9000KW纯低温余热发电系统

9000KW纯低温余热发电系统
9000KW纯低温余热发电系统

9000kW纯低温余热发电系统

余热锅炉系统

●SP余热锅炉:1台

(1)锅炉型号:KS322/320-23.0-1.18/295 (2)自然循环锅炉、机械振打

(3)室外、立式

(4)过热蒸汽压力:1.18Mpa

(5)过热蒸汽温度:295℃

(6)过热蒸汽量:23.0 t/h

●AQC余热锅炉:1台

(1)锅炉型号:KA200/380-19.5-1.18/355 (2)自然循环锅炉、自清灰

(3)室外、立式

(4)过热蒸汽压力:1.18Mpa

(5)过热蒸汽温度:355℃

(6)过热蒸汽量:19.5 t/h

(7)低温省煤器热水量:42.5t/h

汽轮发电机系统

●纯凝式汽轮机:1台

(1)型号:N8-1.05

(2)型式:冲动、纯凝、单压进汽

(3)额定输出功率;9000 kW

(4)汽轮机转速:3000 r/min,

(5)进汽压力:1.05 MPa

(6)进汽温度:315℃

(7)过热蒸汽流量:42.5 t/h

(8)冷凝器排汽压力:0.006 MPa

(9)凝结水温度:35℃

●发电机:1台套

(1)型号:QF-8-2

(2)额定功率:9000 kW

(3)额定电压:10500V

(4)功率因素:0.8

(5)发电机转速:3000 r/min

(6)励磁方式:静止可控硅励磁

余热发是建筑及结构

建筑设计将严格遵照国家现行的建筑设计规范、标准,尽量采用新技术、新材料和先进可靠的建筑构造。在建筑形象上充分考虑建筑的总体性和地方性,力求布局合理、造型美观、色彩协调,努力创造既有时代感又有地方特色的工业建筑群的新形象。

建筑构造及做法

(1)屋面

一般生产车间屋面排水均为无组织排水,现浇钢筋混凝土屋面坡度为3%,压型钢板屋面坡度为1:10。屋面防水为面粉1:2防水砂浆20厚,粉平压光。辅助建筑屋面为PVC防水卷材屋面,其屋面保温采用防水珍珠岩或聚苯乙烯板。

(2)楼地面

一般生产车间地面为C20混凝土地面,楼面为现浇钢筋混凝土随捣随光。办公、值班室楼地面采用地砖楼地面。生产车间室内外高差为150mm,辅助车间室内外高差为300~600mm.

(3)墙体及粉刷

一般承重墙采用240厚承重粘土多孔砖墙,钢筋混凝土框架结构填充墙采用非承重粘土多孔砖墙。需围护的输送廊及轻钢厂房采用压型钢板。

需要采暖保温的车间的砖墙采用370厚加挤塑保温板。

一般车间及辅助建筑外墙均刷外墙涂料,车间内墙面喷(刷)石灰浆。办公室、值班室、煤磨车间、配电室、控制室等内墙做水泥砂浆粉刷,面刷涂料,有特殊要求或标准较高的建筑物可采用贴面砖。

一般车间顶棚喷白,辅助建筑顶棚水泥砂浆粉刷,面刷涂料或做吊顶。(4)门窗

一般外门窗采用塑钢门窗,洞口较大的外门用钢大门。有保温要求的门窗采用双层玻璃。一般内门窗均采用木门窗。

(5)楼梯、栏杆

辅助建筑及煤粉制备车间为钢筋混凝土楼梯,一般生产车间均采用钢梯。平台栏杆一般采用钢栏杆。

(6)地沟、地坑

一般采用级配密实防水钢筋混凝土,抗渗标号不小于S8。地沟一般为混凝土地沟,当沟宽和深大于1000mm或有防水荷重等要求时,选用钢筋混凝土地沟。

结构选型

(1)窑尾预热器塔架

钢管混凝土结构具有充分发挥材料的力学性能的特点,代表着目前高层结构的发展方向。根据工艺技术要求,基本确定本项目的窑尾塔架平面轴线尺寸为17.1m×25.8m;共分为7层,底层为钢筋混凝土结构,上部6层为钢结构。

经过对钢管砼柱、空圆钢管柱、空方钢管柱和H型钢柱等方案的技术与经济比较,选用钢管砼柱方案最为经济合理,其方案比较见下表:

(2)配料库、生料均化库等为现浇钢筋混凝土筒库,滑模施工。(3)熟料储库采用一个Φ45m的熟料筒库,取消中心混凝土内筒,采用大直径钢结构库顶。

(4)烧成窑头、煤粉制备、破碎等一般主车间均采用钢筋砼框架结构。(5)窑墩采用空心或大块式钢筋砼墩。

(6)生料均化库为钢筋砼库,库顶板采用钢梁支承,压型钢板作底模上浇砼板,该方案解决了顶板支模的问题,加快工程进度。

(7)辅助生产车间采用砖混结构或现浇钢筋砼结构。

(8)地坑、地沟及地下通廊,采用集料级配密实防水砼,通过适当提高砼等级,涂刷防水剂等方法来保证其防水性能。

(9)皮带输送廊

高度大于6m的输送廊,可针对不同的高度采用跨距为18~36m的下沉式钢桁架,其制作和安装均较方便,我公司采用通用设计。高度小于6m 的输送廊,采用钢筋砼结构或钢筋砼柱实腹式钢梁方案。

地基基础

原则上将尽量采用天然地基并尽量浅埋;如必须进行地基处理,则进行多种方案的技术经济比较,选择最合理的地基处理方案。本项目主要建构筑物的结构特征及采用天然地基时对承载力标准值的要求见下表:

结合总图方案,地基基础暂按如下方案考虑:一般框、排架厂房均采用柱下钢筋混凝土独立基础;筒仓采用环形或整板基础;砌体结构建筑均采用浆砌毛石条形基础或钢筋混凝土柔性基础。同时工程设计中将会根据地质条件和地基承载力,随时调整基础的设计方案。

水泥余热发电电气概述

供电要求

(1) 电源

本项目供电电源来自220kV变电所供电,110kV单塔双回路架空进厂区总降,厂区中高电压等级为10kV,主变容量为25000kVA。保安电源由工厂自设柴油发电机解决。

(2) 电压等级

供电电压: 110kV

中压配电电压: 10.5kV

低压配电电压: 0.4/0.23kV

高压电机电压:10kV

低压电机电压: 380V

照明电压: 220V

控制电压: 220V

直流操作电压: DC 220V

直流电机电压: DC 660V

(3)用电负荷和电耗

熟料生产线总装机容量:26200 kW

其中高压电机容量:14720kW

计算负荷:19650kW

自然功率因数:0.70

补偿后功率因数(总降10kV母线侧):0.95

熟料生产综合电耗:62kWh/t

生产线年用电量: 10571?104kWh

余热发电装机功率:9000kw

平均发电功率:7664kw

年发电量:5735?104kWh

年供电量:5365?104kWh

供配电系统

(1) 供配电方案

本期工程新建一座110/10.5 kV总降压站,生产线总装机容量约为26200kW,计算负荷19650kW,总降压站内设25000kV A主变压器一台,主变一次侧电压为110±8*1.25%kV,二次侧电压为10.5kV,主变接线组别为Yn,D-11。

10kV开关柜采用中置式开关柜,由总降向原料磨配电站、窑头配电站及发电电气室供电。详见总降“配电系统图”。

在总降10kV母线上设高压电容自动补偿装置,以保证功率因数大于0.95,电容补偿装置安装在电容器室内。

总降按无人值班运行的技术要求进行设计,以降低生产成本。采用

综合自动化保护系统,通过计算机进行集中监控。具有完整的继电保护,用于110kV开关系统、主变压器和10kV配电系统的保护、控制、测量和报警监视。总降内各设备均能在监控计算机上监控,监控计算机可以设在总降内也可以设在中控室内。

主变压器的保护:主保护为比例制动的差动保护;后备保护包括110kV 侧复合电压闭锁过电流保护,10kV侧复合电压闭锁过电流保护,110kV侧过负荷保护,10kV侧过负荷保护;非电量保护包括:本体轻、重瓦斯、有载调压轻重瓦斯、本体温度、压力释放等。

(2) 配电系统

根据生产线负荷情况,全厂设三个10kV配电站、5个电气室,分别为原料磨配电站、窑头配电站、石灰石破碎配电站、原料处理电气室、原料磨电气室1个、窑尾电气室1个、窑头电气室1个及石灰石破碎电气室1个。

原料磨配电站为单母线分段结线,两路电源分别引自总降压站,正常时两路电源同时供电,母联柜断开,其中一路电源故障时,母联柜合上,由另一路电源给整个配电站供电;窑头配电站为单母线不分段结线,两路电源引自总降压站,其中一路为工作电源,另一路为备用电源;石灰石破碎配电站为单母线不分段结线,一路电源引自总降压站。

为了减少土建费用,主要的电气室和配电站均设置在工艺设备的框架下。如:原料磨配电站和原料磨电气室设在窑尾电收尘框架下;窑尾电气室设在窑尾塔架下;窑头配电站和窑头电气室设在窑头电收尘框架下。

各电气室和MCC室的供电范围如下:

石灰石破碎电气室

配电范围包括石灰石破碎。

原料处理电气室

配电范围包括石灰石输送、石灰石预均化堆场、辅助原料破碎、辅助原料均化堆场及输送、循环水池及泵房、综合材料库、机修间等。

原料磨电气室

配电范围包括原料配料站、原料粉磨及废气处理、生料均化库(顶部)等。

窑尾电气室

配电范围包括生料均化库(底部)、生料入窑、烧成窑尾、烧成窑中以及辅助车间等。

窑头电气室

配电范围包括烧成窑头、煤粉制备及熟料输送等。

(3) 功率因数补偿

无功功率采用静电电容器补偿,在原料磨配电站、窑头配电站和石灰石破碎配电站10kV母排上设10kV电容补偿装置,在各电气室的低压母排上设低压电容自动补偿装置,确保补偿后系统功率因数达到0.95。

继电保护及测量

(1) 继电保护

主变压器的保护:主保护为比例制动的差动保护;后备保护包括110kV 侧复合电压闭锁过电流保护,10kV侧复合电压闭锁过电流保护,110kV侧过负荷保护,10kV侧过负荷保护;非电量保护包括:本体轻重瓦斯、有载调压轻重瓦斯、本体温度、压力释放等。

车间变压器回路的保护:电流速断、过电流、零序保护。对于800kW 及以上的变压器装设瓦斯和温度保护。

2000kW及以上电机回路的保护:比例制动的差动保护、电流速断保护、过电流保护、过热保护、低电压保护、零序保护。

2000kW以下电机回路的保护:电流速断保护、过电流保护、过热保护、低电压保护、零序保护。

进线回路的保护:电流速断、过电流保护。

10kV电容器保护:电流速断保护、过电流保护、过电压保护、不平衡电压保护等。

母联柜的保护:电流速断、过电流保护。

(2) 电气测量

变压器回路:装设电流表、有功电度表。

电机回路:装设电流表、有功电度表。

进线回路:装设电流表、有功电度表、无功电度表、功率因数表。

电容器回路:装设电流表、无功电度表。

母联柜:装设电流表。

车间电力拖动及控制

(1) 车间用电设备供电

熟料生产线中高压电机由原料磨配电站和窑头配电站分别供电,石灰石破碎电机由石灰石破碎配电站供电;低压电机由车间MCC柜放射式供电。

照明电源与动力电源分开,分别由电气室单独供电。

(2) 电动机型式及电控设备选择

电动机的容量、型式和调速方式由工艺专业在设备选型中确定。交流电机容量大于等于200KW时,选用10kV电动机,容量小于200kW时选用380V电机(变频电机除外)。

低压电机主回路采用自动空气开关作短路保护,热继电器及电机保护器作过负荷保护,交流接触器作失压保护。

鼠笼电机一般采用全电压直接起动,大于132kW鼠笼电机根据需要采用软起动器起动;低压绕线电机和10kV绕线电机采用液体变阻器起动。

直流电机采用数字式可控硅直流传动装置调速;鼠笼电机若需调速则采用变频调速装置调速。

在提升机、胶带输送机、螺旋输送机、回转卸料器等设备的从动轮处设一速度开关,用于检测设备的运转状况。

对于10米以上胶带输送机设拉绳开关,以后每隔60米增设一拉绳开关。长度超过150米的胶带输送机设跑偏开关,以后每隔150米增设一对跑偏开关。

在提升机底部设一带钥匙检修按钮,确保检修时人身安全。

(3) 车间控制

从石灰石破碎至熟料输送整个生产线采用集散型控制系统(DCS)控制,

操作人员在中控室对设备进行监控。DCS系统的现场设备设在各个电气室中。

辅助生产车间采用常规继电——接触器控制。这种方式一般在车间内设控制室,集中控制本车间用电设备。

为了检修、试车的方便,在现场设机旁开、停按钮,在任何状态下均可在机旁停车。为了维修人员的安全,在机旁设带钥匙的紧急停车按钮,该按钮锁住时,在任何地方均不能开车。

配电线路

10KV线路采用YJV-10、YJV22-10交联聚氯乙烯电缆,低压电缆采用VV-1、VV22-1聚氯乙烯电缆,控制电缆采用KVV-0.5、KVVP-0.5聚氯乙烯控制电缆。在窑尾、窑中、窑头等温度较高场合,可以考虑采用高温电缆。

厂区室外主要采用电缆桥架敷设,局部采用直埋敷设。厂区道路照明采用电缆埋地敷设;车间内采用电缆桥架、电缆沟和穿管直埋敷设相结合的方式。

电气照明

户外采用节能型高压钠灯,采用光电节能开关,对各区段路灯进行控制;各车间照明电源分别引自相应的电气室,在车间内的合适位置设置照明配电箱,工业厂房选用节能型工厂灯;控制室内选用荧光灯。

防雷与接地

厂区内15M以上的建、构筑物均须设置防雷装置,利用建筑物顶部金属栏杆并在需要时设置避雷针作为接闪器,充分利用建筑物基础作为防雷接地体,在其接地阻值不能满足要求时可打接地极来满足要求。

接地电阻要求:

变电所、电气室:不大于4欧

防雷接地:不大于10欧

保护接地:不大于10欧

水泥生产线自动化控制设计原则

从石灰石破碎至熟料输送整个生产线采用集散型控制系统(DCS)控制,在中央控制室内对整个生产线进行实时监视和控制。DCS系统的现场设备设在各个电气室中。

为保证全厂的正常、连续、稳定生产,除DCS系统外,还设置以下自动化监视、调节、保护、控制设备和系统:

(1)原料配比控制调节系统。

(2)窑尾袋收尘器和煤磨袋收尘器的防爆保护监视设备。

(3)管道增湿喷水自动控制系统。

(4)高温风机转速控制系统。

(5)入窑生料的自动控制系统。

(6)预热器和分解炉的温度压力监视设备。

(7)窑和分解炉喂煤量的控制系统。

(8)窑尾预热器出口、煤磨袋收尘器出口、煤粉仓气体成份分析系统。

(9)回转窑红外线胴体扫描系统。

(10)工业电视监控系统。

上述(1)~(8)项各设备与系统的信号全部进入DCS系统,并接受DCS系统的调节与控制。

2.6.6.2 设备选型原则

(1)集散型计算机控制系统(DCS)及相关的一些关键生产过程检测设备拟选用国外著名公司在国内代理商的产品。窑胴体测温装置、气体分析仪的关键件、部分执行机构等也采用国外代理产品或采用引进技术制造和开发、且经过生产实践检验使用效果良好的国内产品。

(2)温度、压力、流量、物位、电量、速度、振动等现场传感组件选用国内应用成熟、质量可靠、性能稳定的产品,其信号制统一采用模拟信号4 20mA、数字信号220V AC。

(3)尽可能选用通用的标准化产品,能在相当时间范围内确保有备品备件的供应。

控制系统和现场仪表等的设置

(1) 控制系统

集散型计算机控制系统(DCS)的控制范围包括石灰石破碎、石灰石输送、辅助原料破碎及输送、石灰石预均化堆场、原料配料站、原料粉磨、废气处理、生料均化库、生料入窑、烧成窑尾、烧成窑中、烧成窑头、熟料输送、煤粉制备及输送、循环水泵房等车间。

分布式控制系统由操作员站、工程师站、现场控制站、高速数据传输网络等组成。详见“控制系统组态图”。

在中央控制室设置四个操作员站,在石灰石破碎设一个现场操作员站对主生产线进行控制、监视以及运行管理。与此同时,主生产线的实时运行资料的处理、储存和管理也在操作员站上实现。

操作员站以分级显示的形式反映工厂主生产线上所有设备的运行状况、系统各关键点的工艺参数以及系统的运行变化趋势。中央控制室的操作员通过CRT所显示的实时动态画面掌握全厂生产过程的现状和趋势,操作员通过键盘、鼠标等输入工具,根据工艺操作的需要调用所需画面,发送控制和调节指令,控制调节现场设备。

现场控制站设置在相应电气室,主要实现对生产过程的逻辑控制、顺序控制以及检测报警,同时接受来自现场设备的各种测量信号,把其转换成标准的系统内部信号进行各种运算和处理。现场控制站通过高速数据总线向操作员站传输工艺过程的各种参数,同时接受并实施操作员站的各种控制指令。

在中央控制室设置一个工程师站,工程师站用于对整个控制系统的监视、维护以及修改,同时具有操作员站的所有功能。

控制系统预留与工厂生产信息管理系统(MIS)的接口。

(2) 生料质量控制系统

该系统由取样设备、制样设备、多元X--Ray荧光分析仪、配料计算机等组成。

经过化验人员取样制样,使用X--Ray荧光分析仪对生料中的Ca、Fe、Si、Al、K、S等成分进行分析,分析结果送入配料计算机。配料计算机自动计算出各组分的原料配比,通过DCS系统,反馈到定量喂料设备,从而控制调节原料配比,实现工厂的连续、稳定生产。

生料质量控制系统的样品制备室、X-Ray荧光分析仪及计算机终端布置在中控楼内。

(3) 喂料控制系统

为了保证原料磨、煤磨、水泥磨等设备的稳定喂料与负荷控制,设置定量给料设备来控制调节配比和喂料量。

为了保证入预热器生料、入窑煤粉、入分解炉煤粉的稳定喂料与控制调节,分别设置生料固体流量计、入窑煤粉计量称、入分解炉煤粉计量称来控制调节喂料量。

(4) 窑筒体扫描系统

窑筒体扫描系统由传感器单元、信号处理单元、资料分析装置、打印机等组成,采用红外扫描仪监测窑胴体温度,从而有利于优化窑的操作和监控窑的耐火材料及其它生产情况。系统以直观的方式在彩色监视器上显示窑筒体特别是烧成带的温度曲线和温度图像,并且在窑筒体温度异常时发出报警信号。窑筒体扫描系统的彩色监视器及打印机设置在中央控制室。

(5) 工业电视系统

窑内火焰燃烧状况及熟料冷却机内熟料分布状况通过高温工业电视系统进行监控。该系统由摄像机护套(包括彩色摄像机、针孔镜头)、安全保护装置及机架、水气处理柜、控制器、彩色监视器等组成。

厂区其它重要的生产设备和场所如原料入磨皮带等,设工业电视系统进行监视。

工业电视系统的彩色监视器设置在中央控制室内。

(6) 气体成份分析

设置O2、CO、NO X三组份气体分析仪对出窑气体进行分析,该气体分析仪设置在预热器出口。

在煤粉仓顶部和煤磨袋收尘出口处分别设置一台CO浓度检测仪以保证设备及人身安全。

(7) 现场仪表

所有现场信号均采用国际标准信号。

(8) 接地设置

控制装置的保护接地与工作接地将严格分开,信号线屏蔽层单点接地。控制系统接地则根据系统制造商及提供的规范实施,以保证系统信号有统一的基准点。

控制室和现场控制站的设置

水泥生产线设一个中央控制室(CCR)、五个现场控制站(LCS00~LCS04)。

LCS00站设在石灰石破碎电气室,RCS00设在石灰石输送MCC室,RCS01站设在原料处理电气室,LCS01站设在原料磨电气室,LCS02站设在窑尾电气室,LCS03站设在窑头电气室,LCS04站设在煤磨电气室。

水泥生产线给水排水综述

水源及给水处理

厂区地表水系不发育,仅有猴石沟小溪呈北东至南西流向。流量一般在18.01m3/h,降雨过后最大流量420 m3/h。故本项目生产、生活用水考虑采用地下水。业主需要进一步寻找确定水井位置。

用水量

厂区生活用水约为120 m3/d。

水泥生产线生产设备冷却用水量约为12000 m3/d,车间进口处水压不小于0.3MPa,循环率98%,循环补水量约为240 m3/d。

工艺设备喷水量800 m3/d(max)

未预计用水量考虑100 m3/d

自动化仪表用水量60 m3/d

余热发电用水量2400 m3/d

工厂生产需水量为240+800+100+60+2400=3600m3/d

水源供水量为1.1×3600=3960 m3/d

给水系统

本项目给水系统分为生产给水,生产循环、消防给水及生活给水三个系统。

(一)生产给水系统

原水经软化处理后,达到循环冷却水的水质标准要求(参见《工业循环冷却水处理设计规范》GB50050-95)成为清水。大部分清水供给余热发电系统的循环补充水,部分供水泥生产线循环补充水及设备喷水。

(二)生产循环、消防给水系统

为节约用水,充分利用水资源,工厂内生产设备冷却用水采用循环供水方式,各车间进口处供水压力不小于0.3MPa,循环供水循环率约为98%,循环回水采用压力回流方式。

生产循环给水系统设有循环水池与泵房,循环给水由水泵送至厂内各车间,对生产设备冷却后,经循环回水管网回流到循环水池上的冷却塔,冷却后流入水池重复使用。冬季气温较低时,循环回水可超越冷却塔,直接流入循环水池。为了确保循环水质,泵房内设有旁滤和灭藻装置。

根据车间建筑物体积和耐火等级,煤粉制备车间室内外消防水量最大,室内为25L/s,室外也为25L/s,由此确定本项目最大消防流量为50升/秒,同一时间内的火灾次数按一次计算,消防时间以3小时计算,共需消防水量540m3/d。消防水贮存于工厂循环水池中。消防采用临时高压制,火灾时,

启动消防水泵供全厂消防用水。本工程的生产、消防循环给水干管在厂内布置成环网,管径不小于DN150,室外消火栓采用地下式,设置点均设置醒目标志,消火栓间距不大于120m,消火栓距离路面不大于2m。

火灾扑灭后,消防用水在两天内补足,每天补充270m3。

(三)生活给水系统

生活给水系统中厂区生活用水来自城镇自来水厂,用于厂区各生活设施,供水压力不小于0.3MPa。

排水系统

本项目的生产生活污水排放量约为120m3/d。污水经二级好氧生化处理后排放,处理后的污水水质达到国家允许排放标准。少量生产废水主要为循环冷却水系统排污、化验室废水、辅助生产车间废水等,基本不含有害物质,极少量酸碱废水经中和处理后排放。生产生活的废水经处理达标后排入厂外附近水体。

本项目场地内雨水采用明沟排水系统,并根据局部路段的实际情况可设置盖板。

主要建、构筑物及设备

(一)给水处理,清水池及泵房

采用离子交换的水处理方式,将水软化到生产用水水质标准。软化间的建筑面积约为240 m2,另建清水池和地上式泵房一座,清水池容积为800 m3,泵房面积为80 m2。

主要设备有:

100WFB-A2型自吸水泵四台,三用一备,性能参数:Q=58m3/h,H=35m,配用电机:N=18.5Kw;

全自动软化装置,处理性能:Q=75m3/h,电源AC220V50Hz,功率100W。

(二)循环系统水池及泵房

设钢筋混凝土水池一座,容积为800m3,埋地式布置。一座地上式布置的循环水泵房为砖混结构,泵房面积(包括控制室)约为130m2。

循环水池上设有玻璃钢冷却塔一座,型号:DBNL3-500,性能参数:当Δt=5℃时,Q=500m3/h,配用风机电机:N=15kW。

泵房内设有:150WFB-B1型自吸水泵五台,三用一备,一台消防泵,性能参数:Q=220 m3/h,H=50 m,配用电机:N=75Kw。

(三)污水处理

厂内设污水调节池一座,容积为50m3;另设污水处理装置一套,日处理能力为120m3。厂内生活污水经二级好氧生化处理后,达到国家允许排放标准后排入就近水体。

管材及敷设方式

车间内及室外小于或等于DN65的生活给水管、生产循环给水管、生产循环回水管采用镀锌钢管,丝扣连接;大于或等于DN80的采用焊接钢管,焊接钢管采用焊接或法兰连接(阀门井内);室内生活给水管采用PP-R 塑料给水管,排水管采用PVC-U排水塑料管,粘接连接。室外排水管采用双壁波纹管连接。

管材敷设为直埋方式。

新建水泥厂组织机构、劳动定员及人员培训

组织机构设置

公司组织机构采用董事会领导下的总经理负责制,负责企业的经营和管理。另设副总经理及总工程师(由分管生产技术的副职兼任)协助总经理的生产管理工作,下设若干部门完成具体的生产经营活动,详见组织机构表。

基建期间,临时设置的筹建机构和生产准备机构由本项目注册公司确定。

组织机构表

劳动定员

工作制度

本项目有较高的自动化程度,主要生产过程实行自动控制,主要生产和质量管理部门采取三班连续周(每周五天工作制)的工作制,其它部门采取二班或一班不连续周工作制。

考虑各部门作业班制不同,为确保工厂正常安全生产,辅助生产部门及维修工段在休息期间都应有少量人员值班。

职工人数

本着精简的原则,本工程需要定员为194人(含管理人员及相关的辅助生产人员),详见劳动定员表。

本设计定员仅供参考,实际定员配置可根据职工素质、培训情况、集团内其他水泥生产企业的生产经营情况等适当增减。

劳动生产率

本项目全员劳动生产率为8789吨/人·年。

全厂劳动定员表如下:

本项目实施后,公司将形成一条大中型新型干法预分解窑生产线,生产环节较复杂,自动化程度较高,要求管理人员和生产操作人员有较高的管理水平和较全面的技术水平,需对生产人员和管理人员进行严格的管理和技术培训。

由于生产线设备及技术比较先进,要求主要操作、巡检人员具有较高的专业技术水平,能适应现代化设备的操作、维护要求,主要部门的生产、管理人员应提前招聘,进行技术培训;在设备安装期间,应有设备维护人员共同参与安装工作,以便熟悉设备的构造性能,有利于以后的设备维护。

招聘来的职工首先进行现代化水泥工厂生产基础知识的培训,使其对水泥厂的生产原理、生产过程有一个全面的了解,再根据每个人从事的专业情况,分专业进行理论培训,然后进行现场培训。

由于新生产线的烧成系统等生产工艺过程采用巡检工制度,要求上岗巡检的生产人员有较高的知识水平,对相关的水泥生产过程有一个系统的了解,对巡检中发现的问题及时解决,懂得对各生产环节的操作和控制要求,从而掌握生产操作及控制。

在项目开始建设后,即可对今后的管理和操作人员进行相关的理论和技术知识培训,并选派人员去有关工厂进行操作培训,培训时间一般为3个月左右,经培训的人员在项目调试阶段将全部到位,直接参与生产调试、试生产,直至正常生产。特别要保证主要管理人员、控制和操作巡检人员的培训,要能达到独立熟练地操作设备的,并能进行日常的设备保养和维修。在试生产和投产初期还可招聘有经验的技术人员和专家进行指导,以确保项目的正常生产

水泥项目实施进度管理

低沸点工质的有机朗肯循环纯低温余热发电技术

低沸点工质的有机朗肯循环纯低温余热发电技术 作者:来源:更新日期:2007-3-19 引言 我国水泥厂的余热发电,先后经历高温余热发电、带补燃炉的中低温余热发电和纯低温余热发电3个阶段。纯低温余热发电与带补燃的中低温余热发电相比,具有投资省、生产过程中不增加粉尘、废渣、N0。和S0。等废弃物排放的优点。 本文介绍以色列奥玛特(0RMAT)公司利用低温热源的有机朗肯循环(0rga nic Rankine Cyck,简称()RC)纯低温余热发电技术。该技术有别于常规技术,其特点是:不是用水作为工质,而是使用低沸点的有机物作为工质来吸收废气余热,汽化,进入汽轮机膨胀做功。 1.低沸点的有机物 在一个大气压下,水的沸点足100℃,而一些有机物的沸点却低于水的沸点,见表l。 有机物的沸点与压力之间存在着对应关系,以氯乙烷为例,见表2。水的沸点与压力之间对应关系见表3。

由表2和表3可见,氯乙烷的沸点比水低,蒸气压力很高。根据低沸点有机工质的这种特点,就可以利用低温热源来加热低沸点工质,使它产生具有较高压力的蒸气来推动汽轮机做功。 2ORC纯低温余热发电在地热发电方面的应用 0RC纯低温余热发电技术在我国地热发电方面已得到初步应用,我国目前已经勘测发现的地热田均属热水型热储。热水型资源发电采用的热力系统主要有两种,即扩容(闪蒸)系统和双工质循环系统。西藏羊八井地热电站,热水温度145℃,采用二次扩容热力系统,汽轮机(青岛汽轮机厂设计制造D3一1.7/0.5型地热汽轮机发电机组)单机容量3000W,3000W/m in,一次进汽压力182kPa,温度115℃,二次进汽压力54kPa,温度81℃,额定排汽压力为10kPa。双工质循环系统中,地热水流经热交换器,把地热能传递给另一种低沸点丁质,使之蒸发产生蒸气,组成低沸点工质朗肯循环发电。双工质循环机组,其热效率高,结构紧凑。我国的小型双工质循环系统地热电站——辽宁营口熊岳试验电站的装机容量2×J00KW,利

提高水泥纯低温余热发电量的方法与途径

生产技术 Technology 屈松记1 ,齐俊华2 (1.登封嵩基集团水泥公司,登封 452476;2.河南省建材工业协会,郑州 450008) 我国水泥产能的超常发展,导致水泥企业经济效益下滑,吨水泥利润低微、甚至为负数,主业不赚钱;而纯低温余热电站已成为水泥企业新的经济增长点,成为“救命”、致富之宝。一个5 000t/d生产线的余热电站,一年可为企业带来2 000~3 000万元的经济利益。因此,建设好余热电站、管理好余热电站已成为企业的中心工作。 1 余热电站热力系统方案选择 提高水泥纯低温余热发电站的发电能力首先要做好余热电站热力系统的方案选择。余热电站的核心是热力循环系统,当前较为成功、成熟的热力循环方式主要有单压系统、闪蒸系统、双压系统等三种基本模式,以及由此而衍生的复合系统。 1.1 单压系统 单压系统是目前较普遍采用的热力系统。在该系统中,窑头余热锅炉和窑尾余热锅炉生产相同或相近参数的主蒸汽,混合后进入汽轮机,主蒸汽在汽轮机内作功、在冷凝器凝结成水,经窑头锅炉加热后到热力除氧器除氧,由给水泵送入窑头余热锅炉加热,窑头余热锅炉生产的热水再为窑头余热锅炉蒸汽段和窑尾余热锅炉供水,从而形成一个完整的热力循环。单压系统的主要特点是汽轮机只设置一个高压蒸汽进汽口。 1.2 闪蒸补汽系统 闪蒸系统应用热力学上的闪蒸原理,根据废气余热品质的不同而生产一定压力的主蒸汽和热水,主蒸汽进入汽轮机高压进汽口;热水则在闪蒸容器里产生出低压的饱和蒸汽,然后补入补汽式汽轮机专门设计的低压进汽口;主蒸汽及低压饱和蒸汽在汽轮机内一起作功,拖动发电机发电,低压蒸汽发生器内的饱和水进入除氧器与冷凝水一起经除氧后再由给水泵供给锅炉。 1.3 双压补汽系统 双压系统是根据废气余热品位的不同,分别生产较高压力和较低压力的两路蒸汽。余热锅炉生产较高压力的蒸汽后,烟气温度降低,依据低温烟气的品位,再生产低压蒸汽。较高压力的蒸汽作为主蒸汽进入汽轮机主进汽口;较低压力的蒸汽进入汽轮机的低压进汽口,一起推动汽轮机作功、发电;作功后的乏汽在冷凝器凝结成水后、经凝结水泵加压到除氧器除氧,再进入热力循环。 上述三种技术没有本质的区别,共同的特点:都是利用在窑头熟料冷却机中部增设抽废气口或直接利用冷却机尾部废气出口的400℃以下废气及窑尾预热器排出的300℃~350℃的废气余热;最重要的特点是采用0.69MPa~1.27MPa-280℃~340℃低压低温主蒸汽。区别仅在于:窑头熟料冷却机在生产0.69MPa~1.27MPa-280℃~340℃低压低温蒸汽的同时或同时再生产0.1MPa~0.5MPa-饱和~160℃低压低温蒸汽、或同时再生产85℃~200℃的热水;汽轮机采用补汽式或不补汽式汽轮机;复合闪蒸补汽式适用于汽轮机房与冷却机距离较远的情况,而双压补汽式适用于汽轮机房与冷却机距离较近的情况。 上述三个方案各有优缺点。技术上:单压方案简单,运转可靠,但余热开发、利用不完全;闪蒸和双压系统具有能源梯级开发利用优势,比单压系统技术更为先进,较单压系统多发电在8%~10%左右。一个5 000t/d生产线的余热电站,吨熟料如超发电1kWh,全年可为企业带来80~100万元的利润,故双压方案等更为合理,发展较快。 1.4 双压热力系统 这是目前较为常用的方案,该方案充分利用余热资源,设置两台不同参数余热锅炉,采用补汽凝汽式汽轮机,提高汽轮机内效率,提高吨熟料发电量。工艺流程介绍如下。 (1)在窑头设置双压余热锅炉,承担公共加热和生成低压蒸汽,同时生成部分高压蒸汽;采用立式自然循环,膜式受热面,带有两个汽包;烟气管路自上而下通过锅炉,先后经过锅炉内部的高压过热器、高压蒸发器、低压过热器、低压蒸发器和公共加热器;窑头余热锅炉前设置自然沉降除灰装置,锅炉传热管为螺旋翅片管。 (2)在窑尾设置生成高压蒸汽的窑尾余热锅炉,采 中图分类号:TQ172.625.9 文献标识码:B 文章编号:1671-8321(2015)06-0097-04

ORC低温余热发电设备项目投资测算报告表

ORC低温余热发电设备项目投资测算报告表 一、项目建设背景 从国际看,和平与发展的时代主题没有变,世界多极化、经济全 球化、文化多样化、社会信息化深入发展。新一轮科技革命和产业变 革蓄势待发,能源格局变化有利于缓解供给约束。全球治理体系深刻 变革,国际贸易投资规则体系加快重构。世界经济在深度调整中曲折 复苏、增长乏力,主要经济体走势分化。地缘政治关系复杂变化,传 统安全威胁和非传统安全威胁交织,外部环境不稳定不确定因素增多。 从国内看,经济长期向好基本面没有变,发展前景依然广阔。经 济发展进入新常态,四化同步发展,发展速度变化、结构优化、动力 转换特征愈加明显。全面深化改革、全面依法治国释放制度新红利, 将进一步激发市场活力。创新驱动战略加快实施,“中国制造2025”、“互联网+”等全面启动,新经济不断涌现。更加重视绿色发展、共享 发展,社会治理格局发生积极变化。同时,经济社会发展中不平衡、 不协调、不可持续问题依然.突出,传统增长动力减弱,结构矛盾比较 突出,保持经济平稳健康发展和社会和谐稳定面临不少困难挑战。 市场化改革、创新驱动战略、“中国制造2025”等深入推进,为 产业结构调整、激发民营经济活力提供了强劲新动力。新型城市化深

入推进,为构建都市区、提升品质魅力提供了巨大新空间。同时,制 约未来发展的问题和矛盾依然较多:一是转型发展新动力不足,实体 经济发展困难,迫切需要通过创新重构发展动力,通过参与国家开放 大战略增创引领优势;二是体制机制束缚比较明显,政府和市场、社 会关系尚未完全理顺,迫切需要加快改革,转变政府职能,优化营商 环境;三是资源环境制约加剧,长期积累的生态环境矛盾集中显现, 资源要素节约高效利用的倒逼机制尚未形成;四是民生改善任务艰巨,教育、医疗、社保、公共安全等公共服务供给存在短板,人口老龄化 愈发严峻。 有机朗肯循环(OrganicRankineCycle,简称ORC)是以低沸点有 机物为工质的朗肯循环,主要由余热锅炉(或换热器)、透平、冷凝 器和工质泵四大部分组成。 朗肯循环发电系统可分为常规的水蒸气朗肯循环以及低温余热发 电两种。 常规的水蒸气朗肯循环中,工质是水蒸气,由四大设备:锅炉、汽 轮机、冷凝器和给水泵组成。工质在热力设备中不断进行等压加热、 绝热膨胀、等压放热和绝热压缩四个过程,使热能不断转化为机械能。

水泥窑第一代纯低温余热发电技术

水泥窑第一代纯低温余热发电技术 核心提示:第一代余热发电技术填补了我国水泥行业的空白,为我国发展这项技术奠定了基础并积累了宝贵的经验,相当于上世纪九十年代初的新型干法窑水平,投资、发电能力、运行的稳定性等都存在一定的问题。 一、水泥窑第一代纯低温余热发电技术的定义及特征 1.水泥窑第一代纯低温余热发电技术:在不影响水泥熟料产量、质量,不降低水泥窑运转率,不改变水泥生产工艺流程、设备,不增加熟料电耗和热耗的前提下,采用0.69MPa~1.27MPa—280℃~340℃蒸汽将水泥窑窑尾预热器排出的350℃以下废气余热、窑头熟料冷却机排出的350℃以下废气余热转化为电能的技术。 第一代纯低温余热发电技术除上述定义外还同时具有如下两个或两个以上的特征: 1)冷却机仅设一个用于发电的抽废气口; 2)汽轮机主蒸汽温度不可调整,随水泥窑废气温度的变化而变化; 3)窑头余热锅炉、窑尾余热锅炉给水系统为串联系统; 4)采用额外消耗化学药品或电能的锅炉给水除氧系统。 二、水泥窑第一代纯低温余热发电技术的构成 1.技术要点 利用水泥窑窑尾预热器排出的350℃以下废气设置一台窑尾预热器余热锅炉(简称SP锅炉)、利用水泥窑窑头熟料冷却机排出的350℃以下废气设置一台熟料冷却机废气余热锅炉(简称AQC炉)、

为余热锅炉生产的蒸汽配置蒸汽轮机、发电系统主蒸汽参数为0.69~1.27MPa—280~340℃、每吨熟料余热发电能力为3140kJ/kg熟料——28~32kwh。 2.热力系统构成模式 水泥窑第一代余热发电技术热力系统构成模式主要有如下三种:其一:单压不补汽式中低温发电技术。 其二:复合闪蒸补汽中低温发电技术。 其三:多压补汽式中低温发电技术。 3.技术特点 上述三种模式没有本质的区别,共同的特点:其一、将窑头熟料冷却机排出的350℃总废气分为两个部分自冷却机中抽出,其中:在冷却中部设一个抽废气口抽出400℃以下废气,将这部分废气余热用于发电;在冷却机尾部设一个抽废气口抽出120℃以下废气,这部分废气直接排放。窑尾预热器排出的350℃以下废气余热首先用于满足水泥生产所需的原燃材料烘干,剩余的废气余热再用于发电。其二也是最重要的特点,发电主蒸汽参数均采用0.69~1.27MPa-280~340℃。而三种发电模式的区别仅在于: (1)窑头熟料冷却机在生产0.69~1.27MPa-280~340℃低压低温蒸汽的同时或同时再生产0.1~0.5MPa-饱和~160℃低压低温蒸汽、或同时再生产105~180℃的热水; (2)汽轮机采用补汽式或不补汽式汽轮机; (3)在相同废气参数条件下,如果以第一种模式发电能力为

低温余热发电系统设计方案

低温余热发电系统设计方案标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

低温余热发电系统设计方案 1. 需考虑的问题 低温余热发电系统的窑尾余热锅炉(SP炉)和篦冷机余热锅炉(AQC炉)串联于熟料生产线上,两锅炉阻力均小于1000Pa。设计时,必须考虑下列问题:(1)窑尾主排风机和窑头、窑尾电除尘器及其风机的能力是否适应增设窑尾余热锅炉和篦冷机余热锅炉的条件; (2) 原料磨的热风系统能否满足工艺要求; (3) 该两台锅炉系统的安装是否不破坏原生产厂房。 经对窑系统设计资料认真复核,确认增设两台锅炉系统后所涉及的上述设备能力可以满足要求,不须作任何改造;两台锅炉系统的布置可以不破坏原生产厂房;出窑尾锅炉废气被送至生料原系统作为烘干热源,经核算,只要控制出窑尾锅炉废气温度≥240℃~℃260就可满足入磨原料综合水份≤5%的烘干要求。 双压纯低温余热发电技术介绍 双压余热发电技术就是按照能量梯级利用的原理,在同一台余热锅炉中设置2个不同压力等级的汽水系统,分别进行汽水循环,产生高压和低压两种过热蒸汽;高压过热蒸汽作为主蒸汽、低压过热蒸汽作为补汽分别进入补汽凝汽式汽轮机,推动汽轮机做功发电,双压余热发电系统使能量得到合理利用,热回收效率高。 余热资源参数不同,余热锅炉的低压受热面与高压受热面有不同的布置方式。根据辽源金刚水泥厂窑头(AQC)和窑尾(SP)的余热特点和工艺要求,经过余热利用后,要使AQC余热锅炉排烟温度降到100℃左右。使窑尾SP余热锅炉排烟温度降低到220℃左右后进入原料磨烘干原料,其设置的双压余热发电系统简图如图1。

高耗能行业中低温余热发电技术

高耗能行业中低温余热发电技术 朱亚东,徐 建,吕 进,于立军? (上海交通大学,上海 200240) 摘要:诸如钢铁、石油、化工、机械等高能耗行业存在着巨大的中低温余热资源,目前这部分余热资源的利用相当少,因此充分利用这部分余热资源是高耗能行业节能减排的重要内容和主要手段之一。基于有机朗肯循环的发电系统以热为输入,输出为电能,将低品位热能逆向转化成高品位电能。针对中低温有机朗肯循环的特点,对若干工质的干湿性、热效率及适用条件进行了研究,对于中低温余热有机朗肯循环发电系统的四种结构(基本型、回热型、抽气回热型、再热型)进行了优化研究。 关键词:有机朗肯循环;高耗能行业;余热 Power Generation Technology Using Mid-Low Temperature Waste Heat for High Energy Consumption Industry ZHU YaDong,XU Jian,Lv Jin,YU LiJun (Shanghai JiaoTong University,Shanghai 200240,China) Abstract: There is a great deal of mid-low temperature waste heat in high energy consumption industry such as steel, petroleum, chemical, mechanical and so on. Currently, this part of waste heat is hardly used, so taking full use of this part of waste heat is an important part and one of the primary means of energy saving for high energy consumption industry. Generation system based on ORC(Organic Rankine Cycle) with heat input and power output, reverses low-grade heat into high-grade electricity. For the characteristics of mid-low temperature ORC, a number of working fluids' wet and dry performance are researched. Four structures of the mid-low temperature waste heat ORC power generation system (basic ORC, regenerative ORC, exhaust regenerative ORC and reheat ORC)are researched. Keywords:organic rankine cycle(ORC);high energy consumption industry;waste heat 作者简介:于立军:男,1969年8月生,教授,博士生导师。主要从事多相流流动和余热利用方向研究工作。作为项目负责人,已经完成2项国家自然科学基金项目;作为项目负责人完成上海拜耳、上海庄臣、海螺水泥、上海安靠等30多个工业企业的节能评估工作,积累了丰富的现场经验;作为主要科研人员,顺利完成上海市科委、日本中央电力研究以及松下公司所等多项科研任务,主要负责余热发电系统开发、发电系统数学建模、仿真等工作。近年来,在余热利用及两相流动等研究领域发表学术论文30篇。其中,有15篇论文被SCI收录,SCI 论文他引超过85次,有14篇论文被EI收录,获中国国家发明专利16项。E-mail:ljyu@https://www.360docs.net/doc/7018678798.html,

低温余热发电技术的特点和发展趋势探讨

低温余热发电技术的特点和发展趋势探讨 发表时间:2017-10-20T12:40:02.167Z 来源:《电力设备》2017年第15期作者:杨腾飞王志钢李浩 [导读] 摘要:随着可持续发展战略的提出,工业生产中对中低温能源有效利用、低污染处理问题逐渐重视,特别是对煤炭资源及电力资源需求量巨大的水泥产业 (中国平煤神马集团平顶山朝川焦化有限公司河南省 467500) 摘要:随着可持续发展战略的提出,工业生产中对中低温能源有效利用、低污染处理问题逐渐重视,特别是对煤炭资源及电力资源需求量巨大的水泥产业,更是充分认识到余热处理的重要性,不断对余热发电技术进行探究。本文分析了低温余热发电技术的特点和发展趋势。 关键词:低温余热;发电技术特点;发展趋势 全球范围内能耗的升高和温室效应的加剧,对发展更高级的能量系统以提高能量利用率,并减少CO2排放提出了更迫切的要求。在工业生产中至少50%的热量以各种形式的余热被直接排放到大气中,不仅造成了能源浪费,而且对环境造成热污染。 一、低温余热发电技术的特点 1.含尘量较大。对于低温余热发电技术的具体运行环境来看,其含尘量一般而言是比较大的,这种较大的含尘量也就很可能会对于相应的发电锅炉运行产生一定的影响,甚至会导致其出现较为明显的磨损现象,在日常运行过程中也容易出现一些堵塞现象。在实际低温余热发电技术运行中,因为其工矿生产烟气的含尘量一般都比较大,进而也就很容易出现积灰问题,最终影响到相应系统的运行效果,必须要在具体的系统中恰当安装相应的除尘装置,避免因为粉尘的问题影响其运行效果。 2.腐蚀性效果明显。结合工矿企业中低温余热发电技术的应用来看,相应腐蚀性表现也是比较明显的,这种腐蚀性问题主要就是指含有低温余热的烟气因为其内部含有较多的杂质,进而也就很容易促使其表现出较为明显的腐蚀性效果,尤其是对于烟气中存在的大量SO2气体而言,其腐蚀性更是极为突出,进而也就需要引起相应管理人员的高度重视。在实际运行过程中,为了促使其能够更好避免腐蚀性威胁和影响,应该针对相应余热锅炉进行有效的防腐蚀处理,首先在受热面以及炉膛的材质选择上,促使其能够具备理想的耐腐蚀效果,在表面也应该通过合理的防腐蚀进行处理,保障其能够形成一层致密的保护膜,最终有效提升其整体应用实效性。 3.安装现场环境较为复杂。为了更好促使低温余热发电技术能够得到较好运用,还需要重点针对其相应的系统安装进行有效关注,尤其是对于相应系统中涉及到的各个设备,更是需要促使其能够在最为恰当的位置得到有效安装处理。但是从相应安装现场环境方面来看,其复杂性相对而言还是比较突出的,受到的限制比较多,这也就对于相应低温余热发电技术的设计应用提出了更高的要求,需要其能够进行有效统筹规划,确保低温余热发电技术能够得到较好运行,并且具备理想的运行效率。 二、发展趋势 1.纯低温余热发电技术的应用。结合纯低温余热发电技术的经济评价分析和水泥窖实例对纯低温余热发电技术的应用展开研究,假设所选水泥窖为熟料产量每天6000吨以上的干法窖,其废气产量为正常排放量的均值,就会发现在利用纯低温余热发电技术后,其窖尾废气余热达210摄氏度,冷却机废气达到360摄氏度,预热器达到330摄氏度,如果对三种余热共同发电就可以有900摄氏度的余热可供利用,熟料热耗单位消耗所放出的能量明显增多,为了提升热力循环系统的工作效率,在应用的过程中就要积极的应用多压系统,但在选取单压和双压方案时要以实际情况为准,当锅炉热平衡计算数值与锅炉结构计算所得数值基本吻合的情况下,锅炉自身能够完全吸收生产过程中产生的烟气的热量,这个时候采用投资费用相对较少的单压就可以满足要求,但当测量数值存在明显差异的情况下,证明废气余热不能完全利用,需要将余热传送到汽轮机补气部分,这时就要采用投资相对较高,设计结构较复杂的双压形式。除此之外在应用过程中的技术选择方面也有一定的影响,纯低温余热发电技术注重对余热的梯度利用,所以通常情况下要在窖头冷却剂处设置两个及两个以上的抽风口,并对窖头和窖尾的锅炉采用立式自然循环结构,实现自动余热传输;在此基础上在两者共用部分设置一个省煤器及一个再热器同样可以实现对余热重复有效利用的目的,由此可见,通过对纯低温余热发电技术准确全面的经济评价可以根据不同的水泥窖形式和实际情况对其余热进行针对性的重复再利用,通过对其结构组成、相关设备设置优化等提升余热发电利用效率,达到提升能源利用效率,保护环境的目的,经济评价为其实际应用提供了参考依据和研究方向,两者相辅相成。 2.除氧器。余热发电系统中,为了保证余热锅炉的给水水质要求,防止热力设备及其管道的腐蚀,必须除去在锅炉给水中的溶解氧和其他气体。目前除氧方法主要有化学除氧、热力除氧。化学除氧法只能除去水中的氧,但不能除去其他气体,且药品价格昂贵,后期运行费用上升,因此不为首选。热力除氧按工作压力分为真空除氧、大气式除氧以及高压除氧。从除氧要求的条件来看,除氧的效果与工作压力的关系并不大[7]。在工程上对除氧压力的选择主要决定于技术经济比较。目前在余热发电中用的比较多的是真空除氧和大气式除氧。大气式除氧器对进口水温要求较高,一般104℃,在余热发电系统中不设低压加热器,因此凝结泵出口水温度难以满足其工作要求,造成除氧效果不佳。如果在炉膛尾部再加设一级前置加热器来保证给水除氧效果,这便使锅炉受热面布置变得更加复杂化,且该加热器受到的低温腐蚀也会比较严重,造成设备检修更换周期短。但在双压系统中,用低压蒸汽给水除氧有利于汽轮机低压补汽参数的稳定而将因余热参数波动引起的低压蒸汽参数波动缓解于除氧过程,为解列热力系统创造了条件。 3.饱和蒸汽补汽汽轮机。余热蒸汽进汽参数不稳定、比容大、湿度大等特点,要求在汽轮机设计中考虑。进汽参数不稳定要求汽轮机的进汽调节系统必须能适应需设置压力调节器控制调节阀,当新蒸汽压力降低时,关小调节阀,防止由于余热锅炉的蒸发量不足,促使压力进一步降低,汽轮机通流末级产生鼓风。反之开大调节阀。同时余热发电用汽轮机为了快速启动,而且能够在滑压方式下运行,喷嘴配汽在空载和低负荷时只有部分进汽度,这种情况对汽机暖机不利,特别在快速启动时尤为明显,因此余热发电汽轮机采用节流配汽,不设调节级。汽机启动时靠调节阀控制转速,使发电机并网;正常运行时,调节阀全开,汽轮机处于滑压运行状态。此种进汽方式使汽轮机进汽部分始终处于均匀受热状态,这样就能满足在整个启动过程,及低负荷时能够保证汽机进汽均匀,以利于汽机快速启动,提高通流效率。在汽机主汽阀前设置旁路系统,主蒸汽通过减温减压阀,流人凝汽器。补汽由于压力低可直接排入凝汽器。从而减少由于汽轮机原因导致的整个工业系统的停机。此外在汽轮机的排汽方式上,单压汽轮机采用上排汽的方式,整个汽轮发电机组单层平台布置,使整个系统的布置简单,能有效的减少占地空间,减少设备投资。 本文在介绍低温余热发电的技术原理和特点基础上,探讨了余热发电的发展趋势。余热发电是工矿企业开展节能减排、降耗增效的有效措施,也是实现循环经济的必由之路。相信在我国的科研单位、高校、设计院、制造厂家、企业的共同努力下,余热发电事业的前景是

4.5MW纯低温余热发电利用工作总结

金昌水泥(集团)有限责任公司2500t/d电石渣水泥熟料生产线4.5MW纯低温余热发电新技术开发项目 工作总结 为落实国家关于节能减排工作的安排,实现“十一五”规划提出的节能降耗和污染减排目标。我公司立足于资源型城市可持续发展,依托金昌化工产业聚区的区位优势和丰富的工业废渣,进一步加强固体废弃物、废水、废气的综合利用,缓解金昌市废弃物污染及水资源短缺问题。开发水泥窑纯低温余热发电资源综合利用项目,引进先进技术及资金支持,促进节能减排行动的实施,减少温室气体排放。通过节能减排示范试点企业的实施,加强节能、环保、资源综合利用的新型干法水泥生产线建设,调整水泥产品结构,提高物耗、能耗及水耗的利用率,塑造绿色建材形象,从而以点带面地带动区域绿色建材行业的发展。水泥窑纯低温余热发电项目做到了资源综合利用、改善环境,符合国家提倡的方针政策,建设条件基本落实,技术上可行,具有良好的社会效益与一定的经济效益,符合可持续发展战略思路。 我公司2500t/d水泥熟料余热发电项目建成后,降低了进入窑尾除尘器的废气含尘浓度,提高了除尘器的除尘效率,减少了粉尘的对外排放,年降尘量约1.4万吨。年节省标煤1.01万吨,减少约21.08万吨的CO2排放,提前实现国家水泥生产节能目标。 金泥集团公司通过调整公司水泥产品结构、固体废弃物资源化以及新型干法水泥余热发电的经验,以点带面地推动地区绿色建材行业发展;金泥集团公司的快速发展将解决金昌市固废污染的难题,使资源型城市朝着多元化方向发展,为甘肃其他资源型城市解决固废问题

树立楷模,从而带动甘肃地区经济的可持续发展。 一、2500t/d电石渣水泥熟料生产线4.5MW纯低温余热发电新技术开发项目技术概述 本项目拟采用纯余热发电技术,该技术不使用燃料来补燃,因此不对环境产生附加污染;蒸汽参数较低,其运行操作简单方便,运行的可靠性和安全性高,运行成本低,日常管理简单。 综合考虑目前水泥生产线窑头、窑尾的余热资源分布情况和水泥窑的运行状况,确定热力系统及装机方案如下: 本系统主机包括二台余热锅炉、一套凝汽式汽轮发电机组。 a.SP余热锅炉:在窑尾设臵SP余热锅炉,仅设臵蒸汽段,生产1.35MPa-310℃的过热蒸汽,与窑头AQC余热锅炉生产的过热蒸汽混合后通入汽轮发电机组,出SP余热锅炉废气温度降到220℃,供生料粉磨烘干使用。 b.AQC余热锅炉:利用冷却机中部抽取的废气(中温端,~360℃),在窑头设臵AQC余热锅炉,余热锅炉分为蒸汽段和热水段运行:蒸汽段生产1.35MPa-340℃的过热蒸汽,与窑尾SP余热锅炉生产的过热蒸汽混合后通入汽轮发电机组,热水段生产的170℃热水后,作为AQC余热锅炉蒸汽段及SP余热锅炉的给水,出AQC锅炉废气温度降至100℃。 c.汽轮发电机组:上述两台余热锅炉生产的蒸汽共可发电3.8MW ,因此配臵4.5MW凝汽式汽轮机组一套。 整个工艺流程是:40℃左右的纯水经过除氧器除氧,由锅炉给水泵加压进入AQC锅炉省煤器,加热成170℃左右的热水;分成两部分,一部分进入AQC锅炉汽包,另一部分进入SP锅炉汽包;然后依次经过

纯低温余热发电系统

第十一章纯低温余热发电系统 11.1 发电规模 发电规模按5000t/d熟料生产线配套设计。 水泥生产线的窑头、窑尾会排放大量的废气,通常仅利用废气的余热来烘干原料,利用率很低,其余大量废气的余热不仅没有得到利用,而且还要对废气进行喷水降温,浪费水和电能。因此,利用余热发电技术回收这部分废气的热能,可以使水泥生产企业提高能源利用效率,降低成本,提高产品市场竞争力,降低污染物排放量。 综合考虑水泥熟料生产线的工艺流程、场地布置、供配电结构、供水设施等因素,利用生产线窑头、窑尾余热资源,可建设一条装机容量为9000KW的纯低温余热电站。 11.2 设计原则 1)余热电站在正常运行时应不影响原水泥生产线的正常生产; 2)充分利用窑头、窑尾排放的废气余热; 3)采用工艺成熟、技术先进的余热发电技术和装备; 4)余热电站尽可能与水泥生产线共用水、电、机修等公用设施; 5)贯彻执行有关国家和拟建厂当地的环境保护、劳动安全、消防设计的规范。 11.3 设计条件 1)余热条件 从更合理的利用窑头余热考虑,窑头篦冷机需要进行改造,在篦冷机的中部增加一个废气出口,改造后的窑头废气参数为:240000Nm3/h,360℃。此部分废气余热全部用于发电。 窑尾经五级预热器出口的废气参数为:312500Nm3/h,320℃。此部分废气经利用后的温度应保持在220℃左右,用于生料粉磨烘干。 2)建设场地 本工程包括:窑头AQC锅炉、窑尾SP锅炉、汽机房、化学水处理车间、冷却塔及循环水泵房等车间。 各车间布置遵循以下原则:窑头AQC锅炉和沉降室布置在窑头

厂房旁边的空地上,窑尾SP锅炉布置在窑尾高温风机的上方,汽机房的布置靠近锅炉,化学水处理车间、冷却塔及循环水泵房尽量靠近汽机房。在布置有困难时可以适当调整,不能影响水泥生产线的布置。 AQC锅炉占地面积:14.2m×6.35m SP锅炉占地面积:22m×12m 汽机房占地面积:31m×20.4m 3)水源、给水排水 电站的用水有:软化水处理、锅炉给水、循环冷却水及其它生产系统消耗,消防用水,部分用水可循环使用。 11.4 电站工艺系统 1)余热电站流程 本方案拟采用纯低温余热发电技术,该技术不使用燃料来补燃,因此不对环境产生附加污染;是典型的资源综合利用工程。主蒸汽的压力和温度较低,运行的可靠性和安全性高,运行成本低,日常管理简单。 综合考虑目前水泥生产线窑头、窑尾的余热资源分布情况和水泥窑的运行状况,确定热力系统及装机方案如下: 系统主机包括两台余热锅炉、一套补汽式汽轮发电机组。 a.AQC余热锅炉:利用冷却机中部抽取的废气(中温端,~360℃),在生产线窑头设置AQC余热锅炉,余热锅炉分为高压蒸汽段、低压蒸汽段和热水段运行;高压蒸汽段生产 1.6MPa-350℃的过热蒸汽,进入蒸汽母管后通入汽轮发电机组,低压蒸汽段生产0.15MPa-140℃的过热蒸汽,热水段生产的140℃热水后,作为AQC 余热锅炉蒸汽段及SP余热锅炉的给水,出AQC锅炉废气温度降至110℃。 b.SP余热锅炉:在窑尾设置SP余热锅炉,仅设置蒸汽段,生产 1.6MPa-305℃的过热蒸汽,进入蒸汽母管后通入汽轮发电机组,出SP余热锅炉废气温度降到220℃,供生料粉磨烘干使用。 c.汽轮发电机组:上述余热锅炉生产的蒸汽共可发电7.9MW,因此配置9MW补汽式汽轮机组一套。

低温余热发电系统设计方案

低温余热发电系统设计方案 1. 需考虑的问题 低温余热发电系统的窑尾余热锅炉(SP炉)和篦冷机余热锅炉(AQC炉)串联于熟料生产线上,两锅炉阻力均小于1000Pa。设计时,必须考虑下列问题: (1)窑尾主排风机和窑头、窑尾电除尘器及其风机的能力是否适应增设窑尾余热锅炉和篦冷机余热锅炉的条件; (2) 原料磨的热风系统能否满足工艺要求; (3) 该两台锅炉系统的安装是否不破坏原生产厂房。 经对窑系统设计资料认真复核,确认增设两台锅炉系统后所涉及的上述设备能力可以满足要求,不须作任何改造;两台锅炉系统的布置可以不破坏原生产厂房;出窑尾锅炉废气被送至生料原系统作为烘干热源,经核算,只要控制出窑尾锅炉废气温度≥240℃~℃260就可满足入磨原料综合水份≤5%的烘干要求。 双压纯低温余热发电技术介绍 双压余热发电技术就是按照能量梯级利用的原理,在同一台余热锅炉中设置2个不同压力等级的汽水系统,分别进行汽水循环,产生高压和低压两种过热蒸汽;高压过热蒸汽作为主蒸汽、低压过热蒸汽作为补汽分别进入补汽凝汽式汽轮机,推动汽轮机做功发电,双压余热发电系统使能量得到合理利用,热回收效率高。 余热资源参数不同,余热锅炉的低压受热面与高压受热面有不同的布置方式。根据辽源金刚水泥厂窑头(AQC)和窑尾(SP)的余热特点和工艺要求,经过余热利用后,要使AQC余热锅炉排烟温度降到100℃左右。使窑尾SP余热锅炉排烟温度降低到220℃左右后进入原料磨烘干原料,其设置的双压余热发电系统简图如 图1。

双压余热发电系统与常规余热发电系统不同之处在于其窑头(AQC)余热锅炉增设了低压汽水系统,其汽轮机组在第四压力级之后增加了补汽口,并适当增大补汽口以后汽轮机通流部分面积。 采用双压系统的主要目的是为了提高系统循环效率。使低品位的热源充分利用,获得最大限度的发电功率,降低窑头(AQC)双压余热锅炉的排气温度;其次是双压系统的低压蒸汽是过热的,进入汽轮机后能保证汽轮机内的蒸汽最大湿度控制在14%以下,使汽轮机叶片工作在安全范围内,并提高机组的效率;同时低压蒸汽还可用于供热等其它需要热源的地方,提高运行灵活性。 双压余热发电系统简单灵活、成本低、热利用率高。由于在余热锅炉上增设了低压省煤器、低压蒸发器,并且增设了低压过热器,能够把更多的低温余热吸收利用,比单压系统多发电10%左右,并且必要时能够解列,维持单压系统正常运行。而对于能够增加发电量的闪蒸系统来说,需要增加闪蒸器、汽水分离器等设备;闪蒸器产生的是饱和蒸汽,在进入汽轮机做功后,易使汽轮机排汽干度不能满足汽轮机的要求。 1995年8月17日国家计委、原国家建材局与日本新能源产业技术综合开发机构(NEDO)签订了基本协议书,由中国安徽海螺集团宁国水泥厂与日本川崎重工株式会社实施。该项目1996年10月18日动工,199 5年2月8日并网发电一次成功。 水泥厂余热资源的特点是流量大、品位低。在宁国水泥厂4000t/d生产线上,预热器(PH)和冷却机(AQC)出口废气流量和温度分别为258550Nm3/h、340℃和306600Nm3/h、238℃,其中部分预热器废气用来烘干燃煤和原料。针对上述特点,热力系统采用减速式两点混气式汽轮机,利用参数较低的主蒸汽和闪蒸汽的饱和蒸汽发电;根据余热资源的工艺状况设置两台余热锅炉,保证能够充分利用余热资源;应用热水闪蒸技术,设置一台高压闪蒸器和一台低压闪蒸器,闪蒸出的饱和蒸汽混入汽轮机做功;对现有AQC 进行废气二次循环改造。由于PH出口废气还要用于烘干原料,因此未设省煤器,只设蒸发器和过热器。加强系统密封。系统采用先进的DCS集散控制系统进行操作控制,具有功能齐全、自动控制、操作简便等特点。 工艺流程图(见图) 此主题相关图片如下:

低温余热发电技术项目建议书

低温余热回收利用技术 项目建议书 中国科学院 中北国技(北京)科技有限公司

目录 一、技术概况 (3) 二、技术特点 (3) 三、工程建设规模及收益 (4) 四、技术适用方向 (4) 五、技术应用情况 (6) 六、案例介绍 (6) 七、合作模式 (7)

一、技术概况 纯低温余热回收发电项目是利用100℃以上工业余热产生的低品位蒸汽,来推动专门设计的低参数的汽轮机组做功发电。与大中型的火力发电不同,低温余热发电是通过回收钢铁、水泥、石化等行业生产过程中排放的中低温废烟气、蒸汽所含的低品位热量来发电,是一项变废为宝的高效节能技术。该技术利用余热而不直接消耗原煤、原油、原气,不仅不对环境产生任何破坏和污染,反而有助于降低和减少余热直接排向空中所引起的对环境的污染。该技术针对各种不同参数低温余热的回收采取不同技术和措施,针对钢铁工业的低温余热(低品位)主要采用带蓄能器饱和蒸汽发电方案和带蓄能器过热蒸汽发电方案两种。统计数据表明,一个年产钢铁500万吨的企业,全年利用低温余热可发电约2亿度,可为企业增收8000万元。 低温余热发电技术是一项国家积极鼓励、大力推广的节能技术,具有极佳的社会和经济效益。它已越来越受到人们的高度重视,从我国能源局编制的《2010热电联产发展规划及2020年远景目标》可以看出中国余热发电的春天就要到了。而且国家规定,对于容量大于1000千瓦的余热电站,实行无条件上网并给予优惠上网电价。这些措施的出台为我国低温余热发电技术的广泛应用创造了有利条件。 二、技术特点 1、低温余热发电技术无需补燃锅炉,系统简单,运行方便,不消耗任何燃料。 2、利用先进的专利和专有技术,比采用其他同类技术年余热发电量提 高约30%。 3、根据所利用的余热情况设计专用的发电系统及专用的余热发电设备,而 不是套用标准的火力发电设备,这样保证了余热电站的高效率。目前可以达到效率水平:

ORC低温余热发电技术

基于有机朗肯循环的ORC低温余热发电技术伴随国际能源价格持续上涨,及对可再生能源、清洁能源的呼声日益升高,有机工质朗肯循环(Organic Rankine Cycle简称ORC)低温发电技术在国际电力工业市场已经成为一个异军突起的黑马。 典型的蒸汽动力发电系统,其工作循环可以理想化为由两个可逆定压过程和两个可逆绝热过程组成的理想循环,包括以下四个热力学过程: 第一步:定压吸热过程, 第二步:绝热膨胀过程, 第三步:定压放热过程, 第四步:绝热加压过程。 该热力循环理论是由19世纪苏格兰工程师W.J.M.Rankine提出,为纪念其取得的成就,蒸汽动力装置的基本循环亦称为为朗肯循环(Rankine Cycle)。有机工质朗肯循环专指以低沸点(蒸发温度38度,正戊烷)氟碳氢化合物为循环工质的热力系统,ORC低温发电技术就是基于这一工作过程的发电系统,也称有机工质朗肯循环发电。ORC低温发电技术,这里低温泛指的温度小于150度但大于90度的热源,其低温热源是工业过程废热、太阳能、海洋温差、地热等清洁能源,技术突破点在于研究更低的热源温度以驱动透平做功发电,以适应更多的工况条件。尽管发电效率低于传统火电,但由于使用的是清洁能源及工业过程中被废弃的低品质余热,因此在国际能源市场发展迅速。 常规的化石燃料发电技术(火力发电),即利用煤炭、重油或天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气冲转汽轮机驱动发电机来发电。这个系统中的循环工质是除盐水,由于水的物理性质(一个大气压,100度蒸发),因此传统电力工业追求的是更高的温度计压力,以提高发电效率,如:超临界、超超临界等。但是提高发电效率的同时,也带来了环境污染、粉尘、气候变化等负面因素。因此在低温发电领域,ORC与传统的发电技术相比,具备以下几个优势: 1)有机工质具有良好的热力学性质,低的沸点及高的蒸气压力使0RC方法比水蒸气朗肯循环具有较高的热效率,对较低温度热源的利用有更高的效率。

9000KW纯低温余热发电系统

9000kW纯低温余热发电系统 余热锅炉系统 ●SP余热锅炉:1台 (1)锅炉型号:KS322/320-23.0-1.18/295 (2)自然循环锅炉、机械振打 (3)室外、立式 (4)过热蒸汽压力:1.18Mpa (5)过热蒸汽温度:295℃ (6)过热蒸汽量:23.0 t/h ●AQC余热锅炉:1台 (1)锅炉型号:KA200/380-19.5-1.18/355 (2)自然循环锅炉、自清灰 (3)室外、立式 (4)过热蒸汽压力:1.18Mpa (5)过热蒸汽温度:355℃ (6)过热蒸汽量:19.5 t/h (7)低温省煤器热水量:42.5t/h 汽轮发电机系统 ●纯凝式汽轮机:1台 (1)型号:N8-1.05 (2)型式:冲动、纯凝、单压进汽 (3)额定输出功率;9000 kW (4)汽轮机转速:3000 r/min, (5)进汽压力:1.05 MPa (6)进汽温度:315℃ (7)过热蒸汽流量:42.5 t/h (8)冷凝器排汽压力:0.006 MPa (9)凝结水温度:35℃

●发电机:1台套 (1)型号:QF-8-2 (2)额定功率:9000 kW (3)额定电压:10500V (4)功率因素:0.8 (5)发电机转速:3000 r/min (6)励磁方式:静止可控硅励磁 余热发是建筑及结构 建筑设计将严格遵照国家现行的建筑设计规范、标准,尽量采用新技术、新材料和先进可靠的建筑构造。在建筑形象上充分考虑建筑的总体性和地方性,力求布局合理、造型美观、色彩协调,努力创造既有时代感又有地方特色的工业建筑群的新形象。 建筑构造及做法 (1)屋面 一般生产车间屋面排水均为无组织排水,现浇钢筋混凝土屋面坡度为3%,压型钢板屋面坡度为1:10。屋面防水为面粉1:2防水砂浆20厚,粉平压光。辅助建筑屋面为PVC防水卷材屋面,其屋面保温采用防水珍珠岩或聚苯乙烯板。 (2)楼地面 一般生产车间地面为C20混凝土地面,楼面为现浇钢筋混凝土随捣随光。办公、值班室楼地面采用地砖楼地面。生产车间室内外高差为150mm,辅助车间室内外高差为300~600mm. (3)墙体及粉刷

ORC低温余热发电设备项目合作方案

ORC低温余热发电设备项目 合作方案 投资分析/实施方案

ORC低温余热发电设备项目合作方案说明 常规的水蒸气朗肯循环中,工质是水蒸气,由四大设备:锅炉、汽轮机、冷凝器和给水泵组成。工质在热力设备中不断进行等压加热、绝热膨胀、 等压放热和绝热压缩四个过程,使热能不断转化为机械能。当利用低温有机 工质(如上述的戊烷)作为循环的工质时,主要设备有:蒸发器、汽轮机、 冷凝器和循环泵等。 该ORC低温余热发电设备项目计划总投资4543.05万元,其中:固定 资产投资3580.84万元,占项目总投资的78.82%;流动资金962.21万元,占项目总投资的21.18%。 达产年营业收入7839.00万元,总成本费用6229.79万元,税金及附 加81.41万元,利润总额1609.21万元,利税总额1912.58万元,税后净 利润1206.91万元,达产年纳税总额705.67万元;达产年投资利润率 35.42%,投资利税率42.10%,投资回报率26.57%,全部投资回收期5.26年,提供就业职位119个。 坚持安全生产的原则。项目承办单位要认真贯彻执行国家有关建设项 目消防、安全、卫生、劳动保护和环境保护的管理规定,认真贯彻落实 “三同时”原则,项目设计上充分考虑生产设施在上述各方面的投资,务

必做到环境保护、安全生产及消防工作贯穿于项目的设计、建设和投产的 整个过程。 ...... 报告主要内容:项目基本情况、建设背景、市场分析预测、产品规划 分析、项目选址、工程设计、工艺先进性、项目环保分析、项目安全卫生、项目风险说明、节能方案分析、计划安排、项目投资方案、经济收益、综 合评价说明等。

低温余热发电说明

低温余热发电產品說明 1、低温余热发电应用背景 我国的一次能源资源现状不容乐观,煤炭资源储量虽然世界排名第二(美国第一,是我国储量的一倍),但我国可开采的煤炭资源不足百年时间,远少于世界前六位储煤量国家;我国的石油和天然气资源也仅够开采几十年,世界范围内的石油资源开采也可能在本世纪内短缺。 过去二十年我国的能源消耗量迅猛增长,1 9 9 3 年我国作为能源净进口国以后,能源缺口越来越大,随着经济规模的日益扩大,能源需求迅猛增加。然而,我国的能源利用率水平却十分低下,按照单位能耗创产值来看,我国的能耗指标是全世界平均水平的5 倍;是日本能耗的1 5 . 5 倍;连印度这样的人口大国,我国的能耗也是她的2 倍。这种惊人浪费能源的状况,导致掠夺性能源资源的巨量消耗,其结果将对我国环境和生态造成永久性的冲击,可能成为我国下一代或者下几代的沉重负担。所以,解决我国能源短缺和能源结构的问题,已经成为影响我国可持续发展和国家安全的战略性大问题。 我国政府非常清楚所面临的能源发展状况,从八十年代开始,就制定了“能源开发与节约并重,节约优先”的政策,大力扶持和开发世界上的第五大能源-“节能”技术,并制定了《节能法》。 从第五大能源的资源来看,高品位能源的浪费是有限的,因为通过现有的技术都可以较好地回收和利用;大量浪费的是低品位能源-低温、低压、污染的、不稳定的热能,占到总浪费能源的7 0 %-8 0 %,甚至更多。如何高效回收低品位能源并转化成高品位能源( 如电能) ,是摆在全世界能源专家前面的一项很大的技术难题。 2、低温余热发电技术背景 现有的将热能转换成机械能或者电能的动力机,主要有燃烧油、气的燃烧动力机(汽油机、柴油机和燃气轮机)和利用蒸汽冲转的汽轮机。低品位能源一般都以蒸汽、汽水混合物、热水等形态存在,或者其他形态通过换热器转换成这种形态存在,因而回收低品位能源的设备主要以汽轮机为主。 根据汽轮机的技术特点,它只能适用于过热蒸汽、干净蒸汽而且蒸汽流量和参数相对稳定的热源情况,设备要求的人员技术水平和维护条件都很高。这种技术特点,使得汽轮机大多适合于带基本负荷的发电企业,无法应用在现有工业大量低品位余热废热的回收利用中。为解决这个技术难题,全世界许多能源工作者付出大量心血,积极开发新型的低品位热能动力机,希望不仅能回收各种复杂的低品位浪费的热能,而且效率高、安全可靠、容易施工和运行操作,在许多能源技术相对薄弱的用户企业也可以应用推广的热动力机。 螺杆膨胀发电机就是这样一种低品位热能动力机,它能够回收低品位热能并直接转换成电能,是一种在当前能源利用领域重大突破性的新型动力机。 螺杆膨胀发电机具有三个非常重要的技术特点: ☆热源适应范围非常宽广:可以适用于过热蒸汽、饱和蒸汽、汽水混合物、热水和高含盐份的各种低品位热源的热电转换,属于国际上唯一具备如此优点的热动力机。 ☆变工况能力十分优越:在热源负荷和参数大范围(从1 2 0 %到1 0 %范围)变化波动的情况下,不仅运行稳定可靠,而且高效平稳。 ☆维护费用和使用技术门槛很低:属于十年无大修的动力机,小修维护和运行操作都简单方便,对用户原系统不产生干扰影响,安装和移动十分简易。 目前,我国的螺杆膨胀发电机产品,不仅完全拥有核心知识产权技术,而且单机功率达到国际上最高水平1 5 0 0 KW(国际上同时开发的国家:日本投用的单机产品功率为1 0 2 KW;美国投试的样机功率1 0 0 0 KW),并经过了长时间多行业的实践运行检验,形成了多系列标准的成熟产品。 3、低温余热发电推广意义 根据国家原经贸委统计的数据,在我国轻工等行业有工业锅炉超过5 0 万台,利用螺杆膨胀发电机可以回收许多工业锅炉的蒸汽压差损失,实现能量的梯级合理利用,按照平均每台1 0 0 KW电能的回收水平,可以为国家带来两个三峡的发电能量,其战略意义和经济意义是不言而喻的。在实际工业中不少工业锅炉的蒸汽利用效率低,有些不稳定蒸汽甚至排空浪费,所以实际回收的电能量将更为丰厚。 在石油化工行业,因为工艺过程中伴随有大量的蒸汽,也产生大量的废热液,这些废弃排放掉的热源都可以利用螺杆膨胀发电机来回收发电。

相关文档
最新文档