键词:一次盐水;过滤器;有机聚合物膜;CN 过滤技术;陶瓷膜中图分类号:TQ114.26+1 文献标识码:B 文章编号:1009-1785(2009)10-0005-03 精盐水的质量是电解工序正常运行的关键因素之一,它不仅关系到离子膜电槽的经济运行,也关系到离子膜运行的寿命,如何提高精盐水质量是氯碱生产企业一直在研究和探讨的问题。20世纪90年代中国引进离子膜法烧碱生产技术后,一次盐水精制工艺广泛采用“道尔澄清桶+砂滤+预涂过滤”法。到90年代末期,随着膜法盐水精制过滤技术在氯碱行业的应用,“浮上澄清+有机聚合物膜”过滤技术得到了迅速发展,一次盐水质量大幅提高,有机膜法盐水精制对离子膜制碱技术在中国的大规模应用有着不可磨灭的贡献。进入2005年后又有2种过滤技术进入氯碱行业,一种是CN 过滤技术,另一种是九 思陶瓷膜过滤技术,并在氯碱企业开始得到应用。中国氯碱行业在原盐品种多,质量参差不齐的情况下,盐水过滤精制技术已处于世界领先水平。 1一次盐水过滤精制原理 过滤过程就是实现液固两相分离的过程。目前, 一次盐水过滤广泛采用微滤膜过滤技术。 不论采用何种技术和设备,过滤形式的本质可以简单地分为终端过滤和错流过滤2种,图1为终端过滤与错流过滤的示意图。 微滤是筛分过程,属于精密过滤技术中的表面过滤类,可保证过滤的精度和可行性。微滤的操作分为无流动(并流)操作和错流操作2种方式。无流动 Analysis on refining technology of primary brine WANG Yu-juan,ZHAO Yi-wen,ZHENG Wei-sheng (Hebei Jinniu Chemical and Industry Co.,Ltd.,Cangzhou 061000,China) Abstract:Refing technology of primary brine and filter applicated in chlor-alkali industry were introduced and analysed.Great prospect of ceramic membrane application was put forward. Key words:primary brine;filter;organic polymer;CN filtering technology;ceramic membrane !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 5

脱硫装置吸收塔的设计计算

(一)设计方案的确定 用水吸收S02,为提高传质效率,选用逆流吸收过程。因用水作为吸收剂,且S02不作为产品,故采用纯溶剂。 (二)填料的选择 该系统不属于难分离的系统,操作温度及压力较低,可采用散装填料,系统中有S02,有一定的腐蚀性,故考虑选用塑料鲍尔环,由于系统压降无特殊要求,考虑到不同尺寸鲍尔环的传质性能选用D g38塑料鲍尔填料。 (三)设计步骤 本课程设计从以下几个方面的内容来进行设计 (1)吸收塔的物料衡算; (2)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降; (3)设计液体分布器及辅助设备的选型; (4)绘制有关吸收操作图纸。 (四)基础数据 1、液相的物性数据 对于低浓度的吸收过程,溶液的物性数据可以近似取水的物性数据,由手册查得,20℃时水的有关物性数据如下: 密度 ρ=998.2 kg/m3 L 粘度 μ=0.001 Pa·s=3.6 kg/(m·h) L

表面张力 L σ=73 dyn/cm=940 896 kg/h 2 S02在水中的扩散系数 L D =1.47×10-5 cm 2 /s=5.29×10-6 m 2 /h 2、 气相的物性数据 混合气体的平衡摩尔质量 M =0.04×64.06+0.96×29=30.40 g/mol 混合气体的平均密度 G ρ=101.330.408.31427330??+() =1.222 kg/m 3 混合气体的粘度可以近似取空气的粘度,查手册20℃时空气的粘度为 G μ=1.81×10-5 Pa ·s=0.065 kg/(m ·h) 查手册得S02在空气中的扩散系数为 G D =0.108 cm 2 /s =0.039 m 2 /h 3、 气液相平衡数据 查手册,常压下20℃时: S02在水中的亨利系数 E=3.55×1O 3 kPa 相平衡常数为 m E P = =3.55×1O 3 /101.3=35.04 溶解度系数 L L H EM ρ= =998.2/3.55×1O 3 /18.02=0.0156 kmol/h 4、填料的填料因子及比表面积数据 泛点填料因子 F φ=184 /m

一次盐水操作规程

一次盐水工序操作规程 编写: 审核: 批准: 邢台矿业集团金牛钾碱分公司 一、产品及原辅材料说明 1、产品规格 精盐水澄清无混浊的溶液。 KCl (g/l)295-315

Ca2++ Mg2+(mg/l) <1 Fe2++ Fe3+(mg/l) <0.1 SO42 —(g/l) < 3.5-5.0 SS (mg/l) <1.0 游离氯0-5 mg/l 2、原辅材料 (1)氯化钾 白色晶状固体,化学式:KCl ,分子量74.56,密度 1.99 g/cm3,熔点268℃,沸点1417℃,可溶于甘油中,在水中溶解度20℃时340g/l 水,100℃时567g/l 水。(2)碳酸钾 白色粉状固体,化学式:K 2CO 3,分子量138.21 ,密度2.3~2.4g/cm3,熔点 891℃,高温下分解,在水中溶解度(20℃时),1117g/l水,100℃时1557g/l 水,有轻微腐蚀性,易于酸反应放出CO2 气体,与钙离子反应形成沉淀。 (3)氢氧化钾 白色片状固体,化学式:KOH ,分子量56.11,密度 2.04 g/cm3,熔点360℃,沸点1324℃,可溶于乙醇、乙醚、甲醇中,在水中溶解度(20℃时),1120g/l 水,100℃时1780g/l 水,有强腐蚀性。 (4)亚硫酸钾 白色或微黄色粉状固体,化学式:K2SO3,分子量158,高温易分解,在水中溶解度20℃ 时,1070g/l 水,90℃时1120g/l 水。常用作还原剂及磺化剂。 (5)氯化钡 无色扁平四边的单斜系结晶,比重 3.1 g/cm3,有剧毒,在水中溶解度0℃时,100 克 水 中溶32 克,100℃时100克水中溶解59 克。分子式BaCl2·2H2O,分子量244,加热时失去结晶水而不溶解,规格BaCl2· 2H2O>98% ,CaCl 2<0.5% 。 二、一次盐水精制的原理 1、次氯酸钾除菌藻类及其它有机物盐水中的菌藻类被次氯酸钾杀死,腐殖酸等有机物被次氯酸 钾氧化分解成为小分子。 2、氯化钡除硫酸根离子 向盐水中加入氯化钡溶液,使其和盐水中的硫酸根反应,生成硫酸钡沉淀,其反应式如下:Ba 2++SO42-→ BaSO4 ↓ 加入精制氯化钡不应过量,否则将增加离子交换树脂的负荷。若发生Ba2+泄漏,则进 电槽和OH-生成Ba(OH)2沉淀,堵塞离子膜。 3、碳酸钾除钙离子在盐水中加入碳酸钾溶液,使其和盐水中的Ca2+反应,生成不溶性的碳酸钙 沉淀,其 反应式如下: Ca2+ + CO32-→ CaCO3 ↓ 为了将CO32-除净,碳酸钾的加入量必须超过反应式的理论需要量,本工艺碳酸钾的过 碱量300--500mg/l 。 4、氢氧化钾除镁离子 在盐水中加入KOH 溶液,使其和盐水中的Mg2+反应,生成不溶性的Mg(OH) 2沉淀,其反应式如下: Mg 2++ 2OH -→ Mg(OH) 2 ↓ 为了将Mg 2+除净,KOH 的加入量必须超过理论需要量,本工艺氢氧化钾过碱量为200--400mg/l 。

吸收塔的设计1

大庆师范学院 《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 第一节前言 (6) 1.1 填料塔的主体结构与特点 (6) 1.2 填料塔的设计任务及步骤 (6) 1.3 填料塔设计条件及操作条件 (6) 第二节填料塔主体设计方案的确定 (7) 2.1 装置流程的确定 (7) 2.2 吸收剂的选择 (7) 2.3填料的类型与选择 (7) 2.3.1 填料种类的选择 (7) 2.3.2 填料规格的选择 (7) 2.3.3 填料材质的选择 (8) 2.4 基础物性数据 (8) 2.4.1 液相物性数据 (8) 2.4.2 气相物性数据 (8) 2.4.3 气液相平衡数据 (9) 2.4.4 物料横算 (9) 第三节填料塔工艺尺寸的计算 (10) 3.1 塔径的计算 (10) 3.2 填料层高度的计算及分段 (11) 3.2.1 传质单元数的计算 (11) 3.2.3 填料层的分段 (13) 3.3 填料层压降的计算 (13) 第四节填料塔内件的类型及设计 (14) 4.1 塔内件类型 (14) 4.2 塔内件的设计 (14) 4.2.1 液体分布器设计的基本要求: (14) 4.2.2 液体分布器布液能力的计算 (14) 注:15

1填料塔设计结果一览表 (15) 2 填料塔设计数据一览 (15) 3 参考文献 (17) 4 后记及其他 (17) 附件一:塔设备流程图 (17) 附件二:塔设备设计图 (18)

大庆师范学院本科学生 化工原理课程设计任务书 设计题目苯和氯苯的精馏塔塔设计 系(院)、专业、年级化学化工学院、化学工程与工艺专业、08级化工四班学生姓名学号 指导教师姓名下发日期 任务起止日期:2010 年日6 月21 日至2010 年7 月20

氯碱生产—盐水精制工艺

毕业设计(论文) (冶金化工系) 题目氯碱生产—盐水精制工艺专业应用化工技术 班级 姓名 学号 指导教师 完成日期

目录 摘要 (1) 第一章绪论 (2) 1.1氯碱工业概述 (2) 1.2氯碱工业主要产品及用途 (2) 1.3氯碱工业的发展趋势 (3) 1.3.1世界氯碱工业及其发展趋势 (3) 1.3.2 我国的氯碱工业及其发展趋势 (3) 第二章盐水精制工艺 (4) 2.1原盐的品种及组成 (4) 2.2盐水精制工艺 (5) 2.2.1盐水精制工艺原理 (5) 2.2.2盐水精制工艺流程 (8) 2.2.3盐水精制工艺条件 (11) 第三章精制工艺主要生产设备 (16) 3.1盐水一次精制工艺主要生产设备 (16) 3.1.1 溶盐设备——化盐桶 (16) 3.1.2 澄清设备——浮上澄清桶 (16) 3.1.3 过滤设备——虹吸式过滤器 (17) 3.1.4 盐泥处理设备——三层洗泥桶、板框式压滤机 (18) 3.2盐水二次精制工艺主要生产设备 (20) 3.2.1 炭素管式过滤器 (20) 3.2.2 螯合树脂塔 (21) 第四章工艺计算 (22) 4.1计算依据 (22) 4.2物料衡算 (23) 4.2.1 精盐水组成 (23) 4.2.2原盐组成及盐水精制主要指标 (23)

4.2.3 盐水精制剂的用量 (24) 4.2.4 盐泥的组成 (25) 4.2.5 回收盐水组成 (25) 4.2.6 补充水量 (26) 致谢 (28) 参考文献 (29) 附录一 (30) 附录二 (31)

摘要 盐水的生产精制工段是将固体原盐与蒸发工段送来的回收的淡盐水、洗盐泥回收的淡盐水,按比例掺和、加热溶解成含氯化钠的饱和水溶液,同时按原盐中杂质含量连续加入适量的精制剂(氢氧化钠、碳酸钠和氯化钡等),使盐水中钙、镁、硫酸根等杂质离子分别生成难溶的沉淀物,然后加入助沉剂(苛化麸皮或聚丙烯酸钠等),经过澄清、砂滤、中和等步骤,制得质量合格的精盐水,按需要源源不断地输送给电解工段。在确定好工艺流程的基础上进行物料衡算和能量衡算,从而确定出主要工艺设备的型号、尺寸及数量,并绘制带控制点的工艺流程图和主要设备图等。关键词:氯碱工业原盐盐水精制工艺流程

一次盐水考试题库.

一次盐水岗位试题库 一、填空: 1.盐水中的菌藻类被次氯酸钠杀死,腐殖酸等有机物被次氯酸钠氧化分解成为小分子。 2. 盐水中加入碳酸钠溶液,使其与盐水中的Ca2+反应,生成不溶性的碳酸钙沉淀。 3. 碳酸钠的过碱量0.3g/l--0.7g/l之间。 4. 盐水中加入NaOH溶液,使其和盐水中的Mg2+反应,生成不溶性的Mg(OH)2 沉淀, 5.氢氧化钠过碱量为0.2g/l--0.6g/l。 6. ZF膜过滤器由罐体,反冲罐,管道,自动控制阀,过滤元件,自动控制系统,气动控制系统等组成。 7. ZF膜过滤器工艺流程进液过滤、反冲、沉降、循环次数、排渣。 8. 精盐水中的游离氯含量应为0,PH值保证在9—11范围内。 9. 粗盐水经加压泵P-404A/B/C送出在汽水混合器M-402A~F中与空气混合后进入加压溶气罐Z-402A?B再进入预处理器V-405A?B。 10. 粗盐水温度控制在60~65℃。 11. 加压溶气罐压力控制在0.1~0.2 MPa。 12. 粗盐水浓度控制在300~310g/l。 13. 精盐水SO42-控制在≤5g/l。 14.凯膜薄膜过滤袋必须保持湿润。 15.盐水泵加压泵额定流量300 m3?h,扬程80m。 16.加压容器罐压力控制指标为0.1-0.2MPa,液位控制指标为30%-70%,这个指标直接影响除镁的效果,其液位由P-404A/B/C变频控制。 17.当粗盐水进入预处理器后,突然减压,使空气形成小的气泡并吸附在悬浮物的表面上,使悬浮物的假比重大大小于盐水比重而上浮,形成浮泥而排出,比重大的颗粒下沉在预处理器底部定期排出,清液自清液出口流出至后反应槽。 18、粗盐水进入预处理器V-405加入三氯化铁作絮凝剂。 19、P-409进口加入亚硫酸钠溶液除去盐水中的游离氯后送至二次过滤压力。 20、ZF膜运行一定时间后,为了保持较高的过滤能力和较低的过滤

吸收塔的设计汇编

吸收塔的设计

课程设计任务书 1.设计题目:水吸收二氧化硫过程填料吸收塔的设计 矿石焙烧炉送出的气体冷却到25℃后送入填料塔中,用20℃清水洗涤除去其中的 SO 2。入塔的炉气流量为2250m3/h,其中进塔SO 2 的摩尔分数为0.05,要求SO 2 的吸收率为 96%。吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。吸收剂的用量为最小量的1.4倍。 2.工艺操作条件: (1) 操作平均压力常压101.325kpa (2) 操作温度t=20℃ (4) 所用填料为D N38聚丙烯阶梯环形填料。 3.设计任务 完成填料吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统工艺流程图和吸收塔工艺条件图,编写设计说明书。

目录 课程设计任务书 ........................................................................................................................................................... I 摘要 . (1) 1绪论 (2) 1.1吸收技术概况 (2) 1.2吸收过程对设备的要求及设备的发展概况 (2) 1.3吸收在工业生产中的应用 (3) 1.3.1吸收的应用概况 (3) 1.3.2典型吸收过程 (3) 2设计方案 (4) 2.1吸收方法及吸收剂的选择 (4) 2.1.1吸收方法 (4) 2.1.2吸收剂的选择: (4) 2.2吸收工艺的流程 (5) 2.2.1吸收工艺流程的确定 (5) 3吸收塔的工艺计算 (7) 3.3塔径的计算 (9) 3.3.1塔径的计算 (9) 3.3.2泛点率校核 (9) 3.3.3填料规格校核: (9) 3.3.4液体喷淋密度校核 (9) 3.4填料层高度计算 (10) H计算 (10) 3.4.1传质单元高度OG 3.4.2填料层高度Z的计算: (11) 3.6填料塔附属高度及最终高度计算 (12) 结论 (14) 主要符号说明 (16)

二次盐水脱硫酸根工艺介绍

二次盐水脱除硫酸根系统工艺方案 1.项目简介 盐水精制工艺是烧碱生产过程中的主要工序之一,只有盐水质量达到要求,才能保证电解工序的正常运行。盐水精制基本上都是经过化盐、精制、澄清、过滤、重饱和及预热、中和以及盐泥洗涤处理等过程,制得纯净的精制盐水供隔膜电解槽使用。 而作为二次盐水,即离子膜烧碱排除的淡盐水一般含有硫酸根(6-10g/L)等杂质,SO42- 会增加电解过程中的副反应,导致电流效率普遍下降。不能直接用于电解槽,需要加以精制,一般采用化学精制方法,即加入精制剂使杂质成为溶解度很小的沉达而分离除去,这样才可以喝一次盐水混合,进入离子膜系统进行循环使用。 常规硫酸根去除工艺 在电解生产烧碱过程中,目前国内外有多种脱除盐水中硫酸根的方法,而比较常用的有以下几种: 原理优点缺点 氯化钡法使用氯化钡,将硫酸根 以硫酸钡的形式除去设备投资少,操作也 较方便 运行费用较高 氯化钙法使用氯化钙,将硫酸根 以石膏的形式加以去除运行费用相对氯化钡 法要低, 需要添加一些设备,操作 上比较复杂 冷冻法制备高芒盐水,将高芒 盐水冷冻,将硫酸根以 Na2SO4·10H2O 的形式加 以去除, 可以副产芒硝一次设备投资大 碳酸钡法与氯化钡法类似除钙效果好,而 且反应产物碳酸钠可 以降低精制剂纯碱的 加入量反应时间较长,而且在硫酸钡沉淀中含有一定比例的碳酸钡,需要对沉淀进行处理后方可排放,操作复杂,并需要添加一些设备

NDS / RNDS 法 通过一种特殊类型的 吸附剂,经过一系列吸附、分 离、脱附、分离等操作程序, 连续地从盐水中脱除硫酸 根 运行费用低,没 有钡盐那样的毒性, 吸附效果好,自动化 程度高。 国外技术专利,投 资高 探寻一种技术先进、经济效益显著的工业脱除SO42- 的技术,对于提高盐水质量、延长电解槽离子膜寿命以及对电解电流效率的提高等都将大有益处,值得国内各氯碱企业的关注。 纳滤膜对SO42-的截留率高,而对于阳离子浓度几乎没有影响。因此,采用纳滤膜可在粗盐水的精制中用于脱除或降低SO42-。 以下将详细描述这种系统的方案。 2.方案编制原则、依据和范围 2.1 方案编制原则 1)最大限度提高资源回收效率,最大限度的提高生产效率,尽量采用技术成熟稳定的先进工艺设备; 2)设备的运行管理尽量使用全自动控制程序,以保证系统的稳定性; 3)合理降低成本和运行费用,为客户创造最大的价值。 2.2 方案编制依据 1)《室外排水设计规范》GBJ14-87(1997); 2)《建筑给水排水设计规范》GBJ15-88(1989.4.1); 3)业主提供的相关资料。 2.3 方案编制内容 方案编制内容主要包括膜分离系统工艺流程、主要原理、主要设备、运行成本和经济效益等方面的内容。

吸收塔化工原理课程设计

化工原理课程设计 -------水吸收二氧化硫过程填料吸收塔设计说明书 学院: 班级: 姓名: 学号: 指导教师: 设计时间:

化工原理课程设计任务书(2) 一、设计题目 水吸收二氧化硫过程填料吸收塔设计 二、设计任务及操作条件 1、设计任务 ①生产能力(入塔炉气流量) 2500 m3/h ②二氧化硫吸收率 96% ③入塔炉气组成(含二氧化硫) (摩尔分率) 2、操作条件 ①入塔炉气温度25℃ ②洗涤除去二氧化硫的清水温度20℃ ③操作压强常压 ④吸收温度基本不变,可近似取为清水的温度 3、填料类型阶梯环填料,填料规格自选 4、厂址齐齐哈尔地区 三、设计内容 1、设计方案的选择及流程说明 2、吸收塔的物料衡算 3、吸收塔工艺尺寸计算 4、填料层压降的计算 5、液体分布器简要设计 6、填料吸收塔装配图(1号图纸) 7、设计评述 8、参考资料

目录 1 绪论 (1) 吸收技术概况 (1) 吸收设备的发展 (1) 2 设计方案的确定 (2) 方案的确定 (2) 流程的确定 (2) 3 填料选择 (2) 4 吸收塔的工艺计算 (2) 基础物性数据 (2) 4.1.1 液相物性数据 (2) 4.1.2 气相物性数据 (2) 4.1.3 气液相平衡数据 (3)

物料衡算 (3) 填料塔的工艺尺寸计算 (4) 4.3.1塔径的计算 (4) 4.3.2传质单元高设计 (7) 4.3.3传质单元数的计算 (7) 4.3.4填料层高度 (9) 填料层压降 (10) 5 填料塔的附属结构 (11) 液体分布器简要置 (11) 液体再分配置 (11) 填料支撑结构 (12) 5.3.1填料支撑结构应满足三个基本条件 (12) 5.3.2较常用的支撑结构 (12)

(完整版)化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计任务书

目录 一前言 (3) 二设计任务 (4) 三设计条件 (4) 四设计方案 (5) 1.吸收剂的选择 (5) 2.流程图及流程说明 (5) 3.塔填料的选择 (7) 五工艺计算 (11) 1.物料衡算,确定塔顶、塔底的气液流量和组成 (11) 2.塔径的计算 (12) 3. 填料层高度计算 (14) 4. 填料层压降计算 (16) 5. 液体分布装置 (17) 6. 液体再分布装置 (19) 7. 填料支撑装置 (20) 8. 流体进出口装置 (21) 9. 水泵及风机的选型 (22) 六设计一览表 (23) 七对本设计的评述 (23) 八参考文献 (24) 九主要符号说明 (24)

十致谢 (25) 一前言 在石油化工、食品医药及环境保护等领域,塔设备属于使用量大应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。 塔设备按其结构形式基本上可分为两类:板式塔和填料塔。以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点。因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔。如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。 氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,氨对接触的皮肤组织都有腐蚀和刺激作用,可以吸收皮肤组织中的水分,使组织蛋白变性,并使组织脂肪皂化,破坏细胞膜结构。氨的溶解度极高,所以主要对动物或人体的上呼吸道有刺激和腐蚀作用,常被吸附在皮肤粘膜和眼结膜上,从而产生刺激和炎症。可麻痹呼吸道纤毛和损害粘膜上皮组织,使病原微生物易于侵入,减弱人体对疾病的抵抗力。氨通常以气体形式吸入人体,氨被吸入肺后容易通过肺泡进入血液,与血红蛋白结合,破坏运氧功能。进入肺泡内的氨,少部分为二氧化碳所中和,余下被吸收至血液,少量的氨可随汗液、尿液或呼吸排出体外。 短期内吸入大量氨气后会出现流泪、咽痛、咳嗽、胸闷、呼吸困难、头晕、呕吐、乏力等。若吸入的氨气过多,导致血液中氨浓度过高,就会通过三叉神经末梢的反射作用而引起心脏的停搏和呼吸停止,危及生命。因此,吸收空气中的氨,防止氨超标具有重要意义。

◆◆吸收塔基础设计计算书20081225

吸收塔基础设计计算书 1.荷载计算 1)风荷载计算 计算公式:w k=βzμsμz w0(荷载规范7.1.1-1) 其中βz=1 由壳体高度H=37.6m查得风载高度系数μz=1.53 吸收塔直径d=13.1m,w0=0.40 KN/m2(B类) 由μz w0d2=105.025和H/d=2.870查荷载规范表7.3.1得风载体型系数μs=0.5故风荷载标准值w k=βzμsμz w0=0.306 KN/m2 所以作用于壳顶的风荷载为P=w k Hd=0.306×37.6×13.1=150.723KN 2)地震荷载的计算 a.吸收塔竖向荷载 G=33000KN;进口补偿器推力分解垂直作用力F=54KN b.计算水平地震影响系数α1 由地质资料,地震基本烈度为7度,地震动峰值加速度0.05g,地震动反应谱特征周期为T1=0.35s。 查表得αmax=0.08,Ⅱ类场地第一组地震分组T g=0.35s 因0.1s<T1=T g=0.35s≤T g,故α1=αmax=0.08 c. 用底部剪力法计算水平地震力和塔底弯矩 计算公式:F Ek=α1(G+F) M1=F Ek h w(19.2.7)

故结构总的水平地震作用标准值F EK=α1(G+F) =0.08×(33000+54) =2644.32KN 总水平地震作用标准值对罐壁底部产生的弯矩M1=2644.32×18.8=49713.216KN〃m 3)吸收塔进口冲击力产生的弯矩:M2=202×17.22=3478.44KN〃m 4)吸收塔出口冲击力产生的弯矩:M3=120×34.95=4194KN〃m 2.荷载组合 作用于基顶荷载的基本组合设计值S为: a.恒载+活载 N=33000+54=33054KN V=202+120=322KN M=3478.44+4194=7672.44KN〃m (恒载和活载无水平力) b. 恒载+活载+风载+地震荷载 N=33000+54=33054KN V=202+120+150.72+2644.32=3117.04KN M=150.72×37.6+49713.216+3478.44+4194=63052.73KN.m 经比较a、b二种结果,选用最不利组合类型为b。 3.确定基础尺寸及埋深 采用砼独立基础,砼强度C25。根据吸收塔塔体的大小初定基础直径为14100mm,高度2500mm。综合地质资料的相关信息及吸收塔荷载值初定基础埋深2000mm。 4.验算地基承载力

Aspen吸收塔的设计

SO2吸收塔的设计计算 矿石焙烧炉送出的气体冷却到25℃后送入填料塔中,用20℃清水洗涤以除去其中的SO2。入塔的炉气流量为2400,其中SO2摩尔分率为0.05,要求SO2的吸收率为95%。吸收塔为常压操作。 试设计该填料吸收塔。 解(1)设计方案的确定 用水吸收SO2属于中等溶解度的吸收过程,为提高传质效率,选用逆流吸收过程。因用水作为吸收剂,且SO2不作为产品,故采用纯溶剂。 (2)填料的选择 对于水吸收SO2的过程,操作过程及操作压力较低,工业上通常选用塑料散装填料。在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用聚丙烯阶梯环填料。 (3)工艺参数的计算 步骤1:全局性参数设置。计算类型为“Flowsheet”,选择计量单位制,设置输出格式。 单击“Next”,进入组分输入窗口,假设炉气由空气(AIR)和SO2组成。在“Component ID”中依次输入H2O,AIR,SO2。 步骤2:选择物性方法。选择NRTL方程。 步骤3:画流程图。选用“RadFrac”严格计算模块里面 的“ABSBR1”模型,连接好物料线。结果如图3-1所示。 图3-1 水吸收SO2流程图 步骤4:设置流股信息。按题目要求输入进料物料信息。初始用水量设定为400kmol/h。 步骤5:吸收塔参数的输入。在“Blocks|B1|Setup”栏目,输入吸收塔

参数。吸收塔初始模块参数如表3-1所示。其中塔底气相GASIN由第14块板上方进料,相当于第10块板下方。 Calculation type Equilibrium Number of stages13 Condenser None Reboiler None Valid phases Vapor-Liquid Convergence Standard Feed stage WATER1 GASIN14 Pressure(kPa)Stage 1101.325 表3-1 吸收塔初始参数 至此,在不考虑分离要求的情况下,本流程模拟信息初步设定完毕,运行计算,结果如图3-2所示。此时SO2 吸收率为。 图3-2 初步计算结果 步骤6:分离要求的设定,塔板数固定时,吸收剂用量的求解。 运用“Design Specifications”功能进行计算,在“Blocks|B1|Design Spec”下,建立分离要求“1”。 在“Blocks|B1|Design Spec|1| Specifications”页面,定义分离目标。按题目要求进行设定。结果如图3-3所示。在“Blocks|B1|Design Spec|1|Components”页面,选定“SO2”为目标组分;在“Feed/Product Streams”页面,选择“LOUT”为参考物流。

相关文档
最新文档