镁基复合材料制备技术、性能及应用发展概况

镁基复合材料制备技术、性能及应用发展概况
镁基复合材料制备技术、性能及应用发展概况

镁基复合材料制备技术、性能及应用发展概况

摘要:镁基复合材料因其轻量化和高性能而成为当今高新技术领域中最富竞争力和最有希望采用的复合材料之一。大致笔述了常用镁基复合材料研究概况、制备技术、性能及应用前景。

关键词:镁基复合材料制备技术性能应用

Fabrication,Properties and Application of M agnesium—matrix CompositesDONG Qun CHEN Liqing ZHAO Mingjiu BI Jing(Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China)Abstract Magnesium—matrix composites with lightweight and high performance are becoming one of themost competitive and promising candidates in the applications of high—tech fields.An overview is made on the fabri—ating techniques,mechanical properties and applications for the typical magnesium—matrix composites,and theresearch trend is proposedKey words magnesium matrix composite,fabrication,properties,application.

0引言:

镁基复合材料是继铝基复合材料之后又一具有竞争力的轻金属基复合材料【E1】,主要特点是密度低、比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性、优良的减震性能及良好的尺寸稳定性和铸造性能等;此外,还具有电磁屏蔽和储氢特性等,是一类优秀的结构与功能材料,也是当今高新技术领域中最有希望采用的复合材料之一;在航空航天、军工产品制造、汽车以及电子封装等领域中具有巨大的应用前景。构成镁基复合材料的基体合金主要分为铸造、变形和超轻等系列。铸造系包括Mg—AI、Mg—Zn、Mg—AI—Zn、Mg—Zn—Zr、Mg—Zn—Zr—RE等,侧重于制备铸造镁基复合材料;变形系包括Mg—Mn、Mg —AI—Zn、Mg—Zn—Zr、Mg—RE等,偏重于挤压性能的复合材料应用;Mg—Li系是目前最轻质的合金系,具有较强的抗高能粒子穿透能力,以及能显著降低构件重量、节约能量和满足某些高性能的要求。增强体可以分为颗粒、晶须、纤维等几种,增强体的选择要从复合材料应用情况、制备方法以及增强体的成本等诸多方面综合考虑。其中,界面相容性和界面间存在的可能反应类型是镁基复合材料制备过程中首先要考虑的问题。本文将从镁基复合材料中界面反应类型与润湿性、制备技术、组织性能和应用等几个方面对镁基复合材料发展概况进行介绍,并对其今后发展前景进行展望。

1》镁基复合材料中界面反应与润湿性

镁基复合材料中可能存在的界面反应类型主要与基体种类和增强相类型以及所采用的制备方法有关。尤其是在镁中加入Al或镁合金本身含Al元素时,界面间存在的反应情况变得异常复杂。如表1所列,镁基体中Al主要与增强体中的氧化物和碳起化学反应,生成一些不利于材料性能的界面相,但有时这些界面相也能起到改善润湿性的作用。

有研究认为【2】,SiC /Mg间存在界面反应可使固液界面能降低;Mg在700℃时表面张力较小,约为的1/2,这将促使SiC 在Mg基体中均匀分布;也有报道称TiC 在纯Mg中比在纯铝中分布更为均匀【3】。有关B4C与Mg间的物理润湿性和界面化学相容性的研究结果表明【4,5】,Mg对B4C具有良好的润湿性,是一种较好的增强相。SiC和TiC等碳化物常被用作镁基复合材料的增强体,主要是由于Mg不易形成稳定的碳化物以及这些碳化物具有较高的强度及化学稳定性。如果Mg合金中含有Al元素,与碳化物接触时间长时,则会在这些镁合金中起反应形成A14C3,在界面处进一步形成MgA1204尖晶石,从而改变合金的化学成分,影响复合材料腐蚀性能。此外,界面反应物存在使复合材料在铸造过程中流动性降低【6】。

石墨纤维增强镁基复合材料(Gr~/Mg)具有低密度、高比强度和比刚度等优良的力学性能,并可按照不同纤维含量设计出热膨胀系数在较宽温度范围内保持为零的材料。早在1972年,就有人采用热压工艺制备了Gr~/Mg复合材料。熔融镁不能直接浸润无涂层的石墨纤维,经采用等离子喷涂或物理气相沉积钛及化学镀镍等预先涂覆石墨纤维,均证明与熔融镁问有良好的润湿性。由于钛的密度较低、熔点较高以及与镁不会形成脆性金属间化合物,故可以采用物理气相沉积。由于Gr~/Mg复合材料存在制备工艺复杂等缺点而使人们更多地倾向于不连续增强镁基复合材料的研究。

表1 镁基复合材料常用增强体及部分界面反应

增强体存在反应说明

纤维Gr 3C+G 4A1(Li))→ Al4C3(Li2C2) 特别是合金含有Li,将危害界面Ti Ti不溶于镁,无反应Ti对Mg有良好的润湿性、增强

作用

B Mg+2B—MgB 产物具有良好润湿性A1203 3Mg+ A120。一2AI+3MgO 界面反应程度成为关键

颗粒

4Mg(1)+B20。(1)一

MgB2(s)+3MgO(s)

产物利于润湿,有利于界面结合SiC

Mg和SiC生成金属间化合物

产物降低固液界面能,有利于润

湿

4A1+3SiC—A1.C。+3Si 产物易于水解。降低材料耐蚀性Al203(SiO2

3Mg+AI20。一2AJ+3MgC

3Mg+4A120 一2A1+3MgA12O

生成大量的尖晶石将改变合金成

2Mg+Si02一si+2Mg0,

Mg+Si'-'Mg2Si

产物将危害界面

Ti,TiC,TiB2,TiN,A1N等

AI203·B203,SiC,B4C,K2TiO3,A120 反应基本与颗粒相同

2》镁基复合材料的制备技术

镁基复合材料制备方法主要分为粉末冶金法、铸造法、熔体浸渗法、喷射法、薄膜

冶金法以及原位合成技术等。但在选择具体制备工艺时应考虑增强体与基体的性能,不同

制备工艺所获得的复合材料性能也不尽相同,有时差异很大。

2.1 .粉末冶金法(PM法)

PM工艺是较早用来制备镁基复合材料的【7】。其特点是:对基体合金种类和增强体类型以及体积含量没有严格限制,通过粉末混合工艺可以使陶瓷颗粒在基体中达到分布均匀。但此工艺设备复杂、成本偏高,不易制备形状复杂的零件;对于极细的颗粒增强体以及晶须等,还要利用特殊的分散技术以达到均匀混合的目的;粉末冶金热压态复合材料一般都需要经过挤压、轧制或锻造等二次成型后才能使用。该法在制备A1基复合材料中得到了成功应用,尽管镁的化学活泼性高,但通过适当的气氛保护后PM 法同样适用于镁基复合材料的制备。

其中,混粉、压实、烧结3个步骤对复合材料的微观组织和性能有很大影响。利用PM 工艺,结合低能机械合金化等特殊的粉末混合技术 ],针对不同的镁合金体系以及各种陶瓷增强体,已有众多的研究报道。著名的DWA公司、ACM 公司等也采用了PM 工艺,经过二次加工成型后,获得了性能良好的管材、板材以及棒材等。

PM 法是一种通用的复合材料制备方法,只是成本稍高,过程繁琐;若与其他的工艺相结合,适当控制过程的关键参数,复合材料可以获得理想的性能。对于制作形状复杂的零件,仍需要机加工成形。另外,此工艺需要生产和使用对人体非常有害的超细镁合金粉末,故在生产中还应考虑必要的安全措施,而下述的铸造工艺则不存在这些缺点。

2.2 .铸造法(Casting Route)

搅拌铸造是制备颗粒增强金属基复合材料的一种典型工艺,通常分为3类:

①全液态搅拌铸造工艺;

②半固态搅拌铸造工艺;前2类工艺属搅拌铸造法。

③搅熔铸造工艺(流变铸造法)。

在氩气或COz/SF 气氛下进行镁合金熔炼,然后将SiC,加入镁熔体中,进行机械搅拌,使颗粒均匀分散于熔融镁合金中,美国Dow化学公司成功制备了颗粒增强镁基复合材料,并取得了该方法的专利。英国镁电子公司也开发了一种搅拌工艺,它克服了颗粒沉降、聚集及搅拌吸气等问题,能控制界面反应和凝固过程。从而控制颗粒在复合材料中的分布;随后经热挤压,制备出了性能优良的镁基复合材料;加拿大镁技术研究所也采用搅拌铸造法开发了一种制备Si /Mg复合材料的工艺。搅熔铸造法是靠桨叶旋转产生的机械搅拌作用使半固态基体合金熔体形成的涡流来强制引入增强颗粒,在增强颗粒与先凝固的金属晶粒混合均匀后再升温浇铸,凝固后得到镁基复合材料的方法。而上述的搅拌铸造法是在液态下搅拌,搅拌后产生的负压使复合材料很容易吸气而形成气孔,另外增强颗粒与基体合金的密度不同易造成颗粒沉积和微细颗粒的团聚等现象。半固态成型可以减少宏观偏析,降低凝固收缩和成型温度,且陶瓷颗粒在基体内分布均匀。由于该工艺在很大程度上降低了镁在高温下的氧化烧损,且该工艺设备简单、成本低,最有希望应用于大规模的工业生产。

AMAX公司开发了一种可大批量生产汽车用低成本镁基复合材料零件的半固态金属成形(SSM)工艺,这是将铸造和锻压2种工艺结合在一起的方法。其流程为:首先将增强体搅拌进熔融镁合金,然后在电磁搅拌条件下急冷铸造,最后重新加热到半固态,制备近终成形零件。其优点是:自动化程度高,将材料制备和成形结合起来并且可以做到精确成形。显然,该工

艺在大批量生产低成本、近终成形镁基复合材料方面具有广阔的前景。

2.3.熔体浸渗法(Melt Infiltration Process)

按施压方式可以分为压力浸渗、无压浸渗和负压(真空)浸渗3种。压力浸渗是先把陶瓷颗粒增强相预制成形,然后将基体熔体倾入,在一定压力下使其浸渗到颗粒间隙而达到复合化的目的;其特点是可以制备高体积分数复合材料。该工艺已很成熟,其中,预制块中增强体的分布、预制块和模具的预热温度及浸渗压力等均对复合材料结构和性能产生重要影响。

无压浸渗是熔融镁合金在惰性气体保护下,不施加任何压力对压实后的陶瓷预制块进行浸渗,从而制备出陶瓷颗粒增强镁基复合材料。该工艺有许多优点:预制件可预先制成所需形状,渗入后制品保形性好;可获得致密且具有连续显微结构的制品;可具有理想的力学性能;工艺过程简单,相对成本较低。该技术的关键是:寻找理想的陶瓷与金属熔体的结合体系,要求润湿性好,各自性能好。研究的重点主要是复杂形状预制件的渗入工艺、缺陷的类型和控制、渗入过程组分间的相互作用以及渗入后相界面的形貌、结构等对复合材料性能的综合效应。尽管该工艺有预制块质量影响大、体系有限、方法尚不成熟等不足,但随着研究的进展和工艺的成熟,发展前景看好。

负压浸渗靠在陶瓷颗粒预制块下造成的真空产生的负压而实现熔融镁合金对压实后的陶瓷颗粒预制块的浸渗。通常的做法是将增强体预制块放在预制模具中,然后抽真空,将高压气体注入熔炼炉床,使熔化金属挤入模腔,浸渗预制块。由于压力低,注入系统新颖,液压成形法可生产大的复杂近终成形零件,不会产生预制块运动、纤维损伤等问题。

由于预制块的相对密度一般较高,利用熔体浸渗法可以很容易制备出高陶瓷体积含量的镁基复合材料,并且材料可以获得很高的弹性模量以及极低的热膨胀系数,在电子封装材料领域中很有应用潜力。

2.4 .喷射法(Spray Forming)

喷射法是一种快速凝固法,包括喷射沉积法、熔融旋压法等。喷射沉积法首先使液态金属在高压惰性气体喷射下雾化,形成熔融合金喷射流,同时将颗粒喷入熔融合金的射流中,使液固两相颗粒混合并共沉积到预处理的衬底上,快速凝固得到镁基复合材料。利用此法制备的镁基复合材料中颗粒在基体内均匀分布,晶粒细小,界面清洁,但孔隙率较高,需进行二次加工。熔融旋压法能使含有颗粒状增强物的熔融金属以每秒几千至几百万度的高速度凝固,获得厚约50um的薄片,这些薄片被压实为坯料,然后挤压成型材。其颗粒分布相当均匀,具有极好的高温强度和高比刚度及断裂韧性。

2.5 .薄膜冶金工艺(Foil Metallurgy Processing)

也称箔冶金扩散焊接工艺,目前只在Mg—Li基复合材料中使用。有人采用此法制备了B Cp增强Mg—Li基复合材料【9】。首先将铸造Mg—Li合金切成薄片,然后进行多道次冷轧和退火处理,获得厚约0.2ram的合金箔;再将B C 置于酒精溶液中制成糊状,涂在合金箔的一侧,室温下干燥后叠在一起,在200。C下热压扩散结合,得到性能良好的超轻B C /Mg—Li复合材料。由于合金箔的比表面积小,与粉末冶金法相比,该法可减少表面污染,但工艺稍复杂。

2.6 .原位反应复合(In situ Reactive Process)

尽管外加颗粒增强镁基复合材料有时也可以获得较高的性能,但增强相与基体合金间润湿性较差,在热力学上处于不稳定,且二者密度存在差异,颗粒尺寸小时还容易导致复合材料制备过程中颗粒偏聚和聚集等,进一步导致镁基复合材料制备困难、工艺复杂,所获得的复合材料性能与预期性能无法相比,而原位制备方法是有希望改善这一切的有效方法。

原位制备技术的优势在于通过放热反应,在基体内部生成相对均匀分散的增强体,增强体与基体近似处于平衡状态;形成的低能界面使原位复合材料在本质上处于稳定状态【10】。原位生成的增强颗粒形貌可以进行控制,其尺寸往往在亚微米级范围,而这些是改善复合材料力学性能所渴望的。因为在陶瓷颗粒增强金属基复合材料中,细颗粒比粗颗粒更为有效,大约2 m尺寸的颗粒被认为是颗粒复合材料有效增强物的最佳尺寸【11,12】,因此近年来原位镁基复合材料受到许多研究者重视。不同的镁基原位复合村料的研究针对的体系各不相同,而制备方法、形成机制、热力学、显微组织则是这些研究的重点,材料性能的研究偏少。

对于Ti—C—Mg体系,首先将反应预制块在真空或惰性气体保护下发生自蔓延合成反应,使得TiC增强颗粒在金属铝中原位生成,再将自蔓延反应产物放入镁合金熔体中进行溶解扩散,充分搅拌后浇注,从而制备出颗粒增强镁基复合材料,其工艺过程包括反应预制块的制备、自蔓延高温反应合成增强颗粒、自蔓延反应产物在镁合金基体中溶解扩散及采用熔体搅拌工艺使增强颗粒在镁合金基体中弥散分布【13-15】。

2.7 原位反应自发浸渗工艺.(In situ Reactive Infil—tration Process) 如果陶瓷颗粒与基体合金之间有良好的润湿性,由于毛细管力的作用,低熔点金属熔体能自发渗入到某些高熔点金属以及陶瓷内部。受此启示,作者们利用金属熔体自发渗入和原位放热反应直接合成增强相这2个工艺过程进行有机的结合制备出镁基复合材料,并取得

了较好的结果I1 ”]。对于Ti—C—Mg体系,利用自发浸渗结合原位合成技术研究了TiC颗粒增强镁基复合材料。在Ti—C发生燃烧合成的过程中利用Mg的优良润湿性自发浸渗预制块而得到致密的TiC陶瓷颗粒增强镁基复合材料,所得到的TiC颗粒尺寸细小,界面结合良好。制备过程中必须选择一些良好的润湿体系,综合考虑镁的易挥发、易反应和易燃烧性等特点,预制块的质量对随后获得的镁基复合材料性能影响很大。

原位自蔓延反应容易发生、温度低、工艺简单、设备不复杂、成本低,加上预制块制备过程快速、简洁、高效,无特殊要求,并且复合材料制品近终成型,容易制备高体积含量的镁基复合材料,所以具有很重要的意义。利用大量的反应热,原位反应自发浸渗工艺在制备陶瓷基以及金属间化合物基复合材料方面也很有应用前景。

3》镁基复合材料的组织与性能

镁基复合材料组织特征为增强体分布在基体合金中,同时引入了大量的界面以及高密度位错缠结,其晶粒度较基体合金也小。故其增强机理除第二相陶瓷的作用外,还源于基体中存在的高密度位错和晶粒细化作用【18,19】。基体中的位错产生于增强体与基体间存在着较大的热收缩差异、几何约束和制备及后续热处理过程中产生的塑性变形晶粒细化机制主要为:基体合金初生相在增强体表面的非均匀形核;基体合金与增强体表面的界面热交换及细小间距的增强体能够限制基体晶粒异常长大。可见,无论是高密度位错引起的位错强化,还是细化晶粒的作用都将提高和改善复合材料的拉伸强度和刚度等力学性能。而镁锂基复合材料由于其组成合金元素化学性质活泼,能与众多增强体或辅助剂发生不良反应、侵蚀增强体,反应产物在基体内偏析,危害复合材料力学性能,故其存在的界面反应成为首先要考虑的因素。典型镁基和镁锂基复合材料力学性能如表2和3所示【20-22】。

表2 典型镁基复合材料力学性能

基体增

状态

体积含量

(% )

拉伸强度

(MPa)

屈服强度

(MPa)

弹性模量

(GPa)

延伸率

(% )

Mg SiC

P

铸态

0 216 125 4O.7 9

5.6 189 128 45.7 4

16.3 216 144 53.O 3 Gr

缠绕

35 —248 —

Ti 球磨

0h

10.3(wt%)

158 9 — 4.1 球磨

20h

202 167 —13.9 球磨

40h

189 168 —9.5

AZ91 SiC

压铸20 439 ———

挤压20 623 ———

SiC

p

铸态

0 311 —49 21

9.4 236 —47.5 2

15.1 236 —54 7

20 328 —80 2.5

AZ31 B SiC

p

铸态

0 336 251 79 5.7

20(5um) 25O 165 45 12

20(1um) 341 270 79 4

ZK60 A SiC

0 365 303 45 11

T5 20 613 517 97 1.2

T6 20 579 448 70 —SiC

p

T6 20 462 399 69 —

ZK51 A SiC

铸态

10 237.3 —54.6 1.49

20 308.7 —65.1 0.91

挤压

10 280.5 —62.3 1.86

20 379.8 —81.6 1.18

MB2

SiC

P

挤压

10(2um) 316 —— 6.5

10(5um) 282 —— 4.2

与基体相比,复合材料的弹性模量提高而延伸率下降。而铸态复合材料强度降低则是

由于制备过程中增强体团聚或含有一定的气孔以及界面生成脆性金属间化合物在承载时首先

破裂而造成的。对于尺寸较小的增强体则表现为有更高的屈服强度、抗拉强度以及其它力学性能。当然,挤压变形、固溶时效以及其它一些工艺的运用和调整都将有利于进一步提高镁基复合材料力学性能。研究者们对预制块预热温度、时效强化、挤压变形等也进行了细致的研究【23-27】。

镁基复合材料具有良好的阻尼性能、电磁屏蔽性能和储氢特性,是良好的功能材料[2 33],还具备密度小、贮氢容量高、资源丰富等优点。镁基贮氢复合材料正被日益重视,主要制备方法有多元合金化、机械合金化、多元复合等,典型体系有Mg—Mg2Ni、Mg—MgNi一石墨、Mg—Fe—Ti、Mg+La2Mg LaNi5等,重点解决氧化问题。

4》镁基复合材料的应用

从近期发展看,镁基复合材料并没有大规模地应用于常规结构件中,但它们在航空航天和汽车电子工业中的众多构件方面有着广阔的应用前景。

美国TEXTRON、DOW 化学公司用SiCp/Mg复合材料制造螺旋桨、导弹尾翼、内部加强的汽缸等。DOW 化学公司用Al2O3 ,SiCp /Mg复合材料已制成皮带轮、油泵盖等耐磨件,并制备出完全由AlzO /Mg复合材料构成的油泵。美国海军研究所和斯坦福大学利用B4Cp/Mg —Li、Bp/Mg—Li复合材料制造卫星天线构件。1992年以来英国镁电子公司已将工作重点放在被称为Melram的镁基复合材料上,已开发了一系列成本低、可回收、可满足不同应用要求而特殊设计的不连续增强镁基复合材料。该公司开发的SiC 增强Mg—Zn—Cu—Mn镁合金基Melram072复合材料管材,据称是世界上最轻的金属基复合材料;此外,该公司正在开发此种复合材料在国防和汽车方面的应用研究。德国克劳斯塔工业大学采用 Al2O3p ,SiCp /Mg 制成了轴承、活塞、汽缸内衬等汽车零件;加拿大镁技术研究所成功开发了搅拌铸造及挤压铸造SiC颗粒增强镁基复合材料,试图利用其低密度、耐磨损、高比刚度等特点用于汽车的盘状叶轮、活塞环槽、齿轮、变速箱轴承、差动轴承、拨叉、连杆、摇臂等零部件。

表3 典型镁锂基复合材料力学性能

基体增强体体积含(%) 拉伸强度

(MPa)

弹性模量

(GPa)

延伸率(%)

M g一9Li B4Cp O 11O 45.4 55 5 162 49.O 13

Mg一12Li 6一A12O3

O 75 45 > 10

12 21O 2.8

24 280 2.O —

SiC

O 90 — O.4

20 200 69 1.43

Mg一14.1Li B Bp 1O 214 68.1 —20 220 79.3 —30 244 1O1.1 —

Mg一10.3Li一6A1—-6Ag—-4Cd 6一Al203

O 90 —O.4

12 167.5 — O.3

24 142.5 — O.4

Mg一6.5Li

Mg0+M

g2Si 5 137.4 — 5.6

M g一8Li 1O 157.4 —9.5

Mg一11Li 5 18O.9 —8.5

由于目前制备镁基复合材料的成本较高,其应用多集中在航空航天和军事工业。但镁合金是一种国际上承认的绿色环保和可持续发展合金材料,随着新世纪节省能源、保护环境、可回收利用等观念深入人心,预计在汽车等交通工具领域应用将会大大增加。汽车工业中,镁压铸件的加工、循环再生和铸造等较铝有很大的技术优势,并可以用其来代替汽车上部分特种塑料制造的零件。尽管目前铝基复合材料仍在金属基复合材料中占居主导地位,但预计

镁基复合材料销售额将年均增长17.7,高于铝基复合材料的14.6 ,发展前景令人乐观。

此外,作为优秀的功能材料,镁基复合材料正逐步成为移动通讯、电子封装、高能贮氢等领域的研究和应用热点。

5》镁基复合材料的发展前景展望

从目前发展趋势看,简化现有制备工艺、改善成形性以降低制备成本是发展镁基复合材料的攻克点,从而能实现大规模的商业化。预计,以下几个方面将会成为今后的研究热点:(1)。低成本制备技术的开发。

原位生成的陶瓷颗粒增强相具有表面无污染、良好的界面相容性和高结合度等传统工艺不具备的特性,因此,借鉴目前原位内生颗粒增强铝基复合材料较为成熟的制备技术来探索原位内生颗粒增强镁基复合材料,尤其是改善界面结合行为,结合自发浸渗的原位合成技术来获得近终成型的镁基复合材料构件。

(2)。增强体的选择。

采用超细增强体(如亚微米、纳米增强体),研究其制备的关键技术,即增强体的分散性和基体界面的相容性,从而在提高强度的同时细化晶粒、提高塑性以获得优良综合性能的材料。

(3。超轻系镁基复合材料的研究。

进一步研究开发应用于航空航天结构件等方面的超轻系镁基复合材料,Mg—Li基复合材料是首选材料并将成为研究热点。

(4)。镁基功能复合材料的开发利用。

尤其是镁基储能材料的研究开发将会更加深入。

(5)。镁基复合材料回收和再利用技术。

这是应环保及可持续发展要求而必须面对的新型课题。

(6)。镁基复合材料的智能化设计。

采用计算机辅助技术模拟制备镁基复合材料热力学和动力学过程,从而更加清楚地了解基体/增强体界面反应的实际过程,减少复杂实验过程中诸多因素的影响,为镁基复合材料的结构性能制备一体化设计开辟新的研究途径。

参考文献

1.Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites.Inter M ater Rev,1994,39(1):1

2.陈煜,吴桢干,顾明元,等.石墨纤维增强镁基复合材料界面.中国有色金属学报,1997,7(3):124

3.Shen G J,Cai Y,Song J Z.Transmission electron micro—scope study of SiC/Mg alloy interface in cast SiC particulate—reinforced Mg metal matrix composite. J Mater SciLett,1996,15:2058

4. 郝元恺,姜冀湘,赵恂.碳化硼颗粒/镁合金复合材料的工艺和性能.复合材料学报,1995,12(4):8

5. 郝元恺,赵恂,杨盛良,等.纯镁对碳化硼颗粒的常压浸渗研究.复合材料学报,1995,12(3):12

6.蔡叶,苏华钦.镁基复合材料研究的回顾与展望.特种铸造及有色合金,1996,(3):17

7.Huard G ,Angers R,Krishnadev M R.Fabrication of SiCMg composites by hot pressing and extrusion.Sintering 9 1,Proceedings of the Fifth International Symposium on theScience and Technology of Sintering,ed.Chaklader A C Dand Lund J,Brookfield,CT:Trans Tech Publications Ltd,1992,515

8.Krishnadev M R,Angers R,Krishnadas Nair C G,et a1.The structure and properties

of magnesium—-matrix compos——ites.JOM ,1993,(8):52

9.Gonzalez—Doncel G,Wolfenstine J,Metenier P,et a1.Theuse of foil metallurgy processing to achieve ultrafine grainedMg一9Li laminates and M g一9Li一5B4C particulate composites.J Mater Sci,1990,25(10):4535

10.孙志强,张荻,丁剑,等.原位增强镁基复合材料研究进展与原位反应体系热力学.材料科学与工程,2002,20(4):579

11. Klier E M ,Brown A M .NSF Report.DM I一9302463,1996

12.李劲风,张昭,张鉴清.金属基复合材料的原位制备.材料科学与工程,2002,20(3):453

13. Jiang Q C,Wang H Y,Wang J G,et a1.Fabrication ofTiCp/Mg composites by the thermal explosion synthesis re—action in molten magnesium.M ater Lett,2003,57:2580

14. Jiang Q C,Li X L,Wang H Y.Fabrication of TiC particu—late reinforcement magnesium matrix composites. ScrM ater,2003,48:713 ‘

15 .W ang H Y,Jiang Q C,Li X L,et a1.In situ synthesis ofTiC/M g composites in molten magnesium. Scr M ater,2003,48:13491 6 Dong Q,Chen L Q,Zhao M J,et a1.Syn thesis of TiC。re—inforced magnesium matrix composites by in situ reactive in—filtration process.Mater Lett,2004,in print

17.陈礼清,董群,赵明久,等.TiCp/Mg复合材料原位反应渗透法制备及常温压缩性能.材料研究学报,2004,in print

18.Pollard I B.Interface structure and fractography of a mag—nesium—-alloy metal —-matrix composite reinforced with SiCparticles.J Mater Sci,1993,28:4427 19.Hu H.Grain microstructure evolution of AM 50A/SiCP metalmatrix composites.Scr Mater,1998,39(8):1015

20.Lu L.Lai M O,Froyen L.Structure and properties of M gmetal—metal composite.Key Eng M ater,2002,230—232:287

21.E辅忠,李荣华,费英.Mg—Li基复合材料研究进展.材料科学与工程学报,2003,21(1):134

22.于化顺,闽光辉,陈熙琛.Mg—Li基复合材料研究现状.稀有金属,1996,2O(5):365

23. M urty B S.Thakur S K .Dhindaw B K.On the infiltrationbehavior of A1,A1一Li and M g melts through SiCp bed.M etall M ater Trans,2000,31A :319

24 .Badini C,M arino F,M ontorsi M ,et a1.Precipitation phe—nomena in B4C —reinforced magnesium—based composite.Mater Sci Eng,1992,A157(1):53

25.葛岱斌,吴桢干,顾明元,等.非连续增强镁基复合材料的时效特性.宇航材料工艺,1999,(2):26

26.胡连喜,李小强,王尔德,等.挤压变形对SiCw/ZK51A镁基复合材料组织和性能的影响.中国有色金属学报,2000,IO(5):68O

27.M ukai T,Nieh T G,1wasaki H,et a1.Superplasticity indoubly extruded magnesium composite ZK60/SiC/17p.Mater Sci Tech,1998,14:32

28.王平,张海峰,丁炳哲,等.Mg一50 (ZrFe“Cr。.。)复合材料的氢化性能.金属学报,2000,36(8):893

29.张小农,张荻,吴人洁.混杂增强镁合金复合材料的力学性能和阻尼性能.中国有色金属学报,1998,8(增1):150

3O.李谦,蒋利军,林勤,等.氢化燃烧法合成Mg Ni的贮氢性能.中国有色金属学报,2002,12(5):912

31.王秀丽,涂江平,张孝斌,等.掺Cr纳米晶Mg Ni合金的气态储氢性能.中国有色金属学报,2002,12(5):908

32.房文斌,张文丛,于振兴,等.镁基储氢材料的研究进展.中国有色金属学报,2002,12(5):853

33.王辉,曾美琴,罗堪昌,等.Mg基贮氢合金研究进展.金属功能材料,2002,9(2):4

34.Mordike B L, Ebert T. Magnesium : properties—applica—tions—potentia1.Mater Sci Eng,2001,A3O2(1):37

镁合金的发展及应用

1 / 8 镁合金的发展及应用 摘要:综述镁合金的特点及其在交通、航空航天、兵器方面的应用情况,并结合兵器零件的使用特点和性能要求,分析了镁合金在兵器装备中的应用前景, 展望 关键词:镁合金,特点,发展,应用 1 引言 镁合金的密度很小,是钢的四分之一、铝的三分之二,但镁合金的比强度却大于钢和铝,是最轻的金属结构材料。因此,镁合金在电子产品、汽车、航空航天等需要高比强度金属材料的领域具备广阔的发展前景。但是镁合金的化学活性高,在有机酸、无机酸和含盐的溶液中均会被腐蚀,且腐蚀速率较高,使得镁合金的应用受到了很大的限制。 镁合金是重要的有色轻金属材料,具有比强度、比刚度高,减振性、电磁屏 蔽和抗辐射能力强,易切削加工,易回收等一系列优点,广泛应用于航空航天、 2 镁合金的特点 (1)重量轻:镁合金的比强度要高于铝合金和钢/铁、但略低于比强度最高的纤维增强塑料;其比刚度与铝合金和钢/铁相当,但却远远高于纤维增强塑料。比强度(强度/密度之比值)、比耐力(耐力/密度之比值)则比铝、铁都要高。在实用金属结构材料中其比重最小(密度为铝的2/3,钢的1/4)。这一特性对于现代社会的手提类产品减轻重量、车辆减少能耗以及兵器装备的轻量化具有非常重要的意义。 (2)高的阻尼和吸震、减震性能:镁合金具有极好的吸收能量的能力,可吸收震动和噪音,保证设备能安静工作。镁合金的阻尼性比铝合金大数十倍,减震效果很显著,采用镁合金取代铝合金制作计算机硬盘的底座,可以大幅度减轻重量(约降低70%),大大增加硬盘的稳定性,非常有利于计算机的硬盘向高速、大容量的方向发展。 (3)良好的抗冲击和抗压缩能力:其抗冲击能力是塑料的20倍;当镁合金

镁基复合材料的性能及应用

镁基复合材料的性能及应用 罗文昌2013121532 摘要:镁基复合材料因其轻量化和高性能而成为当今高新技术领域中最富竞争力和最有希望采用的复合材料之一。本文将综述镁基复合材料的不同制备方法及其对复合材料组织、结构、性能的影响,并提出镁基复合材料的研究和发展方向。 关键词:镁基复合材料;基体镁合金;性能;应用;发展 1.引言 现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。复合材料是将两种或两种以上不同性能、不同形态的组分材料通过复合手段组合而成的一种多相材料。近年来,金属基复合材料在许多领域得到了应用。目前金属基复合材料的制备方法已有很多,并在铁基、镁基、铜基、铝基、钛基等金属基复合材料中取得了比较大的成功。镁基复合材料是继铝基复合材料之后又一具有竞争力的轻金属基复合材料主要特点是密度低、比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性、优良的减震性能及良好的尺寸稳定性和铸造性能等;此外,还具有电磁屏蔽和储氢特性等,是一类优秀的结构与功能材料,也是当今高新技术领域中最有希望采用的复合材料之一;在航空航天、军工产品制造、汽车以及电子封装等领域中具有巨大的应用前景。根据镁基复合材料的特点,结合原有的金属基复合材料的制备工艺,材料工作者尝试了多种新的适合制备镁基复合材料的方法与工艺,对研制、开发镁基复合材料起到了很好的促进作用。 2.镁基复合材料的组织与性能 相对于传统金属材料和铝基复合材料,有关镁基复合材料的组织与性能的研究目前虽然已经取得了一定的成果,但还不够全面深入,力学性能数据分散性也比较大,仍处于探索性研究阶段。材料工作者对镁基复合材料的耐磨性能和疲劳断裂机理进行了研究,并围绕镁基复合材料的力学性能及物理性能做了一些工作。力学性能主要集中于复合材料的拉伸与压缩性能,时效特性,以及低温与高温超塑性等方面;物理性能有阻尼性能和储氢性能等研究内容。储氢镁基复合材料一般采用球磨法制备。高能球磨后,颗粒活化,镁颗粒与增强相颗粒以及颗粒内部的大量相界、微观缺陷的存在是材料具有优异氢化性能的主要原因。通过机械合金化工艺可以制备出具有优良储氢性能的复合材料,典型体系:Mg—Mg2Ni,而且若在研磨过程中辅以某些有机添加剂对提高材料的储氢性能有很大帮助,但较高的脱氢温度以及相对较慢的吸放氢速度限制了镁基合金实际应用。另外非晶态镁基复合材料的优良性能更是引起了人们的普遍兴趣。在实际应用中,由于镁基复合材料过硬的性能,镁基复合材料在在各领域中被广泛应用。镁基复合材料组织特征为增强体分布在基体合金中,同时引入了大量的界面以及高密度位错缠结,其晶粒度较基体合金也小,无论是高密度位错引起的位错强化,还是细化晶粒的作用都将提高和改善复合材料的拉伸强度和刚度等力学性能。另外,挤压变形、固溶时效以及其它一些工艺的运用和调整都将有利于进一步提高镁基复合材料力学性能镁基复合材料具有良好的阻尼性能(减振性能)、电磁屏蔽性能和储氢特性,是良好的功能材料,还具备密度小、贮氢容量高、资源丰富等优点。镁基贮氢复合材料正被日益重视,主要制备方法有多元合金化、机械合金化、多元复合等。 3.镁基复合材料的应用 从近期发展看,镁基复合材料并没有大规模地应用于常规结构件中,但它们在航空航天和汽车电子工业中的众多构件方面有着广阔的应用前景。 美国TEXTRON、DOW 化学公司用SiC /Mg复合材料制造螺旋桨、导弹尾翼、内部加强的汽

镁基复合材料的制备

书山有路勤为径,学海无涯苦作舟 镁基复合材料的制备 镁及镁合金虽具有密度低、比强度大、比刚度高和抗冲击性强等诸多优点。但是也有一些固有缺点,如硬度、刚度、耐磨性、燃点较低、不是一种良好的结构材料,使其应用受到相当大的制约。若向镁基体中添加陶瓷颗粒或碳纤维制成复合材料,则可以在很大程度上改善镁的力学性能,提高耐热和抗蠕变性能,降低热膨胀系数等。可作为复合材料增强相的颗粒有:氧化物、碳化物、氮化物、陶瓷、石墨和碳纤维等。制备镁基复合材料的工艺主要是:铸造法、粉末冶金法、喷射沉积法。铸造法 铸造法是制备镁合金复合材料的基本工艺,可分为搅拌混合法、压力浸渗法、无压浸渗法和真空渗法等。 搅拌铸造法(Stiring Casting) 此法是利用高速旋转搅拌器浆叶搅动金属熔体,使其剧烈流动,形成以搅拌旋转轴为中心的漩涡,将增强颗粒加入漩涡中,依靠漩涡负压抽吸作用使颗粒进入熔体中,经过一段时间搅拌,颗粒便均匀分布于熔体内。此法简便,成本低,可以制备含有Sic、Al2O3、SiO2、云母或石墨等增强相的镁基复化材料。不过也有一些难以克服的缺点:在搅拌过程中会混入气体与夹杂物,增强相会偏析与固结,组织粗大,基体与增强相之间会发生有害的界面反应,增强相体积分数也受到一定限制,产品性能低,性价比无明显优势。用此法生产镁基复合材料时应采取严密的安全措施。 液态浸渗法(Liquid infiltration process) 用此法制备镁基复合材料时,须先将增强材料与黏接剂混合制成预制坯,用惰性气体或机械设备作用压力媒体将镁熔体压入预制件间隙中,凝固后即成为复合材料,按具体工艺不同又可分为压力浸渗法、无压、浸渗法和真空浸渗

镁合金压铸技术的几个主要问题

镁合金压铸技术的几个主要问题及其使用前景 1前言 镁合金材料1808年面世, 1886年始用于工业生产。镁合金压铸技术从1916年成功地将镁合金用于压铸件算起,至今也经历了八十余年的发展。人类在认识和驾驭镁合金及其制品的生产技术方面,经历了漫长的探索历程。从1927年推出高强度MgAl9Zn1开始,镁合金的工业使用获得了实质性的进展。1936年德国大众汽车公司开始用压铸镁合金生产“甲壳虫”汽车的发动机传动系统零件,1946年单车使用镁合金量达18kg左右。美国在1948~1962年间用热室压铸机生产的汽车用镁合金压铸件达数百万件。尽管如此,过去镁合金作为结构材料主要用于航空领域,在其它领域,世界上镁的主要用途是生产铝合金,其次用于钢的脱硫和球墨铸铁生产。 近年来, 由于人们对产品轻量化的要求日益迫切,镁合金性能的不断改善及压铸技术的显著进步,压铸镁合金的用量显著增长。特别是人类对汽车提出了进一步减轻重量、降低燃耗和排放、提高驾驶安全性和舒适性的要求, 镁合金压铸技术正飞速发展。此外,镁合金压铸件已逐步扩大到其他领域,如手提电脑外壳,手提电锯机壳,鱼钩自动收线匣,录像机壳,移动电话机壳,航空器上的通信设备和雷达机壳,以及一些家用电器具等。 镁主要由含镁矿石提炼。我国辽宁省大石桥市一带的菱镁矿储量占世界储量的60%以上,矿石品位高达40%以上。我国生产的镁砂和镁砂制品大量用于出口。充分利用我国丰富的镁砂资源进行深度开发,结合我国汽车、计算机、通讯、航天、电子等新兴产业的发展,促进镁合金压铸件的生产和使用,是摆在我国铸造工作者面前的一项任务。 2、压铸镁合金的研究 镁合金的密度小于2g/cm3,是目前最轻的金属结构材料,其比强度高于铝合金和钢,略低于比强度最高的纤维增强塑料;其比刚度和铝合金和钢相当,远高于纤维增强塑料;其耐腐蚀性比低碳钢好得多,已超过压铸铝合金A380;其减振性、磁屏蔽性远优于铝合金[1];鉴于镁合金的动力学粘度低,相同流体状态(雷诺指数相等)下的充型速度远大于铝合金,加之镁合金熔点、比热容和相变潜热均比铝合金低,故其熔化耗能少,凝固速度快,镁合

镁合金的分类及特点

镁合金的分类及特点 1.2.1镁合金的分类 镁合金是以金属镁为基体,通过添加一些其它的元素而形成的合金,镁合金中添加的合金元素主要有Al、Zn、Mn、Si、Zr、Ca、Li以及部分稀土族元素等[10],一般说来镁合金的分类依据有以下三种:合金化学成分、成形工艺和是否含锆。 镁合金按合金化组元数目可分为二元、三元和多元合金体系。常见的镁合金体系一般都含有不止一种合金元素。但在实际中,为了分析方便,简化和突出合金中主合金元素的作用,可以把镁合金分为Mg-Mn、Mg-Al、Mg-RE、Mg-Th、Mg-Li 和Mg-Ag 等合金系列[11]。按合金中是否含锆,镁合金可划分为含锆和不含锆两大类。最常见的含锆镁合金系列为:Mg-Zn-Zr、Mg-RE-Zr、Mg-Th-Zr、Mg-Ag-Zr 系列。不含锆镁合金有:Mg-Zn、Mg-Mn和Mg-Al系列。目前应用最多的是不含锆压铸镁合金Mg-Al 系列。含锆和不含锆镁合金中均既包含着变形镁合金,又包含着铸造镁合金。锆在镁合金中的主要作用就是细化镁合金晶粒。含锆镁合金具有优良的室温性能和高温性能。遗憾的是Zr不能用于所有的工业合金中,对于Mg-Al 和Mg-Mn 合金,由于冶炼时Zr与Al及Mn形成稳定的化合物,并沉入坩埚底部,无法起到细化晶粒的作用[12]。 按成形工艺镁合金可分为两大类,即变形镁合金和铸造镁合金。变形镁合金是指可用挤压、轧制、锻造和冲压等塑性成形方法加工的镁合金。铸造镁合金是指适合采用铸造的方式进行制备和生产出铸件直接使用的镁合金[11]。变形镁合金和铸造镁合金在成分、组织和性能上存在着很大的差异。目前,铸造镁合金比变形镁合金的应用要广泛,但与铸造工艺相比,镁合金热变形后合金的组织得到细化,铸造缺陷消除,产品的综合机械性能大大提高,比铸造镁合金材料具有更高的强度、更好的延展性及更多样化的力学性能[13]。因此,变形镁合金具有更大的应用前景。 1.2.2 主合金元素的作用 根据镁合金的强化效果,其合金的元素可以分为三类[14,15]: 1)既提高强度又提高韧性的合金元素,按作用效果顺序为: 强度标准:Al、Cn、Ag、Ce、Ga、Ni、Cu、Th;韧性标准:Th、Ga、Zn、Ag、Ce、Ca、Al、Ni、Cu; 2)强化能力较低,提高韧性的元素:Cd,Ti和Li; 3)强化效果较好,但使韧性降低的元素:Sn、Pb、Bi和Sb。 1.3 Mg-Zn-RE系合金的研究现状 1.3.1 Mg-Zn系合金 纯粹的Mg-Zn二元合金在实际中几乎没有得到应用,因为该合金的铸造性差,合金组织粗大,容易出现偏析和热裂等铸造缺陷,对显微疏松非常敏感。但Mg-Zn合金有一个最为明显的优点,就是可以通过时效处理来提高合金的强度。所以该合金的进一步的发展就是寻找新的合金添加元素,达到细化晶粒,使组织均匀化,减少合金显微疏松[1,16,17]。在Mg-Zn 合金中加入Cu元素,会使合金的韧性和时效硬化明显增加,这是因为Cu元素能提高Mg-Zn 合金的共晶温度,因而可在较高的温度固溶,使更多的Zn、Cu溶于合金中,增加了合金随后的时效强化效果[16]。Mg-Zn合金中引入Cu元素的缺点是导致合金的耐蚀性降低;Zr是对Mg-Zn系合金最为有效的晶粒细化元素,在Mg-Zn合金中加入Zr元素会使粗大的晶粒得到细化。这类合金均属于时效强化合金,一般都在固溶+时效或者直接时效的状态下使用,具有较高的抗拉强度和屈服强度[18]。然而,这类合金的不足之处是对显微疏松比较敏感,焊

镁基储氢材料

镁系储氢合金综述 摘要:镁与镁基合金具有储氢量大,质量小,资源丰富,价格低廉等优点,受到人们的广泛关注。本文介绍了镁系储氢合金的工艺、性能、应用及发展。 关键词:储氢材料,镁基合金,储氢性能,材料复合,镁基化合物 前言氢能是最清洁且储量丰富的能源,储氢材料的发展及应用对环境保护和能源开发有着重要的意义。镁基储氢合金是最有潜力的金属氢化物储氢材料,近年来已引起世界各国的广泛关注。镁及其合金作为储氢材料,具有以下几个特点:(1)储氢容量很高,MgH2的含氢量达到7.6(wt)% ,而Mg2NiH4的含氢量也达到3.6(wt)%;(2)镁是地壳中含量为第六位的金属元素,价格低廉,资源丰富;(3)吸放氢平台好;(4)无污这些缺点严重阻碍了镁染。但镁及其合金作为储氢材料也存在三个缺点:(1)吸放氢速度较慢,反应动力学性能差;(2)氢化物较稳定,释氢需要较高的温度;(3)镁及其合金的表面容易形成一层致密的氧化膜。以上基储氢合金的实用化进程。近年来,镁基复合储氢材料的研究取得了明显突破,本文简要介绍镁基复合储氢材料吸放氢性能的改善。 1 镁基储氢材料体系 最早开始研究镁基储氢材料的是美国布鲁克-海文国家实验室, Reilly和Wiswall在1968年首先以镁和镍混合熔炼而成Mg2Ni合金。后来随着机械合金化制备方法的出现,揭开了大规模研究镁基储氢材料的序幕。据不完全统计,到目前为止人们研究了近1 000多种重要的镁基储氢材料,几乎包括了元素周期表中所有稳定金属元素和一些放射性元素与镁组成的储氢材料。通过研究,发现这些镁基储氢材料可以分为单质镁储氢材料、镁基储氢合金和镁基储氢复合材料三大类。 1.1 单质镁储氢材料 镁可直接与氢反应,在300~400℃和较高的氢压下,反应生成MgH2: Mg+H2=MgH2 , △H=-74.6 kJ/mol 。 MgH2理论氢含量可达7.6%,具有金红石结构,性能较稳定,在287℃时的分解压为101. 3 kPa。因为纯镁的吸放氢反应动力学性能差,吸放氢温度高,所以纯镁很少被用来储存氢气。随着材料合成手段的不断发展,特别是机械合金化制备工艺的日益成熟,研究人员对单质镁储氢材料进行了新的研究。 1.2 镁基储氢合金 到目前为止,人们已对300多种重要的镁基储氢合金材料进行了研究。其中最具有代表性的是Mg-Ni系储氢合金,许多研究者围绕这一系列合金开展了大量的研究工作。在制备方法上,主要研究了熔炼法、粉末烧结法、扩散法、机械合金化法和氢化燃烧合成法等,并且对镁基储氢合金采用表面处理和热处理来进一步提高其动力学性能和循环寿命。 1.2.1 Mg-Ni系储氢合金 在Mg与Ni形成的合金体系中存在2种金属间化合物Mg2Ni和MgNi2,其中MgNi2不与氢气发生反应。Mg2Ni在一定条件下(1.4MPa、约200℃)与氢反应生成Mg2NiH4,反应方程式如下: Mg2Ni+2H2=Mg2NiH4,△H=-64.5 kJ/mol 。 反应生成的氢化物中氢含量为3.6%,其离解压为0.1MPa、离解温度为253℃。Mg2Ni理论电化学容量为999 mA·h·g- 1,但其形成的氢化物在室温下较稳定而不易脱氢。且与强碱性电解液(6 mol·L-1的KOH)接触后,合金表面易形成Mg(OH)2,阻止了电解液与合金表面的氢交换、氢转移和氢向合金体内扩散,致使Mg2Ni的实际电化学容量、循环寿命差。 1.2.2 镁与其它元素组成的镁基储氢合金 除了Mg-Ni系储氢合金以外,研究者们研究得比较多的还有Mg-Al系以及Mg-La系储氢合

高中必修一化学镁铝铁知识归纳

高中化学镁铝铁知识归纳【知识网络】 一、镁及其化合物 相关化学方程式 2Mg+O2=2MgO 3Mg+N2Mg3N2 Mg+Cl2MgCl2 Mg+2H+=Mg2++H2↑ Mg+2H2O Mg(OH)2+H2↑ 2Mg+CO22MgO+C MgO+H2O=Mg(OH)2 MgO+2HCl=MgCl2+H2O MgCl2(熔融) Mg+Cl2↑

Mg2++CO32-=MgCO3↓ MgCO3+2H+=Mg2++CO2↑+H2O MgCO3+CO2+H2O=Mg(HCO3)2 MgCO3+H2O Mg(OH)2+CO2↑ Mg(OH)2MgO+H2O Mg3N2+6H2O=3Mg(OH)2↓+2NH3↑二、铝及其化合物 相关化学方程式 4Al+3O2=2Al2O3 3S+2Al Al2S3 2Al+3Cl22AlCl3 2Al+6HCl=2AlCl3+3H2↑ 2Al+6H2O 2Al(OH)3+3H2↑

2Al+Fe2O3Al2O3+2Fe 2Al+2NaOH+2H2O=2NaAlO2+3H2↑Al2O3+6HCl=2AlCl3+3H2O Al2O3+2NaOH=2NaAlO2+2H2O Al3++3H2O=Al(OH)3+3H+ Al3++3NH3·H2O=Al(OH)3↓+3NH4+ Al3++3OH-=Al(OH)3↓ Al3++4OH-=AlO2-+2H2O Al2S3+6H2O=2Al(OH)3↓+3H2S↑Al(OH)3+3H+=Al3++3H2O Al(OH)3+OH-=AlO2-+2H2O AlO2-+CO2+2H2O=Al(OH)3↓+HCO3-AlO2-+H++H2O=Al(OH)3↓ AlO2-+4H+=Al3++2H2O 3AlO2-+Al3++6H2O=4Al(OH)3↓三、铁及其化合物

镁基储氢材料

镁系储氢合金综述 08材控薛凯琳 摘要:镁与镁基合金具有储氢量大,质量小,资源丰富,价格低廉等优点,受到人们的广泛关注。本文介绍了镁系储氢合金的工艺、性能、应用及发展。 关键词:储氢材料,镁基合金,储氢性能,材料复合,镁基化合物 前言氢能是最清洁且储量丰富的能源,储氢材料的发展及应用对环境保护和能源开发有着重要的意义。镁基储氢合金是最有潜力的金属氢化物储氢材料,近年来已引起世界各国的广泛关注。镁及其合金作为储氢材料,具有以下几个特点:(1)储氢容量很高,MgH2的含氢量达到7.6(wt)% ,而Mg2NiH4的含氢量也达到3.6(wt)%;(2)镁是地壳中含量为第六位的金属元素,价格低廉,资源丰富;(3)吸放氢平台好;(4)无污这些缺点严重阻碍了镁染。但镁及其合金作为储氢材料也存在三个缺点:(1)吸放氢速度较慢,反应动力学性能差;(2)氢化物较稳定,释氢需要较高的温度;(3)镁及其合金的表面容易形成一层致密的氧化膜。以上基储氢合金的实用化进程。近年来,镁基复合储氢材料的研究取得了明显突破,本文简要介绍镁基复合储氢材料吸放氢性能的改善。 1 镁基储氢材料体系 最早开始研究镁基储氢材料的是美国布鲁克-海文国家实验室, Reilly和Wiswall在1968年首先以镁和镍混合熔炼而成Mg2Ni合金。后来随着机械合金化制备方法的出现,揭开了大规模研究镁基储氢材料的序幕。据不完全统计,到目前为止人们研究了近1 000多种重要的镁基储氢材料,几乎包括了元素周期表中所有稳定金属元素和一些放射性元素与镁组成的储氢材料。通过研究,发现这些镁基储氢材料可以分为单质镁储氢材料、镁基储氢合金和镁基储氢复合材料三大类。 1.1 单质镁储氢材料 镁可直接与氢反应,在300~400℃和较高的氢压下,反应生成MgH2: Mg+H2=MgH2 , △H=-74.6 kJ/mol 。 MgH2理论氢含量可达7.6%,具有金红石结构,性能较稳定,在287℃时的分解压为101. 3 kPa。因为纯镁的吸放氢反应动力学性能差,吸放氢温度高,所以纯镁很少被用来储存氢气。随着材料合成手段的不断发展,特别是机械合金化制备工艺的日益成熟,研究人员对单质镁储氢材料进行了新的研究。 1.2 镁基储氢合金 到目前为止,人们已对300多种重要的镁基储氢合金材料进行了研究。其中最具有代表性的是Mg-Ni系储氢合金,许多研究者围绕这一系列合金开展了大量的研究工作。在制备方法上,主要研究了熔炼法、粉末烧结法、扩散法、机械合金化法和氢化燃烧合成法等,并且对镁基储氢合金采用表面处理和热处理来进一步提高其动力学性能和循环寿命。 1.2.1 Mg-Ni系储氢合金 在Mg与Ni形成的合金体系中存在2种金属间化合物Mg2Ni和MgNi2,其中MgNi2不与氢气发生反应。Mg2Ni在一定条件下(1.4MPa、约200℃)与氢反应生成Mg2NiH4,反应方程式如下: Mg2Ni+2H2=Mg2NiH4,△H=-64.5 kJ/mol 。 反应生成的氢化物中氢含量为3.6%,其离解压为0.1MPa、离解温度为253℃。Mg2Ni理论电化学容量为999 mA·h·g- 1,但其形成的氢化物在室温下较稳定而不易脱氢。且与强碱性电解液(6 mol·L-1的KOH)接触后,合金表面易形成Mg(OH)2,阻止了电解液与合金表面的氢交换、氢转移和氢向合金体内扩散,致使Mg2Ni的实际电化学容量、循环寿命差。 1.2.2 镁与其它元素组成的镁基储氢合金 除了Mg-Ni系储氢合金以外,研究者们研究得比较多的还有Mg-Al系以及Mg-La系储氢合

镁合金压铸熔炉安全操作规程(2021版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 镁合金压铸熔炉安全操作规程 (2021版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

镁合金压铸熔炉安全操作规程(2021版) 熔炉的安全操作: ①未经过培训人员不得进入设备区。 ②在有镁尘、镁粉或镁屑处点明火或吸烟有爆炸危险。 ③设备零件带电,不正确维修保养电器,接地线未坚固,会造成人身伤害或死亡。 ④随意改装设备会降低设备的安全,有可能导致伤人或死亡。 ⑤对设备进行危险及错误操作,有可能导致伤人或死亡。 ⑥将潮湿或脏的镁锭及镁尘、镁粉、镁渣加入熔炉有爆炸危险。所以,加入坩埚的镁合金应干燥、无油、无脏、预热不低于150℃。 ⑦坩埚中熔化镁溢出来,可造成人烧伤、死亡、所以镁合金熔化或加料时要穿保护服。 ⑧安全设备,需备足以下设备且易取和防火处:

A、灭火器(D级灭火器)D类灭火器必须使用具有国家安全质量认证并且具有品质社会保险资格产品。 B、干盐或干沙 C、无尘石棉垫防止烧着衣服 D、安全衣及安全鞋耐700℃以上的高温 E、安全手套 F、护眼硬帽 ⑨急救设备 A、氧气及防毒罩 B、医药箱(end) 云博创意设计 MzYunBo Creative Design Co., Ltd.

镁合金的优缺点与应用

镁合金的优缺点及应用 镁合金是以镁为原料的高性能轻型结构材料,比重与塑料相近,刚度、强度不亚于铝,具有较强的抗震、防电磁、导热、导电等优异性能,并且可以全回收无污染。镁合金质量轻,其密度只有1.7 kg/m3,是铝的2/3,钢的1/4,强度高于铝合金和钢,比刚度接近铝合金和钢,能够承受一定的负荷,具有良好的铸造性和尺寸稳定性,容易加工,废品率低,具有良好的阻尼系数,减振量大于铝合金和铸铁,非常适合用于汽车的生产中,同时在航空航天、便携电脑、手机、电器、运动器材等领域有着广泛的应用空间。 、镁合金的优点 1、镁合金密度小但强度高、刚性好。在现有工程用金属中,镁的密度最小,是钢的1/5,锌的1/4,铝的2/3。普通铸造镁合金和铸造铝合金的刚度相同,因而其比强度明显高于铝合金。镁合金的刚度随厚度的增加而成立方比增加,故而镁合金制造刚性好的性能对整体构件的设计十分有利。 2、镁合金的韧性好、减震性强。镁合金在受外力作用时,易产生较大的变形。但当受冲击载荷时,吸收的能量是铝的1.5倍,因此, 很适合应于受冲击的零件一车轮;镁合金有很高的阻尼容量,是避免由于振动、噪音而引起工人疲劳等场合的理想材料。 3、镁合金的热容量低、凝固速度快、压铸性能好。镁合金是良好

的压铸材料,它具有很好的流动性和快速凝固率,能生产表面精细、棱角清晰的零件,并能防止过量收缩以保证尺寸公差。由于镁合金热容量低,与生产同样的铝合金铸件相比,其生产效率高40% ~ 50% ,且铸件尺寸稳定,精度高,表面光洁度好。 4、镁合金具有优良的切削加工性。镁合金是所有常用金属中较容易加工的材料。加工时可采用较高的切削速度和廉价的切削刀具工具消耗低。而且不需要磨削和抛光,用切削液就可以得到十分光洁的表面。 5、资源丰富。中国是镁资源大国,菱镁矿、白云石矿和盐湖镁资源等优质炼镁原料在中国的储量十分丰富,为中国的原镁工业及 下游”产业的蓬勃发展和不断进步提供了物质保证。进入20世纪90 年代以来,随着改革开放和市场经济的不断深入发展,中国镁工业也有了突飞猛进的发展。2000年全国镁产量约为200 kt ,几乎占世界镁产量的40%,位居全球第一。2005年,原镁产量达到354 kt, 原镁产能接近600 kt ,比2004年净增100kt,同比增长32.1%,占全球镁产量的2/3 ,成为中国继铝、铜、铅、锌之后的第五大有色金属。 二、镁合金的缺点 1、易燃性。镁元素与氧元素具有极大的亲和力,其在高温下甚至还处于固态的情况下,就很容易与空气中的氧气发生反应,放出大量热,且生成的氧化镁导热性能不好,热量不能及时发散,继而促进了氧化反应的进一步进行,形成了恶性循环,而且氧化镁疏松多孔,不能有效阻隔空气中氧的侵入。

高中化学 镁元素及其化合物讲义(必修1)

镁元素及其化合物 【知识归纳】 一、金属镁的理化性质 1、镁的物理性质 2、镁的化学性质 二、镁的化合物 1、氧化镁 2、氢氧化镁 典型例题 1.有关镁的下列叙述中错误的是() A.能与NH4Cl溶液作用放出氢气 B.与冷水剧烈反应,生成Mg(OH)2沉淀并放出氢气 C.在CO2中能继续燃烧,所以金属镁着火,不能用CO2去灭火 D.在通常情况下其表面有一层致密的氧化膜,所以抗腐蚀能力很强 B 2.镁粉在焰火、闪光灯中是不可缺少的原料,工业上制造镁粉是将镁蒸气在气体中冷却。下列气体中,可用来冷却镁蒸气的是() A、空气 B、二氧化碳 C、氢气 D、氩气 D 3.金属镁在二氧化碳中燃烧生成MgO和C,将一定量金属镁在含二氧化碳、氧气的混合气体中燃烧后得到的固体,加入足量盐酸中,充分反应后,将溶液蒸干,然后隔绝空气灼烧,得到的固体成分可能是 ( ) A. MgO和C B. MgO C. MgCl2和C D.Mg(OH)2 AD 4.将4.6 g金属钠投入到足量水中,得a g溶液;将4.8 g金属镁投入到足量盐酸中,得b g溶液,假设水的质量与盐酸的质量相等,则反应后两溶液的质量关系式为( ) A.a=b B.a>b C.a

a=4.6+m(H2O)-0.2=4.4+m(H2O) Mg+2HCl===MgCl2+H2↑ 24 2 4.8g 0.4g b=4.8+m(HCl)-0.4=4.4+m(HCl) 因为m(H2O)=m(HCl),所以a=b。 答案:A 5.我国有丰富的海水资源,开发和利用海水资源是当前科学研究的一项重要任务,下图是某化工厂对海水资源综合利用的示意图: 请根据以上信息回答下列问题: I.(1)写出N的化学式和B的名称:N 、B 。(2)写出反应②的化学方程式,并标出其电子转移的方向和数目: (3)写出反应③的离子方程式:, Ⅱ.粗盐中含有Ca2+、Mg2+、SO42-等杂质,精制时所用的试剂为:①盐酸②氯化钡溶液 ③氢氧化钠溶液④碳酸钠溶液,以上试剂添加的顺序可以为。 A. ②③④① B. ③④②① C. ④③②① D. ③②④① Ⅲ.提取粗盐后剩余的海水(母液)中,可用来提取Mg和Br2。 (1)若用来提取Mg,根据上述提取Mg的流程,没有涉及到的反应类型是。 A.分解反应B.化合反应C.置换反应D.复分解反应(2)若用来提取Br2,反应⑥所用的气态氧化剂的寻找货源的设想,其中合理的是。 A.从外地购买B.在当地新建生产厂 C.从本厂生产烧碱处循环D.从本厂生产镁单质处循环流程⑦将溴单质从混合物中分离出来是基于溴单质具有性。 (3)母液用来提取Mg和Br2先后顺序,甲乙两位工程师有不同观点: 甲:母液先提取Mg,后提取Br2 乙:母液先提取Br2,后提取Mg 请你判断哪个更合适? (填“甲”或“乙”), 理由是。

石墨烯增强镁基复合材料复合材料论文

摘要 碳纳米管、石墨烯具有优异的力学性能(高强度和高模量),是镁基复合材料理想的增强体。如何改善碳纳米管、石墨烯在镁基体中的分散性和提高界面结合强度,是制备高性能纳米碳/镁基复合材料的关键。采用粉末冶金和热挤压工艺制备了石墨烯(GNS)增强的AZ91镁基复合材料,测试了复合材料的力学性能,并用扫描电镜和能谱仪对复合材料断口形貌进行了观察和分析。采用粉末冶金+热挤压工艺+T4固溶处理分别制备了CNTs,MgO@CNTs(包覆MgO碳纳米管)、GNPs (石墨烯纳米片)和RGO(还原石墨烯)增强的AZ91镁基复合材料,研究了碳纳米管表面包覆MGO工艺,纳米碳材料(CNTs,Mg O@CNTs,GNPs和GO)含量对AZ91合金的组织和力学性能的影响。结果表明氧化石墨烯增强AZ91镁基复合材料的屈服强度、伸长率和显微硬度分别为225MPa,8%和70HV,比AZ91镁合金基体的分别提高了39.7%,35.4%和31.8%;而以石墨烯纳米片为增强相时复合材料的屈服强度、伸长率和显微硬度分别为192MPa,7%和60HV,比基体的仅提高了18.7%,9.9%和13.5%;通过以上两组实验对比,氧化石墨烯增强镁基复合材料无论在屈服强度抗拉强度,伸长率以及硬度上都是最好的。 关键词:碳纳米管、石墨烯纳米片、氧化石墨烯、AZ91镁合金

绪论 石墨烯(Graphene)是一种由碳原子以 sp2杂化方式形成的蜂窝状平面薄膜,是一种 只有一个原子层厚度的准二维材料,所以又 叫做单原子层石墨。因为具有十分良好的强 度、柔韧、导电、导热、光学特性,在物理 学、材料学、电子信息、计算机、航空航天 等领域都得到了长足的发展,作为目前发现 的最薄、强度最大、导电导热性能最强的一 种新型纳米材料,石墨烯被称为“黑金”, 是“新材料之王”,科学家甚至预言石墨烯 将“彻底改变21世纪”。 镁呈银白色,熔点649℃,质轻,密度为 1.74g/cm3,约为铜的1/4、铝的2/3;其化 学活性强,与氧的亲合力大,常用做还原剂。 粉状或细条状的镁,在空气中很易燃烧,燃烧 时发出眩目的白光。但极易溶解于有机和无机 酸中。镁能直接与氮、硫和卤素等化合。金属 镁无磁性,且有良好的热消散性。质软,熔点 较低。镁应用相当广泛,比如镁是燃烧弹和 照明弹不能缺少的组成物;镁粉是节日烟花必 需的原料。 目前,镁基复合材料大都主要是以镁化合物、铸镁或者镁合金为基体,以SiC颗粒或晶须、Al2O3颗粒或纤维、碳(石墨)纤维、镁合金、Al18B4O33颗粒或晶须、镁化合物等为增强相。 石墨烯(Graphene,GN),作为纳米碳材料的“明星”成员,它们具有极高的强度和韧性,其抗拉强度都可达到钢的100倍以上(大于50GPa),弹性模量可达到1TPa以上,远远超过纳米Si C的强度和弹性模量(420-450GPa),是迄今为止,强度和模量最高的材料之一,它们超强的力学性能可以极大地改善复合材料强度和韧性。此外,碳纳米管和石墨烯还具有超强的高温稳定性(在无氧3000℃条件下可保持很好的结构稳定性)和优异的导电和导热性能,超强的高温稳定性使它们非常有利于作为金属基复合材料的增强体。镁合金具有热稳定性高、导热性好、电磁屏蔽能力强和阻尼性能好等优点,已被广泛应用于移动电话、电脑、摄像机等电子产品中。在航空、航天方面,镁合金因密度小,比强度高可有效地减轻航

镁合金压铸熔炉安全操作规程示范文本

镁合金压铸熔炉安全操作规程示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

镁合金压铸熔炉安全操作规程示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 熔炉的安全操作: ①未经过培训人员不得进入设备区。 ②在有镁尘、镁粉或镁屑处点明火或吸烟有爆炸危 险。 ③设备零件带电,不正确维修保养电器,接地线未坚 固,会造成人身伤害或死亡。 ④随意改装设备会降低设备的安全,有可能导致伤人 或死亡。 ⑤对设备进行危险及错误操作,有可能导致伤人或死 亡。 ⑥将潮湿或脏的镁锭及镁尘、镁粉、镁渣加入熔炉有 爆炸危险。所以,加入坩埚的镁合金应干燥、无油、无

脏、预热不低于150℃。 ⑦坩埚中熔化镁溢出来,可造成人烧伤、死亡、所以镁合金熔化或加料时要穿保护服。 ⑧安全设备,需备足以下设备且易取和防火处: A、灭火器(D级灭火器)D类灭火器必须使用具有国家安全质量认证并且具有品质社会保险资格产品。 B、干盐或干沙 C、无尘石棉垫防止烧着衣服 D、安全衣及安全鞋耐700℃以上的高温 E、安全手套 F、护眼硬帽 ⑨急救设备 A、氧气及防毒罩 B、医药箱(end) 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

高性能稀土镁合金及其研究进展

高性能稀土镁合金及其研究进展 镁合金作为一种轻质的绿色工程材料具有很大的应用前景,被称为21世纪的“绿色工程材料”。然而,大部分镁合金的力学性能(尤其高温力学性能)较差,使其应用受到限制。因此,如何改善其力学性能成为亟待解决的问题。添加合金化元素是常用来改善镁合金力学性能的手段之一,尤其是添加稀土元素。稀土元素对镁合金具有“净化”“细化”“强化”“合金化”的四重作用。Mg-RE系合金因其优异的高温拉伸性能、抗蠕变性能及良好的塑性成形能力而备受青睐,被认为是最具有应用前景的高温高强合金体系。因此,本文主要综述近年来国内外在高性能稀土镁合金方面的研究进展,重点介绍制备高性能镁合金的制备方法、加工技术、热处理工艺、强韧化机制及目前研究中存在的问题与不足。 1.Mg-RE系合金 Mg-RE系合金是目前镁合金中最重要的高强耐热镁合金体系,尤其是含有重稀土元素(Gd、Y、Dy、Ho、Er等)的镁合金。Mg-RE系二元合金的时效硬化特性、强度与稀土添加量成正比关系,如在 Mg-Gd二元合金体系中Gd的质量百分含量若低于10%则合金的时效析出偏低或者无析出,直接导致合金的强度及耐热性能降低。为了降低稀土的添加量且不影响时效硬化特性效果,在Mg-RE二元合金的基础上添加其它合金化元素开发出了三元、四元等稀土镁合金。目前,稀土镁合金主要包括在Mg-Gd体系上形成的Mg-Gd-Y、Mg-Gd-Er、Mg-Gd-Ho、Mg-Gd-Dy等系列合金,在Mg-Y体系上形成的Mg-Y-Gd、Mg-Y-Nd、Mg-Y-Sc-Mn 等系列合金,为了细化晶粒稀土镁合金中常常加入Zr元素。 除了早期的WE54、WE43合金,Mordike等通过添加Sc及Mn等元素,开发了抗蠕变性能优于WE43合金的Mg-4Y-1Sc-1Mn(wt.%)合金;He等用普通铸造+挤压+峰值时效的方法制备了高强耐热Mg-10Gd-2Y-0.5Zr(wt.%)合金,其室温下的屈服强度、抗拉强度、延伸率分别可高达331 MPa、397 MPa、1%。最近,Li等通过轧制+时效的方法制备了Mg-14Gd-0.5Zr 合金,其屈服强度、延伸率分别可高达445 MPa、2%。Mg-RE系合金是目前最适合、最有前途的可应用在航空航天或汽车上的镁合金材料,多数单位都将此系列合金的目标性能提高到550Mpa-600Mpa,稳定使用温度在200 o C。晶粒细化、形变强化、沉淀强化是目前稀土镁合金采用的强化手段。目前的研究主要集中在沉淀强化方面。Mg-RE系合金主要的时效析出强 化相为β′′ (DO 19)、β′(cbco),其中,β′′相的化学成分为Mg 3 RE, β′相的化学成分为Mg15RE3。 β′相与基体具有半共格关系,匹配较好,大量、致密、规则析出的β′相,可有效阻止位错运动,被认为是合金强度提高的主要原因之一。 目前的研究仍有不足,主要表现在以下几个方面:(1)合金中含有大量的稀土,导致合金成本偏高;(2)合金的塑性加工性能偏差,有必要寻找改善合金塑性的新方法、新理论;(3)合金的塑性变形机制研究较少,需大研究稀土溶质原子、晶粒尺寸、晶界类型、织构等对滑移系机制的影响规律。 2.Mg-RE-Zn系合金 Mg-RE-Zn合金是现在研究的一个热点,一方面因为Kawamura于2001年用快速凝固粉/

镁合金的牌号与分类

镁合金的牌号与分类 1、镁合金成分与牌号的标记方法 镁合金的标记方法有很多种,各国标准不一,目前普遍使用的是美国材料试验协会 (ASTM的标记方法。根据ASTM标准,镁合金的牌号和品级由4部分组成,第1部分为字母,标记合金中主要的合金元素,代表合金中含量较高的元素的字母放在前面,如果两个主要合 金元素的含量相等,两个字母就以字母顺序排列;第2部分为数字,标记合金中主要合金元 素的质量分数,四舍五人取整数;第3部分为字母,表明合金的品级;第4部分表明状态, 由1个字母和1个数字组成。举例说明:A291D - T6,表明该合金中含铝8.3%~9.7%,含锌 0. 35%~1.00-10 ,D表明合金纯度要求,T6表明合金状态为固溶+时效。表10 -2为部分镁合金中使用的合金元素代码。 2、镁合金的分类 一般来说,镁合金的分类依据主要有3种,分圳为:合金化学成分、成形工艺和是否含 锆,按化学成分,一般根据镁与其中的一个主要合金元素将其划分为Mg- Al、Mg-Mn Mg-Zn、Mg- RE Mg- Li 等二元系,以及Mg- Al - Zn(AZ)、Mg- Al -Mn(AM)、Mg- Zn - Zr(ZK)、Mg - Gd -Y(GW)等二元系及其他多元系。 主要合金元素在镁中的作用总结如下: (1) Al 。铝元素在镁中的极限固溶度为12. 7%,并且随着温度的的降低显着减少,室 温下的固溶度为2. 0%左右,禾U用其固溶度的明显变化可以对进行热处理。铝元素的含量对合金性能的影响极大,随着铝元素含量的增力,合金的结晶温度范围变小、流动性变好、晶 粒变细、热裂及缩松现象等倾向明娃得到改善,而且随着铝含量的增加,抗拉强度和疲劳强 度得到提高。但是Mg17AI12在晶界上析出会降低其蠕变抗力,特别是在A291、A780合金中Mg17A112的析出量很高。在铸造镁合金中含销量可达到7%~9%而变形镁合金中铝含量一般 控制在3%~5% (2) Zn 。锌元素在镁中固溶度约为 6.2%,其固溶度随温度降低而显著减少。锌可提高 合金应力腐蚀的敏感性与镁合金疲劳极限。锌元素含量大于 2.5%时则会对合金的防腐性能 产生不利影响,原则上含铝镁合金中,锌元素含量一般控制在2斛下。 (3) Mn在镁合金中添加锰并不能提高合金的抗拉强度,但是能稍微提高屈服强度。锰 通过除去镁合金液中的铁及其他重金属元素、避免产生有害的金属间化合物来提高Mg - Al

镁基复合材料制备技术、性能及应用发展概况

镁基复合材料制备技术、性能及应用发展概况 摘要:镁基复合材料因其轻量化和高性能而成为当今高新技术领域中最富竞争力和最有希望采用的复合材料之一。大致笔述了常用镁基复合材料研究概况、制备技术、性能及应用前景。 关键词:镁基复合材料制备技术性能应用 Fabrication,Properties and Application of M agnesium—matrix CompositesDONG Qun CHEN Liqing ZHAO Mingjiu BI Jing(Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China)Abstract Magnesium—matrix composites with lightweight and high performance are becoming one of themost competitive and promising candidates in the applications of high—tech fields.An overview is made on the fabri—ating techniques,mechanical properties and applications for the typical magnesium—matrix composites,and theresearch trend is proposedKey words magnesium matrix composite,fabrication,properties,application. 0引言: 镁基复合材料是继铝基复合材料之后又一具有竞争力的轻金属基复合材料【E1】,主要特点是密度低、比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性、优良的减震性能及良好的尺寸稳定性和铸造性能等;此外,还具有电磁屏蔽和储氢特性等,是一类优秀的结构与功能材料,也是当今高新技术领域中最有希望采用的复合材料之一;在航空航天、军工产品制造、汽车以及电子封装等领域中具有巨大的应用前景。构成镁基复合材料的基体合金主要分为铸造、变形和超轻等系列。铸造系包括Mg—AI、Mg—Zn、Mg—AI—Zn、Mg—Zn—Zr、Mg—Zn—Zr—RE等,侧重于制备铸造镁基复合材料;变形系包括Mg—Mn、Mg —AI—Zn、Mg—Zn—Zr、Mg—RE等,偏重于挤压性能的复合材料应用;Mg—Li系是目前最轻质的合金系,具有较强的抗高能粒子穿透能力,以及能显著降低构件重量、节约能量和满足某些高性能的要求。增强体可以分为颗粒、晶须、纤维等几种,增强体的选择要从复合材料应用情况、制备方法以及增强体的成本等诸多方面综合考虑。其中,界面相容性和界面间存在的可能反应类型是镁基复合材料制备过程中首先要考虑的问题。本文将从镁基复合材料中界面反应类型与润湿性、制备技术、组织性能和应用等几个方面对镁基复合材料发展概况进行介绍,并对其今后发展前景进行展望。 1》镁基复合材料中界面反应与润湿性