级数敛散性判别方法的归纳

合集下载

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳级数是数列之和的概念在数学中的推广。

级数的敛散性是数学中的一个重要问题,判别级数的敛散性常用的有几个方法,包括比较判别法、比值判别法和积分判别法。

下面我们将对这几种方法进行详细的归纳阐述。

一、比较判别法(包括比较判别法和比较判别法的极限形式)比较判别法的基本思想是用一个已知的级数和未知的级数进行比较,从而判断未知级数的敛散性。

1.比较判别法对于正项级数∑a_n和∑b_n,如果存在正数c和N,使得当n>N时,有a_n≤cb_n成立,那么:(1)若∑b_n收敛,则∑a_n也收敛。

(2)若∑b_n发散,则∑a_n也发散。

2.比较判别法的极限形式对于正项级数∑a_n和∑b_n,如果存在正数c和N,使得当n>N时,有lim(a_n/b_n)=c成立,那么:(1)若0<c<∞,则∑b_n收敛或发散,则∑a_n也收敛或发散。

(2)若c=0,则∑b_n收敛,则∑a_n也收敛。

(3)若c=∞,则∑b_n发散,则∑a_n也发散。

比较判别法适用于一些特殊情况,如∑(1/n^p)的敛散性可以通过与调和级数∑(1/n)做比较来判断。

二、比值判别法比值判别法的基本思想是通过比较级数的相邻项之比的极限值,从而判断级数的敛散性。

对于正项级数∑a_n,计算lim(a_(n+1)/a_n),若这个极限存在:(1)若0≤lim(a_(n+1)/a_n)<1,级数收敛;(2)若lim(a_(n+1)/a_n)>1或lim(a_(n+1)/a_n)=∞,级数发散;(3)若lim(a_(n+1)/a_n)=1,比值判别法无效,需使用其他方法。

比值判别法适用于一些具有指数函数的级数,如幂级数∑(x^n)的敛散性可以通过计算lim(x^(n+1)/x^n),进而判断。

三、积分判别法积分判别法是通过将级数转化为函数积分的形式,从而判定级数的敛散性。

对于正项级数∑a_n,若存在函数f(x),使得f(x)满足以下条件:(1)f(x)在区间[1,+∞)上连续非负递减;(2)级数∑a_n与函数积分∫f(x)dx存在以下关系:a_n=f(n),则(a)若∫f(x)dx在区间[1,+∞)上收敛,则级数∑a_n也收敛;(b)若∫f(x)dx在区间[1,+∞)上发散,则级数∑a_n也发散。

任意项级数的敛散性判别

任意项级数的敛散性判别

一、任意项级数、交错级数的定义
定义 正项和负项任意出现的级数称为任意项级数.
若 un是正项级数, 则 un收敛 其部分和数列Sn有界.
n1
n1
若 un是任意项级数, 则 un收敛 其部分和数列Sn有界.?
n1
n1
(1)n1 11 11 11
n1
0
Sn 1
n为偶数 n为奇数
Sn有界, 但 (1)n1发散.
n1
定义 正、负项相间的级数称为交错级数.
(1)n1un u1 u2 u3 u4 (其中un 0)
n1
(1)nun u1 u2 u3 u4
n1
二、莱布尼兹判别法(交错级数)
莱布尼兹判别法 若交错级数 (1)n1un满足 :
n1
(1) u1 u2 u3 un un1
n)
1 ln(1
n)
1
1
n

1
发散,所以
(1)n1 发散.
n1 1 n
n1 ln(1 n)
考查
(1)n1
n1 ln(1 n)
1
1
un ln(1 n) ln(2 n) un1
lim
n
1 ln(1
n)
0
n1
(1)n1 收敛,且为条件收敛 ln(1 n)
.
解2.考查
(1)n
(2)
lim
n
un
0
则 (1)n1un收敛,且它的和s u1 .
n1
证 un1 un 0, S2n (u1 u2 ) (u3 u4 ) (u2n1 u2n )
即数列 {S2n }是单调增加的 ,
又S2n u1 (u2 u3 )

常数项级数敛散性判别法总结

常数项级数敛散性判别法总结

常数项级数敛散性判别法总结摘要:本文简要阐述了常数项级数敛散性判别法。

由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。

关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。

无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。

在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。

主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。

1 级数收敛的概念给定一个数列{un},称u1+u2+...+un+ (1)为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。

若部分和数列{Sn}有极限S,即,则称级数(1)收敛。

若部分和数列{Sn}没有极限,则称级数(1)发散。

注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。

极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。

借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。

例如,由性质(1)和当|q|0时,01,则发散。

当级数含有阶乘、n次幂或分子、分母含多个因子连乘除时,选用比值判别法。

比值判别法不需要与已知的基本级数进行比较,在实用上更为方便。

例2:判别级数的敛散性。

解:因为由比值判别法知级数收敛。

2.3 根植判别法设为正项级数,若有,则当0≤r1,则发散。

当级数含有n次幂,型如an或(un)n选用根值判别法。

根值判别法不需要与已知的基本级数进行比较。

数项级数的敛散性判别法-数项级数敛散性判别法

数项级数的敛散性判别法-数项级数敛散性判别法

1 2 n 1
,
显然收敛。
综上所述,原级数收敛。
内容小结
1. 利用部分和数列的极限判别级数的敛散性 2. 利用正项级数判别法
必要条件 nl im un 0 满足
不满足 发 散
比值判别法
lim
n
un u
1 n
根值判别法 nl im nun
1
1
比较判别法
1 不定 部分和极限
用它法判别 积分判别法
S2n 是单调递增有界数列, 故 n l i m S2nSu1 又 n l iS 2 m n 1 n l i(S m 2 n u 2 n 1 )nl im S2n S
故级数收敛于S, 且 S u1, Sn的余项: rnSSn ( u n 1 u n 2 ) r n u n 1 u n 2 un1
但 p1, 级数发散 .
机动 目录 上页 下页 返回 结束
例5. 讨论级数 nxn1 (x0) 的敛散性 .
n1
解: lim un1 lim(n1)xn x
n un
n n x n1
根据定理4可知:
当 0x1时 ,级数收敛 ;
当x1时,级数发散 ;
当x1时,级数n发散.
n1
机动 目录 上页 下页 返回 结束
(1) 当0 < l <∞时, 取l,由定理 2 可知 u n 与 v n
同时收敛或同时发散 ;
n 1 n 1
(2) 当l = 0时, 利 u n ( l用 ) v n ( n N ) 由定,理2 知
若 v n 收敛 , 则un也收敛;
n 1
n1
(3) 当l = ∞时, 存在 NZ,当nN时, un 1 , 即
n 1

正项级数及其敛散性判别

正项级数及其敛散性判别


un1 lim lim n u n
( n 1)! 10n1 n! n 10n
n1 lim n 10
故原级数发散.
22
例9 判定级数ຫໍສະໝຸດ n1 的敛散性. n 1 n( n 2)

un1 (n 2) n(n 2) lim 1 解 因为 lim n u n ( n 1) ( n 3)( n 1) n
1 l l un l r 1 2
n

un r n ,
n N
因为当 0 r 1 时, r N r N 1 r N 2
收敛。 所以, 级数
u
1 比如 p 级数 p , 无论 p 取何值, 均有 n 1 n
un1 np 1 lim lim lim 1 n u n ( n 1) p n 1 n (1 ) p n
但当 p >1时, p 级数收敛; 当 p ≤1 时, p 级数发散.
20
( n 1)! 例7 判定级数 n 1 的敛散性. n n 1
u 发散时,
n 1 n

级数
v
n 1

n
也发散.
12
定理9.2.3 (比较判别法的极限形式) 若两个正项级数
un 及 vn 满足: lim
n 1 n 1


un l, n v n
(1)当0 < l < +∞时, 级数 (2)当l= 0且级数 (3)当l= +∞且级数

u 和 v
n 1
发散时, 级数
v
n 1

n
也发散.
7

级数发散的判定

级数发散的判定

级数发散的判定
级数是指由一系列无穷多个数相加而成的数列。

在数学中,有些级数是收敛的,也就是说它们的和是有限的,而有些级数则是发散的,也就是说它们的和无限大或无限小。

判定一个级数是否收敛或发散,是数学中的一个重要问题。

下面介绍几种常见的级数发散的判定方法。

1. 正项级数判别法
如果级数的每一项都是非负数,并且这些项呈递减趋势,那么这个级数一定是收敛的。

反之,如果级数的每一项都是非负数,并且这些项不呈递减趋势,那么这个级数一定是发散的。

2. 比较判别法
如果一个级数的每一项都大于另一个级数的对应项,而后者是收敛的,那么前者也是收敛的。

反之,如果一个级数的每一项都小于另一个级数的对应项,而后者是发散的,那么前者也是发散的。

3. 比值判别法
如果一个级数的相邻两项的比值有极限,且这个极限小于1,那么这个级数是收敛的。

反之,如果这个极限大于1或不存在,那么这个级数是发散的。

4. 根值判别法
如果一个级数的相邻两项的根的比值有极限,且这个极限小于1,那么这个级数是收敛的。

反之,如果这个极限大于1或不存在,那么这个级数是发散的。

以上是几种常见的级数发散的判定方法,它们为数学家们判断级数收敛性提供了一些基本的工具。

高数:级数敛散判别法

高数:级数敛散判别法

则称无穷级数收敛;
S un 级数的和

lim
n
Sn
不存在,
则称无穷级数发散 。
n1
rn S Sn
uk
级数的余项。
lim
n
rn
0
无穷级数收敛。
kn1
若un≥0 (n=1, 2, 3, …) , un 正项级数。 Sn是单调增加数列。
n1
正项级数 un 收敛
n1
部分和序列 Sn有界 。
比较判别法
1 n 1
np n1n p dx
n n1
1 xp
dx
1
Sn
1
1 2p
1 3p
1
4p
1
np
1
2nddxx 1 xxpp
231dxxp1pn p11n
dx n1x1p
1 p 1
,
因而 Sn有上界。 由基本定理可知, 当p>1时p级数收敛。
9.2.2 比较判别法
定理2 (比较判别法) 设 un , vn 是两个正项级数, 且
设 un , vn 是两个正项级数, 且存在自然数N,
n1 n1
使当 n>N 时有 un≤kvn (k>0为常数) 成立, 则
(1) 若强级数 vn 收敛 , 则弱级数 un 也收敛 ;
n1
n1
(2) 若弱级数 un 发散 , 则强级数 vn 也发散 。
n1
n1
比较对象

p级数
1 np
,
p>1收敛,p<1发散。
证: 因为
1
nn 1
1 n (n 1)
发散 。
1 1 n 1, 2,

关于正项级数敛散性判定方法的总结比较

关于正项级数敛散性判定方法的总结比较

关于正项级数敛散性判定方法的总结比较1. 引言1.1 介绍正项级数是数学中一个非常重要的概念,它在数学分析、实变函数论等领域都有着广泛的应用。

正项级数的收敛性质对于理解数学问题、解决实际问题都有着重要的意义。

在研究正项级数的收敛散性判定方法时,我们可以利用一些常用的方法来对其进行分析和求解。

在数学中,我们经常会遇到各种各样的级数,如调和级数、几何级数等。

这些级数的收敛性质可能相差甚远,有些级数可能收敛,而有些级数可能发散。

我们需要通过一些方法来判断一个级数是否收敛。

对于正项级数而言,有一些常用的判定方法,如比较判别法、根值判别法、积分判别法、对数判别法等。

本文将重点介绍正项级数的收敛散性判定方法,通过比较这些方法的特点和适用范围,帮助读者更好地理解正项级数的收敛性质。

希望本文能够为相关领域的研究者提供一些帮助,并为未来的研究工作提供一定的参考。

1.2 研究意义正项级数是数学中重要的研究对象,对其收敛和发散性进行判定具有重要的理论和实际意义。

正项级数的收敛性判定可以帮助我们了解无穷级数的性质,进一步推导出一些重要的数学定理和结论。

正项级数在实际问题中的应用十分广泛,比如在概率论、统计学、物理学等领域都有着重要的应用价值。

通过对正项级数的收敛性进行准确判断,可以帮助我们更好地理解和解决实际问题。

研究正项级数的收敛性判定方法,可以拓展数学领域中的知识体系,丰富数学理论的内涵,推动数学学科的发展。

深入研究正项级数的收敛性判定方法具有重要的研究意义和实际应用价值。

1.3 研究现状正项级数是数学中重要的概念,其收敛性对于分析问题的解决具有重要的意义。

关于正项级数的收敛性判定方法,已经有许多经典的理论成果,这些方法在实际问题的解决中发挥着重要作用。

在研究现状方面,正项级数的收敛性已经得到了深入的研究和总结。

目前常用的级数收敛判定方法有比较判别法、根值判别法、积分判别法和对数判别法。

这些方法各有特点,能够适用于不同类型的正项级数,为研究者提供了多种选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

级数敛散性判别方法的归纳(西北师大)摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。

关键词:级数 ;收敛;判别 ;发散一. 级数收敛的概念和基本性质给定一个数列{n u },形如n u u u +++21 ①称为无穷级数(常简称级数),用∑∞=1n n u 表示。

无穷级数①的前n 项之和,记为∑==nn n n u s 1=n u u u +++ 21 ②称它为无穷级数的第n 个部分和,也简称部分和。

若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞=1n n u 收敛,若级数的部分和发散则称级数∑n v 发散。

研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理:定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性定理 3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。

定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。

由于级数的复杂性,以下只研究正项级数的收敛判别。

二 正项级数的收敛判别各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{n s }有界,即存在某正整数M ,对一切正整数 n 有n s <M 。

从基本定理出发,我们可以由此建立一系列基本的判别法1 比较判别法设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n >N 都有n n v u ≤,则(i )级数∑n v 收敛,则级数∑n u 也收敛; (ii )若级数∑n u 发散,则级数∑n v 也发散。

例 1 . 设∑∞=12n n a 收敛,证明:∑∞=2ln n nnn a 收敛(n a >0). 证明:因为 0<∑∞=12n n a <)ln 1(2122n n a n + 易知:∑∞=22ln 1n n n 收敛(积分判别法),又∑∞=22n n a 收敛,所以)ln 1 21222n n a n n +∑∞=(收敛。

由比较判别法知∑∞=2ln n nnn a 收敛(n a >0). 例 2 . 证明:级数)0(sin )1(1≠∀-∑∞=x n xn 都是条件收敛的。

证: 不妨设x>0,则∃x N >0,当n>x N 时,0<n x <2π,此时0sin >n x ,且{nxsin }为单调递减数列,且nxn sinlim ∞→=0。

由莱布尼茨判别法知)0(sin )1(1≠∀-∑∞=x n xn 收敛。

而当n>x N 时,n x n sin)1(- =nxsin >0,nxn x n sin lim∞→=1又∑∞=1n n x 发散,由比较判别法知∑∞=1sin n n x也发散。

所以0≠∀x ,级数)0(sin )1(1≠∀-∑∞=x n xn 都是条件收敛的。

例 3. 证明级数)]!1!21!111([1n e n ++++-∑∞= 收敛证: 0< n a = )!1!21!111(n e +++- < !1n n ⋅= n b .nn n b b 1lim +∞→= !1)!1()1(1lim n n n n n ⋅+⋅+∞→= 2)1(lim +∞→n n n =0由比值判别法知∑n b 收敛,再由比较判别法知∑n a 收敛,即有:级数)]!1!21!111([1n e n ++++-∑∞= 收敛。

根据比较原则,我们得到了两个更为实用的判别法,即柯西判别法和达朗贝尔判别法。

2 柯西判别法(根式判别法)设∑n u 为正项级数,且存在某正整数0N 及正常数l ,(i )若对一切n >0N ,成立不等式n n u ≤l <1,则级数∑n u 收敛。

(ii )若对一切n >0N ,成立不等式1≥nn u 则级数∑n u 发散。

例 1 . 判别级数∑n n 22的敛散性。

解:因为 =∞→n n n u lim 2lim 2nn n ∞→=121<所以由根式判别法知级数∑n n 22收敛。

3 达朗贝尔判别法(比值判别法)设∑n u 为正项级数,且存在某正整数0N 及常数q (0<q <1). (i )若对一切n >0N ,成立不等式≤+nn u u 1q ,则级数∑n u 收敛。

(ii )若对一切n >0N ,成立不等式11≥+nn u u 则级数∑n u 发散。

例 1 .判别级数∑⋅n n nn !3的敛散性。

解:因为 =+∞→n n n u u 1lim !3)1()!1(3lim 11n n n n n n n n n ⋅++++∞→= nn n)11(3lim +∞→= e 3>1 所以由比式判别法知级数∑⋅n n nn !3发散。

4积分判别法积分判别法是利用非负函数的单调性和积分性质,并以反常积分为比较对象来判断正项级数的敛散性。

设f 为[1,+ ∞)上非负减函数,那么正项级数∑)(n f 与反常积分dxx f ⎰∞1)(同时收敛或同时发散。

例 1 .判别级数∑∞=3)ln (ln )(ln 1n qp n n n 的敛散性。

解:设f(x)=qp n n n )ln (ln )(ln 1,则f(x)在[3,+ )∞上非负递减。

若1=p ,这时有⎰+∞3)ln (ln )(ln qp x x x dx = ⎰+∞3ln ln q u du = ⎪⎩⎪⎨⎧≤∞+>--)1()1()3ln (ln 1111q q q q当小q >1时级数收敛;当小q ≤1时级数发散; 若1≠p ,这时有⎰+∞3)ln (ln )(ln q p x x x dx =⎰+∞-3ln ln )1(qu p u e du 对任意的q ,当01>-p 时,取t>1,有qup t u ue u )1(1lim -∞→⋅=0 即该积分收敛。

当01<-p 时,有 qup t u ueu )1(1lim -∞→⋅=∞+即该积分发散。

5拉贝判别法设∑n u 为正项级数,且存在某正整数0N 及常数r ,(i )若对一切n >0N ,成立不等式r u u n nn ≥-+)1(1>1,则级数∑n u 收敛。

(ii )若对一切n >0N ,成立不等式1)1(1≤-+nn u u n 则级数∑n u 发散。

例 1 .判别级数∑+++)()2)(1(!n x x x n (x>0)的敛散性。

解:因为 )1(lim 1n n n u u n +∞→-= n n ∞→lim [1- )1()2)(1()!1(+++++n x x x n •!)()2)(1(n n x x x +++ ]= x n x nxn =++∞→1lim所以由拉贝判别法知,当小x >1时级数收敛;当小x ≤1时级数发散;6对数判别法对于正项级数∑n u ,如果存在q nu nn =∞→ln )1ln(lim,则当q>1时,级数∑n u 收敛;当q<1时,级数∑n u 发散。

例 1判别级数∑∞=2n n a =∑∞=-+--2])1(ln [15n n n 的敛散性。

证明:∞→n limna n ln )1ln(= ∞→n lim n n n ln 5ln ])1([ln 1---=ln 5>1 因此有对数判别法可知级数∑∞=2n n a =∑∞=-+--2])1(ln [15n n n 收敛。

7双比值判别法对于正项级数∑n u ,如果存在n n n u u 2lim∞→= 112lim ++∞→n n n u u = ρ,则当ρ< 21时,级数∑n u 收敛;当ρ>21时,级数∑n u 发散。

例 1判别级数∑∞=12ln n nn的敛散性。

证明:因为nnn u u 2lim ∞→=41ln )2()2ln(lim 22=⋅∞→n n n n n 21<由此知级数∑∞=12ln n nn收敛。

例 2 判别级数∑∞=1!n nne n n 的敛散性。

证明:这里1+>n n a a ,即n nen n !> 11)!1()1(++++n n e n n 有∞→n lim n n a a 2= n n n n n n e n e n n !)!2()2(lim 22⋅∞→= n n nn n n n n n en n e n n e n e n 2222)2()2(22)2(lim --∞→⋅ππ= 22> 21所以级数∑∞=1!n nnen n 发散。

8高斯判别法设∑n a 是严格正项级数,并设1+n n a a =λ+n μ+nn v ln +)ln 1(n n ο,则关于级数∑na的敛散性,有以下结论:(i )如果λ>1,那么级数∑n a 收敛;如果λ<1,那么级数∑n a 发散。

(ii )如果λ=1,μ>1,那么级数∑n a 收敛;如果λ=1,μ<1,那么级数∑na 发散。

(iii )如果λ=μ=1,υ>1,那么级数∑n a 收敛;如果λ=μ=1,υ<1,那么级数∑n a 发散。

例1 Gauss 超几何级数1+∑=-+++-++-++nn n n n n 1)1()2)(1(!)1()1()1()1(γγγγβββααα nx 的敛散性,其中均χγβα,,,为非负常数。

解:因为1+n n a a =χβαγβαγ1)1)(1()1)(11(1))(())(1(nn n n xn n n n ++++=++++ 又因为1)1(-+n α=1-n α+)1(2n ο,1)1(-+n β=1-n β+)1(2nο,所以1+n n a a =x 1(1+n βαγ--+1+)1(2nο)。

根据高斯判别法可以判别:如果x<1;或者x=1, βαγ+>,那么级数收敛。

如果x>1;或者x=1, βαγ+≤,那么级数发散。

参考文献[1]华东师范大学数学系.数学分析(第三版).下册[M].北京:高等教育出版社,2001. [2]李春江.级数收敛的判别方法[J].[3]邓东皋,尹小玲.数学分析简明教程 下册.北京:高等教育出版社,1999.6[4]杨钟玄.双比值判别法与对数判别法的比较[J].四川师范大学学报,2004,(1):57-60. [5]刘芜健.一类特殊正项级数的敛散性判定技巧.南京邮电大学学报.。

相关文档
最新文档