锂电池充电保护方案设计72601

锂电池充电保护方案设计72601
锂电池充电保护方案设计72601

方案一:BP2971 电源管理芯片

特点

·输入电压区间(Pack+):Vss-0.3V~12V

·FET 驱动

CHG和DSG FET驱动输出

·监测项

过充监测

过放监测

充电过流监测

放电过流监测

短路监测

·零充电电压,当无电池插入

·工作温度区间: Ta= -40~85℃

·封装形式: 6引脚 DSE(1.50mm 1.50mm 0.75mm)

应用

·笔记本电脑

·手机

·便携式设备

绝对最大额定值

·输入电源电压:-4.5V~7V

·最大工作放电电流:7A

·最大充电电流: 4.5A

·过充保护电压(OVP):4.275V ·过充压延迟:1.2s

·过充保护电压(释放值):4.175V ·过放保护电压(UVP):2.8V ·过放压延迟:150ms

·过放保护电压(释放值):2.9V

·充电过流电压(OCC):-70mV ·充电过流延迟:9ms

·放电过流电压(OCD):100mV ·放电过流延迟:18ms

·负载短路电压:500mV

·负载短路监测延迟:250us

·负载短路电压(释放值):1V

典型应用及原理图

图1:BP2971应用原理图

引脚功能

NC(引脚1):无用引脚。

COUT(引脚2):充电FET驱动。此引脚从高电平变为低电平,当过充电压被V-引脚所监测到

DOUT(引脚3):放电FET驱动。此引脚从高电平变为低电平,当过放电压被V-引脚所监测到

VSS (引脚4):负电池端。此引脚用于电池负极的接地参考电压

BAT(引脚5):正电池连接端。将电池的正端连接到此管脚。并用0.1uF的输入电容接地。

V-(引脚6):电压监测点。此引脚用于监测故障电压,例如过冲,过放,过流以及短路电压。

芯片功能原理图

芯片功能性模式

监测参数

参数可变(选)区间

过充监测电压 3.85V~4.60V 50mV steps V

OVP

过放监测电压 2.00V~2.80V 50mV steps V

UVP

正常工作:该芯片同时检引脚5(BAT)引脚4(VSS)之间电压差和引脚6(V-)引脚4(VSS)之间的电压差去控制电池的充放电。这个系统处于正常工作模式,当电池电压小于过充电压并且大于过放电压且引脚6(V-)的电压在充电过流和放电过流电压之间。如果满足以上条件,引脚2(COUT)和引脚3(DOUT)会输出高电平使电池正常工作。

过充模式:在充电时当电池电压大于过充监测电压(V

),进入该模式。如果

OVP

), 引脚2(COUT)将转为低电平去断开充电该情况持续超过过充监测延迟(T

OVDO

回路。

当以下情况下,过充模式将被退出:

)且电池电压降到过充释放电以·如果引脚V-电压大于过充监测电压(V

OCC_Min

下,将退出过充模式。

)且电池电压降到过充监测·如果引脚V-电压大于或等于过放监测电压(V

OCD

电压以下,将退出过充模式。

过放模式:如果电池电压低于过放监测电压的时间超过过放监测延迟,引脚3(DOUT)将转为低电平断开放电回路。在此情况下,V-引脚被电阻(R

)拉起

V-D

置BAT引脚。引脚V-和BAT的电压差将会是1.3V或者更低。电流消耗也会降到低耗)。低耗能模式将会解除当充电器连入并且引脚V-和BAT的电压差能电流(I

STANDBY

大于1.3V。

在过放模式下,如果充电器连入电池且引脚V-的电压小于-0.7V,一旦电池电压

),过放模式将被退出且启动引脚DOUT闭合放电回路。超过过放监测电压(V

UVP

在过放模式下,如果充电器连入电池且引脚V-的电压大于-0.7V,一旦电池电压

),过放模式将被退出且启动引脚DOUT闭合放电超过过放监测释放电压(V

UVP+Hys

回路。

放电过流(放电过流或负载短路):

当电池处于正常工作状态时,如果引脚V-等于或大于放电过流监测电流的时间超过放电过流监测延迟,引脚DOUT电平将被拉低使放电回路断开。

当Pack+和Pack-之间的电阻增至激活电阻,系统回到正常工作状态。当V-引脚的电压降至BAT—1V或者更低,Pack+和Pack-之间电阻处于激活电阻

或者连接充电器去退出放电过流模式。

充电过流:

当电池处于正常工作状态时,如果引脚V-小于充电过流监测电流的时间超过充电过流监测延迟,引脚COUT电平将被拉低使充电回路断开。

当拔掉充电器,在V-引脚恢复到充电过流监测电压或者更高的电压时,系统将回到正常工作状态

充电过流监测功能缺失,当系统处于过放模式。

了解一下锂电池充电IC的选择方案

随着手持设备业务的不断发展,对电池充电器的要求也不断增加。要为完成这项工作而选择正确的集成电路 (IC),我们必须权衡几个因素。在开始设计以前,我们必须考虑诸如解决方案尺寸、USB标准、充电速率和成本等因素。必须将这些因素按照重要程度依次排列,然后选择相应的充电器IC。本文中,我们将介绍不同的充电拓扑结构,并研究电池充电器IC的一些特性。此外,我们还将探讨一个应用和现有的解决方案。 锂离子电池充电周期 锂离子电池要求专门的充电周期,以实现安全充电并最大化电池使用时间。电池充电分两个阶段:恒定电流 (CC) 和恒定电压 (CV)。电池位于完全充满电压以下时,电流经过稳压进入电池。在CC模式下,电流经过稳压达到两个值之一。如果电池电压非常低,则充电电流降低至预充电电平,以适应电池并防止电池损坏。该阈值因电池化学属性而不同,一般取决于电池制造厂商。一旦电池电压升至预充电阈值以上,充电便升至快速充电电流电平。典型电池的最大建议快速充电电流为1C(C=1 小时内耗尽电池所需的电流),但该电流也取决地电池制造厂商。典型充电电流为~0.8C,目的是最大化电池使用时间。对电池充电时,电压上升。一旦电池电压升至稳压电压(一般为4.2V),充电电流逐渐减少,同时对电池电压进行稳压以防止过充电。在这种模式下,电池充电时电流逐渐减少,同时电池阻抗降低。如果电流降至预定电平(一般为快速充电电流的10%),则终止充电。我们一般不对电池浮充电,因为这样会缩短电池使用寿命。图1 以图形方式说明了典型的充电周期。 线性解决方案与开关模式解决方案对比 将适配器电压转降为电池电压并控制不同充电阶段的拓扑结构有两种:线性稳压器和电感开关。这两种拓扑结构在体积、效率、解决方案成本和电磁干扰(EMI) 辐射方面各有优缺点。我们下面介绍这两种拓扑结构的各种优点和一些折中方法。 一般来说,电感开关是获得最高效率的最佳选择。利用电阻器等检测组件,在输出端检测充电电流。充电器在CC 模式下时,电流反馈电路控制占空比。电池电压检测反馈电路控制CV 模式下的占空比。根据特性集的不同,可能会出现其他一些控制环路。我们将在后面详细讨论这些环路。电感开关电路要求开关组件、整流器、电感和输入及输出电容器。就许多应用而言,通过选择一种将开关

基于单片机的锂离子电池充电系统设计方案

济南大学泉城学院 毕业设计方案 题目基于单片机的锂离子电池 充电系统设计 专业电气工程及其自动化 班级1301班 学生姚良洁 学号2013010873 指导教师张兴达魏志轩 二〇一七年四月十日 学院工学院专业电气工程及其自动化 学生姚良洁学号2013010873 设计题目基于单片机的锂离子电池充电系统设计 一、选题背景与意义 1. 国内外研究现状

自90年代以来,中国正日趋成为世界上最大的电池生产国和最大的电池消耗国。随着科技的发展,人们对身边电子产品的数字化、自动化和效率的要求越来越高。便携式电池成为用户的首选,随着各式各样的电池出现,用户在选用电池时,在考虑到电池的环保、性价比的同时,更加注重电池的便携性。正因为锂离子电池具有高的体积比能量和环保性能,符合当前世界电池技术的发展趋势,逐渐成为市场的主流[1]。我国锂电池行业的年增长率已超过20%,2016年电池总体需求量达到50亿块左右。可见,在当前和今后相当一段时间,锂电池将成为我国电池工业的龙头。 虽然我国已是仅次于日本的锂离子电池生产大国,市场增长空间巨大,但并非强国,在全球锂离子电池产业仍处于低端。随着手机用户的日益增多,如何保养手机也成为了众多手机使用者面临的一个实际问题,而手机电池作为手机的一个重要组成部分,直接影响了使用寿命和性能。智能手机的屏幕越来越大,功能越来越多,现有的锂离子电池产品越来越难以满足需求,选择合适的充电器,可以延长我们的手机锂离子电池的使用寿命。 现阶段消费者除了通过原厂配备的充电器给便携式设备充电之外,普遍采用的是通过移动电源来补充电池的电量。根据日本矢野经济研究所的预测,锂离子电池正以53.33%的年增长率快速取代传统的镍铬镍氢电池市场。目前国内移动电源市场上主要的品牌有小米、爱国者、品胜、华为等,国外市场比较知名的品牌有BOOSTCASE、MALA 等。移动电源市场在近几年得到了很大的发展,市场中出现了各式各样的品牌。与此同时,在移动电源产品中也存在很多需要解决的问题。比如:自身充电所需时间过长,USB输出电压不稳定,电能转化效率不高,输出保护较为单一,输出大电流时散热性能不好等。相较于国外而言,国内的锂电池智能充电系统性能欠佳,还需要加大研究力度[2]。 2. 选题的目的及意义 近几年来,便携式电子产品的迅猛发展促进了电池技术的更新换代。其中锂离子电池以其重量轻、储能大、功率大、无记忆效应、无污染、自放电系数小、循环寿命长等优点,脱颖而出,迅速成为市场的主流。锂电池是20世纪末才出现的绿色高效能可充电电池,目前随着锂离子电池的推广及大量应用,锂离子电池深受社会和用户的欢迎[3]。目前已广泛应用于手机、笔记本电脑、数码相机及众多的便携式设备,其中笔记本电脑占23%,手机占50%,为最大领域。电子、信息及通讯等3C产品均朝向无线化、可携带化方向发展,对于产品的各项高性能组件也往“轻、

锂电池充电保护方案计划

方案一:BP2971 电源管理芯片 特点 ·输入电压区间(Pack+):Vss-0.3V~12V ·FET 驱动 CHG和DSG FET驱动输出 ·监测项 过充监测 过放监测 充电过流监测 放电过流监测 短路监测 ·零充电电压,当无电池插入 ·工作温度区间:Ta= -40~85℃ ·封装形式: 6引脚DSE(1.50mm 1.50mm 0.75mm) 应用 ·笔记本电脑 ·手机 ·便携式设备 绝对最大额定值 ·输入电源电压:-4.5V~7V

·最大工作放电电流:7A ·最大充电电流:4.5A ·过充保护电压(OVP):4.275V ·过充压延迟:1.2s ·过充保护电压(释放值):4.175V ·过放保护电压(UVP):2.8V ·过放压延迟:150ms ·过放保护电压(释放值):2.9V ·充电过流电压(OCC):-70mV ·充电过流延迟:9ms ·放电过流电压(OCD):100mV ·放电过流延迟:18ms ·负载短路电压:500mV ·负载短路监测延迟:250us ·负载短路电压(释放值):1V 典型应用及原理图

图1:BP2971应用原理图 引脚功能 NC(引脚1):无用引脚。 COUT(引脚2):充电FET驱动。此引脚从高电平变为低电平,当过充电压被V-引脚所监测到 DOUT(引脚3):放电FET驱动。此引脚从高电平变为低电平,当过放电压被V-引脚所监测到 VSS (引脚4):负电池链接端。此引脚用于电池负极的接地参考电压 BAT(引脚5):正电池连接端。将电池的正端连接到此管脚。并用0.1uF的输入电容接地。 V-(引脚6):电压监测点。此引脚用于监测故障电压,例如过冲,过放,过流

笔记本电池保护电路知识

笔记本电池保护电路知识 现在的笔记本电池都是所谓智能(smart battery)的了,她能告诉电脑:我现在还剩余多少容量,现在的电压是多少,电流是多少,按现在的放电速率我还能用多长时间,我是否该充电了,充电应该用多大的电流、电压,充电是否充过头了,放电是否放过头了,温度是否过高,等等。电池要提供这些所谓的智能信息,就要在电池中增加一个电路。这个电路通常都使用现成的专用芯片,如最流行的BQ系列芯片:BQ2060A,BQ2083,BQ2085,BQ2040等,这些芯片检测流入和流出电芯的电流,算出上面所谓的智能信息。 这个电路还要增加一个功能:保护功能。上面说了电路能检测出充电是否充过头了,放电是否放过头了。既然知道充过头了,就要使充电电源充不到电芯上去;放电放过头了,就要切断电芯对外放电。温度过高了,就要是电池停下来。这就是所谓的保护功能。 最后一个功能就是通讯,电池准备了这些信息,总要发送出去吧。所以通讯少不了。 按上所说,通常的电池其实主要是检测部分,能检测出来信息,保护功能实现自然简单,无非是开关而已。 当然有的电池将充电部分做到电池里面去了,如COMPAQ 笔记本电脑的不少电池都是如此。 先不必看BQ2060是如何检测那些智能信息的,先看BQ2060都检测出了哪些信息?这些检测出来的信息存放在什么地方了?在BQ2060的DATASHEET 中,有个Table 3. bq2060 Register functions,这里存放了BQ2060检测出来智能信息的。这些信息就是所谓的Smart Battery Data(智能电池数据),它们都被定义成标准了(见Smart Battery Data Specfication)。 BQ2050中检测出来的信息没有这么丰富,它不符合这个标准。BQ2040,BQ2083,BQ2085都符合这个标准,检测出来的信息也是这些。 下面解释一下BQ2060检测出来信息的意思。 1. 静态信息:静态信息不是检测出来的,而是生产厂家自己写进去的,它一般写在24C01中,BQ2060从24C01中读到它自己里面去。ManufactureDate, ManufactureName, DeviceName, Devicechemistry, SpecificationInfo, DesignVoltage, DesignCapacity,RemainingCapacityAlarm, RemainingTimeAlarm, BatteryMode。这些信息不言自明。 2.动态信息:动态信息中有些是检测出来的,有些是纯粹计算出来的,目的就是免去用户自己计算了。检测的:Voltage, Current, Temperature, AverageCurrent, RemainingCapacity, FullChargeCapacity, BatteryStatus。计算的:RelativeStateOfCharge, AbsoluteStateOfCharge, RunTimeToEmpty, AverageTimeToEmpty, AverageTimeToFull, CycleCount.。信息ChargingVoltage, ChargingCurrent 告诉充电器应该用多大的充电电流给它充电,在多大的电压处应该变成恒压充电。AtRate, AtRateTimeToFull, AtRateTimeToEmpty, AtRateOK 纯粹是帮用户计算信息用的。 3.每个厂家的特定信息:标准Smart Battery Data Specfication之外的一些信息。这些信息只有5项,不同厂家不一样,对于BQ2060就是VCELL1-4和PackConfigureation。对于BQ2085,PackConfigureation的意义就和BQ2060不大一样。

锂电池过充电_过放_短路保护电路详解

该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状 4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电 电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电 压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为 (20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响? 在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度有关,电极/电解液界面被视为电池的心脏。如果温度下降,电极的反应率也下降,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降。如果温度上升则相反,即电池输出功率会上升,温度也影响电

电池保护板原理详解

锂电池电路保护板详解 1.锂电池电路保护板典型电路 2.保护板的核心器件:U1 和 U2A/U2B。U1是保护IC,它由精确的比较器来获得可靠的保护参数。U2A和U2B是MOS管,串在主充放电回路,担当高速开关,执行保护动作。 3.B1的正负极接电芯的正负极;P+,P-分别接电池输出接口的正负极。 4.R3是NTC电阻,配合用电器件的MCU产生保护动作(检测电池温度)。R4是固定阻值电阻,做电池识别。 5.放电路径:B1+ ----- P+ ------ P- ------B1- 6.充电路径:P+ ------- B1+ ------ B1- ------ P- 7.DO是放电保护执行端,CO 是充电保护执行端。

8.充电保护:当电池被充电,电压超过设定值VC(4.25V- 4.35V,具体过充保护电压取决于保护IC)时,CO变为低电平,U2B截止(箭头向内是N-MOS,VG大于VS导通),充电截止。当电池电压回落到VCR(3.8V-4V,具体由IC决定),CO变为高电平,U2B导通,充电继续。VCR必须小于VC一个定值, 以防止频繁跳变。 9.过充保护的时候,即电池充满电的时候,U2B MOS截止了, 手机是不是就关机了呢?答案是肯定没有,不然的话手机开机 插着充电器充电,充满电就会自动关机了。 现在的MOS管生产工艺决定了,生产的时候都会形成一个寄生二极管(也叫体二极管,不用担心体二极管的耐流值,电池厂 都替你考虑了,放电是没问题的)MOS管标准的画法如上图。 充电保护的时候,B-到P-处于断开状态,停止充电。但U2B的 体二极管的方向与放电回路的电流方向相同,所以仍可对外负 载放电。当电芯两端电压低于4.3V时,U2B将退出充电保护状态,U2B重新导通,即B-与P-又重新接上,电芯又能进行正常 的充放电。 10.过放保护:当电池因放电而降低至设定值VD(2.3-2.5V),DO变为低电平,U2A截止,放电停止。P-到B-处于断开状态。当电池置于充电时,B-与P-通过U2A的体二极管接通,恢复到 一定电压后,D0重新置高,U2A重新导通。

锂离子电池以及保护电路

锂离子电池保护电路包括过度充电保护、过电流/短路保护和过放电保护,要求过充电保护高精度、保护IC功耗低、高耐压以及零伏可充电等特性.本文详细介绍了这三种保护电路的原理、新功能和特性要 求. 近年来,PDA、数字相机、手机、便携式音频设备和蓝牙设备等越来越多的产品采用锂电池作为主要电源.锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,与镍镉、镍氢电池不太一样,锂电池必须考虑充电、放电时的安全性,以防止特性劣化.针对锂电池的过充、过度放电、过电流及短路保护很重要,所以通常都会在电池包内设计保护线路用以保护锂电池. 由于锂离子电池能量密度高,因此难以确保电池的安全性.在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而发生自燃或破裂的危险;反之,在过度放电状态下,电解液因分解导致电池特性及耐久性劣化,从而降低可充电次数.

保护电路图 该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制M

一种串联锂电池均衡充电电池组的保护板方案

一种串联锂电池均衡充电电池组的保护板方案 成组锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。常用的均衡充电技术有恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。 ?本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。 ?锂电池组保护板均衡充电基本工作原理 ?采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电

锂电池保护板原理

锂电池保护板原理文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

锂电池保护板原理锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。 锂电池的保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。 普通锂电池保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等。其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全。 在保护板正常的情况下,Vdd为高电平,Vss,VM为低电平,DO、CO为高电平,当Vdd,Vss,VM任何一项参数变换时,DO或CO端的电平将发生变化。 1、过充电检出电压:在通常状态下,Vdd逐渐提升至CO端由高电平变为低电平时VDD-VSS间电压。 2、过充电解除电压:在充电状态下,Vdd逐渐降低至CO端由低电平变为高电平时VDD-VSS间电压。 3、过放电检出电压:通常状态下,Vdd逐渐降低至D O端由高电平变为低电平时VDD- VSS间电压。 4、过放电解除电压:在过放电状态下,Vdd逐渐上升到DO端由低电平变为高电平时 VDD-VSS间电压。

5、过电流1检出电压:在通常状态下,VM逐渐升至DO由高电平变为低电平时VM-VSS间电压。 6、过电流2检出电压:在通常状态下,VM从OV起以1ms以上4ms以下的速度升到 DO端由高电平变为低电平时VM-VSS间电压。 7、负载短路检出电压:在通常状态下,VM以OV起以1μS以上50μS以下的速度升至DO端由高电平变为低电平时VM-VSS间电压。 8、充电器检出电压:在过放电状态下,VM以OV逐渐下降至DO由低电平变为变为高电平时VM-VSS间电压。 9、通常工作时消耗电流:在通常状态下,流以VDD端子的电流(IDD)即为通常工作时消耗电流。 10、过放电消耗电流:在放电状态下,流经VDD端子的电流(IDD)即为过流放电消耗电流。 1、通常状态:电池电压在过放电检出电压以上(以上),过充电检出电压以下(以下),VM端子的电压在充电器检出电压以上,在过电流/检出电压以下(OV)的情况下,IC通过监视连接在VDD-VSS间的电压差及VM-VSS间的电压差而控制MOS管,DO、CO端都为高电平,MOS管处导通状态,这时可以自由的充电和放电; 当电池被充电使电压超过设定值VC后,VD1翻转使Cout变为低电平,T1截止,充电停止,当电池电压回落至VCR时,Cout变为高电平,T1导通充电继续,VCR小于VC一个定值,以防止电流频繁跳变。 当电池电压因放电而降低至设定值VD()时, VD2翻转,以IC内部固定的短时间延时后,使Dout变为低电平,T2截止,放电停止。

锂电池安全测试项目方案

锂电池安全测试项目分析及解决方案 截止今天,锂离子电池的应用已经取得了巨大的成功,特别是其广泛应用在了在移动电子产品。但不能忽视的是,自从锂离子电池大规模商业化推广以来,与其相关的安全事故就几乎没有停止过。锂离子电池的安全性已经成为制约其进一步发展的关键因素。鉴于电池材料体系、制造过程一致性等原因,对锂离子电池进行安全性检测将非常的重要。 目前针对锂离子电池的安全检测标准在不断的更新中,但其基本安全检测模式已经成型,各种常见的检测项目也已被广泛接纳和采用。在安全检测项目中,每个检测项目都模拟了一种用户在使用过程中可能会发生的误(滥)用情况。如过充电测试模拟的是保护电路板失效的情况。由于模拟的情况不同,锂离子电池各个安全测试项目的难度显然是不同的。根据摩尔实验室(MORLAB)的以往检测经验,过充电、150℃热冲击、针刺、挤压、高温短路、重物冲击等是经常发生失效(Fail)的项目。 由于内容设计面较多,因此我们将分期介绍并分析各种锂电池测试项目的相关程序、标准要求、失效原因以及对应的解决方案。本期我们主要讲一下锂电池的热冲击测试项目。热冲击: 以CTIA 关于符合IEEE1725标准的认证程序为例,其中与热冲击有关的条款: Section 4.2: Test Procedure: 5 cells at 80% +/- 5%SOC to be placed in oven at ambient temperature. The oven temperature shall be ramped at 5 ± 2°C per minute to 150 ± 2°C. After 10 minutes at 150 ±2°C, the test is complete. Compliance: No fire, smoke, explosion or breaching of the cell is allowed within t he first 10 minutes. Venting is permitted. Section 4.50: Test Procedure: 5 fully charged cells (per cell manufacture's specifications) shall be suspended (no heat transfer allowed to non-integral cell components) in a gravity convection or circulating air oven at ambient temperature. The oven temperature shall be ramped at 5 ± 2°C per minute to 130 ± 2°C. After 1 hour at 130 ± 2°C, the test is ended. Compliance: Cells shall not flame or explode when exposed to 130°C for 1h.

锂电池保护电路设计方案

锂电池保护电路设计方案 锂电池材料构成及性能探析 首先我们来了解一下锂电池的材料构成,锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。 负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价 格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 尽管从理论上能够用作锂离子电池正极材料种类很多,常见的正极材料主要成分为LiCoO2,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。这就是锂电池工作的原理。 锂电池充放电管理设计 锂电池充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。原理虽然很简单,然而在实际的工业生产中,需要考虑的实际问题要多得多:正极的材料需要添加剂来保持多次充放的活性,负极的材料需要在分子结构级去设计以容纳更多的锂离子;填充在正负极之间的电解液,除了保持稳定,还需要具有良好导电性,减 小电池内阻。 虽然锂离子电池有以上所说的种种优点,但它对保护电路的要求比较高,在使用过程中应严格避免出现过充电、过放电现象,放电电流也不宜过大,一般而言,放电速率不应大于0.2C。锂电池的充电过程如图所示。在一个充电周期内,锂离子电池在充电开始之前需要检测电池的电压和温度,判断是否可充。如果电池电压或温度超出制造商允许的范围,则禁止充电。允许充电的电压范围是:每节电池2.5V~4.2V。

电池保护电路工作原理

电池保护电路工作原理 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。 锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。与镍镉和镍氢电池相比,锂离子电池具备以下几个优点: 1.电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V 电压。 2.容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5 倍。 3.荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。 4.寿命长,正常使用其循环寿命可达到500 次以上。 5.没有记忆效应,在充电前不必将剩余电量放空,使用方便。 由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下页中的电路图为一个典型的锂离子电池保护电路原理图。 如图中所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下: 1、正常状态

锂电池保护芯片均衡充电设计

锂电池保护芯片均衡充电设计 常用的均衡充电技术包括恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。成组的锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。 ?本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。 ?锂电池组保护板均衡充电基本工作原理 ?采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;

锂电池保护板工作原理资料

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

正确选择锂电池充电系统

正确选择锂电池充电系统 正确选择锂电池充电系统 中心议题:决定锂离子充电系统注意事项电池锂离子电池">锂离子电池充电终止方法锂 离子充电应用实例 解决方案:锂离子充电线性解决方案锂离子充电周期波形分析开关式充电解决方案 在有些应用中,较长的电池寿命电池寿命、较多的充电次数或较安全的电池比电池容量更重要。本文介绍几种可以极大延长电池寿命的锂离子电池充电和放电方法。几乎所有高性能便携式产品都会使用包括锂离子聚合物电池在内的可再充电锂离子电池,这是因为与其他可再充电电池相比,锂离子电池有较高的能量密度、较高的电池电压、自放电少、周期寿命非常长,而且环保,且充电和维护简单。另外,由于其具有相对高的电压 (2.9V至4.2V),因此很多便携式产品都能用单节电池工作,从而简化了产品总体设计。C速率等于特定条件下的充电或放电电流,定义如下:I=M×Cn其中:I=充电或放电电流,单位为A;M=C的倍数或分数;C=额定容量的数值,单位为Ah;N=小时数(对应于C)。以1倍C速率放电的电池将在一个小时内释放标称的额定容量。例如,如果标称容量是1000mAhr,那么1C的放电速率对应于1000mA的放电电流,C/10的速率对应100mA的放电电流。通常生产商标定的电池容量都是指n=5时,即5小时放电的容量。例如,上述电池在200mA恒流放电时能够提供5小时的工作时间。理论上该电池在1000mA恒流放电时能够提供1小时的工作时间。然而实际上由于大电池放电时效能降低,此时的工作时间将小于1小时。 给锂离子电池充电的推荐方法是,向电池提供一个±1%限压的恒定电流,直到电池充满电,然后停止充电。用来决定电池何时充满电的方法包括:给总的充电时间定时、监视充电电流或兼用这两种方法。第一种方法采用限压恒定电流,变化范围从C/2到1C,持续2.5至3小时,使电池达到100%充电。也可以使用较低的充电电流,但是 将需要更长时间。第二种方法与第一种方法类似,只是需要监视充电电流。随着电池的充电,电压上升,这与采用第一种方法时完全相同。电池电压达到编程限压值(也称为 浮动电压)时,充电电流开始下降。电流一开始下降时,电池约充电至容量的50%至60%.浮动电压继续提供,直到充电电流降至足够低的水平(C/10至C/20),这时电池

锂电池过充电-过放-短路保护电路详解

该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状 4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为(20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响? 在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度有关,电极/电解液界面被视为电池的心脏。如果温度下降,电极的反应率也下降,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降。如果温度上升则相反,即电池输出功率会上升,温度也影响电解液的传送

DW03D(二合一锂电池保护IC)

DW03D(文件编号:S&CIC0953)二合一锂电池保护IC 一、 概述 DW03D产品是单节锂离子/锂聚合物可充电电池组保护的高集成度解决方案。DW03D包括了先进的功率MOSFET,高精度的电压检测电路和延时电路。 DW03D具有非常小的TSS08-8的封装,这使得该器件非常适合应用于空间限制得非常小的可充电电池组应用。 DW03D具有过充,过放,过流,短路等所有的电池所需保护功能,并且工作时功耗非常低。 该芯片不仅仅是为手机而设计,也适用于一切需要锂离子或锂聚合物可充电电池长时间供电的各种信息产品的应用场合。 二、 特点 ?内部集成等效45m?-60m?的先进的功率MOSFET; ?过充电流保护; ?3段过流保护:过放电流1、过放电流2(可选)、负载短路电流; ?充电器检测功能;?延时时间内部设定; ?高精度电压检测; ?低静态耗电流:正常工作电流3.8uA ?兼容ROHS和无铅标准。 ?采用TSSOP-8封装形式塑封。 三、 应用 ?单芯锂离子电池组;?锂聚合物电池组。 四、 订货信息 型号封装过充检测电压 [V CU](V) 过充解除电压 [V CL](V) 过放检测电压 [V DL](V) 过放解除电压 [V DR](V) 过流检测电流 [I OV1](A) 打印标记 DW03D TSSOP-8 4.3 4.1 2.4 3.0 2.5 DW03D 五、 管脚外形及描述

DW03D (文件编号:S&CIC0953) 二合一锂电池保护IC 六、 极限参数 参数 符号 参数范围 单位 电源电压 VDD VSS-0.3~VSS+12 V OC 输出管脚电压 VOC VDD-15~VDD+0.3 V OD 输出管脚电压 VOD VSS-0.3~VDD+0.3 V CSI 输入管脚电压 VCSI VDD+15~VDD+0.3 V 工作温度 Topr -40~+85 ℃ 存储温度 Tstg -40~+125 ℃ 七、 电气特性参数 参数 符号 测试条件 最小值 典型值 最大值 单位 工作电压 工作电压 VDD -- 1.5 -- 10 V 电流消耗 工作电流 IDD VDD = 3.9V -- 4.0 6.0 uA 检测电压 过充电检测电压 VOCD -- 4.25 4.30 4.35 V 过充电释放电压 VOCR -- 4.05 4.10 4.15 V 过放电检测电压 VODL -- 2.30 2.40 2.50 V 过放电释放电压 VODR -- 2.90 3.00 3.10 V 过电流1检测电压 VOI1 -- 0.12 0.15 0.18 V 过电流2(短路电流)检测电压 VOI2 VDD = 3.6V 0.80 1.00 1.20 V 过电流复位电阻 Rshort VDD = 3.6V 50 100 150 K Ω 过电器检测电压 VCH -- -0.8 -0.5 -0.2 V 迟延时间 过充电检测迟延时间 TOC VDD = 3.6V~4.4V -- 80 200 ms 过放电检测迟延时间 TOD VDD = 3.6V~2.0V -- 40 120 ms 过电流1检测迟延时间 TOI1 VDD = 3.6V 5 13 20 ms 过电流2(短路电流)检测迟延时间 TOI2 VDD = 3.6V -- 5 50 us 其他 OC 管脚输出高电平电压 V oh1 -- VDD-0.1VDD-0.02 -- V OC 管脚输出低电平电压 V ol1 -- -- 0.01 0.1 V OD 管脚输出高电平电压 V oh2 -- VDD-0.1VDD-0.02 -- V OD 管脚输出低电平电压 V ol2 -- -- 0.01 0.1 R DS (on) V GS = 2.5V , I D = 3.3A -- 22.0 30.0 单个MOS 管漏极到源极的导通阻 抗 R DS (on) V GS = 4.5V , I D = 8.2A -- 16.0 20.0 m Ω

相关文档
最新文档