反铁电陶瓷材料用于引信安全系统的设想

反铁电陶瓷材料用于引信安全系统的设想
反铁电陶瓷材料用于引信安全系统的设想

铁电陶瓷材料的应用以及生产工艺之七

铁电陶瓷材料的应用以及生产工艺之七 铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。 可用于大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。利用其热释电性,可制作红外探测器等。也用于制造光阀、光调制器、激光防护镜和热电探测器等。 广泛应用于航天、军工、新能源产品。 这里介绍,主要是参考它的加工工艺,比如为固体电解质的加工提供一定的参考。另一方面是顺便了解一下这特种陶瓷的用途。 室温研磨法固相反应制备铁电陶瓷粉末: ――机械合金化制备的铁电体:锆钛酸铅 锆钛酸铅(Pb(ZrxTi1-X)O,或PZT)是PT和锆酸铅(PbZrO3或PZ)的 固溶体,具有杰出的铁电、压电、热电和光电性能,广泛应用于传感器、声纳、微动台、旋转式激励器和热电传感器中。 有专家研究了用具有碳化钨筒和球的行星高能球磨机对(PbO、ZrO2和TiO2)混合物球磨不同时间后PZT相的形成情况。球磨4h没有形成PZT,但PbO衍射峰大大变宽并弱化,球磨15和24h后,PZT成为主要相。球磨过程中,相变会导致不同程度的体积膨胀。研究表明,延长球磨时间,体积膨胀程度减小,意味着未反应的氧化物数量减少。球磨24 h的混合物反应完全,故几乎没有观察到体积膨胀。 有专家通过行星球磨机对PbO、ZrO2、TiO2氧化物强化粉碎(高的 球磨速度和大的球料比)5—480min后发现,球磨lh便得到PZT相及少量未反应的ZrO2,球磨2h时后相组成相同,未反应的ZrO2量达到最少。对球磨粉末做比表面积测试后发现,球磨30min后其比表面积达到最大,并促进了初始氧化物间的反应,以致球磨1h后几乎得到纯PZT相,

《火药、炸药、弹药、引信及火工品工厂设计安全系统要求规范》

2—4 小量火药、炸药及其制品危险性建筑设计安全规范 WJ 2470-1997 1 范围 1.1 主题内容 本标准规定了从事火药、炸药、弹药、引信、火工品研究与应用的研究所、院校、试验场及工厂,在新建、扩建、改建小量火药、炸药及其制品危险性建(构)筑物时,应遵循的安全技术要求。 1.2 适用范围 本标准适用于研究所、院校、试验场及工厂新建、扩建及改建的小量火药、炸药及其制品的各种危险性建(构)筑物的设计。 2 引用文件 GB50154—92 地下及覆土火药炸药仓库设计安全规范 GBJ87—85 工业企业噪声控制设计规范 GJB2—82 常规兵器发射或爆炸时压力波对人体作用的安全标准 《中华人民共和国环境噪声污染防治法》1996年10月29日中华人民共和国主席令,第七十七号《火药、炸药、弹药、引信及火工品工厂设计安全规范》1990年3月26日中国兵器工业总公司 3 定义 3.1 危险品 研制、加工、试验、拆分、销毁和存放的各种火药、炸药、弹药、引信、火工品、氧化剂的成品和半成品及其有燃烧和爆炸危险性的原材料。 3.2 危险性建筑 研制、加工、试验、拆分、销毁和存放危险品的场所,包括危险品研制实验室、研制工房、试验工房、生产工房、拆分工房、理化性能实验室、试验和销毁用构筑物及存放间(库)等。 3.3 小量火药、炸药及其制品 危险性建筑物内(抗爆和抑爆间室除外)炸药及其制品的存药量不超过50kg(下述炸药质量均指TNT当量),火药及其制品的存药量不超过100kg。抗爆和抑爆间室内炸药最大存药量不超过50kg。 3.4 整体爆炸 全部危险品同时发生爆炸。 3.5 总药量 危险性建筑内研制、加工、试验、拆分、销毁、运输和存放过程中危险品实际的存药量之和。 3.6 计算药量 危险性建筑内研制、加工、试验、拆分、销毁、运输和存放过程中使用的,能一次同时爆炸或燃烧的危险品的最大药量。用于计算危险性建筑的内部距离和外部距离。 3.7 设计药量 危险品一次可能同时爆炸的最大药量。用于设计抗爆间室、抗爆屏院、抑爆间室和防护墙(板)。 3.8 危险等级 依据建筑内研制、加工、试验、拆分、销毁和存放的危险品,发生爆炸或燃烧事故的可能性大小和危害程度,将建筑划分成不同的危险等级。 3.9 危险区 研制、加工、试验、拆分、销毁、运输与存放危险品的区域。

铁电陶瓷的制备及其研究

铁电陶瓷的制备及其研究 姓名:刘飞班级:无机普08-01 学号:2008440551 摘要:铁电陶瓷主晶相为铁电体的陶瓷材料。 关键词:钛酸钡;铁电粉体;溶胶-凝胶法;研究进展 0前言 铁电陶瓷拥有优良的电学性能,在一定温度范围内存在自发极化,当 高于某一居里温度时,自发极化消失,铁电相变为顺电相;介电常数随外 加电场呈非线性变化。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电 容器;利用其压电性可制作各种压电器件;利用其热释电性可制作红外探 测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作 存贮,显示或开关用的电控光特性,其具有很高的应用前景。 1 铁电陶瓷制备及实验方法 1.1固相反应法制备铁电陶瓷材料的原理及工艺流程 (1)固相反应法是制备功能陶瓷最成熟的方法,主要依靠固相扩散传质进行反应,通常具有以下特点:固相反应一般包括物质在相面上的反映和物质迁移两个过程;一般需要在高温下进行;整个固相反应速度由最慢的速度所控制。 (2)固相反应法制备铁电陶瓷的工艺流程: 1.2 实验方法及过程 (1)配料按制备0.1moL钛酸钡陶瓷计算原料的质量。按照以上计算值,用电子天平称取所需原料,实际称量时应记录实际称量值。 (2)一次球磨将配料所得的混合物,加入氧化锆球和去离子水进行球磨,将得浆料;球磨参数500转/分钟,球磨2小时; (3)一次烘干球磨后用去离子水清洗,将清洗后的浆料放入干燥箱中鼓风干燥,温度:95℃;时间:12小时;待配料干燥到恒重后取出用研钵进行研磨; (4)预烧将研磨后的混合物在1000-1200℃下保温4小时预烧

(5)二次球磨将预烧后的混合物加入氧化锆球和去离子水进行球磨,球磨参数500转/分钟,球磨2小时。 (6)二次烘干将我二次球磨后的浆料用去离子水清洗,将清洗后的浆料放入干燥箱中鼓风干燥,温度:95℃;时间:12小时;待配料干燥到恒重后取出用研钵进行研磨; (7)造粒向烘干后的粉体中加入液体石蜡(6%)完成造粒; (8)成型在15 MPa压力下将粉体压制成φ10mm×1mm 生坯片,用游标卡尺测量生坯片的直径。 (9)排胶和烧结采用适当的排胶制度以去除生坯片中的有机物,将排胶后的生坯片在1300-1350℃下保温2-6h烧结成瓷。 (10)性能测试用游标卡尺测量烧结得到的钛酸钡陶瓷的直径,并计算收缩率。用光学显微镜观察钛酸钡陶瓷的表面形貌,并用X射线衍射仪对陶瓷的晶体结构进行测量。 2 性能测试及分析 2.1普通烧成BT铁电陶瓷的物相分析 01-02组的BT铁电陶瓷的XRD图谱: 分析及说明:

压电陶瓷材料及应用

压电陶瓷材料及应用 一、概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。 我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。 近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有: (1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。 (2)、化学功能陶瓷如各种传感器、化学泵等。 (3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

铁电陶瓷

第四章铁电陶瓷 一、教学内容及要求 掌握铁电体的基本概念,理解电滞回线的形成,理解BaTiO3的结构与自发极化特性以及其介电性能的特点,掌握电畴的基本概念,电畴的成核与生长过程,180°畴和90°畴的异同。理解居里温区的相变扩张的机理,几种相变扩散的异同。掌握展宽效应,移动效应,重叠效应的作用机制。掌握铁电老化,铁电疲劳,去老化的概念。 二、基本内容概述 4.1概述 重点掌握的几个概念:自发极化、、剩余极化、、矫顽场、铁电体、电滞回线、电畴、铁电陶瓷 1、感应式极化:离子晶体中最主要的极化形式是电子位移极化和离子位移极化,这两种极化都属于感应式极化,极化强度大小依赖于外施电场。线性关系,E=0,P=0。 2、自发极化:铁电体所表现的自发极化,却是不依赖于外电场,并能随外电场反向而发生反转。非线性关系,E=0,P≠0。 3、铁电体(ferroelectric):具有自发极化,且自发极化方向能随外场改变的晶体。它们最显著的特征,或者说宏观的表现就是具有电滞回线。 4、电滞回线(hysteresis curve):铁电体在铁电态下极化对电场关系的典型回线。 5、电畴(domain):在铁电体中,固有电偶极矩在一定的子区域内取向相同的这些区域就称为电畴或畴。 6、畴壁(domain wall):畴的间界。 7、铁电相变:铁电相与顺电相之间的转变。当温度超过某一值时,自发极化消失,铁电体变为顺电体。 8、居里温度(Curie temperature or Curie point):铁电相变的温度。 9、铁电体的分类:1)按结晶化学;2)按力学性质;3)按相转变的微观机构;4)按极化轴多少。

铁电材料的特性及应用综述

铁电材料的特性及应用综述 孙敬芝 (河北联合大学材料科学与工程学院河北唐山 063009)摘要:铁电材料具有良好的铁电性、压电性、热释电以及性光学等特性以及原理,铁电材料是具有驱动和传感2 种功能的机敏材料, 可以块材、膜材(薄膜和厚膜) 和复合材料等多种形式应用, 在微电子机械和智能材料与结构系统中具有广阔的潜在应用市场。 关键词:铁电材料;铁电性;应用前景 C haracteristics and Application of Ferroelectric material Sun Jingzhi ( Materials Science and Engineering college, Hebei United University Tangshan 063009,China ) Abstract:Ferroelectric material has good iron electrical, piezoelectric , pyroelectric and nonlinear optical properties, such as a driver and sensing two function piezoelectric materials, can block material, membrane materials (film and thick film) and the compound Material of a variety of forms such as application, in microelectromechanical and intelligent materials and structures in the system with vast potential application market. Keywords: ferroelect ric materials Iron electrical development trend 0前言 晶体按几何外形的有限对称图象, 可以分为32 种点群, 其中有10 种点群: 1, 2, m , mm 2, 4,4mm , 3, 3m , 6, 6mm , 它们都有自发极化。从对称性分析它们的晶体结构都具有所谓的极轴, 即利用对称操作不能实现与晶体的其它晶向重合的轴向, 极轴二端具有不同的物理性能。从物理性质上看, 它们不但具有自发极化, 而且其电偶极矩在外电场作用下可以改变方向。在介电强度允许条件下, 能够形成电滞回线。晶体这种性能称为铁电性, 具有铁电性的材料称为铁电材料。1920 年法国人V alasek 发现了罗息盐(酒石酸钾钠 ) 的特异介电性, 导致“铁电性”概念的出现(也有人认为概念出现更早)。现在各种铁电材料十分丰富,

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

铁电陶瓷材料的应用以及生产工艺之一

铁电陶瓷材料的应用以及生产工艺之一 铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。 可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。也可用于制造光阀、光调制器、激光防护镜和热电探测器等。广泛应用于航天、军工、新能源产品。 这里介绍的目的,主要是参考它的加工工艺,比如为固体电解质的加工提供参考。另一方面是顺便了解一下这特种陶瓷的用途。 一般性描述: 铁电陶瓷(ferroelectric ceramics)材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。铁电陶瓷的主要特性为:(1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;(2)存在电畴;(3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律;(4)极化强度随外加电场强度而变化,形成电滞回线;(5)介电常数随外加电场呈非线性变化;(6)在电场作用下产生电致伸缩或电致应变。其电性能:高的抗电压强度和介电常数。在一定温度范围内(-55~+85℃)介电常数变化率较小。介电常数或介质的电容量随交流电场或直流电场的变化率小。 铁电陶瓷拥有优良的电学性能,在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;介电常数随外加电场呈非线性变化。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热

释电性可制作红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性,其具有很高的应用前景。 铁电陶瓷的特性决定了它的用途。利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。利用其介电常数随外电场呈非线性变化的特性,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。利用其压电性可制作各种压电器件。此外,还有一种透明铁电陶瓷,具有电光效应,可用于制造光阀、光调制器、激光防护镜和热电探测器等。 目前,全球铁电元件的年产值己达数百亿美元。铁电材料是一个比较庞大的家族,当前应用的最好的是陶瓷系列,其已广泛应用于军事和工业领域。但是由于铅的有毒性及此类铁电陶瓷材料居里温度低、耐疲劳性能差等原因,应用范围受到了限制。因此开发新一代铁电陶瓷材料己成为凝聚态物理、固体电子学领域最热门的研究课题之一。 细分的品种有⑴层状铁电陶瓷,⑵弛豫型铁电陶瓷,⑶含铅型铁电陶瓷,⑷无铅型铁电陶瓷,⑸反铁电陶瓷材料,⑹可能的新型铁电陶瓷材料。

功能陶瓷材料概述

功能陶瓷材料概述 功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。 标签: 功能陶瓷;性质;应用 1 前言 功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。 2 功能陶瓷基本性质 功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。 功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。 3 功能陶瓷种类及其应用 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。 3.1 绝缘陶瓷

引信安全系统及其功能范畴探讨

引信安全系统及其功能范畴探讨 李豪杰,张河 南京理工大学机械工程学院,江苏南京(210094) E-mail:lihaojie@https://www.360docs.net/doc/7718561869.html, 摘要:引信安全性设计是引信的核心技术之一,引信安全系统是引信安全性设计的主要体现形式。本文建立了引信安全系统的功能框架,结合引信安全系统与引信中其它子系统的关系,对引信安全系统在引信中的作用模式及其功能范畴进行了讨论。引信安全系统不是引信中一个独立的子系统,也不能简单地等同与引信中的保险与解除保险装置(机构)。 关键词:引信安全系统,引信功能,保险与解除保险装置,引信安全性 0 引言 引信安全系统是引信中的重要组成部分,是引信满足安全性要求的重要保障。GJB373A-97《引信安全性设计准则》中对引信安全系统的定义为:“用来防止引信在感受到预定的发射环境并完成延期解除保险之前解除保险(启动)和作用的各种装置(如环境敏感装置、发射动作敏感装置、指令动作装置、可动关键件或逻辑网络,以及传火序列的隔火件或传爆序列的隔爆件)的组合”[1]。GJB102A-98《引信术语符号》中对引信安全系统的定义基本一致,为“引信系统内,用来保证安全并防止引信在运输、储存、装卸、安装和发射直至延期解除保险结束之前的各种环境下解除保险和爆炸的各种装置的组合”,同时将引信安全与解除保险机构定义为:“在达到延期解除保险以前,防止由于引信的原因而使弹药主装药发生意外作用,而在解除保险后允许爆炸序列作用的机构”[2]。从以上定义上难以直接对二者进行明确区分,笔者认为引信安全系统与相对独立性较强、自成模块的引信保险与解除保险装置(机构)的结构组成及其功能范畴应有所区别,其作用时空也不应仅限于引信完成延期解除保险之前。鉴于此,本文对引信安全系统的定义、组成及其功能范畴,安全系统与其它引信子系统的关系进行了分析与讨论。目的是在引信设计中更好地贯彻引信安全性设计要求,尽可能设计功能完备的引信安全系统,以使引信具有更高的安全性。 1 引信安全性设计是引信的核心技术之一 引信安全性是引信在生产、勤务处理、装填、发射直至延期解除保险的各种环境中,在规定条件下才解除保险和爆炸的功能。顾名思义,引信安全性是其自身乃至弹药安全性能的保障,也是其正常发挥作战效能的前提。在引信中安全性设计是贯穿引信设计的整个过程,是引信专用的核心技术之一。 从引信的基本功能分析,引信应具有的是起爆(或点火)与安全控制功能。所以引信的核心技术也就是起爆(或点火)与安全技术。 近年来引信技术的发展主要体现在目标探测与发火控制方面,并出现了各种新体制的引信,如静电引信、计转数定距空炸引信等[3, 4],随之研究人员也热衷于各种目标探测体制的研究,同时在型号装备上国内外也屡见新的引信装备如激光近炸引信、毫米波末敏引信。不可否认,各种目标探测技术的发展为引信技术与装备的发展带来了很大的机遇,也在很大程度上促进了引信的发展。但是,与目标探测相关的引信核心技术应该是引战配合技术,是依赖于目标探测的弹目交汇状态识别、最佳炸点判断与适时起爆控制技术。 另一方面,引信的安全性设计是为了防止非规定条件下引信实施起爆(或点火)。由于引信属于“危险品”,所以引信的安全功能显得尤为重要,引信安全性设计准则中对安全系

环境力对引信安全系统可靠性的影响分析_焦国太

环境力对引信安全系统可靠性的影响分析 焦国太 (华北工学院) 【摘 要】 安全性与作用可靠性是引信的两项重要技术指标。引信的工作过程和工作环境比 较特殊,不同于一般的机电产品。在一般机电产品的安全可靠性建模过程中,环境因素不被考虑,但对于引信而言,其可靠性与环境力却有着密切关系。笔者根据引信工作的特殊性,对环境力及其作用时间的安全可靠度及作用可靠度进行了计算。 【关键词】 环境力 安全 可靠性 引信 1 引 言 引信是直接或间接感觉目标信息,并按目标信息或预定指令,适时而可靠地起爆弹丸或特定战斗部,使其发挥最佳效果的一种终端控制装置。引信相当于弹药系统中的大脑,对于发挥弹丸或特定战斗部的威力起关键作用。安全性与作用可靠性是引信的两项重要指标,安全性能不好的引信会导致战斗部提前爆炸,这样就可能产生,不但没有杀伤敌人,反而会造成自己部队的伤亡。通常对引信安全性的要求比对其作用可靠性的要求要严格得多,一般情况下,要求引信在发射周期前安全系统失效概率不能大于10-6 ,而引信的作用可靠性失效概率一般只在10-2左右。可见,对引信的安全系统的要求是非常高的。引信的安全性主要由引信安全系统来保证,其关键取决于引信安全系统的安全性。安全系统对于保证引信的平时、膛内和炮口安全起着重要作用,是引信系统中最重要的分系统。引信的工作过程和工作环境比较特殊,不同于一般的机电产品。一般的机电产品多在地面或室内环境下工作,工作过程中所受环境力影响不大,而引信从出厂到目标区爆炸这一过程中要受到许多环境因素的影响,在这些环境因素中,环境力无疑是最主要的因素,它对引信的安全性和作用可靠性影响很大。一方面在平时勤务处理过程中,环境力会对引信的安全性造成危害,另一方面,引信还要利用发射时的环境力来解除保险。因此,在进行引信可靠性设计时必须考虑环境力这一因素。根据引信所处环境的特殊性,可以将环境力及其作用时间作为系统的一个假想部件来考虑,以解决以往建立引信可靠性模型时不考虑环境因素的缺陷。2 引信安全系统及环境力概念 引信安全系统主要由隔爆机构及其保险机构组成。建立引信安全系统的可靠性模型和数学模型,首先要明确系统功能和各部件功能之间的关系,其次要对各种零部件进行失效模式及其影响分析,分析零部件的各种失效模式及其对安全系统的安全可靠性和作用可靠性的影响,第9卷第5期1999年10月 中国安全科学学报China Safety Science Jour nal V ol.9N o.5O ct .1999 副教授

铁电陶瓷材料的研究现状和应用

铁电陶瓷材料的研究现状和应用 1、层状铁电陶瓷 (1)Bi系 目前,研究较多、并且用于制备铁电陶瓷材料的是钙钛矿结构的锆钛酸铅(简称PZT)系列。此系列的突出优点是剩余极化较大Pr(10~35 μC/cm 2)、热处理温度较低(600℃左右)。但是随着研究的深入,人们发现,在经过累计的极化反转之后PZT系列性能退化,主要表现在出现高的漏电流和较严重的疲劳问题,另外,铅的挥发对人体也有害。因此研究和开发性能优良且无铅的铁电陶瓷具有重要的现实意义。而铋系层状钙钛矿结构材料属于铁电材料类且性能较好又不含铅,因此受到人们的广泛关注。 (2)(Pb,Ba)(Zr,Ti)O3系 (Pb,Ba)(Zr,Ti)O3(简称PBZT)系陶瓷与Pb(Zr,Ti)O3(PZT)同属于ABO3型钙钛矿结构,具有较大的电致伸缩应变,在电子微位移动领域已得到广泛应用。但在使用过程中发现这类铁电陶瓷因其脆性和较低的强度影响了其产品的耐久性和使用寿命,因此改善其机械性能已引起人们的重视。 2、弛豫型铁电陶瓷 弛豫型铁电体(relaxation ferroelectrics,简称RF)是指顺电—铁电转变属于弥散相变的一类铁电材料,它同时具有铁电现象和弛豫现象。与典型铁电体相比,弛豫型铁电体的一个典型特征是复介电常数(ε*(ω) =ε'(ω) ?ε"(ω),ω为角频率)的实部ε'(ω)随温度变化呈现相对宽且变化平缓的峰,其最大ε'(ω)值对应的温度Tm随ω的增加而向高温移动。该特征与结构玻璃(structureglass)化转变、自旋玻璃(spin glass)化转变的特征极为相似。所以,弛豫型铁电体又被称为极性玻璃(polar glass),相应的弛豫铁电相变又被称为极性玻璃化转变。迄今为止,虽然人们对弛豫铁电相变进行了大量的实验测量和理论探索,但是仍然没有被普遍接受的弛豫铁电相变模型,所以对弛豫铁电相变机制的研究一直是该领域研究的热点问题之一。另外,现有的一些弛豫铁电体具有优良的铁电、压电和热释电性能,因而具有广泛而重要的应用。 3、含铅型铁电陶瓷 铌镁酸铅Pb(Mg1.3Nb2.3)O3(简称PMN)铁电陶瓷材料以很高的介电常数、相当大的电致伸缩效应、较低的容温变化率和几乎无滞后的特点,一直受到人们的关注,在多层陶瓷电容器、新型微位移器、执行器和机敏材料器件及新型电致伸缩器件等领域有着巨大的应用前景。

功能陶瓷材料的分类及发展前景

功能陶瓷材料的分类及发展前景 功能陶瓷是指在应用时主要利用其非力学性能的材料,这类材料通常具有一种或多种功能。如电、磁、光、热、化学、生物等功能,以及耦合功能,如压电、压磁、热电、电光、声光、磁光等功能。功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等领域得到广泛应用。 1.电子陶瓷 电子陶瓷包括绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、热释电陶瓷、敏感陶瓷、磁性材料及导电、超导陶瓷。根据电容器陶瓷的介电特性将其分为6类:高频温度补偿型介电陶瓷、高频温度稳定型介电陶瓷、低频高介电系数型介电陶瓷、半导体型介电陶瓷、叠层电容器陶瓷、微波介电陶瓷。其中微波介电陶瓷具有高介电常数、低介电损耗、谐振频率系数小等特点,广泛应用于微波通信、移动通信、卫星通信、广播电视、雷达等领域。 2.热、光学功能陶瓷 耐热陶瓷、隔热陶瓷、导热陶瓷是陶瓷在热学方面的主要应用。其中,耐热陶瓷主要有Al2O3、MgO、SiC等,由于它们具有高温稳定性好,可作为耐火材料应用到冶金行业及其他行业。隔热陶瓷具有很好的隔热效果,被广泛应用于各个领域。 陶瓷材料在光学方面包括吸收陶瓷、陶瓷光信号发生器和光导纤维,利用陶瓷光系数特性在生活中随处可见,如涂料、陶瓷釉。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面广泛应用。陶瓷还是固体激光发生器的重要材料,有红宝石激光器和钇榴石激光器。光导纤维是现代通信信号的主要传输媒介,具有信号损耗低、高保真性、容量大等特性优于金属信号运输线。 透明氧化铝陶瓷是光学陶瓷的典型代表,在透明氧化铝的制造过程中,关键是氧化铝的体积扩散为烧结机制的晶粒长大过程,在原料中加入适当的添加剂如氧化镁,可抑制晶粒的长大。其可用作熔制玻璃的坩埚,红外检测窗材料,照明灯具,还可用于制造电子工业中的集成电路基片等。 3.生物、抗菌陶瓷 生物陶瓷材料可分为生物惰性陶瓷和生物活性陶瓷,生物陶瓷除了用于测量、诊断、治疗外,主要是用作生物硬质组织的代用品,可应用于骨科、整形外科、口腔外科、心血管外科、眼科及普通外科等方面。抗菌材料主要应用于家庭用品、家用电器、玩具及其他领域,

铁电材料及其在存储器领域的应用

目录 摘要 (1) Abstract (1) 1 前言 (1) 2 压电材料 (2) 3 储能用铁电介质材料 (3) 3.1 BaTiO3基陶瓷 (3) 3.2 SrTiO3基陶瓷 (4) 3.3 TiO2陶瓷 (4) 3.4 PMN 基陶瓷以铌镁酸铅 (4) 4 有机铁电薄膜材料 (4) 5 铁电阻变材料 (5) 6 多铁性材料 (5) 7 铁电材料的应用 (5) 7.1 铁电存储器(MFSFET) (6) 7.2 铁电存储器的应用 (8) 8 结语 (9) 参考文献 (10)

铁电材料及其在存储器领域的应用 摘要:铁电材料的优秀电学性能孕育了它广阔的应用前景,其电子元件有着集成度高、能耗小、响应速度快等众多优点。而且目前研究者将铁电材料同其它技术相结合,使新诞生的集成铁电材料性能更为优秀。介绍了铁电材料的发展历史和当前的应用概况。 关键词:铁电材料;铁电性;存储器;应用 Application of ferroelectric materials and in the area of memory Abstract:Ferroelectric materials, one of the current research focuses with numbers of physical advantages such as high integration, low energy consumption and fast response, has broad application prospects in many aspects.Being combined with other physical technologies,the properties of ferroelectric materials can be significantly improved.Describes the historical development of ferroelectric materials and current applications. Keywords:ferroelectric materials;Iron electrical;memorizer ;development 1前言 铁电材料,是指具有铁电效应的一类材料,最早的铁电效应是在1920年由法国人Valasek在罗谢尔盐中发现的,这一发现揭开了研究铁电材料的序幕。在1935 年Busch发现了磷酸二氢钾KH2PO4——简称KDP,其相对介电常数高达30,远远高于当时的其它材料。1940年之后,以BaTiO3为代表的具有钙钛矿结构的铁电材料陆续被发现,这是铁电历史上里程碑式的时期。直至20世纪80年代,随着铁电唯象理论和软膜理论的逐渐完善,铁电晶体物理内涵的研究趋于稳定。20世纪80年代中期,薄膜制备技术的突破为制备高质量的铁电薄膜扫清了障碍,并且近年来随着对器件微型化、功能集成化、可靠性等要求的不断提高,传统的铁电块体由于尺寸限制已经不能满足微电子器件的要求。铁电器件在向薄膜尺寸量级过渡的同时又与半导体工艺结合,研究者们迎来了集成铁电体的时代。集成铁电体是凝聚态物理和固体电子学领域的热门课题之一。铁电材料有着

铁电陶瓷材料

材料工程基础课程铁电陶瓷材料 院系:材料与冶金 专业:金属材料工程 班级:10-材料-1 学号:1061107127 姓名:周联邦 日期:2012-12-3

摘要:本文论述了铁电陶瓷的性质、原理、效应。着重介绍了几种具有代表性的铁电陶瓷材料的研究现状,以及人们在研究过程中产生的新问题。这几种材料主要包括层状铁电陶瓷,弛豫型铁电陶瓷,含铅型铁电陶瓷,无铅型铁电陶瓷,以及反铁电陶瓷材料。最后,对未来的研究与应用前景进行了展望。 关键词:铁电陶瓷;铁电性;性质;效应;钙钛矿;应用;研究 铁电陶瓷是指具有铁电性的陶瓷。材料在一定温度范围内能够自发极化,且自发极化能随外电场取向的性质。 铁电陶瓷特性 铁电陶瓷,主晶相为铁电体的陶瓷材料。 它的主要特性为: (1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相; (2)存在电畴; (3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律; (4)极化强度随外加电场强度而变化,形成电滞回线; (5)介电常数随外加电场呈非线性变化; (6)在电场作用下产生电致伸缩或电致应变。 (7)电性能:高的抗电压强度和介电常数。低的老化率。在一定温度范围内介电常数变化率较小。介电常数或介质的电容量随交流电场或直流电场的变化率小。铁电陶瓷原理 某些电介质可自发极化,在外电场作用下自发极化能重新取向的现象称铁电效应。具有这种性能的陶瓷称铁电陶瓷。铁电陶瓷具有电滞回线和居里温度。在居里温度点,晶体由铁电相转变为非铁电相,其电学、光学、弹性和热学等性质均出现反常现象,如介电常数出现极大值。1941年美国首先制成介电常数高达1100的钛酸钡铁电陶瓷。 主要的铁电陶瓷系统有钛酸钡-锡酸钙和钛酸钡-锆酸钡系高介电常数铁电陶瓷,钛酸钡-锡酸铋系介电常数变化率低的铁电陶瓷,钛酸钡-锆酸钙-铌锆酸铋和钛酸钡-锡酸钡系高压铁电陶瓷以及多钛酸铋及其与钛酸锶等组成的固溶体系低损耗铁电陶瓷等。铁电陶瓷的制造工艺大致相同。例如,钛酸钡系陶瓷用超纯、超细的等摩尔碳酸钡和二氧化钛原料混合均匀,在1150°C左右预烧成钛酸钡。加入少量为改善工艺和电性能所需要的附加剂,如产生阳离子缺位的三价镧、三价铋或五价铌离子附加剂,产生氧离子空位的三价铁、三价钪或三价铝离子,置换钡离子使晶格畸变的二价锶离子以及生成液相、降低烧成温度的氧化镁或二氧化锰等附加剂。经过粉磨或其他方法充分混合,用干压、辊压或挤压等方法成型,再在1350°C左右的氧化气氛中烧成。还可采用热压烧结,高温等静压烧结等方法,以提高产品的质量。 铁电陶瓷材料确定原则 铁电陶瓷配方的确定原则:先移后展,有所侧重;单独考虑,综合调整。 铁电陶瓷的三大效应 展宽效应、移动效应和重叠效应是铁电陶瓷改性的三大效应。 (1)铁电陶瓷居里峰的展宽效应 展宽效应:指铁电陶瓷的ε与温度关系中的峰值扩张得尽可能的宽旷平坦,即不仅使居里峰压低,而且要使峰的肩部上举,从而使材料既具有较小的温度系

引信电子安全系统的发展_孙晓波

引信电子安全系统的发展 孙晓波,曹旭平,李世义,李 杰 (北京理工大学机电工程学院,北京 100081) 摘 要:首先对国外电子安全系统的发展进行了系统概述,介绍了电子安全系统的结构组 成;其次对电子安全系统的技术应用进行了分析,重点介绍了环境信息识别的类型及应用;最 后对其发展的有关技术问题进行了讨论。 关键词:电子安全系统;环境信息;冲击片雷管;引信制导一体化 中图分类号:TJ 43 文献标识码:A 文章编号:1008-1194(2003)02-0046-04 0 引言 现代战争作战环境日益复杂,对武器系统的性能提出了更高的要求。为了达到“武器系统整体效能最优”,各子系统之间的功能渗透、信息融合更为积极主动。新型定向战斗部与多功能战斗部的研制,使得ESAD 功能得到进一步的扩展,ESAD 的应用将日趋广泛。 1 国外的发展 电子安全系统自20世纪70年代在美国首次公开以来,引起了国内外引信界的普遍关注。电子安全系统在国外的发展大体可以概括为三个阶段:概念形成阶段、理论和技术成熟阶段和功能扩展阶段。 1.1 概念形成阶段 1976年美国劳伦斯?利沃莫尔国家实验室的约翰?斯特劳斯于美国战备协会弹药技术部引信分部年会上公布了一种新型雷管——slapper 雷管。此种雷管又被称作EFI (exploding fo il initiator ),能用高压能量(J 量级)起爆内装的纯感炸药。此能量很难在自然环境中重现,所以其安全性高,可靠性高。电子安全系统便是以此为核心部件建立起来的。 80年代初由美国Sandia 国家实验室和Harr y Diamm and 实验室提出了系统组成的一般模式。采用两个物理独立控制芯片、三个能量隔离开关实现冗余保险,至今仍作为电子安全系统研究的基本框架。 1.2 理论和技术成熟阶段 80年代末90年代初,微电子半导体技术的飞速发展,使得电子元器件集成度大幅提高,成本稳步下降。ESA 的设计思想和设计专利不断提出,从而推动了ESA 系统的发展和成熟。 1985年由S .E .fow ler 发表的专利——“自检解保发火控制器”,采用微处理器和一组逻辑网络用于状态控制,使得电子安全机构的安全性和可靠性从技术实现上达到了所要求的水平。 1991年由Will 等发表的“模块化电子安全与解保装置”,对电子安全机构的通用化进行了研究。使用标准的电路机构,将装置模块化,分为逻辑模块、通用的电压控制模块和通用的高能发火模块。逻辑模块是采用时序逻辑设计和只读存储器状态机。 1993年Hunter 发表的——“通用电子安全与解保系统”,将专用集成电路(ASIC )引入电子安全装置,用于状态控制。将一些分立的逻辑器件,如智能与门、锁存器、指令解保寄存器、可编程计数器等集成到一块芯片内,提高了系统集成度,提高了通用性,从而可以针对不同的武器系统,选用不同的I/O 接口电路,进行应用。  第25卷第2期 2003年6月探测与控制学报Journal of Detection &C ontrol Vol.25.No.2Jun.2003X 收稿日期:2002-12-01 作者简介:孙晓波(1978—),男,山东潍坊人,北京理工大学机电工程学院在读研究生,研究方向为电子安全系统。

相关文档
最新文档