二氧化碳吸收实验

二氧化碳吸收实验
二氧化碳吸收实验

实验四吸收实验

(一)实验目的

1.了解吸收装置的基本流程和操作特性,加深对传质过程的了解。

2.了解填料塔的结构,测定其流体力学性能。

3.通过用水吸收二氧化碳,研究物质传递过程,确立吸收传质系数与操作

条件及填料性质的关系。

(二)实验原理

吸收是利用气体在液体中溶解度的差异来分离气体混合物的传质过程。吸收过程一般在塔设备中进行,常用的吸收塔为填料塔和板式塔。在操作填料塔时,气体自下而上从填料间隙穿过,与从塔顶喷淋而下的液体(吸收剂)在填料表面进行接触,实现相间传质。而在板式塔中,塔板是气、液两相接触传质的场所。液体沿降液管流入塔板,上升的气相通过塔板的开孔鼓泡通过液相层,在塔板上气液两相以错流方式接触。吸收塔内气液两相的流体力学状态直接影响到吸收过程的操作性能。

1、吸收塔的流体力学特性

吸收塔的流体力学特性包括压强降和液泛规律,计算吸收塔需用动力时,必须知道压强降的大小;而确定吸收塔的气、液负载量时,则必须了解液泛的规律,所以测量流体力学性能是吸收实验的一项内容。

在填料塔中,被吸收气体通过填料时,由于填料造成的局部阻力及摩擦力而产生压强降。气体通过床层的压强降与空塔气速、填料的特性(材质、形状和尺寸)以及液体的喷淋密度等因素有关。当气体通过干填料时,气体的压强降仅与气体的流速有关,在双对数坐标纸上进行标绘,可得到压强降ΔP与空塔速度u 为一直线;当塔内有液体喷淋时,气体通过填料的压强降不但与气体流速有关,且与液体的喷淋密度有关,在一定的喷淋密度下,由于液膜有一定厚度,占有一定空间,液膜的存在使气体在填料空隙间的实际流速有所增加,所以压强随气体流速增加的趋势要比干填料层大。低气速操作时,膜厚随气速变化不大,液膜增厚所造成的附加压降增高并不显著,此时压降曲线基本上与干填料层的压降曲线平行。随气速增加,上升气流与下降液体间的摩擦力增大,开始阻碍液体的下流,

使得填料层内的持液量随气速的增加而增加,此种现象称为拦液。开始拦液时的空塔气速称为载点气速。载点以后,填料层内液体分布和填料表面湿润程度大为改善,有利于提高吸收传质速率。进入拦液区后,当空塔气速再进一步增大,则填料层内持液量不断增加,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力降急剧升高,将出现液泛现象。在压降曲线上,出现液泛现象的标志是压降曲线近乎垂直,压降曲线明显变为垂直的转折点称为泛点。

本实验可用空气与水进行,在各种喷淋量下,逐步增大气速,记录必要的数据直至刚出现液泛为止,但必须注意,不要使气速过分超过泛点,避免冲跑或冲破填料。 2、传质系数

吸收是气液相间传质过程,吸收速率可用气相内、液相内或两相间的传质速率来表示。以液相浓度表示的相间传质速率方程为

AM L A C A K G ???= (1) G A ---吸收传质速率,Kmol.s -1;K L ---液相传质总系数,m.s -1; A ---传质面积,m 2;ΔC AM ---塔顶、塔底的平均传质推动力,Kmol.m -3 传质系数是决定吸收过程速率高低的重要参数,是吸收塔设计和操作参数确定的基础,而实验测定是获取传质系数的根本途径。对于相同的物系,传质系数的大小取决于塔设备结构(包括塔类型、填料的类型与尺寸等)、操作条件及气液接触状况等。

若单位体积内气液两相所具有的有效传质面积为a (m 2.m -3),则

S h a V a A ??=?= (2)

h ---填料层的高度(填料塔)或液层高度(板式塔); S ---塔的横截面积。 代入(1)式,得

Am L A C S h a K G ?????= (3)

由于单位体积的有效传质面积a 随塔内的持液量而变化,即随吸收剂流量大小而变化,液相总传质系数K L 也随吸收剂流量而变化,因此,工程上将两者合并成一个物理量K La ,称为液相体积总传质系数,此即本实验所要测定的传质系数。因此

Am La A C S h K G ????= (4)

在一定的操作条件下,对全塔进行物料衡算,可得吸收操作的传质速率

)(2,1,A A L A C C V G -?= (5)

V L ---液相的体积流量;

C A1---从塔底离开的溶液中吸收质A 的浓度,Kmol.m -3; C A2---塔顶进入的吸收剂中吸收质A 的浓度,Kmol.m -3; 因此液相体积传质总系数

m

A A A L La C C C S h V K ,2

,1,?-?

?=

(6) 本实验采用水吸收二氧化碳体系,由于二氧化碳在常温下溶解度较小,因此液相体积流量V L 可视为定值。

液相平均传质推动力

1

,1,2,2

,1,1,2,2,1,2,1,2,,ln )()(ln A A A A A A A A A A A A m

A C C C C C C C C C C C C C -----=???-?=?**

*

* (7) 水-二氧化碳体系的溶解相平衡关系可采用亨利定律表示,故

p H p H C C C A A A A ?=?===*

**2,1,

二氧化碳的溶解度常数:

E

M H L

L

1

?

=

ρ Kmol.m -3.Pa -1 (8) 式中:L ρ---水的密度,Kg.m -3;M L ---水的摩尔质量,Kg.Kmol -1; E ---亨利系数,Pa 。 因此,(7)式可以简化为

1

,**

1

,,ln A A A

A m

A C C C C C -=? (9) 代入m

A A A L La C C C hS V K ,2

,1,?-?

=

(10) 液相传质单元高度

m

A A A L L C C C h

N h H ,2

,1,?-=

=

(11)

由于本实验采用的水吸收CO 2体系,整个传质过程的阻力都集中于液膜,气膜阻力可忽略不计,则液侧体积传质膜系数等于液相体积传质总系数,即

m

A A A L s La la C C C hS V K k ,2

,1,,?-?

=

= (12) (三)实验装置

1.设备主要参数:

填料塔:玻璃管内径 D =0.050m ; 内装φ10×10mm 瓷拉西环;

吸收塔填料层高度Z =0.83m ; 解析塔填料层高度Z =0.80m ;风机:XGB-12型,550W ;

二氧化碳钢瓶1; 减压阀1个(用户自备)。 2. 流量测量仪表:

CO2转子流量计: 型号LZB-6; 流量范围0.06~0.6m3/h ; 精度2.5%; 空气转子流量计:型号LZB-10; 流量范围0.25~2.5m3/h ;精度2.5%; 水转子流量计: 型号LZB-10; 流量范围16~160 L /h ; 精度2.5%; 解吸收塔水转子流量计:型号LZB-6 流量范围6~60 L /h 精度2.5%。 3. 浓度测量:吸收塔塔底液体浓度分析准备定量化学分析仪器一套; 4.温度测量:PT100铂电阻,用于测定测气相、液相温度。

(四)实验流程简介

吸收质(纯二氧化碳气体或与空气混合气)由钢瓶经二次减压阀和转子流量计15计量后,由塔底进入吸收塔内,气体自下而上经过填料层,与吸收剂纯水逆流接触进行吸收操作,尾气从塔顶放空;吸收剂经转子流量计14计量后由塔顶进入喷洒而下;吸收二氧化碳后的溶液流入塔底液料储槽22中储存,再由吸收液泵 3经流量计 7计量后进入解吸塔进行解吸操作,空气由 6流量计控制流量进入解吸塔塔底,自下而上经过填料层与液相逆流接触对吸收液进行解吸,解吸后气体自塔顶放空。U形液柱压差计用来测量填料层两端的压强降。

二氧化碳吸收解吸实验装置流程示意图见图-1

二氧化碳吸收解吸实验装置仪器面板示意图见图-2

图-1 二氧化碳吸收解吸实验装置流程示意图

1-解吸液储槽;2-解吸液液泵;3-吸收液液泵;4-风机;5-空气旁通阀;

6-空气流量计;7-吸收液流量计;8-吸收塔;9-吸收塔塔底取样阀;10、11-U型管液柱压强计;12-解吸塔;13-解吸塔塔底取样阀; 14-解吸液流量计;15- CO2流量计;16-吸收用空气流量计;17-吸收用气泵;

18- CO2钢瓶;19、21-水箱放水阀; 20-减压阀; 22-吸收液储槽;

23-放水阀; 24-回水阀

图-2仪器面板示意图

(五)实验方法及步骤:

1. 测量解吸塔干填料层(△P/Z)~u关系曲线(只做解吸塔):

先检查关闭解析塔空气流量计开关,打开空气旁路调节阀5至全开,启动风机。打开空气流量计,逐渐关小阀门5的开度,调节进塔的空气流量。稳定后读取填料层压降△P即U形管液柱压差计11的数值,然后改变空气流量,空气流量从小到大共测定8-10组数据。在对实验数据进行分析处理后,在对数坐标纸上以空塔气速u为横坐标,单位高度的压降△P/Z为纵坐标,标绘干填料层(△P /Z)~u关系曲线。

2. 测量解吸塔在喷淋量下填料层(△P/Z)~u关系曲线:

先检查关闭解析塔水流量计开关,然后打开解析塔水泵开关,调整解析塔水流量计开关将水流量固定在100L/h(水流量大小可因设备调整),采用上面相同步骤调节空气流量,稳定后分别读取并记录填料层压降△P、转子流量计读数和流量计处所显示的空气温度,操作中随时注意观察塔内现象,一旦出现液泛,立即记下对应空气转子流量计读数。根据实验数据在对数坐标纸上标出液体喷淋量为100L/h时的(△P/z)~u?关系曲线,并在图上确定液泛气速,与观察到的液泛气速相比较是否吻合。

3. 二氧化碳吸收传质系数测定:

吸收塔与解吸塔(水流量控制在40L/h)

(1)打开阀门5,关闭阀门9、13。

(2) 启动吸收液泵2将水经水流量计14计量后打入吸收塔中,然后打开二氧化碳钢瓶顶上的针阀20,向吸收塔内通入二氧化碳气体(二氧化碳气体流量计15的阀门要全开),流量大小由流量计读出,控制在0.1m 3/h 左右。

(3)吸收进行15分钟后,启动解吸泵2,将吸收液经解吸流量计7计量后打入解吸塔中,同时启动风机,利用阀门5 调节空气流量(约1.5 m 3/h )对解吸塔中的吸收液进行解吸。

(4)操作达到稳定状态之后,测量塔底的水温,同时取样,测定两塔塔顶、塔底溶液中二氧化碳的含量。(实验时注意吸收塔水流量计和解吸塔水流量计数值要一致,并注意解吸水箱中的液位,两个流量计要及时调节,以保证实验时操作条件不变)

(5)二氧化碳含量测定

用移液管吸取0.1M 的Ba (OH )2溶液10mL ,放入三角瓶中,并从塔底附设的取样口处接收塔底溶液10 mL ,用胶塞塞好振荡。溶液中加入2~3滴酚酞指示剂摇匀,用0.1M 的盐酸滴定到粉红色消失即为终点。

按下式计算得出溶液中二氧化碳浓度:

溶液

-V V C V C C HCl

HCl OH Ba OH Ba CO 222)()(22=

1-?L m o l

-5(五)实验注意事项

1.开启CO 2总阀门前,要先关闭减压阀,阀门开度不宜过大。

2.实验中要注意保持吸收塔水流量计和解吸塔水流量计数值一致,并随时关注水箱中的液位。

3.分析CO 2浓度操作时动作要迅速,以免CO 2从液体中溢出导致结果不准确。

(六)实验数据与处理

1、测量并记录实验基本参数

(1)设备参数

塔型:吸收塔,解析塔

塔内径d=0.025 m;

填料层高度:吸收塔h= 0.80 m;解析塔h=0.83m

填料型式: 10*10mm瓷拉西环

(2)操作参数

大气压强P0= 0.10052 MPa;

室温T= 24 o C

(3)分析检验用的化学试剂

盐酸溶液浓度C HCl= 0.1 kmol.m-3;

盐酸溶液用量:吸收塔塔顶V HCl=17.60、17.48、17.40ml;塔底V HCl=14.21、13.90、13.75ml;解析塔塔顶V HCl=14.35、14.10、13.95ml;塔底V HCl=17.0、17.50、17.31ml

Ba(OH)2溶液浓度C Ba(OH)2= 0.1 kmol.m-3;

计算过程

实验数据及分析

(1)解析塔流体力学性能测量

表一干填料时△P/z~u关系测定

表二湿填料时△P/z~u关系测定

(2)传质系数测定

表三:填料吸收塔传质实验技术数据表(吸收塔)

(1)解析塔流体力学性能测量

图1 △P/z~u关系曲线图

由上图可知,A点以下,湿填料塔与干填料塔曲线大致平行,上升气体不影响液体的下流;A点以上,空塔气速达到一定值,曲线斜率增大,上升气体阻碍液体顺利下流,且曲线趋向于垂直,表明上升气体足以阻止液体下流,液体充满填料层空隙,气体鼓包上升,随之液体被气流带出塔顶,发生液泛。本次实验所得数据有一定误差,没有明显观察到载点。

By denden

二氧化碳填料吸收与解吸实验.

二氧化碳填料吸收与解吸实验装置说明书 天津大学化工基础实验中心 2013.06

一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习对实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: 图一 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。当有

一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数, 112---???Pa s m kmol ;

吸收(二氧化碳-水)实验讲义

填料吸收塔实验 【实验目的】 ⒈ 了解填料吸收塔的结构和流体力学性能。 ⒉ 学习填料吸收塔传质能力和传质效率的测定方法。 【实验内容】 1.测定填料层压强降与操作气速的关系,确定填料塔在某液体喷淋量下的液泛气速。 2.采用水吸收二氧化碳,空气解吸水中二氧化碳,测定填料塔的液侧传质膜系数和总传质系数。 【实验原理】 1.气体通过填料层的压强降 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气液流量有关,不同喷淋量下的填料层的压强降ΔP 与气速u 的关系如图6-1-1所示: 图6-1-1 填料层的ΔP ~u 关系 当无液体喷淋即喷淋量L 0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。 2.传质性能 吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。 (1) 膜系数和总传质系数 根据双膜模型的基本假设,气相侧和液相侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (6-1-7) 液膜 )(A Ai l A C C A k G -= (6-1-8)

式中:A G —A 组分的传质速率,1 -?s kmoI ; A —两相接触面积,m 2; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol k g —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; k l —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 P 2 ,F L P A P A +dP C A +dC A P 1=P A 1 C A1,F L 图6-1-2双膜模型的浓度分布图 图6-1-3 填料塔的物料衡算图 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为 )(*-=A A G A p p A K G (6-1-9) )(A A L A C C A K G -=* (6-1-10) 式中:* A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3 -?m kmol ; K G —以气相分压表示推动力的总传质系数或简称为气相传质总系数, 112---???Pa s m kmol ;

二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验 一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: 1 2 3 L 3L 2L 1 L 0 = >>0 图一 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。 ΔP , k P a

当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,112---???Pa s m kmol ;

二氧化碳吸收与解吸实验汇总情况

实用标准 二氧化碳吸收与解吸实验 一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: 图一 填料层的P ?~ u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,112---???Pa s m kmol ;

二氧化碳吸收与实验

二氧化碳吸收实验装置 说明书 天津大学化工基础实验中心 2015.04

一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习对实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气,解吸水中二氧化碳的操作练习。 三、实验原理: 气体通过填料层的压强降: 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: 图-1 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。当有

一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能: 吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,

二氧化碳吸收实验

填料吸收塔实验装置 说明书 天津大学化工基础实验中心 2014.10

一、实验目的: 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、实验内容: 1.测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2.固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度以下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3.进行纯水吸收混合气体中的二氧化碳、用空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图1所示: 图1 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线 0。当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 二氧化碳吸收实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,112---???Pa s m kmol ; L K -以气相分压表示推动力的总传质系数,或简称为液相传质总系数,1-?s m 。

二氧化碳吸收与解吸实验.docx

氧化碳吸收与解吸实验 一、 实验目的 1. 了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测 定数据的处理分析,加深对填料塔流体力学性能基本理论的理解, 加深对填料塔传 质性能理论的理解。 2. 掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、 实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较 大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传 质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料 塔液侧传质膜系数和总传质系数。 三、 实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强 降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下 填料层的压强降JP 与气速U 的关系如图一所示: 图一填料层的P ?U 关系 当液体喷淋量L o =0时,干填料的丄P ?U 的关系是直线,如图中的直线

当有一定的喷淋量时,厶P?U的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P?U关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1. 二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A的传质速率方程可分别表达为气膜G A = k g A( P A - P Ai) ( 1) 液膜G^k I A(C Ai -C A) (2) 式中:G A —A组分的传质速率,kmoI S J; A —两相接触面积,m; P A —气侧A组分的平均分压,Pa; P Ai —相界面上A组分的平均分压,Pa; C A—液侧A组分的平均浓度,kmol m j3 C Ai —相界面上A组分的浓度kmol m J3 k g —以分压表达推动力的气侧传质膜系数,kmol m^ s^1 Pa j; kι—以物质的量浓度表达推动力的液侧传质膜系数,m S J。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表 达为:G A=K G A(P A-P A)(3) G A=K L A(C A -C A)(4) 式中:P A —液相中A组分的实际浓度所要求的气相平衡分压,Pa; C A —气相中A组分的实际分压所要求的液相平衡浓度,kmol m^ ; K G —以气相分压表示推动力的总传质系数或简称为气相传质总系数, kmol m ^2SV Pa 4;

二氧化碳吸收

吸收实验装置说明书 一、实验设备的特点 本实验装置可用于实验教学和科研。通过该实验装置,可以了解填料吸收塔的结构,掌握其操作方法;学习填料塔流体力学性能的测量方法;学习并掌握吸收塔传质性能的测量方法;加深对填料吸收塔的一些基本概念及理论的理解。 ⒈使用方便,安全可靠,直观; ⒉数据稳定,实验准确; ⒊本装置体积小,重量轻,移动方便。 二、设备主要技术数据及其附件 ⒈设备参数: ⑴风机:XGB-12型,550W; ⑵填料塔:玻璃管内径D=0.035m,内装φ4×10mm瓷拉西环,填料层高度Z=0.60m; ⑶填料塔:玻璃管内径D=0.035m,内装φ4×10mm瓷拉西环,填料层高度Z=0.60m; ⑷二氧化碳钢瓶1个、减压阀1个(用户自备)。 ⒉流量测量: ⑴CO2转子流量计:型号:LZB-6;流量范围:0.06~0.6m3/h;精度: 2.5% ⑵空气转子流量计:型号:LZB-10;流量范围:0.25~2.5m3/h;精度: 2.5% ⑶水转子流量计:型号:LZB-10;流量范围:16~160 L/h;精度: 2.5% ⑷解吸收塔水转子流量计:型号:LZB-6 流量范围:6~60 L/h 精度: 2.5% ⒊浓度测量:吸收塔塔底液体浓度分析:定量化学分析仪一套 ⒋温度测量:Cu50铜电阻,液温度。

三、实验装置的基本情况 图1 二氧化碳吸收解吸实验装置流程 1-减压阀;2-CO2钢瓶;3-CO2流量计;4-解吸塔水流量计;5-解吸塔水泵;6-吸收塔;7,8-取样阀; 9-吸收塔底出分液阀;10-吸收塔底回液阀;11-放液阀;12、13-空气进气阀;14、15-U型管; 16-解吸塔;17-吸收塔水流量计;18-空气流量计;19-空气旁通阀;20-吸收塔水泵;21-风机 吸收质(纯二氧化碳气体)由钢瓶经二次减压阀和转子流量计3,进入吸收塔塔底,气体由下向上经过填料层与液相水逆流接触,到塔顶经放空;吸收剂(纯水)经转子流量计17进入塔顶,再喷洒而下;吸收后溶液由塔底流入塔底液料罐中由解吸泵5经流量计4进入解吸塔,空气由18流量计控制流量进入解吸塔塔底由下向上经过填料层与液相逆流接触,对吸收液进行解吸,然后自塔顶放空,U形液柱压差计用以测量填料层的压强降。

二氧化碳吸收与解吸实验说明书..

二氧化碳吸收与解吸实 验装置说明书 仁爱化工基础实验中心 王立轩 2014.05

一、实验目的: 1.了解填料吸收塔的结构和流体力学性能。 2.学习填料吸收塔传质能力和传质效率的测定方法。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定填料塔在一定液体喷淋量下的 液泛气速。 2. 固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的 气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质 单元高度和体积吸收总系数)。 3. 采用纯水吸收二氧化碳、空气解吸水中二氧化碳,测定填料塔的液侧传质 膜系数和总传质系数。 三、实验原理 1.气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层 压强降的大小决定了塔的动力消耗。压强降与气、液流量有关,不同液体喷淋 量下填料层的压强降P ?与气速u 的关系如图1-1所示: 图1-1 填料层的P ? ~u 关系 当无液体喷淋即喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图

中的直线0。当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转 折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:恒持液量区、载液区与液泛区。 2. 传质性能:吸收系数是决定吸收过程速率高低的重要参数,而实验测定是 获取吸收系数的根本途径。对于相同的物系及一定的设备(填料类型与尺寸), 吸收系数将随着操作条件及气液接触状况的不同而变化。 (1)二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别 表达为 气膜 )(Ai A g A p p A k G -= (1-1) 液膜 )(A Ai l A C C A k G -= (1-2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别 表达为:)(* -=A A G A p p A K G (1-3) )(A A L A C C A K G -=* (1-4) 式中:* A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; *A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数, 112---???Pa s m kmol ;

二氧化碳吸收实验

实验四吸收实验 (一)实验目的 1.了解吸收装置的基本流程和操作特性,加深对传质过程的了解。 2.了解填料塔的结构,测定其流体力学性能。 3.通过用水吸收二氧化碳,研究物质传递过程,确立吸收传质系数与操作 条件及填料性质的关系。 (二)实验原理 吸收是利用气体在液体中溶解度的差异来分离气体混合物的传质过程。吸收过程一般在塔设备中进行,常用的吸收塔为填料塔和板式塔。在操作填料塔时,气体自下而上从填料间隙穿过,与从塔顶喷淋而下的液体(吸收剂)在填料表面进行接触,实现相间传质。而在板式塔中,塔板是气、液两相接触传质的场所。液体沿降液管流入塔板,上升的气相通过塔板的开孔鼓泡通过液相层,在塔板上气液两相以错流方式接触。吸收塔内气液两相的流体力学状态直接影响到吸收过程的操作性能。 1、吸收塔的流体力学特性 吸收塔的流体力学特性包括压强降和液泛规律,计算吸收塔需用动力时,必须知道压强降的大小;而确定吸收塔的气、液负载量时,则必须了解液泛的规律,所以测量流体力学性能是吸收实验的一项内容。 在填料塔中,被吸收气体通过填料时,由于填料造成的局部阻力及摩擦力而产生压强降。气体通过床层的压强降与空塔气速、填料的特性(材质、形状和尺寸)以及液体的喷淋密度等因素有关。当气体通过干填料时,气体的压强降仅与气体的流速有关,在双对数坐标纸上进行标绘,可得到压强降ΔP与空塔速度u 为一直线;当塔内有液体喷淋时,气体通过填料的压强降不但与气体流速有关,且与液体的喷淋密度有关,在一定的喷淋密度下,由于液膜有一定厚度,占有一定空间,液膜的存在使气体在填料空隙间的实际流速有所增加,所以压强随气体流速增加的趋势要比干填料层大。低气速操作时,膜厚随气速变化不大,液膜增厚所造成的附加压降增高并不显著,此时压降曲线基本上与干填料层的压降曲线平行。随气速增加,上升气流与下降液体间的摩擦力增大,开始阻碍液体的下流,

二氧化碳吸收与解吸实验汇总

. . .. . . 二氧化碳吸收与解吸实验 一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、实验容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P 与气速u的关系如图一所示:

图一 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。 当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点 称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区 段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收 系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条 件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达 为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2;

二氧化碳吸收实验

二氧化碳吸收实验 SANY GROUP system office room 【SANYUA16H-

填料吸收塔实验装置 说明书 天津大学化工基础实验中心 2014.10 一、实验目的: 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分 析。 二、实验内容: 1.测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气 速。 2.固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度以下,取两个相差 较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3.进行纯水吸收混合气体中的二氧化碳、用空气解吸水中二氧化碳的操作练 习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P 与气速u的关系如图1所示:

图1填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 二氧化碳吸收实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜)(Ai A g A p p A k G -=(1) 液膜)(A Ai l A C C A k G -=(2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。

CO2吸收实验

CO2吸收实验 一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习对实验数据的处理分析。 二、实验装置 图一二氧化碳吸收-解吸实验装置流程图 1-CO2钢瓶;2-减压阀;3-CO2流量计;4-吸收风机;5-吸收塔空气流量计;6-吸收水泵;7-吸收塔水流量计;8-吸收尾气传感器;9-吸收塔;10、15-液封;11-解吸液罐;12-解吸尾气传感器;13-吸收液罐14-解吸塔;16-压差计;17-解吸水泵;18-解吸塔水流量计;19-解吸风机;20-解吸塔空气流量计 21-空气旁路调节阀;22-π型管

三、实验原理 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为: 气膜 )(Ai A g A p p A k G -= (1-1) 液膜 )(A Ai l A C C A k G -= (1-2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (1-3) )(A A L A C C A K G -=* (1- 4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ;

二氧化碳吸收与解吸实验汇总

氧化碳吸收与解吸实验 一、实验目的 1. 了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2. 掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降「P 与气速u的关系如图一所示: 图一填料层的P?u关系 当液体喷淋量L o =0时,干填料的丄P?u的关系是直线,如图中的直线0

当有一定的喷淋量时,?u的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P?u关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1. 二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A的传质速率方程可分别表达为气膜G A =k g A(p A - P Ai) (1) 液膜G A二k i A(C Ai -C A)(2) 式中:G A—A组分的传质速率,kmoI s J; A—两相接触面积,m; P A—气侧A组分的平均分压,Pa; P Ai —相界面上A组分的平均分压,Pa; C A—液侧A组分的平均浓度,kmol m^3 C Ai —相界面上A组分的浓度kmol m ^3 k g —以分压表达推动力的气侧传质膜系数,kmol m^ s_1Pa J; k i —以物质的量浓度表达推动力的液侧传质膜系数,m s J。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表 达为:G A =K G A(P A-P A)(3) G A *A(C A -C A)(4) 式中:p A —液相中A组分的实际浓度所要求的气相平衡分压,Pa; C A—气相中A组分的实际分压所要求的液相平衡浓度,kmol m^ ; K G—以气相分压表示推动力的总传质系数或简称为气相传质总系数, kmol m 经s J Pa 4;

二氧化碳吸收与实验

二氧化碳吸收与实验

————————————————————————————————作者:————————————————————————————————日期:

二氧化碳吸收实验装置 说明书 天津大学化工基础实验中心 2015.04

一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习对实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气,解吸水中二氧化碳的操作练习。 三、实验原理: 气体通过填料层的压强降: 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: u , m/s 1 2 3 L 3L 2L 1 L 0 = >>0 图-1 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。当有一 ΔP ,

定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能: 吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m2 ; A P —气侧A 组分的平均分压,Pa; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别 表 达 为 : )(*-=A A G A p p A K G (3) ) (A A L A C C A K G -=* (4)

吸收(二氧化碳-水)实验讲义

填料吸收塔(CO2-H2O)实验讲义 一、实验目的 1.了解填料吸收塔的结构和流体力学性能。 2.学习填料吸收塔传质能力和传质效率的测定方法。 二、实验内容 1.测定填料层压强降与操作气速的关系,确定填料塔在某液体喷淋量下的液泛气速。2.采用水吸收二氧化碳,空气解吸水中二氧化碳,测定填料塔的液侧传质膜系数和总传质系数。 三、实验原理 1.气体通过填料层的压强降 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压 强降与气液流量有关,不同喷淋量下的填料层的压强降ΔP 与气速u 的关系如图6-1-1 所示: L3>L2>L1 3 2 u , m/s 图6-1-1 填料层的ΔP~u 关系 当无液体喷淋即喷淋量L0=0 时,干填料的ΔP~u 的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转 折点称为“泛点”。这两个转折点将ΔP~u 关系分为三个区段:恒持液量区、载液区与液泛区。2.传质性能 吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。

ΔP , k P a L 0 = 1 对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况 33

的不同而变化。 (1)膜系数和总传质系数 根据双膜模型的基本假设,气相侧和液相侧的吸收质 A 的传质速率方程可分别表达为气膜G A = k g A( p A - p Ai )(6-1-7) 液膜G A = k l A(C Ai - C A )(6-1-8) -1 A —两相接触面积,m2; P A—气侧A 组分的平均分压,Pa; P Ai—相界面上A 组分的平均分压,Pa; C A—液侧A 组分的平均浓度,kmol ? m -3 C Ai—相界面上A 组分的浓度kmol ? m -3 k g—以分压表达推动力的气侧传质膜系数,kmol ? m -2 ? s -1 ? Pa -1 ; k l—以物质的量浓度表达推动力的液侧传质膜系数,m ? s -1。 相界面P2 = P A2C A2,F L 浓 度 P Ai C Ai dh 气液距离 膜膜 P A+dP A C A+dC A P1=P A 1C A1,F L 图6-1-2 双膜模型的浓度分布图图6-1-3 填料塔的物料衡算图

二氧化碳吸收与解吸实验装置

二氧化碳吸收与解吸实验 装置说明书 天津大学化工基础实验中心 2012. 03

一、实验设备功能和特点: 本实验装置主要用于实验教学和科研。通过实验,可以帮助学生了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析可加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解,练习并掌握填料吸收塔传质能力和传质效率的测定方法,会实验数据的处理和分析。整套设备实验现象准确,数据稳定可靠,并且体积小重量轻,使用方便。 二、实验设备主要技术参数与基本情况: 1.设备主要参数: 填料塔:玻璃管内径 Di=0.050m;内装φ6×10mm瓷拉西环; 填料层高度 Z=0.8m; 风机:XGB-12型,550W; 二氧化碳钢瓶1个(用户自备);减压阀1个(用户自备)。 2. 流量测量仪表: CO 转子流量计:型号LZB-6;流量范围0.06~0.6m3/h; 2 空气转子流量计:型号LZB-10;流量范围0.25~2.5m3/h; 吸收塔水转子流量计:型号LZB-6;流量范围6~60 L/h; 解吸收塔水转子流量计:型号LZB-10 流量范围16~160 L/h 。 3. 浓度测量:化学分析仪器一套(用户自备); 4.温度测量:PT100铂电阻,用于测定气相、液相温度,数字仪表显示。 表一、二氧化碳在水中的亨利系数E×10-5,KPa 三.实验流程简介: 吸收质(二氧化碳气体)由钢瓶经减压阀和转子流量计15计量后与经过计量后的空气混合由塔底进入吸收塔内,气体自下而上经过填料层与吸收剂纯水逆流接触进行吸收操作,尾气从塔顶放空;吸收剂是由转子流量计14计量

相关文档
最新文档