浅谈嵌入式系统电源芯片选型与应用

浅谈嵌入式系统电源芯片选型与应用
浅谈嵌入式系统电源芯片选型与应用

浅谈嵌入式系统电源芯片选型与应用

对嵌入式系统可使用的4类电源芯片,普通线性稳压器,低压差线性稳压器,电容式DC-DC转换器,电感DC-DC转换器;进行了原理介绍和特点分析,提出了电源芯片选型的原则,最后给出了一个电源设计实例。

嵌入式系统是计算机技术,通信技术,半导体技术,微电子技术,语音图象数据传输技术,甚至传感器等先进技术和具体应用对象相结合后的更新换代产品。因此往往是技术密集,投资强度大,高度分散,不断创新的知识密集型系统。反映当代最新技术的先进水平。嵌入式计算机基本上不能算是嵌入式系统。它仍然是计算机一类,不过是工作条件有所不同而已,因为它还保留了计算机的基本。

电源技术概述

按照调整管的工作状态来分,直流稳压电源可以分为两大类:一类是线性稳压电源;另一类是开关稳压电源[1]。调整管工作在线性状态的称为线性稳压器;调整管工作在开关状态的称为开关型稳压器。线性稳压电源可以细分为两种,一种是普通线性稳压器;另一种是低压差线性稳压器。

嵌入式系统电源需求

该系统电源较复杂,有多达8种不同的电源电压值,其中5 V和3.3 V由CPCI机箱提供。5 V供给DC/DC器件降压以产生其他电源电压,同时给1553总线的变压器供电。3.3 V 是系统主电源,包括USB PHY、时钟器件、FPGA和CPU以及PCI桥器件(PLX6466)的I/O 部分等。其他电源电压都是由5V或3.3 V经电源器件降压得到。

其中VDD 1.5 V是PPC440EPx的内核电压,SOVDD是CPU的DDR2接口电源;1.8 V为PCI桥的内核电压,VDDIO是PCI桥的接口电源。

该系统采用DDR2作为内存,使用4片Micron公司的MT47H64M16,容量为512 MB。每片DDR2器件的内核、接口和DLL的电源电压都是1.8 V,最大电流为440 mA。另外需特别注意DDR2的VREF以及地址和控制信号的端口接电压VTT,其电压值都是0.9 V。其中,VREF 对容差的要求非常严格(小于2%),不过其对电流的要求较小。而对VTT不仅有严格的容差要求,而且还要求其能在瞬间输出或吸收很大的电流。同时,VREF岍要随着VDD的变化而变化,VTT也要跟踪VREF的变化。通常的LDO难以完成这样的工作,必须采用专用的DDR 端接电源器件。

该系统使用Spartan3型FPGA器件XC3S200实现1553收发器以及一些接口电路的设计。该器件使用3个电压内核电压VCCINT(1.2 V),辅助电压VCCAUX(2.5 V)以及接口电压VCCO(3.3 V)。FPGA内部有上电复位电路,只有当这3个电源信号都达到各自门限电压,

才释放该复位信号。因此,对这3个电源信号的上电顺序没有要求。不过,如果 VCCINT先于VCCAUX上电,则会在上电时额外增加几百毫安的瞬时电流。估计FPGA器件功耗可采用基于电子数据表的工具XPower Estimator(XPE)或在ISE下直接调用XPower。系统利用XPower软件估计出该设计功耗需求:VCCINT为50 mA,VCCAUX为10 mA。系统使用两片88E1111作为千兆以太网的PHY器件,该器件以2.5 V为砌电压(410 mA),1.0 V为内核电压(250 mA)。除上述集成电路外,系统还有诸如串行接口、USB接口、时钟等电路,但功耗都较低。从分析可知:1.5 V和1.8 V需要使用大功率的电源器件,DDR2的电源需要专用的电源器件,其他电压的功率要求较小。

电源器件选型

电源器件主要分为线性稳压器和DC/DC转换器两大类型。LDO属于线性稳压器主要应用于输人和输出压差较小的场合,其特点是:成本低、噪音低、静态电流小、需外接元件少,但其转换效率不是很高,且输出电流一般不是很大。DC/DC转换器的转换效率高、输出大电流、静态电流小。但由于采用PWM控制,其开关噪音较大,成本也相对较高。且外接电路较复杂,一般都需外接开关管、电感及电容。许多新型 DC/DC将开关管集成到器件内部。因此只需外接电感和滤波电容。

根据电源器件的特点,以及对系统电源需求的分析,这两种类型的电源器件在该系统都得到使用。但为简化设计、便于批量生产和物料管理,该系统只使用3个不同型号的电源器件,分别是:LT3501、LDO器件TPS51100和TPS74801。其中,功耗需求较大的1.5 V和1.8 V电源电路采用LT3501实现;DDR2的端接电源和参考电源由器件TPS51100提供;系统的其他电源由TPS74801提供。

1.1线性稳压器

在保证输出稳定的前提下,输入电压高出预设输出电压的电压值叫输入/输出电压差。这个参数不仅与稳压器采用的调整管有关,而且与管子的工作状态有关。普通线性稳压器采用的调整管一般是双极型晶体管,管子工作在线性状态,输入输出电压差一般在1~3 V;而低压差线性稳压器采用的管子一般是场效应管,导通电阻在几十~几百mΩ,所以输入输出压降在1 V以下,做得比较小的可以达到0 1 V以下,如美国半导体公司的LP3999和LP3985,最小压差均为0 06 V。

线性集成稳压器的总功率耗散PD的计算公式如下:

其中:Vin为稳压器输入电压;Vout为稳压器输出电压;Iout为稳压器输出电流;Iq 为稳压器静态电流。

线性稳压器的效率定义为:

1.1.1普通线性稳压器

图1线性稳压器原理图

普通线性稳压器的原理图如图1所示,取样电压加在比较器U1的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器U1放大后,控制串联调整管的压降,从而稳定输出电压。当输出电压Uo降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高;若输出电压Uo超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。

在图1中,根据KVL定律可知,UO=Ui-Vce,Vce为管子集电极到发射极的压降,对于普通线性稳压器,这个压降一般为1~3 V,LM7805的输入/输出压差一般在2 V以上,当然这个压差是随工作温度和输出电流大小而变化的,不是一个固定值,在选用普通线性稳压器的时候必须满足输入/输出最小压差的要求,否则稳压芯片不能正常工作。如LM7805的输入电压范围是5~18 V,预想输出5 V电压,输入电压必须比预期输出5 V高出2 V,即输入电压必须在7 V以上才能保证芯片正常工作。这一点是设计时需要特别注意的。

普通线性稳压器的特点如下:

调整管功耗较大,电源效率低,一般只有45%左右。

体积大,需要占用较大的板子空间。

发热严重,要求较高的场合需要安装散热器。

静态电流较大,一般在mA级。

需要外接容量较大的低频滤波电容,增大了电源的体积。

普通线性稳压器价格低,静态电流大,效率较低,最小输入/输出电压差较大,只能用于降压且对电源效率和体积没有严格要求的场合,如充电器、实验仪器等。

1.1.2低压差线性稳压器

低压差线性稳压器的工作原理与普通线性稳压器的原理完全一样,都是通过控制调整管上的压降变化来稳定输出电压。二者的差异在于采用的调整管结构的不同,从而使LDO比普通线性稳压器压差更小,功耗更低。

需要说明的是,实际的线性稳压器还应当具有许多其他的功能,比如负载短路保护、过压关断、过热关断、反接保护等,很多芯片的调整管采用MOSFET。

当用在降压并且输入/输出电压很接近的场合,选用LDO稳压器是一种不错的选择,根据上文线性稳压器效率的分析可知,当输入/输出压差较小时,LDO可以达到较高的效率。因此,在把锂离子电池电压转换为3 V输出电压的应用中大多选用LDO稳压器。虽然电池的能量最后有10%不能使用,LDO稳压器仍然能够保证电池较长的工作时间,同时噪音较低。

此外,LDO具有极高的信噪抑制比,非常适合用做对噪声敏感的小信号处理电路供电。同时,由于没有开关时大的电流变化所引发的电磁干扰,所以便于设计。很多手机、便携式设备等对干扰敏感的设备很多都采用多路输出的LDO用作系统的电源芯片。

1.2开关电源

1.2.1电容式开关电源

电容式开关电源(即电荷泵)基本工作原理是利用电容的储能的特性,通过可控开关(双极型三极管或者MOSFET等)进行高频开关的动作,将输入的电能储存在电容里,当开关断开时,电能再释放给负载,提供能量。其输出的功率或电压的能力与占空比(由开关导通时间与整个开关的周期的比值)有关。电容式开关电源可以用于升压和降压。

其内部的FET开关阵列以一定方式控制快速电容器的充电和放电,从而使输入电压以一定因数(0 5、2或3)倍增或降低,从而得到所需要的输出电压。

①转换效率与输入电压密切相关。电荷泵的近似效率计算公式:

其中:Vout为输出电压;Vin为输入电压;n为倍率。

由式(3)可以看出,当输出电压和倍率一定时,输入越小,电荷泵的效率越高。电荷泵效率一般可以达到75%以上。

输出电压一般是输入电压的倍数,它能使输入电压升高或降低,也可以用于产生负电压,常见的有±0.5倍压、±1倍压、±1.5倍压、±2倍压、±3倍压。当然,一些新型的片子也支持输出电压可调,如MAX1759,输入电压范围是1.6~5.5 V,输出可固定为3 3 V

或在2 5~5 5 V内可调,可提供最大100 mA的输出电流。

输出电流较小,一般在300 mA以下。

设计简捷,占用印制板面积小,容易使用。

低EMI和输出纹波。

价格中等。

对采用电池供电的便携式电子产品来说,采用电荷泵变换器来获得负电源或倍压电源,不仅仅减少电池的数量、减少产品的体积、重量,而且在减少能耗延长电池寿命等方面起到极大的作用。在手机和其他的一些通信设备中,常用电荷泵来驱动白光LED用作LCD背光电源。

1.2.2电感式开关电源

利用电感的储能的特性,通过可控开关进行高频开关的动作,将输入的电能储存在电感里,当开关断开时,电能再释放给负载,提供能量。其输出的功率或电压的能力与占空比(由开关导通时间与整个开关的周期的比值)有关。

电感式DC-DC的特点有:

功耗小,效率高。它通过使用低电阻开关和磁存储元件,极大地降低了转换过程中的功率损失,其效率可高达到96%。

稳压范围宽。从开关稳压电源的输出电压是由激励信号的占空比来调节的,输入信号电压的变化可以通过调频或调宽来进行补偿,这样,在工频电网电压变化较大时,它仍能够保证有较稳定的输出电压。所以开关电源的稳压范围很宽,稳压效果很好。

滤波的效率大为提高,使滤波电容的容量和体积大为减少。

电路形式灵活多样。有自激式和他激式,有调宽型(PWM)和调频型(PFM),有单端式和双端式等,设计者可以发挥各种类型电路的特长,设计出能满足不同应用场合的开关稳压电源。

可以输出大电流,静态电流小。如Linear Technology的LTC3417,其中的一路可以输出最大1 4 A的电流,停机电流小于1 μA。

电感式开关电源存在较大的输出纹波和开关噪音。

需要的外围元件多,电路设计比较繁琐,特别是输出可调的开关电源,需要计算分压电阻、电感、滤波电容的取值。当然也有一些公司的开关稳压芯片外围电路非常简单,只需要一个电感器、一个输入滤波电容、一个输出滤波电容即可,如TI的芯片。

成本相对较高。国外一些厂商的高效率DC-DC批量的价格在2美元以上,零售价一般在20元左右。

电感式DC-DC适用于输出电流较大、要求较高效率的电池供电场合。

各类芯片的优缺点比较

表14种电源芯片的比较

选择电源芯片需要遵循的原则

明确输入电压(或范围)和输出电压,根据输入输出的大小关系决定选择降压、升压或升降压芯片。如果是降压,则可以选择线性稳压器、电容式DC-DC(即电荷泵)或降压DC-DC (当然升/降压DC-DC也可以,考虑到性价比没有必要这样选);如果是升压或者升/降压,则只能选择DC-DC转换器(电容式或者电感式升压DC-DC)。

如果是降压,考虑效率,需要计算输入与输出之间的压差。若这个压差很小(远远小于1 V),则可以考虑选择低压差线性稳压器(LDO);若这个压差在1 V以上,追求更低成本则可以选用普通线性稳压器。

在线性稳压器和DC-DC稳压器都可以的情况下,若把转换效率放在第一位,则可以选择DC-DC稳压器;若对价格限制得很严格,并且要求较小的纹波和噪声,则可以考虑选用线性稳压器。

在使用电池供电时,若要求较长的电池使用时间,需要优先考虑效率,无论是升压、降压、升/降压都可以选用DC-DC转换器。为获得较高的效率,此时需要参照DC-DC转换器芯

片手册里边的效率随负载电流变化曲线,要根据负载电流选择合适的DC-DC转换器,确保稳压器达到较高的效率。

为保证电池供电系统电源负荷变化较大应用的效率,最好选择 PFM/PWM自动切换控制式的 DC-DC变换器。PWM的特点是噪音低、满负载时效率高且能工作在连续导电模式,PFM 具有静态功耗小,在低负荷时可改进稳压器的效率。当系统在重负荷时由PWM控制,在低负荷时自动切换到PFM控制,这样能够兼顾轻重负载的效率。在备有待机模式的系统中,采用PFM/PWM切换控制的DC-DC稳压器能够得到较高效率。这样的电源芯片有

TPS62110/62111/62112/62113、MAX1705/1706、NCP1523/1530/1550等。

不要“大牛拉小车”或“小牛拉大车”。选用电源芯片时为保证电源的使用寿命,需要留有一定的裕量,较合适的工作电流为电源芯片最大输出电流的70%~90%。如果用一个能输出大电流的稳压块来带动一个小电流的负载,虽然说驱动能力没有问题,但是可能会带来两个问题,一方面成本会提高;另一方面选用DC-DC转换器时效率可能会非常低,因为一般的DC-DC在输出电流非常小或者非常大的时候效率都比较低。当使用线性稳压器(特别是普通线性稳压器)的时候,输出电流要尽量留出较多的裕量,因为线性稳压器的压降都消耗在稳压芯片上了,过大的负载电流会造成较为严重的发热。

对于电池供电的系统,静态电流和效率是需要重点关注的参数,因为这直接关系到电池的使用寿命。静态电流是与负载电流大小几乎无关的消耗,越小越好。效率是能够转为有效利用能量多少的量度,同样容量大小的电池,电源的效率越高,静态电流越小,电池的使用时间就越长。

输出电流大时应采用降压式 DC-DC变换器。便携式电子产品大部分工作电流在300 mA 以下,并且大部分采用AA镍镉、镍氢电池,若采用 1~2节电池,升压到3.3 V或5 V并要求输出500 mA以上电流时,电池寿命不长或两次充电间隔时间太短,使用不便。这时采用降压式DC-DC变换器,其效率与升压式差不多,但电池充电间隔时间要长得多。

需要负电源时尽量采用电荷泵。便携式仪器中往往需要负电源,由于所需电流不大,采用电荷泵组成电压反转电路最为简单,若要求噪声小或要求输出稳压时,可采用带 LDO线性稳压器的电荷泵芯片。如MAX1720,可以输出50 mA的电流,关断电流只有0.4 μA,输出负压的绝对值小于输入电压,在此范围内可以外加分压电阻进行调节。MAX868输出电流为30 mA,0.1 μA关断电流,30 μA静态电流,具有可调的输出范围(0~2Vin),具有电源关断控制引脚和450 kHz的开关频率……

从电路设计的复杂程度来说,LDO的设计最简单,电荷泵次之,电感式DC-DC最为复杂。一般来说,LDO(固定输出版本)的设计只需要外接2个陶瓷电容器即可;电荷泵一般需要

3~4个电容;电感式DC-DC的设计需要计算电感值、分压电阻值、输入输出电容的值等,需要的外围元器件最多,为PCB布局、走线、焊接、调试增加了难度。

方便进行电源管理。为满足便携式系统节能的要求,在为便携式系统选择电源芯片时注重选择具有关断控制管脚的芯片。这里需要采取分区供电的方式,在不需要使用这些某些外设时,方便把该部分外设的电源关掉,从而达到节能的目的。

常用开关电源芯片大全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 DC-DC 电源转换器 1. 低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2. 低功耗开关型DC-DC电源转换器ADP3000 3. 高效3A开关稳压器AP1501 4. 高效率无电感DC-DC电源转换器FAN5660 5. 小功率极性反转电源转换器ICL7660 6. 高效率DC-DC电源转换控制器IRU3037 7. 高性能降压式DC-DC电源转换器ISL6420 8. 单片降压式开关稳压器L4960 9. 大功率开关稳压器L4970A 高效率单片开关稳压器L4978 高效率升压/降压式DC-DC电源转换器L5970 14. 高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 降压单片开关 稳压器LM2576/LM2576HV 16. 可调升压开关稳压器LM2577 降压开关稳压器LM2596 18. 高效率5A 开关稳压器LM2678 19. 升压式DC-DC电源转换器LM2703/LM2704 20. 电流模式升压式电源转换器LM2733 21. 低噪声升压式电源转换器LM2750 22. 小型75V降压式稳压器LM5007 23. 低功耗升/降压式DC-DC电源转换器LT1073 24. 升压式DC-DC电源转换器LT1615 25. 隔离式开关稳压器LT1725 26. 低功耗升压电荷泵LT1751 27. 大电流高频降压式DC-DC电源转换器 LT176 5 28. 大电流升压转换器LT1935 29. 高效升压式电荷泵LT1937 30. 高压输入降压式电源转换器LT1956 32. 高压升/ 降压式电源转换器LT3433

流量计选型

流量计选型 是指按照生产要求,从仪表产品供应的实际情况出发,综合地考虑测量的安全、准确和经济性,并根据被测流体的性质及流动情况确定流量取样装置的方式和测量仪表的型式和规格。 流量测量的安全可靠,首先是测量方式可靠,即取样装置在运行中不会发生机械强度或电气回路故障而引起事故;二是测量仪表无论在正常生产或故障情况下都不致影响生产系统的安全。例如,对发电厂高温高压主蒸汽流量的测量,其安装于管道中的一次测量元件必须牢固,以确保在高速汽流冲刷下不发生机构损坏。因此,一般都优先选用标准节流装置,而不选用悬臂梁式双重喇叭管或插入式流量计等非标准测速装置,以及结构强度低的靶式、涡轮流量计等。燃油电厂和有可燃性气体的场合,应选用防爆型仪表。 在保证仪表安全运行的基础上,力求提高仪表的准确性和节能性。为此,不仅要选用满足准确度要求的显示仪表,而且要根据被测介质的特点选择合理的测量方式。发电厂主蒸汽流量测量,由于其对电厂安全和经济性至关重要,一般都采用成熟的标准节流装量配差压流量计,化学水处理的污水和燃油分别属脏污流和低雷诺数粘性流,都不适用标准节流件。对脏污流一般选用圆缺孔板等非标准节流件配差压计或超声多普勒式流量计,而粘性流可分别采用容积式、靶式或楔形流量计等。水轮机人口水量、凝汽器循环水量及回热机组的回热蒸汽等都是大管径( 400mm以上)的流量测量参数,由于加工创造困难和压损大,一般都不选用标准节流装置。根据被测介质特件及测量准确度要求,分别采用插入式流量计、测速元件配差压计、超声波流量计,或采用标记法、模拟法等无能损方式测流量. 为保证流量计使用寿命及准确性,选型时还要注意仪表的防振要求。在湿热地区要选择湿热式仪表。 正确地选择仪表的规格,也是保证仪表使用寿命和准确度的重要一环。应特别注意静压及耐温的选择。仪表的静压即耐压程度,它应稍大于被测介质的工作压力,一般取1.25倍,以保证不发生泄漏或意外。量程范围的选择,主要是仪表刻度上限的选择。选小了,易过载,损坏仪表;选大了,有碍于测量的准确性。一般选为实际运行中最大流量值的1.2一1.3倍。 安装在生产管道上长期运行的接触式仪表,还应考虑流量测量元件所造成的能量损失。一般情况下,在同一生产管道中不应选用多个压损较大的测量元件,如节流元件等。 常用流量计选型须知 1. 电磁流量计 测量各种酸、碱、盐等腐蚀液体;各种易燃,易爆介质;各种工业污水,纸浆,泥浆等。电磁流量计不能用于测量气体、蒸气以及含有大量气体的液体.不能用来测量电导率很低的液体介质,不能测量高温高压流体。 2. 涡街流量计(旋涡流量计) 涡街流量计,主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。 ⒊ 浮子流量计(转子流量计) 它可以用来测量液体、气体、以及蒸汽的流量,特别适宜低流速小流量的介质流量测量。 ⒋ 科氏力质量流量计 质量流量计广泛应用于石化等领域,是当今世界上最先进的流量测量仪表之一, ⒌ 热式(气体)质量流量计 它适合单一气体和固定比例多组份气体的测量。 典型应用:

电源控制芯片W83301R

Winbond ACPI-STR Controller W83301R Date: 2002/07 Revision: 1.0

W83301R Data Sheet Revision History Pages Dates Version Version on Web Main Contents 1 07/200 2 1.0 1.0 1st Release Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Winbond for any damages resulting from such improper use or sales.

电源芯片选型

①明确输入电压(或范围)和输出电压,根据输入输出的大小关系决定选择降压、升压或升降压芯片。如果是降压,则可以选择线性稳压器、电容式DC-DC(即电荷泵)或降压DC-DC (当然升/降压DC-DC也可以,考虑到性价比没有必要这样选);如果是升压或者升/降压,则只能选择DC-DC转换器(电容式或者电感式升压DC-DC)! ②如果是降压,考虑效率,需要计算输入与输出之间的压差。若这个压差很小(远远小于 1 V),则可以考虑选择低压差线性稳压器(LDO);若这个压差在1 V以上,则可以考虑选择普通线性稳压器或者电感式降压DC-DC。如果对效率没有要求,两种线性稳压器都可以的情况下,追求更低成本则可以选用普通线性稳压器。 ③在线性稳压器和DC-DC稳压器都可以的情况下,若把转换效率放在第一位,则可以选择DC-DC稳压器;若对价格限制得很严格,并且要求较小的纹波和噪声,则可以考虑选用线性稳压器。 ④在使用电池供电时,若要求较长的电池使用时间,需要优先考虑效率,无论是升压、降压、升/降压都可以选用DC-DC转换器。为获得较高的效率,此时需要参照DC-DC转换器芯片手册里边的效率随负载电流变化曲线,要根据负载电流选择合适的DC-DC转换器,确保稳压器达到较高的效率。 ⑤为保证电池供电系统电源负荷变化较大应用的效率,最好选择PFM/PWM自动切换控制式的DC-DC变换器。PWM的特点是噪音低、满负载时效率高且能工作在连续导电模式,PFM具有静态功耗小,在低负荷时可改进稳压器的效率。当系统在重负荷时由PWM控制,在低负荷时自动切换到PFM控制,这样能够兼顾轻重负载的效率。在备有待机模式的系统中,采用PFM/PWM切换控制的DC-DC稳压器能够得到较高效率。这样的电源芯片有TPS62110/62111/62112/62113、MAX1705/1706、NCP1523/1530/1550等。 ⑥不要“大牛拉小车”或“小牛拉大车”。选用电源芯片时为保证电源的使用寿命,需要留有一定的裕量,较合适的工作电流为电源芯片最大输出电流的70%~90%。如果用一个能输出大电流的稳压块来带动一个小电流的负载,虽然说驱动能力没有问题,但是可能会带来两个问题,一方面成本会提高;另一方面选用DC-DC转换器时效率可能会非常低,因为一般的DC-DC在输出电流非常小或者非常大的时候效率都比较低。当使用线性稳压器(特别是

常用流量计的选型与比较

常用流量计的选型与比较 由于商业用户的种类庞杂,不同企业的燃气用量都大小不一,因此需要根据企业的不同的情况合理的选用燃气计量表,以达到准确计量和节约成本的目的。目前计量燃气用户的燃气计量表主要包括涡轮流量计、超声波流量计、腰轮(罗茨)流量计、膜式流量计这4种,下面从这4种计量表各自的特点分析商业用户燃气计量表的选用。一.涡轮流量计 涡轮流量计属于间接式体积流量计,当气体流过管道式,依靠气体的动能推动透平叶轮作旋转运动,其转动速度与管道的流量成正比,是一种速度式流量计。 涡轮流量计由涡轮流量变速器(传感器)、前置放大器、流量显示积算仪组成,并可将数据远传到上位流量计算机。 气体涡轮流量计具有结构紧凑、精度高、重复性好、量程比宽、反应迅速、压力损失小等优点,但轴承耐磨性及其安装要求较高。涡轮流量计始动流量比较大,在一些单一的用气设备如燃气锅炉、燃气空调等大流量用气设备中。涡轮流量计有着量程范围大、计量精度很高、可以计量大流量燃气(可以达到6000m3/h 以上)等优点,国产的涡轮流量计价格也比较合理。但是在使用涡轮流量计的时候必须要求始动流量也要大,当用气设备小流量的使用燃气对其精度有很大的影响。且涡轮流量计必须有足够长度的前后直管段,以及带温压补

偿的体积修正仪。 主要适用于液化石油气及天然气的计量上,因此,大多运用在工矿企业的炉、窑等热负荷相对恒定的用气设备上。 二.超声波流量计 超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用,测量体积流量的速度式测量仪表,天然气超声波流量计的测量原理是传播时间差法。在测量管内安装一组超声波传感器;同时测量彼此之间的声波到达时间。 由于是全电子式,无机械部分,不受机械磨损、故障影响,产品的可靠性和精度进步很多。体积小、重量轻,重复性好,压损小,不易老化,使用寿命长;智能化,全电子式的结构,可以扩展为预支费表或无线抄表功能。特殊功能是微小流量可测,有管道泄漏感知功能,压力损失为零。 主要特点:1.能实现双向流束的测量; 2.过程参数(压力,温度等)不影响测量结果; 3.无接触测量系统,流量计量过程无压力损失; 4.可精确测量脉动流; 5.重复性好,速度误差≤5mm/s; 6.量程比很宽,qmin/qmax=1/40~1/60; 7.可不考虑整流,只在上游100mm,下游50mm余留安装间隙即可;

1203P60 PWM开关电源芯片

NCP1203 PWM Current?Mode Controller for Universal Off?Line Supplies Featuring Standby and Short Circuit Protection Housed in SOIC?8 or PDIP?8 package, the NCP1203 represents a major leap toward ultra?compact Switchmode Power Supplies and represents an excellent candidate to replace the UC384X devices. Due to its proprietary SMARTMOS t Very High V oltage Technology, the circuit allows the implementation of complete off?line AC?DC adapters, battery charger and a high?power SMPS with few external components. With an internal structure operating at a fixed 40 kHz, 60 kHz or 100 kHz switching frequency, the controller features a high?voltage startup FET which ensures a clean and loss?less startup sequence. Its current?mode control naturally provides good audio?susceptibility and inherent pulse?by?pulse control. When the current setpoint falls below a given value, e.g. the output power demand diminishes, the IC automatically enters the so?called skip cycle mode and provides improved efficiency at light loads while offering excellent performance in standby conditions. Because this occurs at a user adjustable low peak current, no acoustic noise takes place. The NCP1203 also includes an efficient protective circuitry which, in presence of an output over load condition, disables the output pulses while the device enters a safe burst mode, trying to restart. Once the default has gone, the device auto?recovers. Finally, a temperature shutdown with hysteresis helps building safe and robust power supplies. Features ?Pb?Free Packages are Available ?High?V oltage Startup Current Source ?Auto?Recovery Internal Output Short?Circuit Protection ?Extremely Low No?Load Standby Power ?Current?Mode with Adjustable Skip?Cycle Capability ?Internal Leading Edge Blanking ?250 mA Peak Current Capability ?Internally Fixed Frequency at 40 kHz, 60 kHz and 100 kHz ?Direct Optocoupler Connection ?Undervoltage Lockout at 7.8 V Typical ?SPICE Models Available for TRANsient and AC Analysis ?Pin to Pin Compatible with NCP1200 Applications ?AC?DC Adapters for Notebooks, etc. ?Offline Battery Chargers ?Auxiliary Power Supplies (USB, Appliances, TVs, etc.) SOIC?8 D1, D2 SUFFIX CASE 751 1 MARKING DIAGRAMS PIN CONNECTIONS PDIP?8 N SUFFIX CASE 626 8 xx= Specific Device Code A= Assembly Location WL, L= Wafer Lot Y, YY= Year W, WW= Work Week Adj HV FB CS GND NC V CC Drv (Top View) xxxxxxxxx AWL YYWW 1 8 See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. ORDERING INFORMATION https://www.360docs.net/doc/7712598503.html, 查询1203P60供应商

如何选择电源芯片

LDO线性降压芯片:原理相当于一个电阻分压来实现降压,能量损耗大,降下的电压转化成了热量,降压的压差和负载电流越大,芯片发热越明显。这类芯片的封装比较大,便于散热。 LDO线性降压芯片如:2596,L78系列等。 DC/DC降压芯片:在降压过程中能量损耗比较小,芯片发热不明显。芯片封装比较小,能实现PWM数字控制。 DC/DC降压芯片如:TPS5430/31,TPS75003,MAX1599/61,TPS61040/41 关于LDO电源 2007-08-31 13:39 以前经常看见,说什么芯片是LDO的,以为是某一公司的名号。现在才知道,LDO是low dropout regulator,意为低压差线性稳压器,是相对于传统的线性稳压器来说的。传统的线性稳压器,如78xx系列的芯片都要求输入电压要比输出电压高出2v~3V以上,否则就不能正常工作。但是在一些情况下,这样的条件显然是太苛刻了,如5v转3.3v,输入与输出的压差只有1.7v,显然是不满足条件的。针对这种情况,才有了LDO类的电源转换芯片。生产LDO芯片的公司很多,常见的有 ALPHA, Linear(LT), Micrel, National semiconductor,TI等。 什么是 LDO(低压降)稳压器? LDO 是一种线性稳压器。线性稳压器使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。正输出电压的 LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为 PNP。这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为 200mV 左右;与之相比,使用 NPN 复合电源晶体管的传统线性稳压器的压降为 2V 左右。负输出 LDO 使用 NPN 作为它的传递设备,其运行模式与正输出 LDO 的 PNP设备类似。

仪表选型原则

检测仪表(元件)及控制阀选型的一般原则 ①工艺过程的条件 工艺过程的温度、压力、流量、粘度、腐蚀性、毒性、脉动等因素是决定仪表选型的主要条件,它关系到仪表选用的合理性、仪表的使用寿命及车间的防火、防爆、保安等问题。 ②操作上的重要性 各检测点的参数在操作上的重要性是仪表的指示、记录、积算、报警、控制、遥控等功能选定依据。一般来说,对工艺过程影响不大,但需经常监视的变量,可选指示型;对需要经常了解变化趋势的重要变量,应选记录式;而一些对工艺过程影响较大的,又需随时监控的变量,应设控制;对关系到物料衡算和动力消耗而要求计量或经济核算的变量,宜设积算;一些可能影响生产或安全的变量,宜设报警。 ③经济性和统一性 仪表的选型也决定于投资的规模,应在满足工艺和自控的要求前提下,进行必要的经济核算,取得适宜的性能/价格比。 为便于仪表的维修和管理,在选型时也要注意到仪表的统一性。尽量选用同一系列、同一规格型号及同一生产厂家的产品。 ④仪表的使用和供应情况 选用的仪表应是较为成熟的产品,经现场使用证明性能可靠的;同时要注意到选用的仪表应当是货源供应充沛,不会影响工程的施工进度。

仪表选性手册 物位仪表在选型时,与压力、流量等仪表有很大不同。物位测量的现场工况千差万别,很难设计出能满足所有工况应用的物位仪表。 在非接触式物位测量仪表中,超声波物位计和雷达物位计是两大主流仪表。这两类仪表各有特点,只有充分了解仪表特点及应用条件,才能做到选型合理,充分利用仪表的测量性能。 超声波物位计 传感器发出的超声波碰到被测介质被反射,反射回波的质量反映了物位计应用效果。回波质量定义为最小回波幅度(在最恶劣条件下回波幅度)比最大噪声幅度(虚假回波、多径反射回波等的幅度)。回波质量数值越大,物位计应用效果越好。 超声波物位计工作频率及测量性能:传感器高频(40-70KHz)工作时,传感器的尺寸小,盲区小,方向性好,精度高,但其声波衰减快,传播介质(空气)波动时穿透性差,测距较小。传感器低频(10-20KHz)工作时,传感器尺寸大,盲区大,方向性不好,精度低,其优势是声波衰减慢,传播介质(空气)波动时穿透性较好,测距 稍远。 超声波的回波强度主要受以下两个因素影响: 1.传播介质越稳定越有利于传播。

常用电源芯片大全

常用电源芯片大全 第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596

18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875

流量仪表在石油行业中的合理选型和应用

流量仪表在石油行业中的合理选型和应用 现阶段用于过程自动化的装置及仪表主要有四大类,自动化仪表就属于其中之一,不仅如此,自动化仪表凭借其多方面的功能作用、精准的计量结果、能源节约及安全性等优势,在石油行业及其他化工行业中得到了广泛的应用。由于受到不同测量结构、测量原理及测量方式特性的影响,在进行流量测量工作时需要根据不同实际情况选择相应的测量方法。伴随着工业生产的飞速发展,对于流量测量的范围及准确性要求也愈加严苛,当下用于流量测量的计量方式已经高达一百余种,然而还未研发出能够适用于任何流体、任何应用条件、任何流体状态、任何量程的流量仪表。因此,为了能够快速、精准的测量出生产所形成的流量,需要结合检测环境慎重选择流量仪表,由此可见针对流量仪表在石油行业中的合理选型和应用进行深入的研究至关重要。 1 流量仪表的常用种类特征及工作原理 1.1 涡街流量计 工作原理:涡街流量计主要是借助流体在管道阻流体两边交替分离而释放出的规则漩涡,并进一步通过漩涡分离时所产生的频率与管道内流量的流速形成正比,从而有效测量出管道内流体的流量。涡街流量计的研发与应用相对较晚,但却呈现出惊人的发展速度,现已成为应用最广泛的流量测量仪。 该流量计在应用过程中,由于流体方向、管径等因素均会发生变化,进而引发涡流、流场畸变等,进而影响到传感器的电极测量精度。为了最大限度降低这类不利因素影响,可通过设置合理参数予以避免,常见参数设定如表1所示,其中D为管道通径,而L则代表传感器与阀门等部件间的距离。 1.2 浮子流量计 转子流量计是浮子流量计的另一个专业名称,该类流量计主要是

通过流体的动力作用,致使仪器浮子能够在垂直的锥形管环境下保持一定的稳定性,并且能随管内流体的流量变化而发生变化,在此过程中管内流量的变化与浮子的位移形成正比关系。由此说明,浮子的位移变化情况能够代表流量变化。由于浮子流量计具有较广的应用范围,并且对于测量环境的要求不高,因此常被应用于环境较为恶劣、复杂且不同介质条件下的测量过程及工艺流程中,浮子流量计的功能作用在流量较小的测量环境下比较显著。 1.3 差压式流量仪表 在诸多流量仪表之中,应用最为广泛的当属差压式流量仪表,据相关统计显示,现阶段各个领域所选用的流量仪表中,差压式流量仪表占据了总数的60%至70%。该仪表设备主要由差压计、列流装置和导压管组合而成,对绝大多数液体和气体介质的测量较为精准,但不适用于易结垢、粘度大、易结晶、易腐蚀等介质的测量。差压式流量仪表的优势主要有:内部结构牢固可靠,不易损坏,因而具有较长的使用寿命。另一方面,由于运用规模化生产方式生产该类仪表,因而能够有效降低投资成本。最后由于差压式流量仪表的结构较为简单,所以组装过程便捷。 1.4 容积式流量计 定排量流量计是容积式流量计的另一个专业名称,属于所有仪表中测量精准度最高的流量测量仪表。该仪表的运行主要是通过运用仪表中的测量配件对流体进行连续的分割,从而使流体形成独立的个体,并运用测量室对独立流体进行连续的排放和充满动作有效测量出该流体的整体体积。按照不同元件对容积式流量计进行分类可以划分为膜式气量计、液封转式流量计、圆盘流量计、旋转活塞流量计、往复活塞流量计、椭圆齿轮流量计等等。 1.5 超生式流量仪表 超生式流量仪表的主要工作原理有两种,一种是多普勒法一种是时差法。选用多普勒法进行流量测量时,是根据在静止点对移动源发射波所形成的多普勒频,对流量进行测量。而选用时差法测量时,则

各种流量计选型的原则和方法

一、流量计选型得原则 选择流量计得原则首先就是要深刻地了解各种流量计得结构原理与流体特性等方面得知识,同时还要根据现场得具体情况及考察周边得环境条件进行选择。也要考虑到经济方面得因素、一般情况下,主要应从下面五个方面进行选择: ①流量计得性能要求; ②流体特性; ③安装要求; ④环境条件; ⑤流量计得价格、 1、流量计得性能要求 流量计得性能方面主要包括:测量流量(瞬时流量)还就是总量(累积流量);准确度要求;重复性;线性度;流量范围与范围度;压力损失;输出信号特性与流量计得响应时间等。 (1)测流量还就是总量 流量测量包括两种,即瞬时流量与累积流量,比如对分输站管道得原油属于贸易交接或石油化工 管道进行连续配比生产或生产流程得过程控制等需要计量总量,间或辅以瞬时流量得观察、在有得工作场所对流量进行控制则需配备瞬时流量测量。因此,要根据现场计量得需要进行选择、有些流量计比如容积式流量计,涡轮流量计等,其测量原理就是以机械计数或脉冲频率输出直接得到总量,其准确度较高,适用于计量总量,如配有相应得发讯装置也可输出流量。电磁流量计、超声流量计等就是以测量流体流速推导出流量,响应快,适用于过程控制,如果配以积算功能后也可以获得总量。 (2)准确度 流量计准确度等级得规定就是在一定得流量范围内,如果使用在某一特定得条件下或比较窄得流量范围内,比如,仅在很小得范围内变化,此时其测量准确度会比所规定得准确度等级高。如用涡轮流量计计量油品装桶分发,在阀门全开得情况下使用,流量基本恒定,其准确度可能会从0。5级提高到0。25级、 用于贸易核算、储运交接与物料平衡如果要求测量准确度较高时,应考虑准确度测量得持久性,一般用于上述情况下得流量计,准确度等级要求为0、2级。在这样得工作场所一般就是现场配备计量标准设备(比如体积管),对所使用得流量计进行在线检测。近几年由于原油得日趋紧张与各单位对原油计量得高要求,对原油计量提出实行系数交接,即除了每半年对流量计进行一次周期检测后,贸易交接双方协商每1个月或2个月对流量计进行检定确定流量系数,每天根据流量计计量得数据与流量计流量系数计算出数据进行交接,以提高流量计得准确度,也称为零误差交接。 准确度等级一般就是根据流量计得最大允许误差确定得。各制造厂提供得流量计说明书中会给出。一定要注意其误差得百分率就是指相对误差还就是引用误差、相对误差为测量值得百分率,常用“%R”表示、引用误差则就是指测量上限值或量程得百分率,常用“%FS”。许多制造厂说明书中并未注明。比如,浮子流量计一般都就是采用引用误差,电磁流量计有得型号也有采用引用误差得。 流量计如果不就是单纯计量总量,而就是应用在流量控制系统中,则检测流量计得准确度要在整个系统控制准确度要求下确定、因为整个系统不仅有流量检测得误差,还包含有信号传输、控制调节、操作执行等环节得误差与各种影响因素。比如,操作系统中存在有2%左右得回差,对所采用得测量仪表确定过高得准确度(0.5级以上)就就是不经济与不合理得。就仪表本身来说,传感器与二次仪表之间得准确度也应该适当相配,比如说设计出来未经实际标定得均速管误差如在±2。5%~±4%之间,配上0.2%~0、5%高准确度得差压计就意义不大了、 还有一个问题就就是对于检定规程或制造厂说明书中对流量计所规定得准确度等级指得就是其流量计得最大允许误差。但就是由于流量计在现场使用时受环境条件、流体流动条件与动力条件等变化得影响,将会产生一些附加误差。因此,现场使用得流量计应就是仪表本身得最大允许误差与附加误差得合成,一定要充分考虑到这个问题,有时候可能现场得使用环境范围内得误差会超过流量计得最大允许误差。 (3)重复性

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

TI电源芯片选用

字号:大中小TI公司LDO电源芯片的选用 Written by Miracle.G, Hebust University of S&T, Dep. of EE 2008-1-1 TPS73HD3xx: TPS767D3xx: 二者均为线性调整电源,LDO 这两组芯片的引脚看起来是一样的,都是一路3.3V,另一路为1.8V,2.5V或可调。 经比较未发现有大的不同,后者的输出电流稍大一些,在引脚上,后者没有 2SENSE引脚。 特点:低压差,低静态功耗,关断工作模式,电源监测复位输出等功能。 在DSK5402中应用了TPS767D301,可参考其电路。 TPS763xx: 低功耗150mA电流输出,线性LDO,只有一路,种类较全:有5V,3.8V,3.3V,3.0V,2.8V,2.7V,2.5V,1.8V,1.6V及可调等。 SOT-23封装。 在TLV320AIC23B EVM2中应用了TPS76301,可参考其电路。 TPS73xx:

低功耗输出电流范围0~500mA,线性LDO,只有一路,种类包括:5V,4.85V,3.3V,3.0V, 2.5V及可调等。比上述芯片多一个电压监测功能,当电源低于门限时,输出有固定延时的RESET信号。 TPS701xx: 双路输出,线性LDO 种类包括:3.3V/2.5V,3.3V/1.8V,3.3V/1.5V,3.3V/1.2V或双可调。型号中的xx为两路输了电压的和,如TPS70158,TPS70151等。 比TPS73HD3xx /TPS767D3xx多了加电顺序选择功能,适用于有上电顺序要求的应用中。 TPS56300 功能较完整,适合于做智能电源。 2.8V~5.5V的输入电压,二路输出,输出电压可有几种9种不同的组合,其他功能包括: 1. POWER GOOD信号输出 2. 可编程慢启动功能 3. 过压,欠压,可预置电流保护功能。 4. 需要外加N沟道场效应管

流量计选型设计规定

一.可变面积式流量计(转子流量计) 当要求精确度不小于士1.50%,量程比不大于10: 1 时,可选用转子流量计。 1. 玻璃转子流量计 中小流量、微小流量.压力小于1MPa,温度低于100℃的洁净透明、无毒、无燃烧和爆炸危险且对玻璃无腐蚀无粘附的流体流量的就地指示,可采用玻璃转子流量计。 2 .金属管转子流量计 1) 普通型金属管转子流量计 对易汽化、易凝结、有毒、易燃、易爆不含磁性物质、纤维和磨损物质,以及对不锈钢无腐蚀性的流体中小流量测量,当需就地指示或远传信号时,可选用普通型金属管转子流量计 2) 特殊型金属管转子流量计 (一) 带夹套的金属管转子流量计 当被测介质易结晶或汽化或高粘度时,可选用带夹套金属管转子流量计。在夹套中通以加热或冷却介质。 (二)防腐型金属管转子流量计 X1 有腐蚀性介质流量测量,可采用防腐型金属管转子流量计。 转子流量计要求垂直安装,倾斜度不大于50。流体大都是自下而上,特殊的金属管转子流量计可以水平管道连接,安装位置应振动较小,易于观察和维护,应设上,下游切断阀和旁路阀。对脏污介质,必须在流量计的进口处加装过滤器。

二. 速度式流量计 1 靶式流量计 粘度较高,含少量固体颗粒的液体流量测量。当要求精确度不优于t1 .00 %,量程比不大于10 : 1时,可采用靶式流量计。 靶式流量计一般安装在水平管道上,前后直管段长度为1OD/5D 2 涡轮流量计 洁净的气体及运动粘度不大(粘度越大,量程比越小)的洁净液体的流量测量,当要求较精确计量,量程比不大于10:1时,可采用涡轮流量计。涡轮流量计应安装在水平管道上,使液体充满整个管道,并设上、下游截止阀和旁路阀,以及在上游设过滤器,下游设排放阀。直管段长度:上游不少于20D,下游不少于5D 3 旋涡流量计(卡门涡街流量计或涡街流量计) 洁净气体、蒸汽和液体的大中流量测量,可选用旋涡流量计。低速流体及粘度大的液体,不宜选用旋涡流量计测量。粘度太高会降低流量计对小流量测量的能力,具体表现在保证精确度的雷诺数上,不同制造厂的产品,不同管径的旋涡流量计对保证测量精确度的液体和气体最小和最大雷诺数及管道流速有不同要求。选用时应对雷诺数和管道流速进行验算。管子振动或泵出口也不宜选用。 该流量计具有压力损失较小、安装方便的特点。 对直管段要求:上游为15- 5 0D(视配管情况而定);上游加整流器时,上游不小于IOD,下游至少为5D. 4 水表

开关电源中电容快速选型的技巧

开关电源中电容快速选型的技巧 电容是开关电源中的再普通不过的器件,它可以用来降低纹波噪声,可以用来提高电源的稳定性以及瞬态响应性,然而,电容的种类繁多,如何通过技巧快速进行选型,而产品可靠性又高,性能又稳定呢? 1、电容种类的了解 对电容种类的大致了解,在选择电容时有助于对电容种类的快速筛选。 电容种类较多,如图1所示,按封装分有贴片电容、插件电容,按介质分有陶瓷电容,钽电容,电解电容、云母电容、薄膜电容等,按结构形势分,有固定电容、半固定电容、可变电容。 图1 电容种类的繁多,让人容易患选择综合症,但不用忧虑,在开关电源中,我们使用最多的就是陶瓷电容,电解电容和钽电容,了解了电容的种类接下来是了解电容的一些性能参数。 2、电容关键参数的认识 了解电容的内在关键参数,才能快速选型,可靠使用,所有的电容的关键参数都是一样的,包括电容容值、电容的耐压值、电容的ESR、电容容值精度、电容允许的工作温度范围。 3、开关电源中电容的选型要了解电容本身特性 在开关电源设计中,使用频率最高的电容是陶瓷电容、电解电容、钽电容,需要了解它

们的特性差异才能快速的进行选择。 陶瓷电容容值较小,高频特性好,工作温度范围较广,ESR 较电解电容小,体积小,没有极性; 电解电容容值可以做大,但工作温度范围较窄,ESR 较大,有极性; 钽电容ESR 最小,容值可比陶瓷电容大一些,有极性,安规性能差,容易起火。 了解了以上三种电容的特性,在使用它们的时候就可以游刃有余。 4、开关电源中电容的选型还要了解使用环境 电容的使用环境还分电路内部环境和电路外部环境,电路内部环境包括频率、电压值、电流值、电容在电路中的主要作用等;根据电路频率可以确定电容种类;根据电压值可以确定选型电容的耐压值;在电路中的主要作用可以用来参考选型电容的容值等; 根据电路外部使用环境对电容进行选型,产品工作的环境温度,安规要求等,都可以用来缩小电容选择范围。 5、开关电源中部分电路电容选型举例 (1)吸收电路的电容选型,如下图2所示,在开关电源中,在MOS 管或二极管上并联电容吸收尖峰是很常见的电路,那么这颗电容该如何去选择呢?首先,考虑电路环境,即电容上可能承受的最大电压应力,可以确定电容的耐压值选;其次,作为吸收电路,容值不能太大,太大会影响整机效率,故容值一般使用PF 级别电容,电容的高频特性要好,根据这些特点,选择陶瓷电容是最理想的;然而陶瓷电容还分NPO ,COG 材质,根据温度特性还分X5R 、X7R 等,无需愁,只要了解了电路环境对使用电容的精度要求及温度要求,这些都可迎刃而解,在这种吸收电路中,对电容精度要求不高,一般的 COG 材质的电容可以满足。 D 图2 (2)启动电路,以芯片3843为例,用RC 启动,C 值一般用到uF 级别的电容,且温度特性要好,要不然在温度变化时,容值不够,会启动不良,在此可以选择钽电容和陶瓷电容;但是,钽电容有一个问题就是不符合安规要求,如果要过安规认证,就只能选择陶瓷电容。 图3

DCDC电源设计方案

DCDC电源设计方案 1、DC/DC电源电路简介 DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V等,后者使用的电源电压一般在24V以下。不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V等。结合到本公司产品,这里主要总结24V以下的DC/DC电源电路常用的设计方案。 2、DC/DC转换电路分类 DC/DC转换电路主要分为以下三大类: (1)稳压管稳压电路。 (2)线性(模拟)稳压电路。 (3)开关型稳压电路 3、稳压管稳压电路设计方案 稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。比较常用的是并联型稳压电路,其电路简图如图(1)所示, 选择稳压管时一般可按下述式子估算: (1) Uz=V out; (2)Izmax=(1.5-3)I Lmax (3)Vin=(2-3)V out 这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。 有些芯片对供电电压要求比较高,例如AD DA芯片的基准电压等,这时候可以采用常用的一些电压基准芯片如MC1403 ,REF02,TL431等。这里主要介绍TL431、REF02的应用方案。 3.1 TL431常用电路设计方案 TL431是一个有良好的热稳定性能的三端可调分流基准电压源。它的输出

相关文档
最新文档