FATFS文件系统接口函数

FATFS文件系统接口函数
FATFS文件系统接口函数

LINUX文件系统制作详细

Linux文件系统制作流程 关键词:ARM Linux yaffs文件系统移植 Linux文件系统简介 Linux支持多种文件系统,包括ext2、ext3、vfat、ntfs、iso9660、jffs、romfs和nfs等,为了对各类文件系统进行统一管理,Linux引入了虚拟文件系统VFS(Virtual File System),为各类文件系统提供一个统一的操作界面和应用编程接口。 Linux下的文件系统结构如下: Linux启动时,第一个必须挂载的是根文件系统;若系统不能从指定设备上挂载根文件系统,则系统会出错而退出启动。之后可以自动或手动挂载其他的文件系统。因此,一个系统中可以同时存在不同的文件系统。 不同的文件系统类型有不同的特点,因而根据存储设备的硬件特性、系统需求等有不同的应用场合。在嵌入式Linux应用中,主要的存储设备为RAM(DRAM,

SDRAM)和ROM(常采用FLASH存储器),常用的基于存储设备的文件系统类型包括:jffs2,yaffs,cramfs,romfs,ramdisk,ramfs/tmpfs等。 >基于FLASH的文件系统 Flash(闪存)作为嵌入式系统的主要存储媒介,有其自身的特性。Flash的写入操作只能把对应位置的1修改为0,而不能把0修改为1(擦除Flash就是把对应存储块的内容恢复为1),因此,一般情况下,向Flash写入内容时,需要先擦除对应的存储区间,这种擦除是以块(block)为单位进行的。 闪存主要有NOR和NAND两种技术(简单比较见附录)。Flash存储器的擦写次数是有限的,NAND闪存还有特殊的硬件接口和读写时序。因此,必须针对Flash 的硬件特性设计符合应用要求的文件系统;传统的文件系统如ext2等,用作Flash的文件系统会有诸多弊端。 在嵌入式Linux下,MTD(Memory Technology Device,存储技术设备)为底层硬件(闪存)和上层(文件系统)之间提供一个统一的抽象接口,即Flash的文件系统都是基于MTD驱动层的(参见上面的Linux下的文件系统结构图)。使用MTD 驱动程序的主要优点在于,它是专门针对各种非易失性存储器(以闪存为主)而设计的,因而它对Flash有更好的支持、管理和基于扇区的擦除、读/写操作接口。 顺便一提,一块Flash芯片可以被划分为多个分区,各分区可以采用不同的文件系统;两块Flash芯片也可以合并为一个分区使用,采用一个文件系统。即文件系统是针对于存储器分区而言的,而非存储芯片。 1.jffs2 JFFS文件系统最早是由瑞典Axis Communications公司基于Linux2.0的内核为嵌入式系统开发的文件系统。JFFS2是RedHat公司基于JFFS开发的闪存文件系统,最初是针对RedHat公司的嵌入式产品eCos开发的嵌入式文件系统,所以JFFS2也可以用在Linux,uCLinux中。 Jffs2:日志闪存文件系统版本2(Journalling Flash FileSystem v2) 主要用于NOR型闪存,基于MTD驱动层,特点是:可读写的、支持数据压缩的、基于哈希表的日志型文件系统,并提供了崩溃/掉电安全保护,提供“写平衡”支持等。缺点主要是当文件系统已满或接近满时,因为垃圾收集的关系而使jffs2的运行速度大大放慢。 目前jffs3正在开发中。关于jffs系列文件系统的使用详细文档,可参考MTD补丁包中mtd-jffs-HOWTO.txt。 jffsx不适合用于NAND闪存主要是因为NAND闪存的容量一般较大,这样导致jffs为维护日志节点所占用的内存空间迅速增大,另外,jffsx文件系统在

portaudio.h文件使用说明(函数文档)

portaudio.h File Reference The portable PortAudio API. More... Go to the source code of this file.

Enumerations enum PaErrorCode { paNoError = 0, paNotInitialized = -10000, paUnanticipatedHostError, paInvalidChannelCount, paInvalidSampleRate, paInvalidDevice, paInvalidFlag, paSampleFormatNotSupported, paBadIODeviceCombination, paInsufficientMemory, paBufferTooBig, paBufferTooSmall, paNullCallback, paBadStreamPtr, paTimedOut, paInternalError, paDeviceUnavailable, paIncompatibleHostApiSpecificStreamInfo,

Detailed Description The portable PortAudio API. Definition in file portaudio.h.

Define Documentation #define paClipOff ((PaStreamFlags) 0x00000001) Disable default clipping of out of range samples. See also: PaStreamFlags #define paCustomFormat ((PaSampleFormat) 0x00010000) See also: PaSampleFormat #define paDitherOff ((PaStreamFlags) 0x00000002) Disable default dithering. See also: PaStreamFlags #define paFloat32 ((PaSampleFormat) 0x00000001) See also: PaSampleFormat #define paFormatIsSupported (0)

实验四Linux内核移植实验

合肥学院 嵌入式系统设计实验报告 (2013- 2014第二学期) 专业: 实验项目:实验四 Linux内核移植实验 实验时间: 2014 年 5 月 12 实验成员: _____ 指导老师:干开峰 电子信息与电气工程系 2014年4月制

一、实验目的 1、熟悉嵌入式Linux的内核相关代码分布情况。 2、掌握Linux内核移植过程。 3、学会编译和测试Linux内核。 二、实验内容 本实验了解Linux2.6.32代码结构,基于S3C2440处理器,完成Linux2.6.32内核移植,并完成编译和在目标开发板上测试通过。 三、实验步骤 1、使用光盘自带源码默认配置Linux内核 ⑴在光盘linux文件夹中找到linux-2.6.32.2-mini2440.tar.gz源码文件。 输入命令:#tar –jxvf linux-2.6.32.2-mini2440-20110413.tar对其进行解压。 ⑵执行以下命令来使用缺省配置文件config_x35 输入命令#cp config_mini2440_x35 .config;(注意:x35后面有个空格,然后有个“.”开头的 config ) 然后执行“make menuconfig”命令,但是会出现出现缺少ncurses libraries的错误,如下图所示: 解决办法:输入sudo apt-get install libncurses5-dev 命令进行在线安装ncurses libraries服务。

安装好之后在make menuconfig一下就会出现如下图所示。 ⑶配置内核界面,不用做任何更改,在主菜单里选择退出,并选“Yes”保存设置返回到刚命令行界面,生成相应配置的头文件。 编译内核: #make clean #make zImage 在执行#make zImage命令时会出现如下错误: 错误:arch/arm/mach-s3c2440/mach-mini2440.c:156: error: unknown field 'sets' specified in initializer 通过网上查找资料 于是在自己的mach-mini2440.c中加入 #include

文件系统移植

嵌入式linux内核上文件系统的移植 实验目的:在已经能运行的内核上架构文件系统 其实,虽然 root_qtopia 这个文件系统的GUI 是基于Qtopia 的,但其初始化启动过程 却是由大部分由busybox 完成,Qtopia(qpe)只是在启动的最后阶段被开启。由于默认的内核命令行上有 init=/linuxrc, 因此,在文件系统被挂载后,运行的第一个程 序是根目录下的linuxrc。这是一个指向/bin/busybox 的链接,也就是说,系统起来后运行的 第一个程序也就是busybox 本身。 这种情况下,busybox 首先将试图解析/etc/inittab 来获取进一步的初始化配置信息(参 考busybox 源代码init/init.c 中的parse_inittab()函数)。而事实上,root_qtopia 中并没有/et c/inittab 这个配置文件,根据busybox 的逻辑,它将生成默认的配置 实验过程: 一、获取yaffs2源代码 现在大部分开发板都可以支持 yaffs2 文件系统,它是专门针对嵌入式设备,特别是使用nand flash 作为存储器的嵌入式设备而创建的一种 文件系统,早先的yaffs 仅支持小页(512byte/page)的nand flash,现 在的开发板大都配备了更大容量的nand flash,它们一般是大页模式 (2K/page),使用yaffs2 就可以支持大页的nand flash,下面是yaffs2 的移植详细步骤。 在https://www.360docs.net/doc/744137549.html,/node/346 可以下载到最新的yaffs2 源代码,需要使用git工具( 安装方法见本手册第一章),在命令行输入:#git clone git://https://www.360docs.net/doc/744137549.html,/yaffs2 稍等片刻,就可以下载到最新的yaffs2 的源代码目录,本光盘中也有单独的yaffs2 源代码包( 文件名为:yaffs2-src-20100329.tar.gz)

FAT文件系统原理详细介绍

FAT文件系统原理详细介绍 2012-03-29 23:09 434人阅读评论(0) 收藏举报 FAT文件起源于70年代末80年代初,用于微软的MS-DOS操作系统。它开始被设计成一个简单的文件系统用于小于500K的软件盘。后来被功能被大大增强用于支持越来越大的媒质。现在的文件系统有FAT12,FAT16和FAT32三种子类。 FAT12是最早的一版,主要用于软盘,它对簇的编址采用12bit宽度的数,所以称为FAT12。12bit的地址可以寻址4096个簇,事实上在FAT12中只能寻址4078个簇(在Linux 下可寻址4084个簇),有一些簇号是不能用的,在后面会给出具体的说明。磁盘的扇区是用16bit的数进行计算的,所以磁盘的容量就被局限在32M空间之内。 在FAT16中,采用了16bit宽的簇地址,32bit宽扇区地址。虽然32bit的扇区地址可以寻址2^32*512,约2个TB的容量,但于由规定每簇最大的容量不超过1024*32,所以FAT16文件系统的容量也就限制到了2^16*1024*32,大约2.1GB的空量,并且实际还达不到这个值。 FAT32文件系统使用了32bit宽的簇地址,所以称为FAT32。但在微软件的文件系统中只使用了低28位,最大容量为2^28*1024*32,约8.7TB的空量。有的人认为32bit全用,最大容量为2^32*1024*32,这种说法是不正确的。 虽然FAT32具有容纳近乎8.7TB的容量,但实际应用中通常不使用超过32GB的FAT32分区。WIN2000及之上的OS已经不直接支持对超过32GB的分区格式化成FAT32,但WIN98依然可以格式化大到127GB的FAT32分区,但不推荐这样做。 下面是一个FAT分区的构成概况 需要说明的是: 1.引导扇区和其他保留扇区一起称为保留扇区,而其他保留扇区是可选的,当没有时候,引导扇区后紧跟的就是FAT表1 2.根目录区是仅FAT12/16才有,FAT32的目录项位于数据区。由于FAT12/16的根目录区是一个固定的区域,所以它的根目录的项数是有限制的,意即不能在根录建立超过这个定数的目录项数。 (一)引导扇区与BPB BPB(BIOS Parametre Block)是FAT文件系统中第一个重要的数据结构,它位于该FAT分区的第一个扇区,同时也属于FAT文件系统基本区域的保留区, 在下面的描述中。凡名称以BPB_开头的都是BPB的一部分,凡名称与BS_开头的项

wps表格函数说明大全

wps表格公式大全 数学与三角函数 ABS返回数字的绝对值 ACOS返回数字的反余弦值 ACOSH返回数字的反双曲余弦值 ASIN返回数字的反正弦值 ASINH返回数字的反双曲正弦值 ATAN返回数字的反正切值 ATAN2从X和Y坐标返回反正切 ATANH返回数字的反双曲正切值 CEILING将数字舍入为最接近的整数,或最接近的有效数字的倍数 COS返回数字的余弦值 COMBIN计算从给定数目的对象集合中提取若干对象的组合数 COSH返回数字的双曲余弦值 DEGREES将弧度转换为度 EVEN将数字向上舍入为最接近的偶型整数 EXP返回e的指定数乘幂 FACT返回数字的阶乘 FACTDOUBLE返回数字的双倍阶乘 FLOOR将数字朝着零的方向向下舍入 GCD返回最大公约数 INT将数字向下舍入为最接近的整数 LCM返回整数参数的最小公倍数。 LN返回数字的自然对数 LOG返回数字的指定底数的对数 LOG10返回数字的常用对数 MINVERSE返回数组矩阵的逆距阵MULTINOMIAL返回参数和的阶乘与各参数阶乘乘积的比值 MDETERM返回一个数组的矩阵行列式的值MMULT返回两个数组的矩阵乘积 MOD返回两数相除的余数 MROUND返回一个舍入到所需倍数的数字 ODD将数字向上舍入为最接近的奇型整数 PI返回PI值 POWER返回数的乘幂结果 PRODUCT将所有以参数形式给出的数字相乘QUOTIENT返回商的整数部分,该函数可用于舍掉商的小数部分。 RADIANS将度转换为弧度 RAND返回0到1之间的随机数RANDBETWEEN返回指定数字之间的随机数ROMAN将阿拉伯数字转换为文本形式的罗马数字ROUND将数字舍入到指定位数 ROUNDDOWN将数字朝零的方向舍入ROUNDUP将数朝远离零的方向舍入SERIESSUM返回基于公式的幂级数的和 SIGN返回数字的符号 SIN返回给定角度的正弦值 SINH返回数字的双曲正弦值 SQRT返回正平方根 SQRPI返回某数与PI的乘积的平方根SUBTOTAL返回数据库清单或数据库中的分类汇总 SUM将参数求和 SUMIF按给定条件将指定单元格求和 SUMIFS在区域中添加满足多个条件的单元格SUMPRODUCT返回相对应的数组部分的乘积和SUMSQ返回参数的平方和 SUMX2MY2返回两数组中对应值平方差之和SUMX2PY2返回两数组中对应值的平方和之和SUMXMY2返回两个数组中对应值差的平方和

根文件系统移植

实验五根文件系统移植 实验目的: 通过本次实验,使大家学会根文件系统移植的具体步骤,并对根文件系统有更近一步的感官认识。让同学理解由于根文件系统是内核启动时挂在的第一个文件系统,那么根文件系统就要包括Linux启动时所必须的目录和关键性的文件,任何包括这些Linux 系统启动所必须的文件都可以成为根文件系统。 实验硬件条件: 1、实验PC机一台,TINY6410开发板一台 2、电源线,串口线,数据线。 实验软件条件: 1、VMware Workstation, 2、Ubuntu10.04 3、mktools-20110720.tar.gz 4、busybox-1.13.3-mini2440.tgz, 5、SecureCRT以及dnw烧写工具 实验步骤: 一、实验步骤 1.进入rootfs目录,查看压缩文件,具体操作指令如下:

2.发现有两个压缩文件夹,分别进行解压: 3.tar xvzf busybox-1.13.3-mini2440.tgz, 4.tar xvzf mktools-20110720.tar.gz,解压完成后, 5.查看文件夹#ls

二、实验步骤 1.修改架构,编译器#cd busybox-1.13.3/ 2.进入后查看#ls 3.#gedit Makefile 4.修改 164行 CROSS_COMPILE ?=arm-linux- 5.修改190行 ARCH ?= arm 6.保存后,退出!

三、实验步骤 1.修改配置 #make menuconfig 2.若出现如下提示

3.需调整到最大化。

4.把Busybox Settings -----→>Build Option ------→> Build BusyBox as astatic binary (no shared libs) 选择上,其他的默认即可。 然后一直退出,保存即可 5.接着执行 make接着执行 make install 6.最终生成的文件在_install 中 #cd _install

FATFS深入理解

一、通过格式化命令-看磁盘文件系统的建立过程 1、添加format命令,单步调试 所有的底层驱动函数都已经准备好。添加格式化命令format后,编译下载。 Format命令的执行主要是调用f_mkfs()函数,下面进行单步调试。 以下主要列出函数的主要执行步骤: res=f_mkfs( 0, 1, 4096 ); //1表示不需要引导扇区。4096是8个扇区。 进入f_mkfs()函数,这里只列出主要执行步骤: if (disk_ioctl(drv, GET_SECTOR_COUNT, &n_part) != RES_OK || n_part < MIN_SECTOR) return FR_MKFS_ABORTED;这个函数调用后,n_part=0x000F,3400 = 996 352,这是SD的总块数。allocsize /= SS(fs); 等于8/*Number of sectors per cluster */ n_clst = n_part / allocsize; //等于0x1E680 = 124 544 簇。 if (n_clst >= 0xFFF5) fmt = FS_FAT32; 所以文件系统确定为FAT32类型。 n_fat = ((n_clst * 4) + 8 + SS(fs) - 1) / SS(fs); 等于0x3CE = 974,表示FAT要占据974个扇区。 n_rsv = 33 - partition; 保留扇区32个。 n_dir = 0; b_fat = b_part + n_rsv; /* FATs start sector 32扇区*/ b_dir = b_fat + n_fat * N_FATS; /* Directory start sector 0x3EE =1006,由于FAT表个数设为1个,所以目录区=FAT起始+FAT占用扇区数*/ b_data = b_dir + n_dir; /* Data start sector */ 以上三项确定FAT区域、根目录区、数据区的起始扇区。 disk_ioctl(drv, GET_BLOCK_SIZE, &n) != RES_OK,这个函数调用没有正确返回可擦出扇区的总数。接下来程序会出错,因此退出,修改disk_ioctl()函数后,再次分析。把这个函数返回值直接改为32。并且把FAT表的个数定义为2. N_FATS改为2后,根目录区、数据区的起始扇区的起始扇区变为0x7BC=1980扇区。继续往下执行。 n = (b_data + n - 1) & ~(n - 1); n_fat += (n - b_data) / N_FATS;这两句话对fat所占扇区数进行了修正,保证擦除时,以32个扇区为一个单位。 n_clst = (n_part - n_rsv - n_fat * N_FATS - n_dir) / allocsize; =0x1E588。 tbl = fs->win; /* Clear buffer */ mem_set(tbl, 0, SS(fs)); 清零文件系统缓冲区。 mem_set(tbl, 0, SS(fs)); ST_DWORD(tbl+BS_jmpBoot, 0x90FEEB); /* Boot code (jmp $, nop) */ ST_WORD(tbl+BPB_BytsPerSec, SS(fs)); /* Sector size */ tbl[BPB_SecPerClus] = (BYTE)allocsize; /* Sectors per cluster */ ST_WORD(tbl+BPB_RsvdSecCnt, n_rsv); /* Reserved sectors */ 上面的工作主要是填充引导扇区缓冲区,也就是常说的DBR扇区缓冲,等所有的参数写好,就可以写回磁盘。 ST_WORD(tbl+BS_55AA, 0xAA55); /* Signature */ if (disk_write(drv, tbl, b_part+0, 1) != RES_OK) return FR_DISK_ERR; //这就是在写有效引导标志sec[510]=0x55, sec[511]=0xAA。 if (fmt == FS_FAT32) disk_write(drv, tbl, b_part+6, 1); //FAT32在第六扇区有个备份引导扇区。 for (m = 0; m < N_FATS; m++) { mem_set(tbl, 0, SS(fs)); /* 1st sector of the FAT */ if (fmt != FS_FAT32) { n = (fmt == FS_FAT12) ? 0x00FFFF00 : 0xFFFFFF00; n |= partition; ST_DWORD(tbl, n); /* Reserve cluster #0-1 (FAT12/16) */ } else { ST_DWORD(tbl+0, 0xFFFFFFF8); /* Reserve cluster #0-1 (FAT32) */

FATFS文件系统移植和应用

FATFS文件系统的移植 作者:LJ 时间:2010年11月12日 随着信息技术的发展,目前常用文件系统主要有微软的FAT12、FAT16、FAT32、NTES文件系统,以及Linux系统的EXT2、EXT3等。由于Windows操作系统的广泛应用,当前很多嵌入式产品中用的最多的还是FAT文件系统。所以,选择一款容易移植和使用,并且占用资源少而功能全面的文件系统就显得非常重要了。 FATFS文件系统是一个完全免费且开源的FAT文件系统模块,由小日本工程师编写,它支持FAT12、FAT16和FAT32文件系统,专门为小型的嵌入式系统而设计。模块用标准的C语言编写,可以很容易地移植到各种硬件平台。 在“驱动程序”文件夹中有一个“FatFs R0.07c”文件夹,这是官方提供的FATFS文件系统的源码和文档,版本为R0.07c。打开“doc”文件夹下的“00index_e.html”英文网页文档,里面有FATFS文件系统的全部API函数说明,相对应的应用实例和如何编写硬件接口程序的说明。如果您的英文不怎么好,建议您先装一个有道词典,使用屏幕取词功能,能帮助我们阅读和理解。“00index_j.html”则是日文版的网页,毕竟是小日本写的。“src”文件夹存放有FATFS文件系统源码,下面是该文件夹下各个文件或文件夹存放的内容说明:“ff.h”文件:FATFS文件系统的配置和API函数声明; “ff.c”文件:FATFS源码;

“diskio.h”文件:FATFS与存储设备接口函数的声明; “diskio.c”文件:FATFS与存储设备接口函数; “integer.h”文件:FATFS用到的所有变量类型的定义; “option”文件夹:存放一些外接函数,下一实例有实际的讲解; “00readme.txt”文件:FATFS版本及相关信息说明; 编译工程,没有通过,根据编译信息提示在“diskio.c”文件中在几个函数没有定义。这很正常,因为我们还没有编写文件系统与存储设备的接口函数。下面来分析“diskio.c”文件中各个函数的功能:“DSTATUS disk_initialize ( BYTE drv )”是存储媒介的初始化函数,由于我们使用的是SD卡,所以实际上是对SD卡的初始化; “DSTATUS disk_status ( BYTE drv )”状态检测函数,检测是否支持当前的存储设备,支持返回0; “DRESULT disk_read (BYTE drv, BYTE *buff, DWORD sector, BYTE count)”是读扇区函数,drv是要读扇区的存储媒介号,*buff 存储读取的数据,sector是读数据的开始扇区,count是要读的扇区数。在SD卡的驱动程序中,分别提供了读一个扇区和读多个扇区的函数。当count == 1时,用读一个扇区函数;当 count > 1时,用读多个扇区的函数,这样提高了文件系统读效率。操作成功返回0。 “DRESULT disk_write(BYTE drv, BYTE *buff, DWORD sector, BYTE count)”写扇区函数,drv是要写扇区的存储媒介号,*buff存储写入的数据,sector是写开始扇区,count是要写的扇区数。同样在SD卡的驱动程序中,分别提供了写一个扇区和写多个扇区的函数。

FATFS文件系统剖析1

FATFS文件系统剖析1: FAT16: 数据按照其不同的特点和作用大致可分为5部分:MBR区、DBR区、FAT区、DIR区和DATA区,相比fat12多了DBR区 Main boot record: MBR(0--1bdh)磁盘参数存放 DPT(1beh--1fdh)磁盘分区表 55,aa 分区结束标志 DBR(Dos Boot Record)是操作系统引导记录区的意思 FAT区(有两个,一个备份):对于fat16,每一个fat项16位,所以可寻址的簇项数为65535(2的16次方)。而其每簇大小不超过32k,所以其每个分区最大容量为2G。fat32,每一个fat项32位,可寻址簇数目为2的32次方。 DIR区(根目录区):紧接着第二FAT表(即备份的FAT表)之后,记录着根目录下每个文件(目录)的起始单元,文件的属性等。定位文件位置时,操作系统根据DIR中的起始单元,结合FAT表就可以知道文件在硬盘中的具体位置和大小了。 DATA区:实际文件内容存放区。 FAT32: 暂时放在这里,不讨论! Fatfs:嵌入式fat文件系统,支持fat16,fat32。 包含有ff.h,diskio.h,integer.h,ffconf.h 四个头文件以及ff.c 文件系统实现。当然要实现具体的应用移植,自己要根据diskio.h实现其diskio。c 底层驱动。 diskio.h : 底层驱动头文件 ff.h : 文件系统实现头文件,定义有文件系统所需的数据结构 ff.c : 文件系统的具体实现

如下开始逐个文件加以分析: integer.h :仅实现数据类型重定义,增加系统的可移植性。 ffconf.h : 文件系统配置---逐个配置,先配置实现一个最小的fat文件系统,下面来分析各配置选项: #define _FFCONF 8255 //版本号 #define _FS_TINY 0 /* 0:Normal or 1:Tiny */ //在这里与先前版本有些许变化,是通过配置头配置两种不同大小的文件系统,这里配置为0。 #define _FS_READONLY 1//定义文件系统只读,也就不能写修改,在此定义为1,这样文件系统会大大缩小,简化学习理解过程。 #define _FS_MINIMIZE 3 /* 0 to 3 */ 这个选项是用于过滤掉一些文件系统功能,为0时是全功能,3是功能实现最小 #define _USE_STRFUNC 0 /* 0:Disable or 1/2:Enable */ 是否使用字符串文件接口,为0,不使用 #define _USE_MKFS 0 /* 0:Disable or 1:Enable */ 制作文件系统,这个功能实现是还要_FS_READONLY=0 #define _USE_FORWARD 0 /* 0:Disable or 1:Enable */ f_forward function 实现还需_FS_TINY =1 #define _USE_FASTSEEK 0 /* 0:Disable or 1:Enable */ 快速查找功 能 #define _CODE_PAGE 936 // 936 - Simplified Chinese GBK (DBCS, OEM, Windows) #define _USE_LFN 0/* 0 to 3 */ 0:不使用长文件名 #define _MAX_LFN 255/* Maximum LFN length to handle (12 to 255) */ #define _LFN_UNICODE 0 /* 0:ANSI/OEM or 1:Unicode */

Visual_C++_中fopen函数的使用及文件的使用

C语言函数fopen 函数简介 函数功能:打开一个文件 函数原型:FILE * fopen(const char * path,const char * mode); 相关函数:open,fc lose,fopen_s[1],_wfopen 所需库: 返回值:文件顺利打开后,指向该流的文件指针就会被返回。如果文件打开失败则返回NULL,并把错误代码存在errno 中。 一般而言,打开文件后会作一些文件读取或写入的动作,若打开文件失败,接下来的读写动作也无法顺利进行,所以一般在fopen()后作错误判断及处理。 参数说明: 参数path字符串包含欲打开的文件路径及文件名,参数mode字符串则代表着流形态。 mode有下列几种形态字符串: r 以只读方式打开文件,该文件必须存在。 r+ 以可读写方式打开文件,该文件必须存在。 rb+ 读写打开一个二进制文件,允许读数据。 rt+ 读写打开一个文本文件,允许读和写。 w 打开只写文件,若文件存在则文件长度清为0,即该文件内容会消失。若文件不存在则建立该文件。 w+ 打开可读写文件,若文件存在则文件长度清为零,即该文件内容会消失。若文件不存在则建立该文件。 a 以附加的方式打开只写文件。若文件不存在,则会建立该文件,如果文件存在,写入的数据会被加到文件尾,即文件原先的内容会被保留。(EOF符保留)a+ 以附加方式打开可读写的文件。若文件不存在,则会建立该文件,如果文件存在,写入的数据会被加到文件尾后,即文件原先的内容会被保留。(原来的EOF符不保留) wb 只写打开或新建一个二进制文件;只允许写数据。 wb+ 读写打开或建立一个二进制文件,允许读和写。 wt+ 读写打开或着建立一个文本文件;允许读写。 at+ 读写打开一个文本文件,允许读或在文本末追加数据。 ab+ 读写打开一个二进制文件,允许读或在文件末追加数据。 上述的形态字符串都可以再加一个b字符,如rb、w+b或ab+等组合,加入b 字符用来告诉函数库打开的文件为二进制文件,而非纯文字文件。不过在POSIX系统,包含Linux都会忽略该字符。由fopen()所建立的新文件会具有S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH(0666)权限,此文件权限也会参考umask 值。 有些C编译系统可能不完全提供所有这些功能,有的C版本不用"r+","w+","a+", 而用"rw","wr","ar"等,读者注意所用系统的规定。

petit_fatfs文件系统移植

FatFS文件系统的优点我就不赘述了,我需要的功能不多,所以我移植是FatFS的精简版petit fatfs,现将我的一直步骤写下来供大家参考。工程暂不能分享,见谅。 1、移植的文件系统为petit fatfs R0.02。 下载地址:https://www.360docs.net/doc/744137549.html,/fsw/ff/pff2.zip 2、本人选用的单片机是STC12C5A56S2(容量够大)。 3、选用的SD卡为macro SD,容量512M,格式化为fat32文件系统,分配大小为512字节。 Petit fatfs文件系统的修改步骤及说明如下: 一、integer.h,pff.c,diskio.h这三个文件不需要修改。 二、pff.h的修改: 1、使能FAT32文件系统的支持#define_FS_FAT321 2、选择简体中文编码格式#define_CODE_PAGE936 三、diskio.c的修改: 1、添加必要头文件:reg51.h,sd.h,spi.h。 2、填写设备初始化函数DSTATUS disk_initialize(void) 这个函数我是参考别人写的: DSTATUS disk_initialize(void) { DSTATUS stat; //Put your code here stat=STA_NOINIT; if(!SD_Init()) { stat&=~STA_NOINIT; } return stat; } 3、填写读函数:DRESULT disk_readp(BYTE*dest,DWORD sector,WORD sofs,WORD count) 这个函数写法各异,就不具体说了, BYTE*dest这个就是指你要讲读出来的数据存在哪里的指针变量。 DWORD sector是要读扇区的地址,看一下SD卡的读写命令你就知道了。 WORD sofs是偏移量,简单就是说,要读的数据相对于扇区开始的字节数,这个读出来,直接忽略掉。 WORD count是要读的字节个数,读完偏移量的字节数,就是要读这个,将读出来的数据存在干才说的那个BYTE*dest。 最后还有一个剩余字节数即(512-sofs-count),这个也不是需要的数据,读出来忽略掉就行了。 4、我做的东西不需要向SD写入,所以disk_writep就没有动。 具体操作,以及在主函数中的调用可参考https://www.360docs.net/doc/744137549.html,/tlptotop/blog/item/21c30b2ae0c9a4f5e7cd40de.html

详细了解并学习FatFS文件系统的基本原理

详细了解并学习FatFS文件系统的基本原理 最近做的spi flash,本打算弄个文件系统,由于之前用过了JFFS、YAFFS和TrueFFS,代码量都相当的大,这次想找款代码量不那么吓人的,学习一下,听说配置会相对复杂一些。选来选去,最终选定了FatFS,代码量足够的小,最新的R0.09版本只有1个.c文件(当然,还有一个底层的要自己写,option文件夹里的无视),老点版本就更小了。而且更新很频繁,用户量也够大,就选定它了。尽管最后由于硬件和项目原因未能实际的移植它到vxWorks,但学过的还是要记录下。 在这里http://elm-chan/fsw/ff/00index_el下载源码,只有800多K,小的可怜,还可以下载示例程序,有A VR、Win32、lpc等多平台已实现的方案。打开看src文件夹,一个opTIon 文件夹、00readme.txt、diskio.h、ff.c、ff.h、ffconf.h和interger.h。移植时需要修改的文件主要包括ffconf.h和interger.h,后者是在它的定义与目标平台上的有冲突,或者用的不习惯时修改的。 在做具体修改之前,先大概阅读下FatFS的源代码,可以先读integer.h,了解所用的数据类型,然后是ff.h,了解文件系统所用的数据结构和各种函数声明,再就是diskio.h,了解与介质相关的数据结构和操作函数。ff.c这个文件相对较大,可以在最后将所实现的函数大致扫描一遍,之后根据用户应用层程序调用函数的次序仔细阅读相关代码。各个文件都可以直接用记事本打开查阅,非常方便。ff.h中的几个结构体十分重要,列举如下,首先是最基础的文件系统结构体: view plaincopy to clipboardprint? /* File system object structure (FATFS) */ typedef struct { BYTE fs_type; /* FAT子类型,一般在mount时用,置0表示未挂载*/ BYTE drv; /* 物理驱动号,一般为0*/ BYTE csize; /* 每个簇的扇区数目(1,2,4...128) */ BYTE n_fats; /* 文件分配表的数目(1,2) */

open( )函数详细说明

open(/dev/ietctl, O_RDWR) 这是文件I/O的常用函数,open函数,open函数用来打开一个设备,他返回的是一个整型变量,如果这个值等于-1,说明打开文件出现错误,如果为大于0 的值,那么这个值代表的就是文件描述符。一般的写法是 if((fd=open("/dev/ttys0",O_RDWR | O_NOCTTY | O_NDELAY)<0) {perror("open");} 这个是常用的一种用法fd是设备描述符,linux在操作硬件设备时,屏蔽了硬件的基本细节,只把硬件当做文件来进行操作,而所有的操作都是以open函数来开始,它用来获取fd,然后后期的其他操作全部控制fd来完成对硬件设备的实际操作。你要打开的/dev/ttyS0,代表的是串口1,也就是常说的com1,后面跟的是一些控制字。int open(const char *pathname, int oflag, …/*, mode_t mode * / ) ;这个就是open函数的公式。控制字可以有多种,我现在给你列出来: O_RDONLY 只读打开。 O_WRONLY 只写打开。 O_RDWR 读、写打开。 O_APPEND 每次写时都加到文件的尾端。 O_CREAT 若此文件不存在则创建它。使用此选择项时,需同时说明第三个参数mode,用其说明该新文件的存取许可权位。 O_EXCL 如果同时指定了O_CREAT,而文件已经存在,则出错。这可测试一个文件是否存在,如果不存在则创建此文件成为一个原子操作。 O_TRUNC 如果此文件存在,而且为只读或只写成功打开,则将其长度截短为0。O_NOCTTY 如果p a t h n a m e指的是终端设备,则不将此设备分配作为此进程的控制终端。 O_NONBLOCK 如果p a t h n a m e指的是一个F I F O、一个块特殊文件或一个字符特殊文件,则此选择项为此文件的本次打开操作和后续的I / O操作设置非阻塞方式。 O_SYNC 使每次w r i t e都等到物理I / O操作完成。 这些控制字都是通过“或”符号分开(|)

在STM32中移植FATFS文件系统

STM32的FATFS文件系统移植笔记 一、序言 经常在网上、群里看到很多人问关于STM32的FATFS文件系统移植的问题,刚好自己最近也在调试这个程序,为了让大家少走弯路,我把我的调试过程和方法也贡献给大家。 二、FATFS简介 FatFs Module是一种完全免费开源的FAT文件系统模块,专门为小型的嵌入式系统而设计。它完全用标准C语言编写,所以具有良好的硬件平台独立性,可以移植到8051、PIC、AVR、SH、Z80、H8、ARM等系列单片机上而只需做简单的修改。它支持FATl2、FATl6和FAT32,支持多个存储媒介;有独立的缓冲区,可以对多个文件进行读/写,并特别对8位单片机和16位单片机做了优化。 三、移植准备 1、FATFS源代码的获取,可以到官网下载:https://www.360docs.net/doc/744137549.html,/fsw/ff/00index_e.html最新版本是R0.09版本,我们就移植这个版本的。 2、解压文件会得到两个文件夹,一个是doc文件夹,这里是FATFS的一些使用文档和说明,以后在文件编程的时候可以查看该文档。另一个是src文件夹,里面就是我们所要的源文件。 3、建立一个STM32的工程,为方便调试,我们应重载printf()底层函数实现串口打印输出。可以参考已经建立好的printf()打印输出工程:.viewtool./bbs/foru ... d=77&extra=page%3D1 四、开始移植 1、在已经建立好的工程目录User文件夹下新建两个文件夹,FATFS_V0.09和 SPI_SD_Card,FATFS_V0.09用于存放FATFS源文件,SPI_SD_Card用于存放SPI的驱动文件。 2、如图1将ff.c添加到工程文件夹中,并新建diskio.c文件,在diskio.c文件中实现五个函数: 1.DSTATUS disk_initialize (BYTE);//SD卡的初始化 2. DSTATUS disk_status (BYTE);//获取SD卡的状态,这里可以不用管 3. DRESULT disk_read (BYTE, BYTE*, DWORD, BYTE);//从SD卡读取数据 4. DRESULT disk_write (BYTE, const BYTE*, DWORD, BYTE);//将数据写入 SD卡,若该文件系统为只读文件系统则不用实现该函数 5. DRESULT disk_ioctl (BYTE, BYTE, void*);//获取SD卡文件系统相关信息 6. 复制代码

FAT文件系统原理

FAT文件系统原理 一、硬盘的物理结构: 硬盘存储数据是根据电、磁转换原理实现的。硬盘由一个或几个表面镀有磁性物质的金属或玻璃等物质盘片以及盘片两面所安装的磁头和相应的控制电路组成(图1),其中盘片和磁头密封在无尘的金属壳中。 硬盘工作时,盘片以设计转速高速旋转,设置在盘片表面的磁头则在电路控制下径向移动到指定位置然后将数据存储或读取出来。当系统向硬盘写入数据时,磁头中“写数据”电流产生磁场使盘片表面磁性物质状态发生改变,并在写电流磁场消失后仍能保持,这样数据就存储下来了;当系统从硬盘中读数据时,磁头经过盘片指定区域,盘片表面磁场使磁头产生感应电流或线圈阻抗产生变化,经相关电路处理后还原成数据。因此只要能将盘片表面处理得更平滑、磁头设计得更精密以及尽量提高盘片旋转速度,就能造出容量更大、读写数据速度更快的硬盘。这是因为盘片表面处理越平、转速越快就能越使磁头离盘片表面越近,提高读、写灵敏度和速度;磁头设计越小越精密就

能使磁头在盘片上占用空间越小,使磁头在一张盘片上建立更多的磁道以存储更多的数据。 二、硬盘的逻辑结构。 硬盘由很多盘片(platter)组成,每个盘片的每个面都有一个读写磁头。如果有N个盘片。就有2N个面,对应2N个磁头(Heads),从0、1、2开始编号。每个盘片被划分成若干个同心圆磁道(逻辑上的,是不可见的。)每个盘片的划分规则通常是一样的。这样每个盘片的半径均为固定值R的同心圆再逻辑上形成了一个以电机主轴为轴的柱面(Cylinders),从外至里编号为0、1、2……每个盘片上的每个磁道又被划分为几十个扇区(Sector),通常的容量是512byte,并按照一定规则编号为1、2、3……形成Cylinders×Heads×Sector个扇区。这三个参数即是硬盘的物理参数。我们下面的很多实践需要深刻理解这三个参数的意义。 三、磁盘引导原理。 3.1MBR(MasterBootRecord)扇区:

相关文档
最新文档