链条炉的燃烧调整分析

链条炉的燃烧调整分析
链条炉的燃烧调整分析

链条炉的燃烧调整分析

[摘要]本文对影响链条炉燃烧的因素从五个方面进行了分析,阐述了在锅炉负荷一定的条件下,煤层厚度、分段送风量和炉排速度三者之间的合理调配方式,为链条炉的安全、稳定和经济运行提供了参考。

[关键词]链条炉煤层厚度炉排速度分段送风调整分析

中图分类号:tk229.61 文献标识码:a 文章编号:1009-914x (2013)13-0242-02

链条炉作为工业锅炉的一种,被广泛应用于生产和生活领域。为了达到安全、稳定和经济运行的目的,其燃烧工况的调整是非常必要的,而调整的关键是如何保持火床燃烧的稳定,即着火稳定、燃烧均匀、火床平整、燃烬区位置适宜和不跑红火。链条炉的燃烧好坏与司炉人员的运行操作技术有直接关系。一些控制方式和可调参数如煤层厚度、炉排速度、分段风门开度等需较长时间的经验积累才能判断何者为优,在运行中应根据热负荷、煤质等的变化情况适时进行调整。

1、煤层厚度和炉排速度的调整

在锅炉负荷一定的情况下,煤层越厚时,炉排速度势必越慢,煤在炉内停留的时间就越长,这对燃烧不一定有利。尤其是当燃烧混煤和煤末时,煤层越厚底层的吸热差、着火迟缓,而且由于煤层通风阻力大,炉排下风压增高,也易使煤层吹洞起堆,破坏火床平整。煤层阻力相对大的地方容易压火,使机械不完全燃烧热损失增加,

锅炉燃烧调整总结

#2 炉优化调整 机组稳定运行已有3个多月,但在调试结束后我厂#2机组在3月份前在满负荷时床温在960℃左右,总风量大,风机电流大,厂用电率居高不下,一直困扰着我们。通过三个月的分析、调整,近期床温整体回落,总结出主要原因有以下两点: 一、煤颗粒度的差异。前一段时间负荷300MW时床温高炉膛差压在,下部压力,近期炉膛差压在,下部压力,这说明锅炉外循环更好了,分离器能捕捉更多的物料返回炉膛,同时也减少了飞灰含碳量,否则小于1mm的煤粒份额太多分离器使分离效率下降,小于1mm 细颗粒太多就烧成煤粉炉的样子,从而导致高床温细颗粒全给飞灰含碳量做贡献了,大于10mm煤粒太多就烧成鼓泡床了,导致水冷壁磨损加剧爆管、冷渣器不下渣和燃烧恶化等一系列问题,所以控制好入炉煤粒度(1—9mm)是保证燃烧的前提,当煤颗粒度不合适时只能通过加大风量使床温下降,在煤颗粒度不合适时加负荷一定要先把风量加起来,否则负荷在300MW时床温会上升到接近980℃,甚至会因床温高被迫在高负荷时解床温高MFT保护,如果处理不当造成结焦造成非停。所以循环流化床锅炉控制煤粒度是决定是否把锅炉烧成真正循环流化床最为重要的因素,可以说粒度问题解决了,锅炉90%的问题都解决了,国内目前最好的煤破碎系统为三级筛分两级破碎。 二、优化燃烧调整。3月份以来#2炉床温虽然整体下降,但仍不够理想,由于我厂AGC投入运行中加减负荷频繁,所以在负荷变

化时锅炉床温变化幅度较大,在最大出力和最小出力时床温相差接近200℃,不断的调整风煤配比使其达到最优燃烧工况,保证床温维持在850℃-900℃。负荷150MW时使总风量维持32万NM3/h左右,一次流化风量21万NM3/h,二次风量11万NM3/h左右,同时关小下二次风小风门(开度20%左右,减小密相区燃烧,提高床温)和开大上二次小风门(开度40%左右,增强稀相区燃烧,提高循环倍率),可使床温维持850℃左右,正常运行中低负荷时一次风量保证最小临界流化风量的前提下尽可能低可使床温维持高一点,以保证最佳炉内脱硫脱硝温度。负荷300MW时总风量维持62万NM3/h左右,一次风量27万NM3/h左右,二次风量35万NM3/h左右,同时开大下二次小风门(开度80%左右,增强密相区扰动,降低床温),关小上二次小风门(开度60%左右,使稀相区进入缺氧燃烧状态),因为东锅厂设计原因,二次上下小风门相同开度情况下上二次风是下二次风风量的三倍,所以加减负荷时根据负荷及时调整二次小风门开度对床温影响较大。高负荷时在床温不高的情况下尽量减小一次风,以达到减少磨损的目的,二次风用来维持总风量,高负荷时床温尽量接近900℃,以达到最佳炉内脱硫脱硝温度,同时加负荷时停止部分或全部冷渣器,床压高一点增强蓄热量可降低床温,减负荷相反,稳定负荷后3台左右冷渣器可保证床压稳定。 在优化燃烧调整基本成熟的基础上,配合锅炉主管薛红军进行全负荷低氧量燃烧运行,全负荷使床温尽量靠近900℃。根据#2炉目前脱硝系统运行情况,负荷150MW时根据氧量及时减减小二次风,

链条锅炉的常见故障及维修方法

链条锅炉的常见故障及维修方法 摘要链条炉排能够控制煤层厚度和自行冷却的结构特点,锅炉的燃烧工况稳定,热效率较高,运行操作方便,劳动强度低,烟尘排放浓度较低等优点。在使用时应该加强点检,及时发现问题及时处理。本文针对链条炉排卡住停转、燃烧室炉墙及吊璇损坏、炉排面上燃烧不均匀等故障,进行原因分析,提出具体的维修方法。 关键词链条锅炉;运行故障;维修方法 链条锅炉是机械化程度较高的一种层燃炉。结构比较简单、制造和安装工艺要求不高,炉排不漏煤,因其炉排类似于链条式履带而得名,是工业锅炉中使用较广泛的一种炉型。链条的运行从头是收热和吸热区,在中段起煤释放出的热量,基本上对效益帮助不大。因此布煤、厚度、链条速度也很重要。下面就谈谈10 t 链条锅炉本体或辅机常发生的一些故障及排除故障的方法。 1链条锅炉的常见故障 1.1链条炉排卡住停止转动 链条锅炉炉排是转动的燃烧设备,由于工作条件不良,极易发生卡住停转现象。在日常应用中炉排的故障较多,维修量大,影响着锅炉的正常使用。发生故障时表现为:电动机电流突然增大,炉排安全弹簧跳动或保险离合器动作,发出不正常的撞击声。锅炉材质制造质量是造成炉排故障的重要原因。链条炉排两侧的链条调整螺钉调整不当,造成左右两侧链条长短不一,炉排前后轴的平整度影响着炉排行进阻力大小及应力均匀程度,易造成炉排跑偏、断片。炉排片折断,一端露出炉排面,当行至挡渣板处有时被挡渣板尖端阻挡;有时炉排片一整片脱落,当行至挡渣板处,使挡渣板尖端下沉顶住炉排。有碍炉排的正常运转,严重时会卡住或拉断炉排。例如:一台10 t/h锅炉链齿误差达12 mm,锅炉运行中炉排经常大面积撕裂,炉排轴弯曲,炉排两侧链条被煤中的金属等杂物卡住,链条炉排停止运转。 1.2链条锅炉燃烧室炉墙及吊璇损坏 炉墙的常见故障有结焦、裂纹、倾斜、砖块松动,局部脱落,炉管穿墙处被硬物卡死和密封石棉绳烧坏等。链条锅炉正常工作时,如果发生炉外空气进入炉内,使烟气中的二氧化碳含量降低,含氧量升高,燃烧室变正压;锅炉支架或墙皮发热甚至烧红,这说明炉墙有较多的裂缝、严重的漏风。炉墙内衬砖破裂或局部脱落,可能把燃烧室炉墙及吊璇损坏。产生的原因是:修后烘炉不当,升火或停炉方式不正确;耐火材料质量不良,施工质量差;设计不合理,炉墙阻碍受热部件正常膨胀,或热强度过高,吊璇冷却不充分;炉墙严重磨损,其磨损厚度超过原厚度的1/3,致使锅炉经常在正压下运行,炉膛温度过高,或炉墙挂焦严重,而打焦时将水喷到炉墙上。

锅炉燃烧优化调整方案

锅炉燃烧优化调整方案 为提高锅炉效率,降低辅机耗电率,保持煤粉“经济细度”的要求,力争机械不完全燃烧损失和制粉系统能耗之和最小;保证锅炉设备安全、各经济指标综合最优和环保参数达标排放,制定以下燃烧优化调整方案: 1、优先运行A、B、C、D层煤粉燃烧器,低负荷时运行 B、C、D层煤粉燃烧器,负荷增加时,根据需要依次投入E、F层煤粉燃烧器,运行中应平均分配各层燃烧器出力(可通过各分离器出口风粉温度、压力是否一致判断,通过调整各容量风门偏置维持各容量风门后磨煤机入口风压一致来实现),各层煤粉燃烧器出力应在24~28t/h(根据单只燃烧器设计热负荷,19.65MJ/kg热值对应出力6.1t/h,17.5 MJ/kg 热值对应出力 6.85t/h),单侧运行的磨煤机出力不得超过30t/h(通过节流单侧运行磨煤机热风调节门,维持单侧运行磨煤机总风压偏低正常双侧运行磨煤机0.7~1.0kPa,调整容量风门偏置来实现),在此原则基础上,及时减少煤粉燃烧器运行层数或对角停运燃烧器,一方面,可发挥低氮燃烧器自身的稳定能力,另一方面,较高的煤粉浓度有利于在低氧环境中,集中煤粉挥发分中的含氮基团将NO还原为N2,此外,运行下层燃烧器增加了煤粉到燃尽区(富氧区)的停留时间,可充分利用含氮基团将NO还原为N2,从而降低SCR

入口NOx。 2、锅炉氧量保持:(1)供热期,负荷150~180MW氧量 3.0~5.0%;负荷180~210MW氧量 2.5~ 4.0%;负荷大于210MW氧量2.0~3.2%。(2)非供热期,负荷150~200MW氧量3.2~ 5.5%;负荷200~250MW氧量2.7~4.0%;负荷大于250MW氧量2.0~3.5%。(3)正常情况下,锅炉氧量按不低于2.5%保持,不能超出以上规定区间;环保参数超限,异常处理时,氧量最低不低于1.5%,异常处理结束后应及时恢复正常氧量。通过以上原则保证锅炉不出现高、低温硫腐蚀、受热面壁温超限、空预器差压增大,同时为降低飞灰含碳量、再热器减温水量、排烟温度、引送风机耗电率提供保障。 3、运行中保持二次风与炉膛差压不低于0.3kPa,掺烧贫瘦煤较多时,周界风风门开度在锅炉蒸发量500t/h以下可关至10%(周界风量太大时,相当于二次风过早混入一次风,因而对着火不利),大负荷时周界风风门开度不超过35%,除保持托底二次风至少70%以上开度,其余二次风采用倒塔配风方式。 4、燃尽风量占总风量的20~30%(燃尽风量之和与锅炉总风量的比值),低负荷压低限,优先使用下层燃尽风,锅炉蒸发量600t/h以下最多使用两层燃尽风(燃尽风使用原则:锅炉蒸发量430t/h以上燃尽风A层开50~80%;锅炉蒸发量500t/h以上燃尽风B层逐渐开启至全开;锅炉蒸发

燃气锅炉运行的燃烧事故原因分析及应对措施

燃气锅炉运行的燃烧事故原因分析及应对 措施 民 鲁南铁合金发电厂 文章分析电厂燃气锅炉在运行中发生回火或脱火,灭火及炉膛爆炸事故维护管理,运行监视调整等各方面原因,提出了响应的预防措施,用以提高燃气锅炉安全运行控制水平,确保正常运行。 1、燃气锅炉的回火,脱火的原因及预防措施 影响回火、脱火的根本原因有:燃气的流速,燃气压力的高低,燃烧配置状况,结合各电厂燃气锅炉燃烧运行中回火或脱火,从实际可以看出,回火或脱火大多数是调节燃气流速,燃气压力判断不准确及燃烧设备配置状况差别。下面我主要从这两个方面来分析回火或脱火的原因 1.1回火将燃烧器烧坏,严重时还会在燃烧管道发生燃气爆炸,脱火能使燃烧不稳定,严重时可能导致单只燃烧器或炉膛熄火。气体燃料燃烧时有一定的速度,当气体燃料在空气中的浓度处于燃烧极限浓度围,且可燃气体在燃烧器出口的流速低于燃烧速度时,火焰就会向燃料来源的方向传播而产生回火。炉温越高火焰传播速度就越快,则越产生回火。反之,当可燃气体在燃烧器的流速高于燃烧速度时,会使着火点远离燃烧器而产生脱火,低负荷运行时炉温偏低,更易产生脱火。例如2#燃气炉,炉膛压力不稳定,忽大忽小,烟气中CO2和O2的表计指示有显著变化,火焰的长度及颜色均有变化,并且还有一只

燃烧器烧坏,说明有回火或脱火现象,影响安全运行,气体燃料的速度时由压力转变而来的,如若气体管道压力突然变化或调压站的调压器及锅炉的燃气调节阀的特性不佳,便会使入炉的压力忽高忽低,以及当风量调节不当等均有可能造成燃烧器出口气流的不稳定,而引起回火或脱火,经以上分析可知,我们采取控制燃气的压力,保持在规定的数值,为防止回火或脱火在燃气管上装了阻火器,当压过低时未能及时发现,采取防火器,可使火焰自动熄灭,得到很好效果。1.2在燃气锅炉的燃烧过程中,一旦发生回火或脱火,应迅速查明原因,及时处理。 1.2.1首先应检查燃气压力正常与否,若压力过低,应对整个燃气管道进行检查,若锅炉房总供气管道压力降低,先检查调节站调压器的进气压力,发现降低时及时与供气站联系,要求提高供气的压力;若进气压力不正常,则应检查调节器是否有故障,并及时加以排除,同时可以投入备用调压器并开启旁通阀。若采取以上措施仍无效,则应检查整个燃气管道中是否有泄漏,应关闭的阀门是否关闭,若仅炉前的燃气管道压力降低,则应检查该段管道上的各阀门是否正常,开度是否合适,是否出现泄漏情况。当燃气压力无法恢复到正常值时,应减少运行的燃烧器数据,降低负荷运行,直至停止锅炉运行。 1.2.2如若燃压过高,应分段检查整个燃气管道上的各调节阀是否正常,其次检查个燃烧器的风门开度是否合适,检查风道上的总风压和燃烧器前风压是否偏高等,并作出相应的调整。 2、燃气的锅炉灭火及预防

链条炉在实际燃烧操作中的配风方法示范文本

链条炉在实际燃烧操作中的配风方法示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

链条炉在实际燃烧操作中的配风方法示 范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 链条炉燃烧操作原则配风方法有三种,即尽早配风 法,推迟配风法和强风后吹法。 1、尽早配风法 这种方法是根据燃料层对空气的消耗能力尽早配风。 在燃烧前期燃料放出大量的挥发物,此时就开始送人大量 空气,并且随着燃料温度的提高和燃烧的加强,尽可能加 大送风,直至燃尽。以五个风室为例:第一风室按燃煤挥 发分的高低适量送风,一般到第二风室就送人大风(全开), 第三风室也如此,直至第四风室,送风稍有减少。其后燃 料层的燃烧转入燃尽阶段,空气消耗量进一步减少,送风 量也随之大幅度减少,因此第五风室只需稍开或全关(供漏

风供风)。这种配风方式有如下特点: (1)尽早配风法适用于高挥发分的燃煤,前期燃煤吸收热量释放大量的挥发物,为使可燃气体(挥发物)得到充分的燃烧,需要送入大量空气,形成炉排前部燃烧强烈。 (2)由于前部燃烧强烈,前拱区容易结渣,甚至烧坏煤闸门,因此要注意控制前部送风量;同时由于前部燃烧强烈,烟气体积急剧膨胀,致使后拱内的烟气流出不畅,形成烟气在后拱出口处的闷塞。 (3)燃烧高温区在靠前部,炉排后部弱燃烧区面积较大,温度降低,难以维持焦炭燃尽,导致炉渣含碳量增加,降低了锅炉的燃烧效率。 2、推迟配风法 推迟配风法仍以五个风室为例:第一风室为引燃期,不专门送风(只靠风室漏风供风);第二风室已进入燃烧旺

锅炉燃烧调整总结

锅炉燃烧调整总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

#2 炉优化调整 机组稳定运行已有3个多月,但在调试结束后我厂#2机组在3月份前在满负荷时床温在960℃左右,总风量大,风机电流大,厂用电率居高不下,一直困扰着我们。通过三个月的分析、调整,近期床温整体回落,总结出主要原因有以下两点: 一、煤颗粒度的差异。前一段时间负荷300MW时床温高炉膛差压在1.5KPa,下部压力2.6KPa,近期炉膛差压在2.1KPa,下部压力3.6KPa,这说明锅炉外循环更好了,分离器能捕捉更多的物料返回炉膛,同时也减少了飞灰含碳量,否则小于1mm的煤粒份额太多分离器使分离效率下降,小于1mm细颗粒太多就烧成煤粉炉的样子,从而导致高床温细颗粒全给飞灰含碳量做贡献了,大于10mm煤粒太多就烧成鼓泡床了,导致水冷壁磨损加剧爆管、冷渣器不下渣和燃烧恶化等一系列问题,所以控制好入炉煤粒度(1—9mm)是保证燃烧的前提,当煤颗粒度不合适时只能通过加大风量使床温下降,在煤颗粒度不合适时加负荷一定要先把风量加起来,否则负荷在300MW时床温会上升到接近980℃,甚至会因床温高被迫在高负荷时解床温高MFT保护,如果处理不当造成结焦造成非停。所以循环流化床锅炉控制煤粒度是决定是否把锅炉烧成真正循环流化床最为重要的因素,可以说粒度问题解决了,锅炉90%的问题都解决了,国内目前最好的煤破碎系统为三级筛分两级破碎。 二、优化燃烧调整。3月份以来#2炉床温虽然整体下降,但仍不够理想,由于我厂AGC投入运行中加减负荷频繁,所以在负荷变

化时锅炉床温变化幅度较大,在最大出力和最小出力时床温相差接近200℃,不断的调整风煤配比使其达到最优燃烧工况,保证床温维持在850℃-900℃。负荷150MW时使总风量维持32万NM3/h左右,一次流化风量21万NM3/h,二次风量11万NM3/h左右,同时关小下二次风小风门(开度20%左右,减小密相区燃烧,提高床温)和开大上二次小风门(开度40%左右,增强稀相区燃烧,提高循环倍率),可使床温维持850℃左右,正常运行中低负荷时一次风量保证最小临界流化风量的前提下尽可能低可使床温维持高一点,以保证最佳炉内脱硫脱硝温度。负荷300MW时总风量维持62万NM3/h左右,一次风量27万NM3/h左右,二次风量35万NM3/h左右,同时开大下二次小风门(开度80%左右,增强密相区扰动,降低床温),关小上二次小风门(开度60%左右,使稀相区进入缺氧燃烧状态),因为东锅厂设计原因,二次上下小风门相同开度情况下上二次风是下二次风风量的三倍,所以加减负荷时根据负荷及时调整二次小风门开度对床温影响较大。高负荷时在床温不高的情况下尽量减小一次风,以达到减少磨损的目的,二次风用来维持总风量,高负荷时床温尽量接近900℃,以达到最佳炉内脱硫脱硝温度,同时加负荷时停止部分或全部冷渣器,床压高一点增强蓄热量可降低床温,减负荷相反,稳定负荷后3台左右冷渣器可保证床压稳定。 在优化燃烧调整基本成熟的基础上,配合锅炉主管薛红军进行全负荷低氧量燃烧运行,全负荷使床温尽量靠近900℃。根据#2炉目前脱硝系统运行情况,负荷150MW时根据氧量及时减减小二次

锅炉燃烧器烧损原因分析及防治

1000MW超超临界 锅炉燃烧器烧损原因分析及防治 曾昕 (中电投前詹港电有限公司,广东揭阳522031) 【摘要】在我国的电力产业得到了迅速发展的情况下,我国已经在1000MW超超临界锅炉方面得到了应用,并在逐渐的满足社会的需求。煤粉燃烧器在锅炉设备当中是比较重要的一个构成燃烧器的烧损对于炉内的燃烧情况有着很大的影响,故此防治这一情况显得格外重要。本文主要就1000MW超超临界锅炉的燃烧损坏原因进行分析,并结合实际找出防治措施,希望能够对此领域的学术发展起到一定的促进作用。【关键词1 1000MW超超临界锅炉燃烧器防治 在1000MW超超临界锅炉燃烧器的烧损情况发生时,最为常见的就是造成火焰的中心发生偏斜,这样就会带来高温腐蚀以及水冷壁结焦这些后果,对于锅炉的安全运行以及在经济方面的损失造成很大影响,这在检修的工作量也会大幅度的增加,所以需采取有效的防治措施来加以应对。 1 1000MW趄趄临界锅炉燃烧器的烧损原因分析 对于1000MW超超临界锅炉燃烧器的烧损原因,笔者根据相关的资料对某电厂的这一设备进行了分析。该电厂的有一号和二号机组,在2012年开始正式的投人使用,在使用不久就发生了烧损的情况,最为常见的就是燃烧器钝体板的脱落进入到了排渣的系统,在这一机组的运行时限不断的增长的情况下,在锅炉的燃烧火焰中心开始发生了偏斜,在锅炉的左右侧主以及再蒸汽温度方面出现了偏差,在空气的预热器的进口烟气的温度也发生了偏差。这些情况和燃烧器的烧损以及钝体板的脱落有着密切的联系[11。 在燃烧器的具体烧损的原因方面主要体现在燃烧器的区域温度过高,在这一机组负荷1000MW的时候通过远红外辐射高温仪进行对炉膛的温度进行测试,Sit情况如下图1所示,通过这一图形的分布可以发现,炉膛内的火焰中心的温度偏高,高温的烟气对于燃烧器的辐射换热增强,但是在燃烧器的周界冷风的量却不足,这就造成了燃烧器的喷口温度比较高,从而对燃烧器造成了烧损的情况 外就是在这一机组的运行调整的方面。首先就是煤粉的着火距离比较近,由于通风的阻力较大所以进口的一次风量要比设计值要低,这样就会造成着火的距离比较近,进而造成燃烧器的烧损情况发生,还有就为为了能够对机组的用电率得到有效的降低,对于锅炉内的氧气含量的控制不够,二次风的风速也不高这样也会造成燃烧器的烧损。由于煤质的变化因素也会产生一定的影响,入炉煤的煤质挥发份的变化范围比较大,对于设计的煤种相差甚远,在挥发份得到提高之后一次风喷口的煤粉着火的距离就会变近。在磨煤机停运的时候在对应的燃烧器周界的风开度比较小,一次风的喷口没有得到及时的冷却,这就会使得燃烧器发生烧损的情况。 这也和设备的质量有很大的关系,由于燃烧器的钝体板的制造工艺没有达到标准以及燃烧器的喷口耐磨的强度不够等都会使得燃烧器发生烧损的情况。还有在燃烧器的设计方面的因素也要得到重视,这主要就是对于材料以及结构和停运燃烧器周界风设计的控制值参数这几个重要的方面^ 2 1000MW趄趄临界锅炉燃烧器的烧损问題防治措施 针对以上对于1000MW超超临界锅炉燃烧器的烧损问题原因的分析,笔者对其制定了相应的防治措施。首先要在燃烧器设备进行加强监督以及维修,在发现了燃烧器的烧损情况之后,要对其及时的加以更换或者是修补,针对那些脱落的燃烧器钝体板也要及时的进行更换在钝体板和一次风喷口的接触地方截贴比较耐磨的陶瓷〖3]。对于钝体板的材质要选取高质量的,使用新的安装工艺,从而来解决燃烧器的钝体板脱落以及磨损这些情况,这样能够有效的防治燃烧器的烧损问题,同时还婆能够在燃烧器进口煤粉管壁温的维护方面得到加强,在测量的准确性上要能够得到确保。在停炉的这一阶段,对燃烧器和辅助的二次风安装的角度要进行严格的检查,从而能够对炉膛的设计切圆的准确性得到保证,对于锅炉的一次风速的冷热调匀实验和二次风冷态挡板特性试验要积极的完成做好,从而来保证炉膛的火焰中心不发生偏斜。 对于燃烧器的运行调整要得到有效的加强,对于燃尽风门开度以及二次风门要能够进行合理的控制,这样能够使得风箱的差压值以及炉膛的差压值保持在设计值的最近距离,从而对于燃烧器的周界风量满足冷却以及燃烧的相关标准,对于锅炉的各个负荷段的氧气体积的分数要能够将其控制在设计值的最近范围内,这样能够对各个层级的二次风喷口的低风速进行防止,从而对燃烧器起到保护的作用。对于停运燃烧器的周界风门开度的控制曲线要进行优化,加强对停运燃烧器进口煤粉管壁温的监视,还要根据磨煤机的负荷对一次风母管压力以及一次风流量进行合理的控制。 在设计的方面就要依照着燃烧器的区域温度对材料进行选择,增加在耐热以及耐磨的性能,对于燃烧器的周界风喷口的截面积要能进行合理的设计,另外就是要能够对燃烧器的钝体板结构的设计要进行优化。 3结语 总而言之,在1000MW超超临界锅炉燃烧器的烧损问题上要进行多方面的考虑分析,在找到烧损的原因基础上有针对性的进行对其解决,要能够根据事故的现场和运行的数据来进行分析烧损的原因,从而提出合理化的建议,如此才能够有效的解决烧损的真正问题。参考文献: [1]郝振.双尺度低氮燃烧技术在600MW燃煤锅炉上的应用[J].中国电业(技术版).2014,(02). [2]张耀.低氮燃烧改造在亚临界机组的应用研究[J].中国电业(技术版),2014,(02). [3]刘伟,束继伟,金宏达.电站锅炉管式空预器积灰堵塞的原因分析及解决措施[J].黑龙江电力,2014.(01).

链条炉排结构型式有哪几种它们的结构型式和技术性能如何

链条炉排结构型式有哪几种?它们的结构型式和技术性能如何为了实现加煤和除灰的机械化,链条炉排结构作为燃煤工业锅炉的一种燃烧方式,已应用相当广泛。锅炉中采用的链条炉排型式有链带式,横梁式和鳞片式三种。一、链带式炉排它们的炉排片的形状好象链节,用圆钢串连成一个宽阔的链带。炉排的传动有变速箱传动、间歇液压传动和晶闸管无级调速传动等。间歇液压传动机构简单,但间歇运动对燃料稳定燃烧不利,且液压设备容易漏油,现在已很少采用。一般采用晶闸管和其他机械无级变速传动机构,其效果较好。链带式炉排具有如下几点特性:1、链带式炉排结构简单,金属耗量较少,制造成本低,安装制造和运行管理都比较方便。 2、由于自身结构原因,链带式炉排的通风截面是一般的16%左右,甚至更高。这使得漏煤量比较大,且运行一段时间后炉排片之间磨损严重,加大了通风间隙与漏煤量,一般漏量可达3%~7%。 3、轻型链带式炉排长时期运行后,圆钢拉杆极易变形,同时炉排片较薄、强度较低,许多炉排片串在一根圆钢拉杆上,有时互相配合不良;主动轴上的链轮直接和主动炉排片楔合,使主动炉排片在热应力和拉应力的作用下,容易折断,折断后更换比较困难。 4、容量较小的锅炉,大多数采用轻型链带式炉排。它只适用于10t/h以下的锅炉应用。 5、为了解决轻型链带式炉排片断裂问题,我国很多地区研制了大块炉排片,其结构就是把原来分为多片的炉排片合起来铸

成一块。在这基础上经过改进,研制了带活络芯片型链带式炉排片,在使用上取得较好的效果。二、横梁式炉排横梁式炉排的炉排片是安装在横梁上,炉排片不受力。横梁固定在两根或三根的链条上,链条的传动,一般用前轴做主动轴,与电动机变速机械相连,前后轴上链轮啮合,完成炉排的运行。链条上固定的许多横梁,横梁槽内装有几种型号的炉排片,有普通的炉排片,调整炉排片以及封闭炉排片等。横梁式炉排的特点有: 1、横梁式炉排的结构钢性大,炉排片装在钢性较强的横梁上,主动轴上链轮通过链条带动横梁运动,而炉排片不受力,故工作条件较好,不容易发生受热变形。 2、炉排面比较平整,而且耐用。有的炉排片有一个长长的犟三,筐前亏护排片互相交叠,可以大大减少漏煤损失。炉排通风截面比约 4.5%~9.4%。3、维修方便,即使有炉排片损坏,亦可在运行中方便地更换炉排片:它可在20t/h以下锅炉中应用,并能燃用无烟煤。 4、其缺点是结构笨重,金属耗量太大。另外,这种炉对链条的强度要求较高。由于链条所承受的载荷大,使得链条与链轮的啮合力量也较大。提高了对链条,链轮的加工精度要求。如果几根平行的链条由于加工质量、安装质量不好,个别链节与链轮脱离啮合,爬到链轮的齿顶上去,即产生爬牙现象,严重时会损坏链条或磨掉链轮齿牙。横梁式炉排除一些旧式锅炉外,目前国内已很少使用。三、鳞片式炉排鳞片式炉排整个炉排根据宽度不同有4到12根互相平

链条锅炉操作规程

链条锅炉操作规程 一、设备特性 设备型号:DZL4-1.25-AⅡ 锅炉编号:1057167 额定蒸发量:4t/h 额定蒸汽压力:1.25Mpa 安全阀整定压力:0.6MPa 锅炉运行规定压力:0.5~0.55 MPa 给水水箱运行水位:以水箱玻璃管水位计上标示的高低红线之间为准 汽包水位:保持在±30mm范围内 额定蒸汽温度:193℃ 设计热效率:76% 给水温度:20℃ 受热面积:102.8m2 设计燃料:Ⅱ类烟煤

二、结构简介 本锅炉为单锅筒纵置式水火管锅壳式锅炉,燃烧设备为链条炉排。炉膛左右两侧水冷壁为辐射受热面,炉膛两翼为对流受热面,锅筒内布置螺纹烟管对流受热面,前后拱采用耐热混凝土整体浇注捣制成型新工艺,锅炉主机外侧为立体形护板外壳。 三、锅炉的燃烧过程 燃料自煤斗落在炉排前部,随着炉排运转,煤经过预热干馏、着火、燃尽,煤渣落入渣斗,由除渣机随时排出炉外,烟气在前后拱间的喉部能形成涡流与空气充分混合,并加热前拱、改善着火条件,经过拱上部出口烟窗进入两翼对流管束,通过前烟箱进入螺纹烟管,经过省煤器、除尘器,由引风机引至烟囱排出。 四、锅炉的烘炉 1、烘炉前应具备的条件 1.1、锅炉及附属装置全部组装完毕并进行水压试验合格; 1.2、防腐和保温结束,并且烟道内杂物已经清除干净; 1.3、锅炉的热工仪表校验合格; 1.4、锅炉各个辅机试转完毕,具备启动条件。

2、烘炉方法及注意事项 2.1 火焰应在炉膛中央,燃烧均匀,不得时断时续; 2.2 炉排在烘炉过程中应定期转动,防止烧坏炉排; 2.3 烘炉升温根据炉膛出口处烟气温度来控制,每天升温不得超过80℃,后期烟温不应超过160℃; 2.4 耐热混凝土炉拱、炉墙应待三昼夜正常保养期满后方可开始烘炉; 2.5 烘炉时间一般为5天左右,第一天用木柴烘炉,第二天后逐渐加煤燃烧,间断地开启鼓、引风机进行机械通风。 五、锅炉的煮炉 1、煮炉的目的 煮炉的目的是在锅炉中加入NaOH和Na3PO4·12H2O进行化学处理,采用碱性煮炉法,把锅内油污、铁锈除去,以保证锅炉受热均匀、运行正常。 2、煮炉时的加药量应符合设备技术文件规定,以下表为准:

供暖锅炉的燃烧调节与节能(最新版)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 供暖锅炉的燃烧调节与节能(最 新版)

供暖锅炉的燃烧调节与节能(最新版)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 摘要:供暖中燃烧调节和节能不仅关系到居民生活水平的改善,同时也是能源节约以及环境保护的重要组成部分,本文就链条炉为例,浅谈供暖锅炉的燃烧调节和节能。 关键词:节能燃烧调节链条炉燃烧控制 目前在城市现代化建设过程中,对于城市的集中供暖是其中的一个重要的标志,同时供暖中燃烧调节和节能不仅关系到居民生活水平的改善,同时也是能源节约以及环境保护的重要组成部分,本文就链条炉为例,浅谈供暖锅炉的燃烧调节和节能。 一、目前在层燃链条炉燃烧和节能上存在的问题 首先在用料方面,必须要选用质量较好的煤,同时对于负荷调整的速度较慢,供能要求较高并其负荷波动较大的热源站,随着备用锅炉的增加,也会导致效率的降低,影响节能效果;很多链条炉因本身的密封效果较差,从而导致锅炉本身的漏风系统和炉膛温度过高,增大了排烟所造成的热损失;链条炉中链条炉排重量过大,导致电机的

锅炉燃烧优化调整方案

锅炉燃烧优化调整方案 萨拉齐电厂的2×300MW CFB锅炉是采用哈尔滨锅炉股份有限公司具有自主知识产权的CFB锅炉技术设计和制造的,锅炉型号HG-1065/17.6-L.MG,是亚临界参数、一次中间再热自然循环汽包炉、紧身封闭、平衡通风、固态排渣、全钢架悬吊结构的循环流化床锅炉,燃用混合煤质,锅炉以最大连续负荷(即BMCR工况)为设计参数,锅炉的最大连续蒸发量为1065t/h。循环物料的分离采用高温绝热旋风分离器,锅炉采用支吊结合的固定方式,受热面采用全悬吊方式,空气预热器、分离器采用支撑结构;锅炉启动采用床下和床上联合点火启动方式。 萨拉齐电厂锅炉主要技术参数: 一、优化燃烧调整机构

为了积极响应公司号召,使我厂锅炉燃烧优化调整工作有序进行,做到调整后锅炉更加安全、经济运行,我厂成立了锅炉优化燃烧调整小组: 1、组织机构: 组长: 杨彦卿 副组长:冀树芳、贺建平 成员:刘玉俊、蔚志刚、李京荣、范海水、谷威、孔凡林、薛文祥、于斌 2、工作职责: 1)负责制定锅炉优化燃烧调整的工作计划; 2)负责编制锅炉优化燃烧调整方案及锅炉运行中问题的检查汇总; 3)负责组织实施锅炉优化燃烧调整工作,保证锅炉长周期连续稳定运行。 二、优化燃烧调整工作内容: 1、入炉煤粒度调整: 1)CFB锅炉对入炉煤粒径分布要求很高,合理的粒径分布是影响锅炉燃烧安全稳定和经济的最重要因素之一,入炉煤粒径对锅炉的影响有以下几点:a)入炉煤细粒径比例较少,粗颗粒比例多,阻力相应增加锅炉流化所需一次风量增大,细颗粒逃逸出炉内的几率增高,锅炉飞灰含碳量上升;b)入炉煤细颗粒比例多,粗颗粒比例少,在相同的一次风量下锅炉床层上移,床温升高,

锅炉燃烧调整

锅炉燃烧调整 一、燃烧调整的目的和任务 锅炉燃烧工况的好坏,不但直接影响锅炉本身的运行工况和参数变化,而且对整个机组运行的安全、经济均将有着极大的影响,因此无论正常运行或是启停过程,均应合理组织燃烧,以确保燃烧工况稳定、良好。锅炉燃烧调整的任务是: l、保证锅炉参数稳定在规定范围并产生足够数量的合格蒸汽以满足外界负荷的需要; 2、保证锅炉运行安全可靠; 3、尽量减少不完全燃烧损失,以提高锅炉运行的经济性; 4、使NOxSOx及锅炉各项排放指标控制在允许范围内。 燃烧工况稳定、良好,是保证锅炉安全可靠运行的必要条件。燃烧过程不稳定不但将引起蒸汽参数发生波动,而且还将引起未燃烬可燃物在尾部受热面的沉积,以致给尾部烟道带来再燃烧的威胁。炉膛温度过低不但影响燃料的着火和正常燃烧,还容易造成炉膛熄火。炉膛温度过高、燃烧室内火焰充满程度差或火焰中心偏斜等,将引起水冷壁局部结渣,或由于热负荷分布不均匀而使水冷壁和过热器、再热器等受热面的热偏差增大,严重时甚至造成局部管壁超温或过热器爆管事故。 燃烧工况的稳定和良好是提高机组运行经济性的可靠保证。只有燃烧稳定了,才能确保锅炉其它运行工况的稳定;只有锅炉运行工况稳定了,才能保持蒸汽的高参数运行。此外,锅炉燃烧工况的稳定、良好,是采用低氧燃烧的先决条件,采用低氧燃烧,对降低排烟热损失、提高锅炉热效率,减少NOx和SOx的生成都是极为有效的。 提高燃烧的经济性,就要求保持合理的风、粉配合,一、二次风配比,送、吸风配合和保持适当高的炉膛温度。合理的风、粉配合就是要保持炉膛内最佳的过剩空气系数;合理的二、二次风配比就是要保证着火迅速,燃烧完全;合理的送、吸风配合就是要保持适当的炉膛负压。无论在稳定工况或变工况下运行时,只要这些配合、比例调节得当,就可以减少燃烧损失,提高锅炉效率。对于现代火力发电机组,锅炉效率每提高l%,整个机组效率将提高约0.3—0.4%,标准煤耗可下降3—4g/(kW?h)。 要达到上述目的,在运行操作时应注意保持适当的燃烧器一、二次风配比,即保持适当的一、二次风的出口速度和风率,以建立正常的空气动力场,使风粉均匀混合,保证燃烧良好着火和稳定燃烧。此外,还应优化燃烧器的组合方式和进行各燃烧器负荷的合理分配,加强锅炉风

链条炉排常见故障的原因

链条炉排常见故障的原因 在小型锅炉的日常应用中,炉排的故障较多,维修量大,影响着锅炉的正常使用。锅炉炉排出现故障的原因是多方面的。 (1)材质要求不高。为降低造价,炉排侧密封铁多采用HT200,其耐热温度较低易造成高温烧损、变形卡链条。由于炉膛内温度较高,故宜采用耐热铸铁制造。如RQTA122,在空气炉气中耐热温到1100℃。炉排主链条也宜采用耐热铸铁,以保证长久良好的机械性能。 (2)炉排制造精度要求不高,误差大。作为快装锅炉,炉排前后轴的平整度影响着炉排行进阻力大小及应力平均程度,易造成炉排跑偏、断片。炉排跑偏时两侧螺栓调整没有参考标尽,单凭经验,给用户造成不便。 (3)炉排主动链齿工装误差大,造成链齿磨损,炉排因受力不均撕裂、起拱、炉排轴弯曲。链齿插铣键槽时没有统一校准或装配时秩序有误,造成链齿不同步。例如一台10t/h 锅炉链齿误差达12mm,锅炉运行中炉排经常大面积撕裂,炉排轴弯曲,不得已全面检修,耗时费力。 (4)风室落灰装置亟待改进。风室内积灰及时排除有利于正常供风,炉梁得以冷却。落煤灰得不到及时排除会因炉内高温而燃烧,烧坏炉梁道轨。除去运行操作人员要正确及时操作外,摇灰把手或拉杆要省力可靠,落灰板最好整板制作,摩擦面经打磨加工,充分考虑热变形带来的影响。另外,第一风室是煤的预热干燥阶段,所需风量小,运行时一般关闭,而漏灰多为细煤,极易燃烧。曾发现有几台锅炉多次出现炉梁过烧变形,大都集中在第一、二风室,后来维修时将第一风室封闭,使之不漏煤,使用效果良好。 (5)风门风量控制粗糙。由于炉排烘烤,风门处温度一般在100℃左右,受胀缩影响,部件易变形,造成关不严、开度与实际不符等故障。 (6)前后大轴润滑方式亟待改进。前后大轴多采用轴瓦滑运摩擦,用润滑脂润滑,一般由4~8个加油孔径组成。由于前后大轴工作温度在100℃附近,普通钙基脂易固化,宜采用耐温润滑脂。但油路过细过长,加油仍很困难。有的锅炉房尝试用30#机油杯代替,目前使用效果良好。 (7)运行过程中维护不当。很多单位的司炉人员工作素质偏低,缺乏锅炉的相关知识,有的则是责任心不强,如清灰不及时,导致通风不畅,油杯缺油,使得润滑不佳。很多细小的毛病得不到及时的发现,最终酿成在事故。 (8)领导管理出现问题。如不燃用规定煤种,以至于锅炉和燃煤不相适应,不做定期的检查保养。不恰当地减少司炉操作人员。 作为锅炉制造厂家,在制造过程中,应重视炉排燃烧部件的质量。作为使用者,在日常运行中也应重视对设备的精心维护。

提高电站锅炉燃烧效率的优化技术(标准版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 提高电站锅炉燃烧效率的优化技 术(标准版)

提高电站锅炉燃烧效率的优化技术(标准版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 燃料在锅炉的炉膛中燃烧释放热能,经过金属壁面传热使锅炉中的水转化成具有一定压力和温度的过热蒸汽,随后把蒸汽送入汽轮机,由汽轮驱动进行发电。燃烧优化技术能够有效提高锅炉燃烧的效率并减少污染。本文重点分析能够提高电站锅炉燃烧效率的优化技术。 电站锅炉燃烧优化技术发展 我国经济发展逐渐从粗放型转入集约型,对电站锅炉的燃烧不仅要追求经济效益还要实现安全性及环保性。目前,我国电站锅炉燃烧优化技术取得了长足的进步但还存在一些比较严重的问题。为了保证电能的及时供应,燃煤机组及燃煤技术得到迅速的发展,但电站锅炉的自动化水平仍然非常低。20世纪70年代测量技术的改进有效促进煤炭燃烧效率的提高。氧化锆氧量计大大提高了锅炉燃烧后释放的烟气内氧气含量检测的准确性,在我国各个电站得到普遍应用,另外风速监测技术也是诞生在20世纪70年代的优化技术。 我国在20世纪80年代进行了技术改进,平均煤炭消耗大大降低,

锅炉燃烧调整

[分享]锅炉燃烧的监视与调整 锅炉燃烧, 调整 锅炉燃烧的监视与调整 1. 燃烧调整的任务炉内燃烧调整的任务可归纳为四点: (1)保证燃烧供热量适应外界负荷的需要,以维持蒸汽压力、温度在正常范围内。 (2)保证着火和燃烧稳定,燃烧中心适当,火焰分布均匀,不烧坏燃烧器,不引起水冷壁、过热器等结渣和超温爆管。(燃烧的安全性) (3)燃烧完全,使机组运行处于最佳经济状况。提高燃烧的经济性,减少对环境的污染。(经济性) (4)对于平衡通风的锅炉来说,应维待一定的炉膛负压。 2. 燃烧火焰监视煤粉的正常燃烧,应具有光亮的金黄色火焰,火色稳定、均匀,火焰中心在燃烧室中部,不触及四周水冷壁;火焰下部不低于冷灰斗一半的深度,火焰中不应有煤粉分离出来,也不应有明显的星点,烟囱的排烟应呈淡灰色。 ① 火焰亮白刺眼:风量偏大,这时炉膛温度较高; ② 火焰暗红:风量过小、煤粉太粗、漏风多,此时炉膛温度偏低; ③ 火焰发黄、无力:煤的水分偏高或挥发分低。 3. 燃料量的调整由于直吹式制粉系统出力的大小直接与锅炉蒸发量相匹配,当负荷变化时,通过①调节给煤机的转速或②启停制粉系统来适应负荷变化的需要。 (1)负荷变动大,即需启动或停止一套制粉系统。 在确定制粉系统启、停方案时,必须考虑到燃烧工况的合理性,如投运燃烧器应均衡、保证炉膛四角都有燃烧器投入运行等。以韩二600MW锅炉为例: ① 75%~100%B-MCR时,运行五台磨; ② 55%~75%B-MCR时,运行四台磨; ③ 40%~55%B-MCR,只有三台磨煤机运行。

④ 40%B-MCR以下时,两台磨运行。 而当锅炉负荷小于50%B-MCR时,应投入油枪稳定燃烧。同时为了保持低负荷时燃烧的经济性,在停用制粉系统时,应注意先停上层燃烧器所对应的磨煤机,而保持下层燃烧器的运行。 (2)负荷变化不大,可通过调节运行中的制粉系统出力来解决。 1) 锅炉负荷增加,要求制粉系统出力增加,应: ① 先增加磨煤机的通风量(开大磨煤机进口风量挡板),利用磨煤机内的少量存粉作为增负荷开始时的缓冲调节; ② 然后增大给煤量(加大给煤机的转速); ③ 同时开大相应的二次风门,使燃煤量适应负荷。 2) 锅炉负荷降低时,则减少给煤量和磨煤机通风量以及二次风量。 4. 风量的调整锅炉的负荷变化时,送入炉内的风量必须与送入炉内的燃料量相适应,同时也必须对引风量进行相应的调整。 入炉的总风量包括一次风和二次风,以及少量的漏风。单元制机组通常配有一、二次风机各两台。一次风机负责将煤粉送入炉内,故运行中的一次风量按照一定的风煤比来控制;二次风机就是送风机,燃烧所需要的助燃空气主要是送风机送入炉膛的,所以入炉总风量主要是通过调节二次风量来调节的。而调节的目标就是在不同负荷下维持相应的氧量设定值(锅炉氧量定值设为锅炉负荷的函数)。 (1) 总风量的调节方法1) 送风大小的判断 ① 锅炉控制盘上装有O2量表,运行人员根据表计的指示值,通过控制烟气中的CO2和O2含量,从而控制炉内过量空气系数的大小。使其尽可能保持为最佳值,以获得较高的锅炉效率。 ② 锅炉在运行中,除了用表计分析判断之外,还要注意分析飞灰、灰渣中的可燃物含量,观察炉内火焰及排烟颜色等,综合分析炉内工况是否正常。如前所述:火焰炽白刺眼,风量偏大,O2量表计的指示值偏高,可能是送风量过大,也可能是锅炉漏风严重,送风调整时应予以注意;火焰暗红不稳,风量偏小时,O2量表计值偏小,此时火焰末端发暗且有黑色烟怠,烟气中含有CO并伴随有烟囱冒黑烟等。 2) 总风量的调节 ①是通过电动执行机构操纵送风机进口导向挡板或动叶倾角,改变其开度来实现的。

锅炉空气预热器二次燃烧事故的原因分析参考文本

锅炉空气预热器二次燃烧事故的原因分析参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

锅炉空气预热器二次燃烧事故的原因分 析参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、前言 辽宁省华锦化工集团盘锦乙烯有限责任公司开工锅炉 BF-1101B回转式空气预热器(GAH)曾先后2次因发生二次 燃烧事故而损坏。为吸取事故教训,笔者对空气预热器着 火原因、现象进行了分析,并提出了相应的预防措施及解 决办法。 二、事故经过 20xx年1月14日零时58分,该公司BF-110lB炉因

火焰监测器检测不到火焰信号而报警联锁停车,紧接着工艺人员对B炉实施恢复点火过程中,又因其他仪表故障而多次使B炉吹扫点火失败。2时左右,就在继续对B炉进行吹扫点火期间,总控人员发现锅炉系统报警盘上的GAH 停车报警,于是立即通知现场检查确认。检查中发现空气预热器换热元件已经冒烟着火,支撑板被烧得通红,并且蓄热板多半因严重过热而熔化变形,有的已脱落在烟道内。各种现象表明GAH为二次燃烧,现场立即做紧急处理。检修后虽能勉强再用,但GAH转子终因严重过热而产生了明显位移,并导致漏风严重、周边过渡卡磨、电机频繁超载眺闸等一系列不良后果,初定择期进行检修或更换。而该炉在1997年12月,就曾因锅炉超负荷运行时间过长,已发生过2起空气预热器二次燃烧事故,事故造成空气预热器全部烧毁。

相关文档
最新文档