FeSO4对铜基粉末冶金摩擦材料性能的影响

FeSO4对铜基粉末冶金摩擦材料性能的影响
FeSO4对铜基粉末冶金摩擦材料性能的影响

FeS04对铜基粉末冶金摩擦材料性能的影响/龙波等445

FeS04对铜基粉末冶金摩擦材料性能的影响

龙波,白同庆,李东生

(北京百慕航材高科技股份有限公司,北京100095)

摘要研究了FeS04对铜基粉末冶金摩擦材料性能的影响。结果表明,摩擦材料中添加FeS04产生了较好的润滑效果。在烧结过程中FeSO。发生分解生成S02和如03,s02与基体材料中的金属反应生成FeS、M nS等金属硫化物。随着F eS04含量增加,材料的密度与硬度逐渐降低;在M M-1000摩擦试验机上进行摩擦性能测试,结果表明随着Fes04含量的增加,摩擦副摩擦系数降低;当材料中FeS04含量为4%时,金属陶瓷摩擦材料具有最佳的摩擦磨损性能。

关键词FeSO‘金属陶瓷摩擦系数磨损

E f f ect of FeS04A ddi t i on on Pr oper t i es of C oppe r-ba sed Pow der

M e t al l ur gy Fr i ct i on M at er i al

L O N G B o,B A I Tongqi ng,L I D ongs heng

(B A I M T E C M at er i al C o.,Lt d,B ei j i ng100095)

A bs t ract T he ef fect of FeS04o n t he copper-ba se d pow der m e t al l ur gy f ri ct i o n m at er i aI i s i nves t i gat ed i n t h i s

pa per.T he r es u l t s ho w s t hat t he addi t i on of FeS04m ak es pr ef e r abl e l ubr i cat i ve act i on t O t he f r ict ion m at eri al.D uri ng t he s i nt er i n g per i od,FeS04i s decom pos ed i n t O S02and如03.The SQ r eact s w i t h t he m e t a l i n t he m a t r i x and FeS,M nS e t c m e t a l s ul t ides

ar e ge nera t ed.W i t h t he i ncr ease of FeS04addi t i on i n t he f ri ct i o n

m at er i al t he den si t y a nd har d—nes s of t he m at er i al de bas e gr a dual l y.The f ri ct i o n w ear t e st i s eval ua t ed o n t he M M-1000f ri ct i o n w e ar t est er.W i t h t he r i sing of FeS04addi t i o n。t he f ri ct i o n coe“i ci ent re duc es w h i l e t he s t abi l it y coef f ici ent i ncr e ases.As t he FeS04addi t i on i n t he f ri ct i o n m a t er i al i s a bout4%,t he coppe r-base d f ri et i o n m at er i al posses ses t he best f r ict ion and w ea r per f or m ance.K ey w or ds FeS04,cer m e t,f r i ct i on coef f i ci ent,w ear

粉末冶金摩擦材料又称烧结金属摩擦材料,是以金属及合金为基体,添加摩擦组元和润滑组元,用粉末冶金技术制成的复合材料,是摩擦式离合器与制动器的关键组件[1’2]。

随着科学技术日新月异的发展,飞机、坦克、火车、汽车、船舶及工程机械等的运转速度及负荷迅速增长,对制动材料提出了越来越高的要求,粉末冶金摩擦材料因其具有足够的强度、合适而稳定的摩擦因数、工作平稳可靠、耐磨及污染少等优点而得到广泛应用。粉末冶金摩擦材料主要有铁基和铜基摩擦材料,为充分利用二者性能优势又发展了铁铜基摩擦材料[3~5]。

摩擦材料中加入润滑组元的作用是改善其抗卡滞性能、提高其耐磨性。金属陶瓷摩擦材料中常用的固体润滑剂有石墨、二硫化钼、氮化硼以及一些低熔点金属等[6~8]。FeS04作为固体润滑剂已在铁基粉末冶金摩擦材料中得到应用[9],而未见关于FeS04用于铜基摩擦材料的报导,本文选择铜基粉末冶金摩擦材料作为研究对象,考察了FeS04含量对航空制动用金属陶瓷摩擦材料性能的影响。

1试验

1.1实验材料及制备方法

为了排除其他组元对实验结果的影响,本实验仅改变C u 和FeS04的配比,其他组元固定不变,具体配方如表1所示。.

表1材料配方(%(质量分数))

Tabl e1M a t er i a l com pos i t i on(w t%)

按比例称取各种粉末,在V型混料筒内混合4~6h;混合料在400M Pa压力下压制成压坯;装入钟罩炉中,于900930℃和H z的保护气氛下加压烧结,烧结压力为2.o~3.0M P a,保温3h,降温随炉冷,小于100℃出炉。

1.2测试方法

采用H B3000型布氏硬度计测量试样的硬度。在盼1450扫描电镜下观察组织形貌并进行微区元素分析。将摩擦材料加工成量75m m×①53m m的试环,对偶材料为30Cr Si M oV A钢,在M M-1000摩擦试验机上进行摩擦磨损实验,按照H B5434.7-1989《航空机轮刹车材料摩擦试验法》进

龙波:男,1980年生,硕士,工程师,主要从事摩擦材料的研制、开发与生产E-m a i l:l b904221@ya hoo.com.c a

446

材料导报

2008年5月第22卷专辑X

行,试验条件:转动惯量0.196kg

m 2,制动压力0.6M Pa ,主轴

转速为6000r /m i n 。采用金相显微镜进行摩擦表面形貌分析。

2结果与讨论

2.1基体材料微观组织分析

图1为不同FeS04含量基体材料的背散射图片,经过分析,图中浅灰色的是铜基体,深灰色的是铁颗粒。颜色较深的黑色物质为F eS 、M nS 等金属硫化物,由于FeS 、M ns 等金属硫化物具有密排六方结构,变形抗力小,容易沿密排面滑移,塑性流变能力强,熔点高达1000℃以上,摩擦副相对运动时,硫化物被碾压并粘着于对偶表面,或填充于凹陷处,可有效阻止金属的直接接触,避免粘着的发生,从而达到润滑效果。从图1中可以看出,随着FeS 04含量的增加,基体材料中金属硫化物的含量也增加。

图1

不同FeS04含量材料的基体背散射图

F i g .1

B ack scat t er i ng pi ct u r es of f r ict ion

m at e r i al

w i t h di f f er ent FeS04con t ent

2.2

F e S 04含量对材料密度与硬度的影响

图2示出了不同FeSQ 含量对材料密度与硬度的影响。

从图2中可以看出,随着FeS04含量的增加,材料的密度和硬度均逐渐降低,当FeS04含量从4%增加至6%时,材料密度从5.039/cm 3下降至4.73g /cr ns ,硬度从40降低至34.4;当F e-S04含量超过60A 后,材料的密度与硬度变化趋于稳定。

FeSO ,c onte nt /%

图2FeS04含量对材料密度与硬度的影响

Fig .2

E f f ect s of Fe S 04addi t i on

o n

t he har dne ss

a nd densi t y of t he

m at er i al

由于烧结过程中FeS04分解生成SQ 和Fe203,部分S02

气体留在材料中形成孑L 洞,抑制了粉末的进一步烧结,增大了材料的孔隙率,而同种烧结材料的硬度主要取决于它的孔隙率[101;同时由于随着F eS04的增加,材料中的非金属组元增多,在烧结过程中生成的FeS 和C uS 等硫化物增多,而且这些非金属组元的硬度值较低,因而随着FeSO -t 含量的增加,材料的硬度降低。

2.3

F e S 04含量对材料摩擦磨损性能的影响

图3示出了FeS04含量对摩擦材料与对偶材料磨损量的

影响。当FeS04含量从0增至4%时,摩擦材料及对偶材料的

磨损量随Fes04的增加逐渐降低;当F ∞。含量超过4%后,对

偶材料的磨损量变化不明显,而摩擦材料的磨损量逐渐增大。

摩擦副的总磨损量随FeS04含量的增加先降低然后增大,当

F 铃04含量为4%时,摩擦副总磨损量最小。

图3

FeS04含量对材料磨损量的影响

Fi g .3

Ef f &t of FeS04addi t i on o u

t he w ear of t he

m at er i al

图4示出了FeSQ 含量对摩擦系数的影响,随着FeS04含量的升高,摩擦系数逐渐降低,当FeS04含量超过4%后,摩擦

系数趋于稳定。

图4FeS04含量对材料摩擦系数的影响

F 嘻4

E f f ect of FeS04con t ent o n

t he

f ri ct i o n

coeff i ci ent of t he

m at e r i al

2.4

F e S 04含量对材料摩擦表面质量的影响

图5示出了不同FeS04含量对摩擦试验后磨擦材料与对

偶材料摩擦表面质量的影响。当不添加FeS04时,如图5(a)所示,摩擦材料表面掉块非常严重,出现较多的小坑,此时的粘着磨损比较严重,并且由于摩擦表面润滑效果较差,使得摩擦材料中的硬质点直接对对偶材料进行刮削,产生大而深的划痕;当添加2%FeS 04时,摩擦材料表面开始好转,同时对偶材料表面划痕变浅。

苫名铂舭∞弛弘砣∞口

FeS04对铜基粉末冶金摩擦材料性能的影响/龙波等447

图5不同FeS04含量摩擦材料与对偶材料的摩擦表面

Fig.5Fr i ct i on sur f ac e of t he m at e r i al and cou nt er par t m at er i al w i t h di f f er ent FeS04addi t i on

当F eS04含量为4%时,摩擦副材料具有最好的磨擦表面,如图5(c)所示,摩擦材料的表面有一层致密均匀的润滑膜,减少了磨擦擦料与对偶材料金属的直接接触,使粘着磨损得到改善;同时润滑膜也有效地降低了材料中的硬质点对对偶材料的刮削作用,从而获得了较好的润滑效果。但随着FeS04含量的增加,材料中的非金属组元增多,导致烧结后材料力学性能受到影响,容易产生如图5(e)所示的裂纹,加速材料的磨损。

3结论

(1)铜基粉末冶金摩擦材料中加入FeS04,对摩擦材料产生较好的润滑作用,随着FeS04含量的增加,材料的密度和硬度均逐渐降低。

(2)摩擦材料磨损量与摩擦副的总磨损随FeS04含量的增加先减小后增大,对偶材料的磨损量逐渐降低;随着F eSO-t含量的增加,摩擦副摩擦系数逐渐降低。

(3)FeSq对铜基粉末冶金摩擦材料起润滑作用的实质是FeS04在烧结过程中分解产生S02气体,在氢气作用下该物质与材料中金属反应生成具有密排六方结构的金属硫化物,对摩擦表面起润滑作用。当材料中添加4%的FeS04时,摩擦副具有最好的摩擦表面与最小的磨损量。

参考文献

1鲁乃光.烧结金属摩擦材料现状与发展动态[J].粉末冶金技术,2002,20(5):294

2杨永莲.烧结金属摩擦材料[J].机械工程材料,1995,19

(6):18

3王秀飞,李东生.航空用铁基金属陶瓷摩擦材料[J].材料工程,1998,(8):27

4白同庆,佟林松,李东生.S i Q和莫来石对铜基摩擦材料性能的影响[J].粉末冶金技术,2006,24(2):114

5北京粉末冶金研究所编.粉末冶金摩擦材料[M].北京:机械工业出版社,1977

6浩宏奇,丁华东.石墨含量对铜基材料摩擦磨损性能的影响[J].中国有色金属学报,1997,7(3):120

7白同庆,佟林松,李东生.M oS2对铜基金属陶瓷摩擦材料性能的影响[J].材料工程,2006,(5):25

8陈洁,熊翔,姚萍屏.M oS z对铁基摩擦材料烧结过程的影响[J].粉末冶金材料科学与工程,2003,(3):247

9费多尔钦科.现代摩擦材料[M].徐润泽,等译.北京:冶金工业出版社,1983

10培云.粉末冶金原理[M].北京:冶金工业出版社,1997.

388

铜及铜合金的分类讲解

铜及铜合金的分类 第二章铜及铜合金的分类铜是人类最早使用的金属,自然界有自然铜存在,与 其他金属不同,铜在自然界中既以矿石的形式存在,也同时以纯金属的形式存 在,其应用以纯铜为主,同时其合合金也在工业等多个领域中广泛应用,工业上 常将铜和铜合金分为四类,分别是:纯铜、黄铜、青铜和白铜。 1. 铜与铜合金的分类 1.1 按生产应用的方式(可分为二大类)形变铜与铜合金、铸造铜与铜 合金对于压力加工专业来说,主要是和形变铜与铜合金打交道,因此,重点学 习形变铜与铜合金。 1.2 铜与铜合金的名称:根据历史上形成的习惯,起的是 某一种颜色的名称,它们是:紫铜——纯铜Cu 黄铜——Cu-Zn 合金青铜——锡青铜:Cu-Sn 合金铝青铜:Cu-Al 合金铍青铜:Cu-Be 合金钛青铜:Cu-Ti 合金白铜—— Cu-Ni 合金( 有的铜合金叫做青铜,但合金的颜色并不真就是青 色的。) 2. 纯铜纯铜的新鲜表面是玫瑰红色的,当表面氧化形成氧化亚铜Cu2O 膜后就呈紫色,所以纯铜就常被称为紫铜。紫铜具有好的导电、导热、耐蚀和 可焊等性能,并可冷、热压力加工成各种半成品,工业上广泛用于制作导电、导 热和耐蚀等器材。 2.1纯铜的成份、组织与性能 2.2.1.其结构、组织:在金属 学中学过,纯Cu的晶体[结构]是面心立方晶格(f、c、c),滑移系多,易塑性变形,塑性好。其组织由单一的铜晶粒组成。 2.2.2.在成分方面:100%纯的金属是没有的,非100%纯。Cu 的最高纯度可达99.999%(三个9)工业纯Cu 的纯度约为99.90~99.96%杂质的存在相当于使纯铜的成份改变,这自然会引起一些 性能的变化。虽纯Cu 有一些性能几乎不受杂质的影响但导电率、机械性能却 受杂质或晶 4 体缺陷的影响较大现在先综合看看工业纯Cu 的性能—— 2.2 工业纯铜的性能 2.2.1 纯铜的性能优点:从纯铜的各种性能中我们可以总结出几 条性能优点,从而可以明白为什么铜会以纯金属的形式得到这么广泛的应用。①优良的导电、导热性;∴Cu 广泛用于:导电器(如:电线、电缆、电器开关) 导热器(如:冷凝管、散热管、热交换器)②良好的耐蚀性;Cu具有极好的耐蚀性,且反应后表面有保护膜(铜绿)在普通的温度下,铜不太会与干燥空 气中的氧气O2反应,但Cu能与CO2、SO2、醋发生作用,生成铜绿――碱式碳酸铜、碱式硫酸铜CuSO4·3(OH)2 (深绿色)、碱式醋酸铜,这样铜的表面上 就慢慢生成了一层保护膜。③有良好的塑性退火工业纯铜的拉伸延伸率δ ≈50%,纯Cu 易加工成材例:加工出来的细铜丝可细于头发丝(8 丝)达4~5 丝 2.2.2 纯铜的机械性能与工艺性能我们通过结合纯铜的生产、加工过程来了解、认识(1) 纯Cu 的加工过程(几乎全部纯铜都是经过加工成材供应用户的, 我们在工厂中可以观察到,其生产过程一般为:(2) 纯铜的机械性能——①铸态铜的性能很低;②经加工后,软态铜、硬态铜的性能,见上面数据;③铜经过强烈冷加工(形变率ε≥80% )后,强度δ b将急剧升高,但塑 5 性强烈变坏,加工硬化很厉害,对纯铜来说,其机械性能是由其晶粒度和位借密度所决定 的。(3) 纯铜的热加工工艺性能我们知道,热加工应选择在塑性高的温度范围

Fe在铜基粉末冶金摩擦材料中的作用

收稿日期:2006-02-20 基金项目:湖南省科技重大项目产业化研究资助(01-96-10)作者简介:陈 洁(1978-),女(汉),湖南长沙人,在读博士,主要从事复合材料的研究。 Fe 在铜基粉末冶金摩擦材料中的作用 陈 洁,熊 翔,姚萍屏,李世鹏 (中南大学粉末冶金研究院国家重点实验室,湖南 长沙 410083) 摘 要:研究了Fe 在铜基粉末冶金航空摩擦材料中的摩擦磨损作用及机理。研究表明:Fe 在 铜基摩擦材料中起到了摩擦组分的作用,对材料的机械性能和摩擦磨损性能起到了重要的作用。Fe 能提高铜基摩擦材料的强度、硬度;当Fe 含量超过4%后,随Fe 含量的增加,材料的摩擦系数及稳定性增加;高速摩擦条件下,Fe 能促进摩擦面氧化膜的形成,减小材料的摩擦系数和磨损量。 关键词:粉末冶金摩擦材料;摩擦磨损;摩擦组分;摩擦机理中图分类号:TF12512 文献标识码:A 文章编号:1006-6543(2006)04-0016-05 THE WOR KIN G OF Fe IN COPPER -BASED P/M FRICTION MA TERIAL CHEN Jie ,XIONG Xiang ,YAO Ping -ping ,L I Shi -peng (Stare K ey Laboratoty of Powder Metallurgy ,Central S outh University ,Changsha 410083,China ) Abstract :The working mechanism of Fe in a new type of copper -based P/M friction material was studied 1The results show that Fe works as frictional component in copper -based friction ma 2terials ,influening the mechanical and frictional property of materials 1Fe can increase the strength and hardness of friction material ;when Fe is more than 4%,with the increase of Fe ,the friction coefficient and stability of the material are enhanced 1At the same time ,at high speed friction ,Fe takes part in formation of oxide film on friction surface ,so the wear loss of friction material is de 2creased 1 K ey w ords :P/M friction material ;friction and wear ;friction component ;friction mechanism 铜基粉末冶金摩擦材料由于其良好的导热性、耐磨性而被广泛应用于各种离合器和刹车装置中[1]。粉末冶金摩擦材料是以金属及其合金为基体,添加硬质颗粒摩擦组元和固体润滑组元,用粉末冶金的方法制造而成的金属基颗粒复合材料[2]。因此,可以通过调节和控制复合材料中各组元的含量及存在形式来改善材料的物理机械性能,进而提高材料的摩擦磨损性能,最终得到综合性能优异的粉末冶金摩擦材料。 粉末冶金摩擦材料中大都加有Fe 作为摩擦组元,以提高材料的摩擦系数[3,4],其含量一般在5%~25%的范围内。有资料显示[5],Fe 含量在5%以下时,摩擦系数才有所提高,随后Fe 含量增加,材料的摩擦系数变化不大,且Fe 含量增加,材料磨损量增加,对偶磨损量则减少[6]。本文即针对Fe 在新型铜基粉末冶金摩擦材料中的作用机理进行了系统的分析,明确了Fe 对铜基粉末冶金摩擦材料摩擦磨损性能的影响。 第16卷 第4期 2006年8月 粉末冶金工业POWDER METALL URG Y IN DUSTR Y Vol.16No.4Aug.2006

粉末冶金摩擦材料-培训教材

粉末冶金摩擦材料 (培训教材) 中国粉末冶金实验基地

目录 1.概述 2.粉末冶金摩擦材料的特点 3.我国生产的粉末冶金摩擦材料4.粉末冶金摩擦材料的装配 5.粉末冶金摩擦材料的组成 6.粉末冶金摩擦材料的生产 7.对摩材料

1.概述 摩擦材料是制动器(刹车制动)、离合器(传递扭矩)使用的一种功能性材料,它对制动器、离合器的工作起着重要的作用。例如,飞机的刹车片、汽车的刹车带、火车的制动闸瓦(闸片)等,是用做制动器中的摩擦材料。离合器片则是用在离合器中的摩擦材料。与摩擦材料一起摩擦进行工作的材料在飞机上称为对偶,或者叫作对摩材料;而在火车和汽车上则称为制动盘材料。摩擦材料和对摩材料构成一组摩擦副。尽管摩擦副的工作是由摩擦材料和对摩材料的共同性质所决定的,但是在其中起主要作用的、决定性作用的仍然是摩擦材料。 制动就是强制运转的机器或机械减速和停止的过程。在制动器中,摩擦副吸收机器或机械的动能,并把它转化为热能。一部分热量发散到周围的环境中去,而另一部分为摩擦副所吸收,使摩擦副本身的温度升高。传递扭矩摩擦副的工作和制动摩擦副的工作没有什么本质的区别,同样都是摩擦副中摩擦材料和对摩材料的相对速度发生变化。工作开始时相对速度最大,而后逐渐减小到零的过程。区别是工作时间的长短(制动时间一般是从几秒到十几秒,传递扭矩的时间一般是十分之几秒到几秒)不同,吸收能量的大小不同,摩擦因数不同,因而摩擦副的工作温度也不同。 摩擦副在工作过程中总是要吸收能量,使本身的温度升高。因此,摩擦材料不是在室温,而是在较高的温度下工作的。 摩擦材料工作时的温度和升温速度,在结构一定的情况下,主要和摩擦副工作时必须吸收的能量大小、吸收这些能量的时间间隔有关。吸收的能量越大、时间间隔越短,那么摩擦材料的温度越高,升温速度也越大。在某些情况下,发生热冲击,也就是在很短的时间间隔之内,摩擦表面产生极高的温度。例如,飞机在着陆制动时,在3~5秒种之内,摩擦材料工作表面温度可达到1000℃以上,体积温度高达400℃~600℃。 在油中工作的离合器摩擦副(称为湿式工作条件下),尽管工作时吸收的能量也很大,但由于有油的存在,一般工作表面的温度和整个摩擦材料的体积温度不超过200℃。 摩擦材料是靠表面工作的。在工作中,摩擦材料的工作表面温度很快升高,而后靠传导作用,使整个摩擦材料的温度升高。因此,摩擦材料的工作表面温度和整

铜合金的分类及用途

铜合金的分类及用途 铜合金主要包括铍铜合金、银铜合金、镍铜合金、钨铜合金、磷铜合金。 、铍铜合金 铍铜合金是一种可锻和可铸合金,属时效析出强化的铜基合金,经淬火时效处理后具有高的强度、硬度、弹性极限,并且稳定性好,具有耐蚀、耐磨、耐疲劳、耐低温、无磁性、导电导热性好、冲击时不会产生火花等一系列优点。铍铜材基本上分为高强高弹性铍铜合金(含铍量为.%-.%)和高导电铜铍合金(含铍量为.%-.%)。 铍铜合金用途 铍铜合金常被用作高级精密的弹性元件,如插接件、换向开关、弹簧构件、电接触片、弹性波纹,还有耐磨零器材、模具及矿山和石油业用于冲击不产生火花的工具。现在铍铜材料已被广泛应用于航空航天、电器、大型电站、家电、通信、计算机、汽车、仪表、石油、矿山等行业,享有有色金属弹性王的美誉。 、银铜合金 银铜合金是通过将纯铜和纯银加入电熔炉进行熔炼,经铸造得到坯料,再加工成各种规格的成品。银铜合金的主要应用为电接触材料、焊接材料、银铜合金排及铜银合金接触线。 银铜合金种类 银铜合金:银和铜的二元合金,铜具有强化作用。 类型:有,,,和等合金。 用途:有良好的导电性、流动性和浸润性、较好的机械性能、硬度高,耐磨性和抗熔焊性。有偏析倾向。用真空中频炉熔炼,铸锭经均匀化退火后可冷加工成板材、片材和丝材。作空气断路器、电压控制器、电话继电器、接触器、起动器等器件的接点,导电环和定触片。真空钎料,整流子器,还可制造硬币、装饰品和餐具等。 、镍铜合金 镍铜合金通常被称为白铜。纯铜加镍能显著提高强度、耐蚀性、电阻和热电性,主要应用在海水淡化及海水热交换系统、汽车制造、船舶工业、硬币、电阻线、热电偶。工业用白铜根据性能特点和用途不同分为结构用白铜和电工用白铜两种,分别满足各种耐蚀和特殊的电、热性能。

FeSO4对铜基粉末冶金摩擦材料性能的影响

FeS04对铜基粉末冶金摩擦材料性能的影响/龙波等445 FeS04对铜基粉末冶金摩擦材料性能的影响 龙波,白同庆,李东生 (北京百慕航材高科技股份有限公司,北京100095) 摘要研究了FeS04对铜基粉末冶金摩擦材料性能的影响。结果表明,摩擦材料中添加FeS04产生了较好的润滑效果。在烧结过程中FeSO。发生分解生成S02和如03,s02与基体材料中的金属反应生成FeS、M nS等金属硫化物。随着F eS04含量增加,材料的密度与硬度逐渐降低;在M M-1000摩擦试验机上进行摩擦性能测试,结果表明随着Fes04含量的增加,摩擦副摩擦系数降低;当材料中FeS04含量为4%时,金属陶瓷摩擦材料具有最佳的摩擦磨损性能。 关键词FeSO‘金属陶瓷摩擦系数磨损 E f f ect of FeS04A ddi t i on on Pr oper t i es of C oppe r-ba sed Pow der M e t al l ur gy Fr i ct i on M at er i al L O N G B o,B A I Tongqi ng,L I D ongs heng (B A I M T E C M at er i al C o.,Lt d,B ei j i ng100095) A bs t ract T he ef fect of FeS04o n t he copper-ba se d pow der m e t al l ur gy f ri ct i o n m at er i aI i s i nves t i gat ed i n t h i s pa per.T he r es u l t s ho w s t hat t he addi t i on of FeS04m ak es pr ef e r abl e l ubr i cat i ve act i on t O t he f r ict ion m at eri al.D uri ng t he s i nt er i n g per i od,FeS04i s decom pos ed i n t O S02and如03.The SQ r eact s w i t h t he m e t a l i n t he m a t r i x and FeS,M nS e t c m e t a l s ul t ides ar e ge nera t ed.W i t h t he i ncr ease of FeS04addi t i on i n t he f ri ct i o n m at er i al t he den si t y a nd har d—nes s of t he m at er i al de bas e gr a dual l y.The f ri ct i o n w ear t e st i s eval ua t ed o n t he M M-1000f ri ct i o n w e ar t est er.W i t h t he r i sing of FeS04addi t i o n。t he f ri ct i o n coe“i ci ent re duc es w h i l e t he s t abi l it y coef f ici ent i ncr e ases.As t he FeS04addi t i on i n t he f ri ct i o n m a t er i al i s a bout4%,t he coppe r-base d f ri et i o n m at er i al posses ses t he best f r ict ion and w ea r per f or m ance.K ey w or ds FeS04,cer m e t,f r i ct i on coef f i ci ent,w ear 粉末冶金摩擦材料又称烧结金属摩擦材料,是以金属及合金为基体,添加摩擦组元和润滑组元,用粉末冶金技术制成的复合材料,是摩擦式离合器与制动器的关键组件[1’2]。 随着科学技术日新月异的发展,飞机、坦克、火车、汽车、船舶及工程机械等的运转速度及负荷迅速增长,对制动材料提出了越来越高的要求,粉末冶金摩擦材料因其具有足够的强度、合适而稳定的摩擦因数、工作平稳可靠、耐磨及污染少等优点而得到广泛应用。粉末冶金摩擦材料主要有铁基和铜基摩擦材料,为充分利用二者性能优势又发展了铁铜基摩擦材料[3~5]。 摩擦材料中加入润滑组元的作用是改善其抗卡滞性能、提高其耐磨性。金属陶瓷摩擦材料中常用的固体润滑剂有石墨、二硫化钼、氮化硼以及一些低熔点金属等[6~8]。FeS04作为固体润滑剂已在铁基粉末冶金摩擦材料中得到应用[9],而未见关于FeS04用于铜基摩擦材料的报导,本文选择铜基粉末冶金摩擦材料作为研究对象,考察了FeS04含量对航空制动用金属陶瓷摩擦材料性能的影响。 1试验 1.1实验材料及制备方法 为了排除其他组元对实验结果的影响,本实验仅改变C u 和FeS04的配比,其他组元固定不变,具体配方如表1所示。. 表1材料配方(%(质量分数)) Tabl e1M a t er i a l com pos i t i on(w t%) 按比例称取各种粉末,在V型混料筒内混合4~6h;混合料在400M Pa压力下压制成压坯;装入钟罩炉中,于900930℃和H z的保护气氛下加压烧结,烧结压力为2.o~3.0M P a,保温3h,降温随炉冷,小于100℃出炉。 1.2测试方法 采用H B3000型布氏硬度计测量试样的硬度。在盼1450扫描电镜下观察组织形貌并进行微区元素分析。将摩擦材料加工成量75m m×①53m m的试环,对偶材料为30Cr Si M oV A钢,在M M-1000摩擦试验机上进行摩擦磨损实验,按照H B5434.7-1989《航空机轮刹车材料摩擦试验法》进 龙波:男,1980年生,硕士,工程师,主要从事摩擦材料的研制、开发与生产E-m a i l:l b904221@ya hoo.com.c a

粉末冶金摩擦材料原料作用分析

高铁粉末冶金刹车片用原材料作用分析粉末冶金摩擦材料的问世距今已有近百年的历史,尤其在近几年发展尤为迅猛。粉末冶金工艺可以将金属和非金属组分的不同性能很好地配合于一种材料中,已有逐渐代替有机物粘结高分子材料的趋势。 粉末冶金摩擦材料一般由三部分组成:构成基体金属骨架的组元、润滑组元和摩擦组元。是一种含有金属和非金属多种组分的假合金。 1构成基体金属骨架的组元 简称基体组元。常用铜、铁、二硫化钼、镍、钛、铬、钼、钨、磷、锡、铝、锌等。 基体组元由基本组元和辅助组元两部分组成,基本组元在成分中占的比重最大。在铁基中,基本组元是铁。在铜基中,基本组元是铜。辅助组元与基本组元形成合金,从而改善基本组元的性能,或者是赋予基本组元以某种所需要的性能。辅助组元在铁基材料中有二硫化钼、镍、铬、钼、铜及磷等。在铜基中主要是锡、铝、锌及磷等。 粉末冶金摩擦材料的性能、工艺特点在很大程度上取决于基体组元的化学成分、结构和物理机械性能。基体组元保证了材料的承载能力、热稳定性、耐磨性,以及在高温工作时保持住摩擦剂和润滑剂颗粒的能力。一般在粉末冶金摩擦材料中,基体组元占铁基材料的50%~70%,占铜基材料的60%~90%。 1.1铁 近年来铁基粉末冶金摩擦材料的发展很快,主要是由于它节省有色金属,在高温高负荷下显示出更加优良的摩擦性能,机械强度高,能够承受比较大的压力,因而它应用在很多领域。但是,由于铁与对偶具有很强的亲和性,有利于粘结过程的发展,因此需加入大量的其他元素使铁合金化以降低铁的塑性,提高其强度、屈服极限和硬度,以克服次缺点,但同时也提高了成本和加工工艺复杂度。 铁基材料的基体组元中,加入镍、铬、钼,主要目的在于提高材料机械-物理性能和耐热耐腐性能。加入磷,能提高材料的强度,提高耐磨性。加入二硫

烧结气氛论文:烧结工艺对铜基粉末冶金摩擦材料性能的影响

烧结气氛论文:烧结工艺对铜基粉末冶金摩擦材料性能的影响 【中文摘要】随着我国铁路运输业的飞速发展,列车运行速度一提再提,这就对制动摩擦材料提出了更为苛刻的要求。铜基粉末冶金摩擦材料因其具有高的机械强度、高导热性和优良的摩擦磨损性能而成为高速列车制动闸片的首选材料,如何通过制备工艺和原料体系的改进提高材料的耐温性能和摩擦稳定性一直是人们研究的重点。本文通过采用不同的烧结工艺制备了铜基粉末冶金摩擦材料,研究不同烧结温度和烧结气氛对材料显微组织、物理机械性能和摩擦磨损性能的影响,并探讨了材料在不同制动条件下的摩擦磨损行为及机理,结果 表明:(1)铜基粉末冶金摩擦材料中各组元分布均匀,组元间接触紧密,鳞片状石墨垂直于压制方向呈层状分布,SiO2以黑色大颗粒状镶嵌于铜基体内。随的烧结温度提高,材料中各组元间的孔隙减少,当达到一定程度后,孔隙不再减少;烧结气氛对材料的形貌无明显影响。(2) 烧结工艺对材料的物理-机械性能影响较大。随烧结温度的提高,采用N2和N2+H2混合气制备材料的密度先升后降,抗压强度较大,且随之呈上升趋势;H2气氛制备材料的密度呈下降趋势,抗压强度与其他两种气氛下制备的相比显著降低,且呈下降趋势。(3)相同制动压力下,材料的摩擦系数随的转速的提高先升高后降低,磨损量随着转速的提高逐渐增加;在较低转速时,磨损以粘着磨损为主,随着转速提高,磨损逐渐表现为氧化磨损和疲劳磨损。N2+H2混合气氛烧结材料在较低

转速下具有较好的摩擦性能,磨损量很低,且随烧结温度提高呈下降 趋势;N2气氛烧结材料在较高转速下摩擦性能较好,摩擦稳定性好,而且磨损量也较低。(4)在一定转速下,随着制动压力的提高,材料的摩擦系数呈下降趋势,摩擦稳定性系数先升高后下降,磨损量显著增加;较低压力时,磨损主要由粘着机理控制,较高压力时,磨损主要表现为疲劳磨损和剥层脱落。N2+H2混合气氛烧结材料在高制动压力下具有较好的摩擦性能,摩擦稳定性最高,磨损量最小,且随烧结温度升高先减少后增加,在1000℃时最低。 【英文摘要】With the development of train transport, the requirements are stiffer and stiffer in the properties of the braking materials by the speed improvement. Because of the high mechanical strength, high conductibility and excellent friction and wear properties, Cu-based P/M friction materials have been the leading material for friction brake of high-speed train.Cu-based P/M friction material has been made by different sintering process. The effect of sintering temperature and atmosphere on the micro-structure, physical and mechanical properties and friction and wear properties of material have been investigated, and the friction and wear behavior and mechanism in the different braking conditions have been discussed. The results show:(1) Scaly graphite and SiO2 are well-distributed in Cu-based P/M materials. With the

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一>G B/T14667.1-9 3

-35 240 390 260 1.0 25070 7.0 F-0008-50HT -65HT -75HT -85HT 380 450<0.5S 480 22HRC 60HRC 6.3 450520 <0.5 55028 60 6.6 520 590 <0.5 620 32 60 6.9 590 660 <0.5 690 35 60 7.1 烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注:用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲ 注:用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注:用差减法求出的其它元素(包括为了特殊目 的而添加的其它元素)总量的最大值为2.0% ⊙铁-铜合金和铜钢粉末冶金材料性能(MPIF-35) 材料编号最小强度(A)(E) 拉伸性能 横向 断裂 压缩 屈服 强度 (0.1%) 硬度 密度屈服极限极限强度 屈服强度 (0.2%) 伸长率 (25.4mm ) 宏观 (表 现) 微观 (换算 的) MPa MPa MPa % MPa MPa 络氏g/cm3 FC-0200-15 -18 -21 -24 100 170 140 1.0 310 120 11HR B N/A 6.0 120 190 160 1.5 350140 18 6.3 140 210 180 1.5 390 160 26 6.6 170 230 200 2.0 430 180 36 6.9 FC-0205-30 -35 -40 -45 210 240 240 <1.0 410 340 37HR B N/A 6.0 240 280 280 <1.0 520 370 48 6.3 280 340 310 <1.0 660 390 60 6.7

锰在粉末冶金材料中的应用

锰在粉末冶金材料中地应用 罗述东1 ,李祖德2 ,赵慕岳1 ,易健宏1 <1.中南大学粉末冶金国家重点实验室, 2.北京市粉末冶金研究所,) 摘要:锰是重要地工业原料,在粉末冶金材料中有广泛应用.该文概述锰在烧结钢、阻尼合金、铝合金、钛铝合金、钨基重合金、硬质合金等材料中地应用情况.可以预期,在提高粉末冶金材料性能与开发粉末冶金新材料地领域中,锰将具有广阔地应用前景. 1. 引言 元素锰地原子序数为25,在周期表中位于第四周期,ⅦB族,属于过渡族金属.金属锰密度7.43 g/cm3,性硬而脆,莫氏硬度5~6,致密块状金属锰表面为银白色,粉末呈灰色[1,2].锰元素在地壳中地含量约

0.085%,在已知元素中占第十五位,在重金属中仅次于铁而居第二位[3].锰资源丰富,价格便宜. 元素锰早在1774年就被发现,但是,在钢铁工业中地重要作用直到1856年发明底吹酸性转炉,以及1864年发明平炉炼钢法之后,才为人们所认识.现在,锰作为有效而廉价地合金化元素,已成为钢铁工业中不可缺少地重要原料.约90%锰消耗于钢铁工业,用量仅次于铁,其余10%消耗于有色金属冶金、化工、电子、电池、农业等部门[4,5]. 锰及其化合物是生产粉末冶金材料地常用原料.Benesovsky 和Kieffer于1950年首先认识到锰在粉末冶金材料中地重要性.此后,锰在粉末冶金工业中地应用逐渐扩大.通过开发母合金技术和预合金技术,开发了含锰系列地高强度烧结钢.并且,在其它粉末冶金材料中作为主要组元或添加组元,发挥了重要作用.本文就锰在粉末冶金材料中地应用情况进行综述. 2. 锰在高强度烧结钢中用作合金元素 锰溶于铁素体中所产生地固溶强化作用,优于许多合金元素<强化作用递增次序:Cr<W<V<Mo<Ni<Mn<Si<P).利用这一特性,传统冶金工业生产了许多含锰地高强度低合金钢牌号.粉末冶金工作者借鉴这一经验,以锰作为添加剂开发出多种高强度烧结钢系列.例如,按ISO5755:2000

铜及铜合金系列

C36000铅黄铜 C36000延展性好,深冲性能好。应用于钟表零件、汽车、拖拉机及一般机器零件。 铅黄铜切削加工性能优良,有高的减摩性能,用于钟表结构件及汽车拖拉机零件。 C36000化学成分: 锌(Zn)余量,铅(Pb)2.4~3.0,铝(Al)≤0.5,铁(Fe)≤0.10,锑(Sb)≤0.005,磷(P)≤0.01,铋(Bi)≤0.002,铜(Cu)62.0~65.0,杂质总和%≤0.75 ANK20无氧红铜 产品说明: 无氧红铜(Oxygen-free copper) 型号:ANK-20 Madel:ANK-20 标准:JIS-C1020P 制造工艺:冷拔/冷轧/热轧 产品特点:结构致密均匀,无气孔,砂眼,纯度高损耗小,导电导热延伸性能均佳,含氧量低于0.002%,性能优越,是精密模具放电加工的最佳之选. 产品应用:适用于各种高精密模具的放电加工材料或高压电气开关等电器配件 相关参数:硬度为HV86-102导电率大于等于59ms/m比重约8.9g/cm3 提供板材、棒材、异型件加工 ANK570钨铜合金 钨铜合金(Tungsten copper) 型号:ANK-5-70(ANK-是型号70表示钨含量约为70%) Model:ANK-5-70 产品特性:铜钨合金综合铜和钨的优点,高强度/高比重/耐高温/耐电弧烧蚀/导电电热性能好/加工性能好,ANK钨铜采用高质量钨粉及无氧铜粉,应用等静压成型(高温烧结账-渗铜, 保证产品纯度及准确配比,组织细密,性能优异.) 提供板材、棒材、触点材、焊轮、电子封装片、异型件 产品应用:应用于高硬度材料及溥片电极放电加工,电加工产品表面光洁度高,精度高,损耗低,有效节约材料。有钨60/钨70/钨85/钨90可供选择。 主要参数:密度G/cm3(13.9)抗拉强度Mpa(≥680 )硬度HV(≥186 )硬度软化温度℃(≥1000)导电率IACS(%)(≥42 )热导率W/mk(247 )库存板、棒材供客户选择 CuCrZr铬锆铜 铬锆铜(CuCrZr)化学成分(质量分数)%( Cr:0.25-0.65, Zr:0.08-0.20)硬度(HRB78-83)导电率 43ms/m 软化温度550℃ 特点:具有较高的强度和硬度,导电性和导热性,耐磨性和减磨性好,经时效处理后硬度、强度、导电性和导热性均显著提高,易于焊接。广泛用于电机整流子,点焊机,缝焊机,对焊机用电极,以及其他高温要求强度、硬度、导电性、导垫性的零件。用制作电火花电极能电蚀出比较理想的镜面,同时直立性能好,能完成打薄片等纯红铜难以达到的效果对钨钢等难加工材质表现良好,铬锆铜有良好的导电性,导热性,硬度高,耐磨抗爆,抗裂性以及软化温度高,焊接时电极损耗少,焊接速度快,焊接总成本

粉末冶金摩擦材料原料作用分析

高铁粉末冶金刹车片用原材料作用分析 粉末冶金摩擦材料的问世距今已有近百年的历史,尤其在近几年发展尤为迅猛。粉末冶金工艺可以将金属和非金属组分的不同性能很好地配合于一种材料中,已有逐渐代替有机物粘结高分子材料的趋势。 粉末冶金摩擦材料一般由三部分组成:构成基体金属骨架的组元、润滑组元和摩擦组元。是一种含有金属和非金属多种组分的假合金。 1构成基体金属骨架的组元 简称基体组元。常用铜、铁、二硫化钼、镍、钛、铬、钼、钨、磷、锡、铝、锌等. 基体组元由基本组元和辅助组元两部分组成,基本组元在成分中占的比重最大。在铁基中,基本组元是铁。在铜基中,基本组元是铜。辅助组元与基本组元形成合金,从而改善基本组元的性能,或者是赋予基本组元以某种所需要的性能。辅助组元在铁基材料中有二硫化钼、镍、铬、钼、铜及磷等。在铜基中主要是锡、铝、锌及磷等。 粉末冶金摩擦材料的性能、工艺特点在很大程度上取决于基体组元的化学成分、结构和物理机械性能。基体组元保证了材料的承载能力、热稳定性、耐磨性,以及在高温工作时保持住摩擦剂和润滑剂颗粒的能力。一般在粉末冶金摩擦材料中,基体组元占铁基材料的50%~70%,占铜基材料的60%~90%。 1.1铁 近年来铁基粉末冶金摩擦材料的发展很快,主要是由于它节省有色金属,在高温高负荷下显示出更加优良的摩擦性能,机械强度高,能够承受比较大的压力,因而它应用在很多领域。但是,由于铁与对偶具有很强的亲和性,有利于粘结过程的发展,因此需加入大量的其他元素使铁合金化以降低铁的塑性,提高其强度、屈服极限和硬度,以克服次缺点,但同时也提高了成本和加工工艺复杂度。 铁基材料的基体组元中,加入镍、铬、钼,主要目的在于提高材料机械-物理性能和耐热耐腐性能。加入磷,能提高材料的强度,提高耐磨性.加入二硫化钼,

玄武岩纤维增强铜基粉末冶金材料及其设备制作方法与设计方案

本技术提供了一种玄武岩纤维增强铜基粉末冶金材料,其特征在于,包括铜基粉末和改性玄武岩纤维,所述改性玄武岩纤维经过氧化铝包覆改性的玄武岩纤维,所述粉末冶金材料还包括金属氧化物或金属活性元素。通过玄武岩纤维表面的改性实现了改变玄武岩纤维和金属基体界面反应体系改善界面结合情况,改善了复合材料的脆性,提高铜基材料的力学性能。 权利要求书 1.一种玄武岩纤维增强铜基粉末冶金材料,其特征在于,包括铜基粉末和改性玄武岩纤维,所述改性玄武岩纤维经过氧化铝包覆改性的玄武岩纤维。 2.根据权利要求1所述的一种玄武岩纤维增强铜基粉末冶金材料,其特征在于:所述粉末冶金材料还包括金属氧化物或金属活性元素。 3.根据权利要求2所述的一种玄武岩纤维增强铜基粉末冶金材料,其特征在于:所述金属氧化物为氧化铜。 4.根据权利要求3所述的一种玄武岩纤维增强铜基粉末冶金材料,其特征在于:所述金属活性元素为Ti。 5.如权利要求1-4所述的一种玄武岩纤维增强铜基粉末冶金材料的制备方法,其特征在于,包括以下步骤: 玄武岩纤维除杂:将玄武岩纤维进行热处理,然后置于去离子水中搅拌分散至玄武岩纤维呈单丝分散,烘干备用; 玄武岩纤维的包覆改性:将步骤(1)处理后玄武岩纤维溶与DMF中,加入异丙醇铝,搅拌静置老化,过滤干燥后进行热处理,得到氧化铝包覆改性的玄武岩纤维;

铜基粉末冶金材料:将步骤(2)制备的氧化铝包覆改性的玄武岩纤维表面再附着上氧化铜或钛,再经过采用冷压烧结工艺制备玄武岩纤维增强铜基复合材料。 6.根据权利要求5所述的一种玄武岩纤维增强铜基粉末冶金材料的制备方法,其特征在于:所述氧化铝包覆改性的玄武岩纤维表面再附着上氧化铜的制备工艺为将氧化铝包覆改性的玄武岩纤维加入至含有氧化铜的分散液中,超声振荡,过滤后烘干烧结。 7.根据权利要求5所述的一种玄武岩纤维增强铜基粉末冶金材料的制备方法,其特征在于:所述氧化铝包覆改性的玄武岩纤维表面再附着上Ti的制备工艺为将碘、钛粉和氧化铝包覆改性的玄武岩纤维,置于反应容器中,抽真空并通入 Ar气,以5℃/min的升温速率升温至1150℃,然后保温60min,之后随炉冷至室温。 8.根据权利要求5所述的一种玄武岩纤维增强铜基粉末冶金材料的制备方法,其特征在于:所述步骤(3)中冷压烧结的压制压力为400-500MPa,保压时间为3-4min,真空烧结温度为800-1000℃,保温时间为3-4h。 技术说明书 一种玄武岩纤维增强铜基粉末冶金材料及其制备方法 技术领域 本技术涉及粉末冶金材料,具体涉及一种玄武岩纤维增强铜基粉末冶金材料及其制备方法。 背景技术

铜及铜合金的高温特性

Thesis Submitted By Ramkumar Kesharwani Roll No: 208ME208 In the partial fulfillment for the award of Degree of Master of Technology In Mechanical Engineering
Department of Mechanical Engineering National Institute of Technology Rourkela-769008, Orissa, India. May 2010

Thesis Submitted By Ramkumar Kesharwani Roll No: 208ME208 In the partial fulfillment for the award of Degree of Master of Technology In Mechanical Engineering
Under the supervision of Prof. S. K. Sahoo
Department of Mechanical Engineering National Institute of Technology Rourkela-769008, Orissa, India. May 2010

National Institute of Technology Rourkela
CERTIFICATE
This is to certify that thesis entitled, “High Temperature behavior of Copper” submitted by Mr. “Ramkumar Kesharwani” in partial fulfillment of the requirements for the award of Master of Technology Degree in Mechanical Engineering with specialization in “Production Engineering” at National Institute of Technology, Rourkela (Deemed University) is an authentic work carried out by him under my supervision and guidance. To the best of my knowledge, the matter embodied in this thesis has not been submitted to any other university/ institute for award of any Degree or Diploma.
Date: Dept. of Mechanical Engineering
Prof. S.K. Sahoo National Institute of Technology Rourkela-769008

铜和铜合金的基础知识

铜和铜合金的基础知识 铜合金(copper alloy )以纯铜为基体加入一种或几种其他元素所构成的合金。纯铜呈紫红色﹐又称紫铜。纯铜密度为8.96﹐熔点为1083℃﹐具有优良的导电性﹑导热性﹑延展性和耐蚀性。主要用于制作发电机﹑母线﹑电缆﹑开关装置﹑变压器等电工器材和热交换器﹑管道﹑太阳能加热装置的平板集热器等导热器材。常用的铜合金分为黄铜﹑青铜﹑白铜3大类。 黄铜以锌作主要添加元素的铜合金﹐具有美观的黄色﹐统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上的黄铜称特殊黄铜或称复杂黄铜。含锌低於36%的黄铜合金由固溶体组成﹐具有良好的冷加工性能﹐如含锌30%的黄铜常用来制作弹壳﹐俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成﹐其中最常用的是含锌40%的六四黄铜。为了改善普通黄铜的性能﹐常添加其他元素﹐如铝﹑镍﹑锰﹑锡﹑硅﹑铅等。铝能提高黄铜的强度﹑硬度和耐蚀性﹐但使塑性降低﹐适合作海轮冷凝管及其他耐蚀零件。锡能提高黄铜的强度和对海水的耐腐性﹐故称海军黄铜﹐用作船舶热工设备和螺旋桨等。铅能改善黄铜的切削性能﹔这种易切削黄铜常用作钟表零件。黄铜铸件常用来制作阀门和管道配件等。 青铜原指铜锡合金﹐后除黄铜﹑白铜以外的铜合金均称青铜﹐并常在青铜名字前冠以第一主要添加元素的名。锡青铜的铸造性能﹑减摩性能好和机械性能好﹐适合於制造轴承﹑蜗轮﹑齿轮等。铅青铜是现代发动机和磨床广泛使用的轴承材料。铝青铜强度高﹐耐磨性和耐蚀性好﹐用於铸造高载荷的齿轮﹑轴套﹑船用螺旋桨等。铍青铜和磷青铜的弹性极限高﹐导电性好﹐适於制造精密弹簧和电接触元件﹐铍青铜还用来制造煤矿﹑油库等使用的无火花工具。 白铜以镍为主要添加元素的铜合金。铜镍二元合金称普通白铜﹔加有锰﹑铁﹑锌﹑铝等元素的白铜合金称复杂白铜。工业用白铜分为结构白铜和电工白铜两大类。结构白铜的特点是机械性能和耐蚀性好﹐色泽美观。这种白铜广泛用於制造精密机械﹑化工机械和船舶构件。电工白铜一般有良好的热电性能。锰铜﹑康铜﹑考铜是含锰量不同的锰白铜﹐是制造精密电工仪器﹑变阻器﹑精密电阻﹑应变片﹑热电偶等用的材料。 [编辑本段] 铜合金的分类 铜合金的分类方法有三种: ①按合金系划分

粉末冶金摩擦副材料及其成形技术

机器设备在运转过程中,部分零件之间相互接触产生摩擦形成摩擦副。摩擦副零件是机器设备的重要组成部分,其性能对机器设备使用寿命有着重要影响。组成摩擦副的零件一般在相对速度高、接触比压大的摩擦工况下服役,因此此类零件磨损也较为严重。现代工业发展促使了高能效和微型化机械设备的应用,这使得摩擦副零件工况条件更为苛刻,所以开发高性能摩擦副材料具有重要意义。粉末冶金工艺生产机械零件具有突出的经济优势、良好的尺寸精度,并可生产形状复杂的零件。因此,国内外对粉末冶金摩擦副材料及制品开发高度关注,并开展了大量工作。 粉末冶金摩擦副材料主要包括两类,一类是粉末冶金减摩耐磨材料,另一类是粉末冶金摩擦材料。其中粉末冶金减摩耐磨材料主要是在基体中浸入润滑油或加入固体润滑剂,使材料具有减摩耐磨性能,这类材料主要用来制造轴承、轴瓦以及滑块等零件。粉末冶金摩擦材料主要由基体组元、润滑组元和摩擦组元组成,要求材料具有较高的摩擦系数和耐磨性,主要用于离合器和制动器等关键零部件。 粉末成形作为粉末冶金重要的一项生产工序,直接影响生坯的密度和强度,进而对制品性能产生影响。目前,应用于摩擦副零件制备的成形工艺主要有传统模压成形、粉末注射成形、温压以及粉末锻造技术等,这些成形工艺各有其独特的优点。本文简述了粉末冶金摩擦副产品的性能特点,介绍了其成形工艺技术发展现状,并对摩擦副零件市场进行了展望。 1 粉末冶金摩擦副材料发展现状 1.1 粉末冶金摩擦材料 机械设备运行速度以及负载增加,使得传动装置对摩擦材料性能要求变得越来越高。粉末冶金技术可以在大范围内改变材料组分,所以粉末冶金摩擦材料工作可靠性、摩擦系数稳定性和耐摩性较好。 常见粉末冶金摩擦材料主要有铁基和铜基两类。铜基摩擦材料主要应用于高铁、风电及航空航天等领域,其摩擦学性能与材料组分有关,如在基体中添加适量合金元素Sn可提高材料强度和硬度;还可通过润滑组元和摩擦组元的合理搭配,来提高材料耐磨性。与铜基摩擦材料相比,铁基摩擦材料更耐高温,成本也相对较低,但此类材料容易与对偶件发生咬合,且抗氧化性和导热性相对较差;为了改善这种状况,可以在基体中添加合金元素Cu等。 近年来,C/C复合材料也被广泛用于飞机和高速列车等摩擦副部件制造中。这种材料虽然密度较低,但其高温强度较为优异,但此类材料摩擦系数相对较低,高温抗氧化性较差;为了改善材料性能,可在基体中加入S i C等来提高材料的抗氧化性和耐磨性。 1.2 粉末冶金减摩耐磨材料 粉末冶金减摩耐磨材料在基体选择上与粉末冶金摩擦材料基本相同,但主要考虑减摩性能。传统粉末冶金减摩耐磨材料是通过浸油处理使基体含有一定润滑油,它是以牺牲材料本身力学性能来获得减摩效果。由于润滑油在某些工况条件(如超低温、高真空和高速高负载)下容易失效,使材料减摩耐磨性能下降甚至完全丧失,导致零件严重磨损。因此,粉末冶金减摩耐磨固体自润滑材料应运而生。目前,粉末冶金减磨耐磨固体自润滑材料研究主要集中在开发固体润滑剂方面,包括多元固体润滑剂和纳米固体润滑剂。 固体润滑剂开发和应用对于解决关键零部件摩擦问题具有重要意义。在某些特殊工况条件下,仅依靠单一润滑 学性能要求。例如,在烧结过程中, 分发生固相反应,生成Mo 和Mo (1.合肥工业大学材料学院,合肥 230009;2.安徽省粉末冶金工程技术研究中心,合肥 230009; 3.合肥波林新材料股份有限公司,合肥 231121) 摘 要:机器设备失效主要原因之一是摩擦副零件的磨损。作为高性能摩擦副材料的重要组成部分,粉末冶金摩擦副材料研究与开发受到了国内外的广泛关注。传统粉末冶金摩擦副制品由于受孔隙和强度等因素限制,在高速、重载等工况条件下容易发生失效,所以发展高性能的粉末冶金摩擦副材料及其制备技术具有重要意义。主要简述了国内外粉末冶金减摩耐磨材料和摩擦材料最新研究进展,重点介绍了一些典型粉末冶金摩擦副零件成形工艺与特点,同时对粉末冶金摩擦副零件市场应用和发展趋势进行讨论。 关键词:粉末冶金 摩擦副 磨损 成形技术 通讯作者:程继贵。

相关文档
最新文档