UASB和IC反应器的原理及设计

UASB和IC反应器的原理及设计
UASB和IC反应器的原理及设计

目录

UASB反应器1

一、UASB原理1

二、UASB反应器的构成2

1、三相分离器的原理3

2、进水和配水系统的要求3

三、UASB反应器的主要设备4

1、反应器的池体4

2、三相分离器的设计8

3、进水分配系统10

四、其他设计考虑14

1、配水管道设计14

2、出水系统的设计15

3、排泥系统的设计15

4、浮渣清除方法的考虑16

5、防腐措施16

五、附属设备17

1、剩余沼气燃烧器17

2、保温加热设备17

3、监控设备17 IC反应器18

一、IC反应器的原理18

二、IC反应器的设计20

1、COD容积负荷的确定20

2、三相分离器20

3、配水系统20

4、循环系统21

5、高径比的控制21

6、其他22

UASB反应器

一、UASB原理

UASB反应器废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水和污泥颗粒接触的过程。在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持有利。在污泥层形成的一些气体附着在污泥颗粒上,附着和没有附着的气体向反应器顶部上升。上升到表面的污泥撞击三相反应器气体发射器的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,附着和没有附着的气体被收集到反应器顶部的三相分离器的集气室。置于极其使单元缝隙之下的挡板的作用为气体发射器和防止沼气气泡进入沉淀区,否则将引起沉淀区的絮动,会阻碍颗粒沉淀。包含一些剩余固体和污泥颗粒的液体经过分离器缝隙进入沉淀区。

由于分离器的斜壁沉淀区的过流面积在接近水面时增加,因此上升流速在接近排放点降低。由于流速降低污泥絮体在沉淀区可以絮凝和沉淀。累积在三相分离器上的污泥絮体在一定程度上将超过其保持在斜壁上的摩擦力,其将滑回反应区,这部分污泥又将与进水有机物发生反应。

二、UASB反应器的构成

UASB反应器包括以下几个部分:进水和配水系统、反应器的池体和三相分离器。

在UASB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。为了在沉淀器中取得对上升流中污泥絮体/颗粒的满意的沉淀效果,三相分离器第一个主要的目的就是尽可能有效地分离从污泥床/层中产生的沼气,特别是在高负荷的情况下,在集气室下面反射板的作用是防止沼气通过集气室之间的缝隙逸出到沉淀室,另外挡板还有利于减少反应室内高产气量所造成的液体絮动。反应器的设计应该是只要污泥层没有膨胀到沉淀器,污泥颗粒或絮状污泥就能滑回到反应室(应该认识到有时污泥层膨胀到沉淀器中不是一件坏事。相反,存在于沉淀器内的膨胀的泥层将网捕分散的污泥颗粒/絮体,同时它还对可生物降解的溶解性COD起到一定的去除作用)。只一方面,存在一定可供污泥层膨胀的自由空间,以防止重的污泥在暂时性的有机或水力负荷冲击下流失是很重要的。水力和有机(产气率)负荷率两者都会影响到污泥层以及污泥床的膨胀。UASB系统原理是在形成沉降性能良好的污泥凝絮体的基础上,并结合在反应器内设置污泥沉淀系统使气、液、固三相

得到分离。形成和保持沉淀性能良好的污泥(其可以是絮状污泥或颗粒型污泥)是UASB系统良好运行的根本点。

1、三相分离器的原理

在UASB反应器中的三相分离器(GLS)是UASB反应器最有特点和最重要的装置。它同时具有两个功能:①能收集从分离器下的反应室产生的沼气;②使得在分离器之上的悬浮物沉淀下来。对上述两种功能均要求三相分离器的设计避免沼气气泡上升到沉淀区,如其上升到表面将引起出水混浊.降低沉淀效率,并且损失了所产生的沼气。设计三相分离器的原则是:

(1)间隙和出水面的截而积比影响到进入沉淀区和保持在污泥相中的絮体的沉淀速度。

(2)分离器相对于出水液面的位置确定反应区(下部)和沉淀区(上部)的比例。在多数UASB反应器中内部沉淀区是总体积的15%—20%。

(3)三相分离器的倾角这个角度要使固体可滑回到反应器的反应区,在实际中是在45~60℃之间。这个角度也确定了三相分离器的高度,从而确定了所需的材料。

(4)分离器下气液界面的面积确定了沼气的释放速率。适当的释放率大约是1~3m3/(m2·h)。速率低有形成浮渣层的趋势,非常高导致形成气沫层,两者都导致堵塞释放管。

对于低浓度污水处,当水力负荷是限制性设计参数时,在三相分离器缝隙处保持大的过流面积,使得最大的上升流速在这一过水断面上尽可能的低是十分重要的。原则上只有出水截面的面积(而不是缝隙面积)才是决定保持在反应器中最小沉速絮体的关键。

2、进水和配水系统的要求

进水系统兼有配水和水力搅拌的功能,为了保证这两个功能的实现,需要满足如下原则:

(1)进水装置的设计使分配到各点的流量相同,确保单位面积的进水量基本相同,防止发生短路等现象;

(2)很容易观察进水管的堵塞,当堵塞发现后、必须很容易被清除。

(3)应尽可能的(虽然不是必须的)满足污泥床水力搅拌的需要,保证进水有机物与污泥迅速混合.防止局部产生酸化现象。

为确保进水等量地分布在池底,每个进水管仅与—个进水点相连接是最理想状态,只要保证每根配水管流量相等,即可取得均匀布水的要求;因此有必要采用特殊的布水分配装置,以保证一根配水管只服务一个配水点,为了保证每一个进水点达到应得的进水流量,建议采用高于反应器的水箱式(或渠道式)进水分配系统。图1—1给出了一种连续流的布水器形式,这种敞开的布水器的—个好处是可以容易用肉眼观察堵塞情况。对高浓度废水由于水力负荷较低,采用脉冲式进水分配装置是一种较好的选择。

三、UASB反应器的主要设备

1、反应器的池体

有两种基本几何形状的UASB反应器:即矩形和圆形。这两种类型的反应器都已大量应用于实际中。

圆形反应器具有结构较稳定的优点,同时对于圆形反应器在同样的面积下,其周长比正方形的少12%。所以圆形池子的建造费用比具有相同面积的矩形反

应器至少要低12%。但是圆形反应器的这一优点仅仅在采用单个池子时才成立,所以,单个或小的反应器可以建造成圆形的。

而大的反应器经常建成矩形的或方形的。当建立两个或两个以上反应器时,矩形反应器可以采用共用壁。当建造多个矩形反应器时有其优越性。对于采用公共壁的矩形反应器,池型的长宽比对造价也有较大的影响。对于大型UASB反应器建造多个池子的系统是有益的,这可以增加处理系统的适应能力。如果有多个反应池的系统,则可能关闭一个进行维护和修理,而其他单元的反应器继续运行。

混凝土结构的UASB反应器是最为常见的结构和材料型式,但是采用标准化和系列化的设计必须考虑结构的通用性和简单性,在此基础上形成的系列化设计才能有生命力和推广的价值。

(1)平面布置池体的标准化主要是根据三相分离器的尺寸进行布置的,目前生产的三相分离器的平面尺寸是2m×5m。根据这一形式布置池体有以下几种方式(图2-3、2-4和2-5)。图2-3中(a)为整个池表面均采用三相分离器的形式,而(b)是池顶的一部分采用池体本身结构构成气室;这样可以节省一部分三相分离器的投资。整个池子分成单池单个分离器、双池每池单个分离器和单池两个分离器的形式,很明显如果需要也可以构成双池每池两组分离器的形式。由于三相分离器的尺寸的原因,所以池子的宽度是以5m为模数,长度方向是以2m为模数。原则上如果采用管道或渠道布水,池子的长度是不受限制。如前所述出于反应器的长宽比的范围涉及到建筑物的经济性,所以在上述范围内选择要结合池子组数考虑适当的长宽比。

由于反应器的高度推荐范围为4~6m,表2-1给出了5m高的反应器的尺寸选择的系列。从原则上讲安排2m×5m的三相分离器的平面布置还可以有其他多种的平面配合形式如,宽度可以以2m为模数,而长度以10m为模数。构成4m×5m,4m×10m,6m×5m,6m×10m,6m×15m……的系列。甚至可以采用三相分离器横竖混合布置的形式。但是考虑通用性和简单性的原则,推荐表2-1的组合方式。

(2)设备固定形式三相分离器设备固定的形式可以采用牛腿和工字钢支撑的两种形式(图2-6)。需要说明的是由于运行过程中,三相分离器的气室内有一定量的沼气,所以会形成比较大的浮力,需要考虑上部的固定措施,固定措施可以借助出水管和出气管,以及其他形式。池底同样可以采用两种不同的形式(图2-7).其中对于典型的UASB反应器推荐采用因2-7(b)的形式,因为这种结构可以避免布水不均匀形成的死区问题:同时可以减少布水管的投资,但是会增加一定的土建投资。图2-8是采用混凝土反应器的工程图示意,从图见到的是一种可整体安装的三相分离器设计形式。

2、三相分离器的设计

通过对不同大小三相分离器的分析,可以发现三相分离器设计的关键是图

2-16(b)和(c)圆圈中所示的平行四边形中的流速关系。要求选择合理的缝隙宽度(b)和斜面长度(或遮盖宽度),以防止UASB消化区中产生的气泡被上升的液流夹带入沉淀区,造成污泥流失。由图2-16(b)可见,当气泡随液流以速度v沿分离器缝隙上升时,它同时具有垂直向上的速度Vp。在由B点移至A点时,在垂直方向上向上移动距离AC,因此满足以下关系式:

若已知气泡的直径和水温,则Vp由斯托克斯公式等求出。问题是V怎么求,为了简化问题,同时也为了方便、安全,可按下式求V:

式中:Q——UASB装置设计流量

B——装置宽度;

n——缝隙条数;

b——缝隙宽度。

以上计算方法也可类推于其它形式的三相分离器的设计,如图2-16c。

水封高度计算水封高度是控制污泥床反应器小气室高度的参数。根据图2—16(c)反应器中气室的高度h2是由水封有效高度H来加以控制。H的计算值应为:

H=h2+h4-H2

式中:H——为水封后面可能产生的阻力。

分离器锥体的高度h4,一般与所采用的直径有关。h4值的选择应保证气室出气管畅通无阻,防止浮渣堵塞出气管。从实践来看,气室水面上总是有一层浮渣,浮渣的厚度与水质有关,例如,含难消化短纤维较多的污水,浮渣就较多。因此在选择h4时,应当留有浮渣层的高度。此外还需有排放浮渣的出口。当h4选定后再根据流程的实际情况确定H2,此时水封的有效高度H就能确定。

从原则上讲中试装置所采用的UASB反应器和相应的三相分离器与实验室装置没有本质的差别。但是,生产性装置需要考虑三相分离器的型式和一些水力学的问题,以及一些工程放大和安装等问题。

3、进水分配系统

进水分配系统的合理设计对UASB处理厂的良好运转是至关重要的,进水系统兼有配水和水力搅拌的功能,为了这两个功能的实现,需要满足如下原则:a) 确保单位面积的进水量基本相同,以防止短路等现象发生;b) 尽可能满足水力搅拌需要,保证进水有机物与污泥迅速混合;c) 很容易观察到进水管的堵塞;

d) 当堵塞被发现后,很容易被清除。

在生产装置中采用的进水方式大致可分为间歇式(脉冲式)、连续流、连续与间歇相结合等方式;从布水管的形式有一管多孔、一管一孔和分枝状等多种形式。

1) 连续进水方式(一管一孔)

为了确保进水均匀分布,每个进水管线仅仅与一个进水点相连接,是最为理想的情况。为保证每一个进水点的流量相等,建议用高于反应器的水箱(或渠道式)进行分配,通过渠道或分配箱之间的三角堰来保证等量的进水。这种系统的

好处是容易观察到堵塞情况。

2) 脉冲进水方式

我国UASB反应器与国外的最为显著的特点是很多采用脉冲进水方式。有些研究者认为脉冲方式进水,使底层污泥交替进行收缩和膨胀,有助于底层污泥的混合。图3a为北京环科院采用的一种脉冲布水器的原理图,该系统借鉴了给水中虹吸滤池的布水方式。

3) 一管多孔配水方式

采用在反应器池底配水横管上开孔的方式布水,为了配水均匀,要求出水流速不小于2.0m/s。这种配水方式可用于脉冲进水系统。一管多孔式配水方式的问题是容易发生堵塞,因此,应该尽可能避免在一个管上有过多的孔口。

4) 分枝式配水方式

这种配水系统的特点采用较长的配水支管增加沿程阻力,以达到布水均匀的目的。根据实践,最大的分枝布水系统的负荷面积为54m2。大阻力系统配水均匀度好,但水头损失大。小阻力系统水头损失小,如果不影响处理效率,可减少

系统的复杂程度。

对其他类型布水方式,我国也有很多设计和运行经验。与三相分离器一样,不同型式的布水装置之间,很难比较孰优孰劣。事实上,各种类型的布水器都有成功的经验和业绩。

下面是几种布水器:

四、其他设计考虑

1、配水管道设计

对重力布水方式,污水通过三角堰进入反应器时可能吸入空气,会引起对甲烷菌的抑制;进入大量气体与产生的沼气会形成有爆炸可能的混合气体;同时,气泡太多可能还会影响沉淀功能。因为,大于2.0mm直径的气泡在水中以大约0.2~0.3m/s速度上升,采用较大的管径使液体在管道的垂直部分的流速低于这一数值,可适当地避免超过2mm直径的空气泡进入反应器,同时还可避免气阻。在反应器底部用较小直径,形成高的流速产生较强的扰动,使进水与污泥之间混合加强。

污水中存在大的物体可能堵塞进水管,设计良好的进水系统要求可疏通堵塞;对于压力流采用穿孔管布水器(一管多孔或分枝状),需考虑设液体反冲洗或清堵装置,可采用停水分池分段反冲;采用一管多孔布水管道,布水管道尾端最好兼作放空和排泥管,以利于清除堵塞;采用重力流布水方式(一管一孔),如果进水水位差仅仅比反应器的水位稍高(水位差小于10cm),将经常发生堵塞。在水箱中的水位(三角堰的底部)与反应器中的水位差大于30cm很少发生这种堵塞。无论采用那一种布水方式,尽可能少地采用弯头等非直管。

2、出水系统的设计

出水系统的设计在UASB反应器设计中也占有重要地位。因为出水是否均匀也将影响沉淀效果和出水水质。为了保持出水均匀、沉淀区的出水系统通常采用出水渠(槽)。一般每个单元三相分离器沉淀区设一条出水渠,而出水渠每隔一定距离设三角出水堰。常用的布置形式有两种,如图8-22所示。出水渠宽度常采用20cm,水深及渠高由计算确定。

图8-22(b)出水渠的特点是出水渠与集气罩成一整体。有助于装配化和整体安装,简化施工过程。一般出水渠前设挡板,可防止漂浮物随出水带走,可提高出水水质。当所处理废水中含悬浮固体较高,设置挡板是很必要的。如果沉淀区水面的漂浮物很少,有时也可不设挡板。

3、排泥系统的设计

由于厌氧消化过程微生物的不断增长,或进水不可降解悬浮固体的积累,必须在污泥床区定期排除剩余污泥,所以UASB反应器的设计应包括剩余污泥的排除设施。一般认为排去剩余污泥的位置是反应器的1/2高度处。但是大部设计者推荐把排泥设备安装在靠近反应器的低部。也有人在三相分离器下0.5m处设排泥管,以排除污泥床上面部分的剩余絮体污泥,而不会把颗粒污泥排走。UASB 反应器排污泥系统必须同时考虑上,中,下不同位置设排泥设备,应根据生产运行中的具体情况考虑实际排泥的要求,而确定在什么位置排泥。

设置在污泥床区池底的排泥设备,由于污泥的流动性差,必须考虑排泥均匀。因为大型UASB反应器一般不设污泥斗,而池底面积较大,所以必须进行均布多点排泥。每个点服务面积多大合适,尚缺乏具体资料,根据我们经验,建议每

10m2设一个排泥点。当采用穿孔管配水系统时,如能同时把穿孔管兼作穿孔排泥管是较为理想的。专设排泥管管径不应小于200㎜,以防发生堵塞。为了简化设计,可在反应器1/2高度处和三相分离器下0.5m处在池壁分别各设一个排泥口,口径可取100㎜。

此外,在池壁全高上设置苦干(5—6)个取样管,可以取反应器内的污泥样,以随时掌握污泥在高度方向的浓度分布情况。并可计算反应器的污泥总量.以确定是否需要排泥。

4、浮渣清除方法的考虑

有的废水含有一些化合物会促使沉淀区和集气罩的液面形成一层很厚的浮

渣层。厚度太大时会阻碍沼气的顺利释放,或堵塞集气空的排气管,导致部分沼气从沉淀区逸出,严重干扰了沉淀区的固液分离效果。为了清除沉淀区液面和气室液面形成的浮渣层,必须设置专门的清除设备或预防措施。

在沉淀区液面产生的浮渣层,可采用撇渣机或刮渣机清除,其构造与常规的沉淀池和气浮池撇(刮)渣机相同。或采用人工清渣。

在气室形成的浮渣,清除较为困难,可用定期进行循环水或沼气反冲等方法减少或去除浮渣.这时必须设置冲洗管和循环水泵(或气泵)。

5、防腐措施

UASB反应器各部分应采取相应的防腐措施,尤其是当采用钢板制造三相分离器时,必须严加防腐。由于H2S在空气中氧化成H2S04,溶解性C02的腐蚀,所以特别是UASB反应器的上部的混凝土和钢结构必须要采取防腐措施。

五、附属设备

1、剩余沼气燃烧器

一般不允许将剩余沼气向空气中排放,以防污染大气。在确有剩余沼气无法利用时,可安装余气燃烧器将其烧掉。燃烧器应装在安全地区,并应在其前安装阀门和阻火器。剩余气体燃烧器,是—种安全装置,要能自动点火和自动灭火。剩余气体燃烧器和消化池盖、或贮气柜之间的距离,一般至少需要15m,并应设置在容易监视的开阔地。

2、保温加热设备

厌氧消化像其他生物处理工艺一样受温度影响很大,厌氧工艺受温度影响更加显著。中温厌氧消化的最优温度范围从30~35℃,可以计算在20℃和10℃的消化速率大约分别是30℃下最大值的35%和12%。所以,加温和保温的重要性是不言而喻的。如果工厂或附近有可利用的废热或者需要从出水中间收效量,则安装热交换器是必要的。

3、监控设备

为提高厌氧反应器的运行可靠性,必须设置各种类型的计量设备和仪表,如控制进水量、投药量等计量设备和pH计(酸度计)、温度测量等自动化仪表。自动计量设备和仪表是自动控制的基础。对UASB反应器实行监控的目的主要有两个,一个是了解进出水的情况,以便观测进水是否满足工艺设计情况;另外一个目的是为了控制各工艺的运行,判断工艺运行是否正常。由于UASB反应器的特殊性还要增加一些检测项目,如挥发件有机酸(VFA)、碱度和甲烷等。但是,这些设备属于标准设备,一些设备还很难形成在线的测量和控制。

IC反应器

一、IC反应器的原理

IC 反应器的构造特点是具有很大的高径比,一般可达 4 ~8,反应器的高度可达16 ~25m。所以在外形上看,IC 反应器实际上是个厌氧生化反应塔。

由图17-1 可知,进水通过泵由反应器底部进入第一反应室,与该室内的厌氧颗粒污泥均匀混合。废水中所含的大部分有机物在这里被转化成沼气,所产生的沼气被第一反应室的集气罩收集,沼气将沿着提升管上升。沼气上升的同时,把第一反应室的混合液提升至设在反应器顶部的气液分离器,被分离出的沼气由气液分离器顶部的沼气排出管排走。分离出的泥水混合液将沿着回流管回到第一反应室的底部,并与底部的颗粒污泥和进水充分混合,实现第一反应室混合液的内部循环。IC 反应器的命名由此得来。内循环的结果是,第一反应室不仅有很高的生物量、很长的污泥龄,并具有很大的升流速度,使该室内的颗粒污泥完全达到流化状态,有很高的传质速率,使生化反应速率提高,从而大大提高第一反应室的去除有机物能力。经过第一反应室处理过的废水,会自动地进入第二反应室继续处理。废水中的剩余有机物可被第二反应室内的厌氧颗粒污泥进一步降解,使废水得到更好的净化,提高出水水质。产生的沼气由第二反应室的集气罩收集,通过集气管进入气液分离器。第二反应室的泥水混合液进入沉淀区进行固液分离,处理过的上清液由出水管排走,沉淀下来的污泥可自动返回第二反应室。这样,废水就完成了在IC 反应器内处理的全过程。

综上所述可以看出,IC 反应器实际上是由两个上下重叠的UASB 反应器串联组成的。由下面第一个UASB 反应器产生的沼气作为提升的内动力,使升流管与回流管的混合液产生密度差,实现下部混合液的内循环,使废水获得强化预处理。上面的第二个UASB 反应器对废水继续进行后处理(或称精处理),使出水达到预期的处理要求。

下图为BIOPAQ IC reactor的示意图:

夹套搅拌反应器设计(DOCX 30页)

夹套搅拌反应器设计(DOCX 30页)

夹套搅拌反应器设计 课程设计说明书设计题目夹套搅拌反应器设计 学生 学号 专业班级 指导老师耿绍辉 化工设备基础 Nefu.20121228

夹套搅拌反应器设计 目录 第一章设计方案简介 1.1反应釜的基本结构 1.2反应釜的机械设计依据 第二章反应釜机械设计的内容和步骤 第三章反应釜釜体的设计 3.1 罐体和夹套计算 3.2厚度的选择 3.3设备支座 3.4手孔 3.5选择接管、管法兰、设备法兰 第四章搅拌转动系统设计 4.1转动系统设计方案 4.2转动设计计算:定出带型、带轮相关计算 4.3选择轴承 4.4选择联轴器 4.5罐体搅拌轴的结构设计、搅拌器与搅拌轴的连接结构设计4.6电动机选择 第五章绘制装配图 第六章绘制大V带轮零件图 第七章本设计的评价及心得体会 第八章参考文献

夹套搅拌反应器设计 第一章设计方案简介 搅拌设备在石油、化工、食品等工业生产中应用范围很广,尤其是化学工业中,很多的化工生产或多或少地应用着搅拌操作,化学工艺过程的种种物理过程与化学过程,往往要采用搅拌操作才能得到好的效果。搅拌设备在许多场合时作为反应器来应用的,而带搅拌的反应器则以液相物料为特征,有液-液、液-固、液-气等相反应。 搅拌的目的是:1、使互不相溶液体混合均匀,制备均匀混合液、乳化液、强化传质过程;2、使气体在液体中充分分散,强化传质或化学反应;3、制备均匀悬浮液,促使固体加速溶解、浸取或发生液-固化学反应;4、强化传热,防止局部过热或过冷。所以根据搅拌的不同目的,搅拌效果有不同的表示方法。 搅拌操作分为机械搅拌和气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群以密集状态上升借所谓气升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体所进行的搅拌时比较弱的,所以在工业生产,大多数的搅拌操作均是机械搅拌。本设计实验要求的就是机械搅拌搅拌器设备的设计遵循以下三个过程:1根据搅拌目的和物理性质进行搅拌设备的选型。2在选型的基础进行工艺设计与计算。3进行搅拌设备的机械设计与费用评价。在工艺与计算中最重要的是搅拌功率的计算和传热计算。 1.1反应釜的基本结构

UASB反应器设计

一、UASB(日处理525吨渗滤液) 1.取值参数 进水量Q=525m3/d=22m3/h 进水COD值S0=12.75g/L 去除率为65% 采用的容积负荷F=6kgCOD/m3·d Y=0.08Gvss/gCOD K d=0.03g/g·d μm=0.35g/g·d(30-35℃) Ks=360mg/L =0.35m3/kgCOD 甲烷产量CH 4 甲烷气密度0.6346kg/m3 甲烷气体含量65% 甲烷含能量50.1KJ/g 反应器容积有效系数E=90% 2.计算过程及校核 /F=525×12.75×0.65/6=725.16m3 反应器的有效液体容积Vn=Q·S 反应器的总液体容积V =Vn/E=669.375/0.9=805.7m3 L 上升流速v取1.0~1.5m/h,取v=1.5m/h 采用两组厌氧UASB反应器,厌氧循环泵,Q=45m3/h,H=16m,N=5.5KW,四台,两用两备。 /v=(45×2+11)/1.5=69.36m2则单个池体直径D=9.4m 单个反应器面积A=Q 总 校核,当一台循环泵开起时v=Q1/A=(45+11)/69.36=0.8m/h,不启动循环泵时v=Q/A=11/69.36=0.16m/h。 考虑到污泥对配水管的堵塞和保证污泥的悬浮,单个池体一台循环泵长期运行,另一台泵间断脉冲启动。 反应器的液体部分高度H L= V L/A=725.16/69.36/2=5.23m,取5.5m 取反应器气体收集高度2m 集气罩上的复盖水深取0.5m,超高取0.5m 则反应器总高度H= H L+2+0.5+0.5=8.5m

反应器的尺寸为Φ9.4×8.5m,有效水深为8.0米,共2个。 3.加热系统,控制渗滤液水温保持在30℃左右。冬季每天加热所需热值为525×103× 4.2×103J×20×1.2= 5.3×108J。(按照每吨水最高提高20摄氏度,热效率83%),经锅炉数据表查询选择额定蒸发量1t/h,蒸汽温度184摄氏度,小时消耗柴油量67kg的燃油燃气锅炉。锅炉自重1.74吨,尺寸为1,850W×1,510L ×2,880H(单元由设备厂家整体提供安装)。 每天去除的COD总量为525×12750×70%×10-3=4685.63kg/d 沼气产率 0.35m3/kgCOD 每天产生的沼气量 V= 4685.63×0.35 =1640 m3/d 沼气水封罐V=141 m3直径6m,高5m 一座钢制防腐 沼气储罐V=352 m3直径8m,高7m 一座钢制防腐 二、 UASB三相分离器计算书 1.取值参数 进水量Q=525m3/d=22m3/h 进水COD值S0=12.75g/L 共两组UASB反应器,单组处理水量Q=11m3/h 单个反应器三相分离器计算如下: 三相分离器集气罩斜面坡度为60度 池内布置4个集气罩,构成4个分离单元,沼气管流速5.0m/s。 下三角集气罩回流缝的总面积S1=2.66×2+3.91×2=13.14m2 回流缝中混合液上升流速v1=Q/S1=11/13.14=0.84m/h 上三角集气罩回流缝的总面积S2=(6.22×2+9.10×2)×0.325×2=19.92m2

釜式反应器设计说明书123

一概述1.1醋酸乙酯生产工艺的现状和特点 醋酸乙酯分子式C 4H 8 O 2 ,又名:乙酸乙酯,英文名称:acetic ester;ethyl acetate, 简称EA。醋酸乙酯是醋酸工业重要的下游产品,也是一种重要的绿色有机溶剂,溶解能力及快干性能均属上乘,主要用做涂料(油漆和瓷漆)、油墨和粘合剂配方中的活性溶剂,也可用做制药和有机化学合成的工艺溶剂。 EA可用于制造乙酰胺、乙酰醋酸酯、甲基庚烯酮等,并在香料、油漆、医药、火胶棉、硝化纤维、人造革、染料等行业中广泛应用,还可用作萃取剂和脱水剂,亦可用于食品工业。还可用于硝酸纤维、乙基纤维、氯化橡胶和乙烯树脂、乙酸纤维素脂、纤维素乙酸丁酯和合成橡胶等的生产过程;也可用于复印机的液体硝基纤维墨水。在纺织工业中用作清洗剂;在食品工业中作为特殊改性酒精的香味萃取剂;在香料工业中是重要的香料添加剂,可作为调香剂的组份。同时醋酸乙酯本身也是制造染料、香料和药物的原料。在高级油墨、油漆及制鞋用胶生产过程中,对醋酸乙酯的质量要求较高。 当前全球醋酸乙酯的市场状况是:欧美等发达国家醋酸乙酯的市场发展比较成熟,产量和消费量的增长都比较缓慢,亚洲尤其是中国成为醋酸乙酯生产和消费增长最为快速的国家和地区。由于中国国内快速发展的市场,尤其是建筑、汽车等行业的强劲发展,推动国内醋酸乙酯的需求,但是同时,醋酸乙酯生产能力的增长也非常快速,市场未来发展充满了机遇与挑战。 醋酸乙酯消费持续增长的主要原因是它取代了污染空气环境的用于表面涂层和油墨配方的甲乙酮和甲基异丁基酮。醋酸乙酯作为优良溶剂,正逐步替代一些低档溶剂,发展潜力较大。 受消费拉动,20世纪90年代以来,我国醋酸乙酯生产发展迅速。“八五”期间,产量年均增长率为13.0%;1995-2000年,年均增长率达到20.5%;2000-2002年,年均增长率高达30.5%。目前我国有醋酸乙酯生产企业30多家,年产能力为57.2万吨。其中,万吨级以上规模的企业有14家,年产能力为47万吨。2001年5月,山东金沂蒙集团将醋酸乙酯产能增至8万吨/年,2003年6月又扩能至16万吨/年;2001年,上海石化采用黑龙江省石化研究院技术,建成2万吨/年乙醛缩合法生产醋酸乙酯装置;2002年5月,中英合

夹套式反应器温度串级控制控制方案设计

目录 一.概述……………………………………………………………2-6页 1.1化学反应器的基本介绍………………………………… 2-3页 1.2夹套式反应器的控制要求…………………………………3 页 1.3夹套式反应器的扰动变量………………………………3-4页 1.4基本动态方程式…………………………………………4-6页二.控制系统方案的确定…………………………………………6-7页三.控制系统设计…………………………………………………7-18页 3.1被控变量和控制变量的选择………………………………7-8页 3.2主、副回路的设计…………………………………………8-9页 3.3现场仪表选型………………………………………………9-12页 3.4主、副控制器正反作用选择………………………………12-13页 3.5控制系统方框图……………………………………………13页 3.6分析被控对象特性及控制算法的选择……………………13-14页 3.7控制系统整定及参数整定…………………………………14-18页四.课程设计总结……………………………………………………18页五.结束语……………………………………………………………18页六.参考文献…………………………………………………………19页

一概述 1.1 化学反应器的基本介绍 反应器(或称反应釜)是化工生产中常用的典型设备,种类很多。化学反应器在结构、物料流程、反应机理、传热、传质等方面存在差异,使自控的难易程度相差很大,自控方案差别也比较大。 化学反应器可以按进出物料状况、流程的进行方式、结构形式、传热情况四 个方面分类: 一、按反应器进出物料状况可分为间歇式和连续式反应器 通常将半连续和间歇生产方式称为间歇生产过程。间歇式反应器是将反应物 料分次获一次加入反应器中,经过一定反应时间后取出反应中所有的物料,然后重新加料在进行反应。间歇式反应器通常适用于小批量、多品种、多功能、高附加值、技术密集型产品的生产,这类生产反应时间长活对反应过程的反应温度有严格程序要求。 连续反应器则是物料连续加入,化学反应连续不断地进行,产品不断的取出,是工业生产最常用的一种。一些大型的、基本化工产品的反应器都采用连续的形式。 二、从物料流程的进行方式可分为单程与循环两类 物料在通过反应器后不再进行循环的流程称为单程,当反应的转化率和产率都较高时,可采用单程的排列。如果反应速度较慢,祸首化学平衡的限制,物料一次通过反应器转化不完全,则必须在产品进行分离后,把没有反应的物料与新鲜物料混合后,再送送入反应器进行反应。这种流程称为循环流程。 三、从反应器结构形式可分为釜式、管式、塔式、固定床、流化床、移动床反应器等。 四、从传热情况可分为绝热式反应器和非绝热式反应器[1]。 绝热式反应器与外界不进行热量交换,非绝热式反应器与外界进行热量交换。一般当反应过程的热效应大时,必须对反应器进行换热,其换热方式有夹套式、蛇管式、列管式等。如今用的最广泛的是夹套传热方式,且采用最普通的夹套结构居多。随着化学工业的发展,单套生产装置的产量越来越大,促使了反应设备的大型化。也大大促进了夹套反应器的反展。 夹套式反应器是一类重要的化工生产设备,由于化学反应过程伴有许多化学和物理现象以及能量、物料平衡和物料、动量、热量和物质传递等过程,因此夹套反应器操作一般都比较复杂,夹套反应器的自动控制就尤为重要,他直接关系到产品的质量、产量和安全生产。

UASB厌氧反应器操作说明书

UASB厌氧反应器操作说明书 一 UASB厌氧反应器的原理: 在UASB厌氧反应器内,厌氧细菌对有机物进行三个步骤的降解:(1)水解、酸化阶段;(2)产氢产乙酸阶段;(3)产甲烷阶段,使污染物质得到去除,并产生沼气和厌氧污泥。 通过UASB内部的三相分离器的作用,实现水、污泥、沼气的分离,污泥回流至UASB底部,沼气经收集后进行沼气利用系统,清水至后续处理。 UASB厌氧反应器的操作说明 1开车: 认真执行交接班制度,提前5分钟上岗,了解上一班的情况(如UASB进水水温、水量、COD、PH值、NH3-N、SO42-,以及UASB出水水温、COD、PH 值、VFA等,并要上厌氧反应器巡视出水有无异常现象)掌握本班的生产要求,做好班前检查工作,熟悉厌氧塔进水泵的运行情况。 在预处理中废水达到工艺控制参数后,既可开启厌氧泵往UASB进水。 2操作过程: 1)在预处理的废水满足厌氧处理所需的进水条件后,启动厌氧泵向UASB反应器进水。启动厌氧泵之前检查需检查泵是否正常,开启泵后,检查流量计显示,判断废水是否正常输出。调节泵的出口阀门,将各厌氧反应器的流量调节到规定范围;起用泵前一定要详细检查该泵的运转纪录,确认该泵无异常后方可启用。2)密切注意厌氧反应器上部出水情况,要注意跑泥现象,防止出水带泥过多,一般小于20%,定期清理溢流堰口的堵塞物,但需注意防止跌落溺水。 3)密切关注厌氧反应器出水的COD、PH值、VFA、温度等指标,防止反应器

工艺指标变化过大; 4)经常巡视厌氧反应器顶部水面的情况,防止大量气体溢出; 5)经常观察水封中的水位,将水封水位控制在一定高度; 6)根据需要,每班进行取样送检,并根据化验结果判断厌氧反应器的运行状况。3停止: 1)当预处理没有足够的废水或预处理水质达不到工艺控制控制要求时,反应器停止进水,待预处理正常后,再恢复进水;但在停水时要密切注意反应器内的温度变化,如温度下降多(超过5℃),再次进水时就先需将反应器的温度升至原正常运行时的温度,防止因温度变化的原因使反应器运行出现问题; 2)当反应器出水带泥过多(SV≥20%要密切关注)或出水水质变差时,减少反应器的进水量或改为间歇进水,防止反应器的深度恶化; 3)当UASB出水VFA大于8或UASB的COD去除率小于50%,适当减少反应器的进水量或改为间歇进水,甚至停止进水,防止反应器的深度恶化。 4、设备使用和维修说明: 1)定期对UASB反应器的拦杆、平台、水封、机泵等设备进行清洗、油漆等保养;清理时要注意正在运转的设备内部不能清理; 2)经常对UASB出水堰进行清理,防止水堰的堵塞;对于清理溢流堰口的时,应在溢流堰口上铺上木板、搭上平台,防止溺水; 1)厌氧进水泵在运行时,需经常检查,并注意水泵的压力变化,以及出口流量变化,防止泵烧坏或泵空转等现象出现; 2)经常检查流量计计数的变化,防止进水量的波动;

乙酸乙酯反应器设计说明书(河南城建)

乙酸乙酯反应器设计说明书 专业:化学工程与工艺 姓名:xxx 学号:1014111 指导教师:赵海鹏 化学与材料工程学院 2014年5月

主要符号一览表V——反应釜的体积 t——反应时间 c——反应物A的起始浓度 A f——反应器的填充系数 D——反应釜的内径 i H——反应器筒体的高度 P——操作压力 P c——设计压力 φ——取焊缝系数 [σ]t——钢板的许用应力 C1——钢板的负偏差 C2——钢板的腐蚀裕量 S——筒壁的计算厚度 S——筒壁的设计厚度 d S——筒壁的名义厚度 n H——反应器夹套筒体的高度 j v——封头的体积 P——水压试验压力 T D——夹套的内径 j

目 录 绪论 ................................................................................................... 错误!未定义书签。 第1章 设计方案 ....................................................................................................................... 3 第二章 物料计算及方案选择 (3) 2.1间歇进料的计算 ................................................................................................................. 3 2.2连续性进料的计算 ............................................................................................................. 4 2.3方案选择 ............................................................................................................................. 6 第3章 热量核算 .. (7) 3.1热量衡算总式 (7) 3.2每摩尔各种物值在不同条件下的 ,p m c 值 (8) 3.3各种气象物质的参数如下表 ............................................................................................. 9 3.4每摩尔物质在100℃下的焓值 .......................................................................................... 9 3.5总能量衡算 ....................................................................................................................... 10 3.6换热设计 ........................................................................................................................... 11 第4章 反应釜釜体设计 (15) 4.1反应器的直径和高度 ....................................................................................................... 15 4.2筒体壁厚的设计 ............................................................................................................... 16 4.3釜体封头厚 ....................................................................................................................... 16 第5章 反应釜夹套的设计 .. (18) 5.1夹套DN 、PN 的确定 ...................................................................................................... 18 5.2夹套筒体的壁厚 ............................................................................................................... 18 5.3夹套筒体的高度 ............................................................................................................... 19 5.4夹套的封头 ....................................................................................................................... 19 5.5传热面积校核 ................................................................................................................... 19 第6章 反应釜釜体及夹套的压力试验 (20) 6.1釜体的水压试验 ............................................................................................................... 20 6.2夹套的液压试验 ............................................................................................................... 21 第7章 搅拌器的选型 . (22) 7.1搅拌桨的尺寸及安装位置 ............................................................................................... 22 7.2搅拌功率的计算 ............................................................................................................... 22 7.3搅拌轴的的初步计算 ....................................................................................................... 21 7.4夹套式反应釜附属装置的确定 ....................................................................................... 21 总结 24 致谢 25 参考书目 26

乙酸乙酯反应器课程设计

《反应工程》 课程设计说明书 院(部)名称化学与材料工程学院学生姓名 设计项目乙酸乙酯的反应器设计 指导教师 专业班级化学工程与工艺

前言 反应工程课程设计是《化工设备机械基础》和《反应工程》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试反应釜机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 反应工程是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: 1、熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的 数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 2、在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要 求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 3、准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 4、用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算 结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

UASB厌氧处理技术调试经验总 结

UASB厌氧处理技术调试经验总结在废水的厌氧生物处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨。在此过程中,不同的微生物的代谢过程相互影响、制约,形成复杂的生态系统,此生态系统在UASB反应系统中直观表现为颗粒污泥。 有机物在废水中以悬浮物或胶体的形式存在,它们的厌氧降解过程可分为四个阶段。 (1)水解阶段,微生物利用酶将大分子切割成小分子; (2)发酵(或酸化)阶段,小分子有机物被发酵菌利用,在细胞内转化为简单的化合物,这一阶段的主要产物有挥发酸、醇类、乳酸、二氧化碳、氢气、氨和硫化氢等; (3)产乙酸阶段,此阶段中上一阶段的产物被进一步转化为乙酸等物质; (4)产甲烷阶段,在此阶段乙酸、氢气、碳酸等被转化为甲烷、二氧化碳。上述四个阶段的进行,大分子有机物被转化为无机物,水质变好,同时微生物得到了生长。 1、UASB升流式厌氧污泥床反应器 升流式厌氧污泥床反应器即UASB其基本特征是在反应器的上部设置气、固、液三相分离器,下部为污泥悬浮层区和污泥床区。污水从底部流入,向上升流至顶部流出,混合液在沉淀区进行固液分离,污泥可自行回流到污泥床区,使污泥床区保持很高的污泥浓度。从构造和功能上划分,UASB反应器主要由进水配水系统、反应区(污泥床区和污泥悬浮层区)、沉淀区、三相分离器、集气排气系统、排泥系统及出水系统和浮渣清除系统组成。其工作的基本原理为:在厌氧状态下,微生物分解有机物产生的沼气在上升过程中产生强烈的搅动,有利于颗粒污泥的形成和维持。废水均匀地进入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床,在与污泥颗粒的接触过程中发生厌氧反应,经过反应的混合液上升流动进入三相分离器。沼气泡和附着沼气泡的污泥

反应器设计说明书

反应器设计 工艺计算 (1)计算反应物的流量 污水的体积流量V A 为: V A = 10m 3 /h 液氧的体积流量V B 为: V B =0.0772m 3/h 进料气的总体积流量为: V o = 10+0.0772=10.0772 m 3 /h=0.0028 m 3 /s 空间时间 τ=500s (5)计算所需反应器的容积 V R =τV 0 所需反应器的容积为: V R =τV O =500×0.0028=1.4 m 3 按照GB150-1998《钢制压力容器》进行结构设计计算。 1、筒体 (1) 筒体内径:900mm (2) 筒体高度h=2200mm 设计压力:P c =30MPa 设计温度取400? C 筒体材料:2520钢 焊接接头系数 Φ=1.0 钢板厚度负偏差C 1=0,腐蚀裕量C 2=1.0mm,厚度附加量C= C 1+ C 2=1.0mm. 筒体的计算厚度计算 δ = P D P c i t c 2[]σφ-=26.73mm 考虑厚度附加量并圆整至钢板厚度系列,得材料名义厚度δn = 28. 强度校核 有效厚度δe =δn - C 1- C 2= 27 σt = e e i c d p δδ2) (+=497 <[σ]t φ=520mpa 符合强度要求。 (2)根据筒径选用非金属软垫片: 垫片厚度:3 垫片外径:865 垫片内径:815

表3-2 筒体法兰数据 2、封头 (1)封头内径:900mm 设计压力:c p =30mpa 设计温度取400? C 封头材料:2520钢 焊接接头系数 Φ=1.0 钢板厚度负偏差C 1=0,腐蚀裕量C 2=1.0mm,厚度附加量C= C 1+ C 2=1.0mm. 封头的计算厚度计算 选用标准椭圆形封头,K=1.0 δ = c t i c 5.0][2P D KP -φσ= 1.03090026.34m m 25201-0.530??=??? 考虑厚度附加量并圆整至钢板厚度系列,取封头名义厚度与筒体厚度相同,得材料名义厚度δn = 28mm. 强度校核 有效厚度δe =δn - C 1- C 2=27mm σt = e e i c 2) 5.0(δδ+KD P =30 1.09000.527507.5227??+?=?() MPa<[σ]t φ = 520MPa 符合强度要求。 接管计算(按照GB150-1998) 接管材料为2520号钢,筒体材料为2520号钢 (1)污水进口接管 []3090026.7325201302c i t c p d m m p δσ??===??-- u V d i π04=取u=3 m/s,求的34.3i d m m = 圆整取 485?? 接管材料2520钢 液氧进口接管 体积流量为V=2.14?10-5 取u=0.5 m/s 管径为7.38i d m m == 取174??的热轧无缝钢管

乙酸乙酯反应器设计

青海大学《化工过程设备设计Ⅱ》 设计说明书 设计题目:年产×103t乙酸乙酯反应器设计 班级:2013级化工2班 姓名:邬天贵 学号:30

前言 乙酸乙酯,又称醋酸乙酯,分子式C4H8O2。它是一种无色透明易挥发的可燃性液体,呈强烈清凉菠萝香气和葡萄酒香味。乙酸乙酯能很好的溶于乙醇、氯仿、乙醚、甘油、丙二醇和大多数非挥发性油等有机溶剂中,稍溶于水,25℃时,1ml乙酸乙酯可溶于10ml水中,而且在碱性溶液中易分解成乙酸和乙醇。水能使其缓慢分解而呈酸性。乙酸乙酯与水和乙醇都能形成二元共沸混合物,与水形成的共沸物沸点为℃,其中含水量为%(质量分数)。与乙醇形成的共沸物沸点为℃。还与%的水和%的乙醇形成三元共沸物,其沸点为℃。 乙酸乙酯应用最广泛的脂肪酸酯之一,具有优良的溶解性能,是一种较好的工业溶剂,已经被广泛应用于醋酸纤维、乙基纤维、氯化橡胶、乙醛纤维树脂、合成橡胶等的生产,也可用于生产复印机用液体硝基纤维墨水,在纺织工业中用作清洗剂,在食品工业中用作特殊改性酒精的香味萃取剂,在香料工业中是最重要的香味添加剂,可作为调香剂的组分,乙酸乙酯也可用作黏合剂的溶剂,油漆的稀释剂以

及作为制造药物、染料等的原料。 目前,国内外市场需求不断增加。在人类不断注重环保的今天,在涂料油墨生产中采用高档溶剂是大势所趋。作为高档溶剂,乙酸乙酯在国内外的应用在持续稳定的增长,在建筑、汽车等行业的迅速发展,也会带动对乙酸乙酯类溶剂的需求。 工业生产技术 目前全球乙酸乙酯工业生产方法主要有醋酸酯化法、乙醛缩合法、乙醇脱氢法和乙烯加成法等。传统的醋酸酯化法工艺在国外被逐步淘汰,而大规模生产装置主要采用后三种方法,其中新建装置多采用乙烯加成法。本设计采用醋酸酯化法。 醋酸酯化法 在硫酸催化剂作用下,醋酸和乙醇直接酯化生成乙酸乙酯。该工艺方法技术成熟,投资少,操作简单,但缺点是生产成本高、硫酸对设备腐蚀性强、副反应多、产品处理困难、环境污染严重。目前我国大多数企业仍采用醋酸酯化法生产乙酸乙酯。

UASB反应器的设计计算

第二章啤酒废水处理构筑物设计与计算 第一节格栅的设计计算 一、设计说明 格栅由一组平行的金属栅条或筛网制成,安装在废水渠道的进口处,用于截留较大的悬浮物或漂浮物,主要对水泵起保护作用,另外可减轻后续构筑物的处理负荷。 二、设计参数 取中格栅;栅条间隙d=10mm; = 栅前水深 h=;格栅前渠道超高 h 2 过栅流速v=s; 安装倾角α=45°;设计流量Q=5000m3/d=s 三、设计计算 (一)栅条间隙数(n) =×√(sin45)÷÷÷ = 取n=21条 式中: Q ------------- 设计流量,m3/s α------------- 格栅倾角,取450

b ------------- 栅条间隙,取 h ------------- 栅前水深,取 v ------------- 过栅流速,取s ; (二)栅槽总宽度(B) 设计采用宽10 mm 长50 mm ,迎水面为圆形的矩形栅条,即s= B=S ×(n-1)+b ×n =×(21-1)+×21 = m 式中: S -------------- 格条宽度,取 n -------------- 格栅间隙数, b -------------- 栅条间隙,取 (三)进水渠道渐宽部分长度(l 1) 设进水渠道内流速为s,则进水渠道宽B 1=, 渐宽部分展开角1 取为20° 则 l 1= 1 1 2B B tg = =

l进水渠道间宽部位的长度,m L2----------格栅槽与出水渠道连接处的渐窄部位的长度,m B -------------- 栅槽总宽度,m B 1 -------------- 进水渠道宽度,m 1 -------------- 进水渠展开角,度 (四)栅槽与出水渠道连接处的渐窄部分长度(l 2 ) l 2= l 1 /2=2 = (五)过栅水头损失(h 1 ) 取k=3,β=(栅条断面为半圆形的矩形),v=s h o =β×(S÷b)4/3×V^2÷2÷g×sinα =×÷ 4/3×^2÷2÷×sin45 = m h 1=k×h =3× = m

(完整)反应器初步设计说明书

1

目录 第 1 章反应器设计 (1) 1.1 反应器设计概述 (1) 1.2 反应器的选型 (1) 第 2 章催化剂 (3) 2.1 催化剂的选择 (3) 2.2 催化剂失活的原因 (3) 2.3 催化剂再生的方法 (3) 第 3 章丙烷脱氢反应器 (4) 3.1 主反应及副反应方程式 (4) 3.2 反应机理 (4) 3.3 动力学方程 (4) 3.3.1 催化反应动力学模型 (4) 3.3.2 失活动力学 (5) 3.4 反应器设计思路说明 (6) 3.4.1 反应条件 (6) 3.4.2 反应器类型的选择 (7) 3.4.3 反应器数学模拟 (7) 3.4.4 反应器体积的计算 (7) 3.5 催化剂设计 (11) 3.5.1 催化剂用量 (11) 3.5.2 催化剂来源 (11) 3.5.3 催化剂的装填 (11) 3.6 反应器内部结构设计 (11) 3.6.1 催化剂床层开孔 (11) 3.6.2 催化剂分布器 (12) 3.6.3 气体分布器 (12) 2

3.7 反应器管口计算 (12) 3.7.1 进料管(以第一台反应器为例) (12) 3.7.2 出料管 (13) 3.7.3 吹扫空气入口 (13) 3.7.4 催化剂进料口 (13) 3.7.5 催化剂出口 (13) 3.7.6 排净口 (13) 3.7.7 人孔 (14) 3.7.8 催化剂床层固定钢 (14) 3.8 加热炉 (14) 3.9 机械强度的计算和校核 (14) 3.9.1 反应器材料的选择 (14) 3.9.2 反应器筒体厚度的选择 (14) 3.9.3 反应器封头厚度的计算 (15) 3.9.4 液压试验校核 (16) 3.9.5 反应器强度校核 (16) 3.9.6 反应器封头的选择 (25) 3.10 设计结果总结(以第一台反应器为例) (26) 第 4 章乙炔选择性加氢反应器 (26) 4.1 概述 (26) 4.2 反应方程式 (27) 4.3 催化剂的选用 (27) 4.4 设计简述 (27) 4.5 在Polymath中的模拟与优化 (29) 4.6 选择性加氢反应器总结 (30) 第 5 章参考文献 (30) 3

UASB反应器的原理

UASB反应器的原理 升流式厌氧污泥床(UASB)反应器是由Lettinga在七十年代开发的。图2是UASB反应器及其设备的示意图。废水被尽可能均匀的引入到UASB反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水与污泥颗粒的接触过程,反应产生的沼气引起了内部的循环。附着和没有附着在污泥上的沼气向反应器顶部上升,碰击到三相分离器气体发射板,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,气体被收集到反应器顶部的三相分离器的集气室。一些污泥颗粒会经过分离器缝隙进入沉淀区。UASB反应器包括以下几个部分:进水和配水系统、反应器的池体和三相分离器(图2)。如果考虑整个厌氧系统还应该包括沼气收集和利用系统。在UASB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。 2、反应器的池体几何形状 第一个生产性的UASB反应器(200m3)和在圣保罗CETESB处理生活污水的中试厂(1 20m3)具有特殊的形状,即上部的(沉淀池的)截面积大于下部反应区的截面积(图3a)。较大表面积的沉淀器的水力负荷较低,有利于保持反应器内的污泥,对于低浓度污水尤为重要。但是对于高浓度污水,有机负荷比水力负荷更重要,因此沉淀池截面没有必要设计为较大的表面积(图3b)。但是实际上不论是在建的或已投入运转的大部分生产规模的UASB反应器,在反应器的反应和沉淀部分是等面积的(图3c所示)。建筑直壁的反应器比斜壁的具有较大(或较小) 沉淀池的反应器在结构上更加有利。因此,以下仅讨论直壁的UASB反应器。 从反应器的形状有矩形和圆形这两种反应器,已大量应用于实际中。圆形反应器具有结构较稳定的优点,同时对于圆形反应器在同样的面积下,其周长比正方形的少12%。所

釜式反应器设计说明书123

一概述 1.1醋酸乙酯生产工艺的现状和特点 醋酸乙酯分子式C4H8O2,又名:乙酸乙酯,英文名称:acetic ester;ethyl acetate,简称EA。醋酸乙酯是醋酸工业重要的下游产品,也是一种重要的绿色有机溶剂,溶解能力及快干性能均属上乘,主要用做涂料(油漆和瓷漆)、油墨和粘合剂配方中的活性溶剂,也可用做制药和有机化学合成的工艺溶剂。 EA可用于制造乙酰胺、乙酰醋酸酯、甲基庚烯酮等,并在香料、油漆、医药、火胶棉、硝化纤维、人造革、染料等行业中广泛应用,还可用作萃取剂和脱水剂,亦可用于食品工业。还可用于硝酸纤维、乙基纤维、氯化橡胶和乙烯树脂、乙酸纤维素脂、纤维素乙酸丁酯和合成橡胶等的生产过程;也可用于复印机的液体硝基纤维墨水。在纺织工业中用作清洗剂;在食品工业中作为特殊改性酒精的香味萃取剂;在香料工业中是重要的香料添加剂,可作为调香剂的组份。同时醋酸乙酯本身也是制造染料、香料和药物的原料。在高级油墨、油漆及制鞋用胶生产过程中,对醋酸乙酯的质量要求较高。 当前全球醋酸乙酯的市场状况是:欧美等发达国家醋酸乙酯的市场发展比较成熟,产量和消费量的增长都比较缓慢,亚洲尤其是中国成为醋酸乙酯生产和消费增长最为快速的国家和地区。由于中国国内快速发展的市场,尤其是建筑、汽车等行业的强劲发展,推动国内醋酸乙酯的需求,但是同时,醋酸乙酯生产能力的增长也非常快速,市场未来发展充满了机遇与挑战。 醋酸乙酯消费持续增长的主要原因是它取代了污染空气环境的用于表面涂层和油墨

配方的甲乙酮和甲基异丁基酮。醋酸乙酯作为优良溶剂,正逐步替代一些低档溶剂,发展潜力较大。 受消费拉动,20世纪90年代以来,我国醋酸乙酯生产发展迅速。“八五”期间,产量年均增长率为13.0%;1995-2000年,年均增长率达到20.5%;2000-2002年,年均增长率高达30.5%。目前我国有醋酸乙酯生产企业30多家,年产能力为57.2万吨。其中,万吨级以上规模的企业有14家,年产能力为47万吨。2001年5月,山东金沂蒙集团将醋酸乙酯产能增至8万吨/年,2003年6月又扩能至16万吨/年;2001年,上海石化采用黑龙江省石化研究院技术,建成2万吨/年乙醛缩合法生产醋酸乙酯装置;2002年5月,中英合资BP--扬子江乙酰化工有限公司8万吨/年醋酸乙酯装置投产,采用BP 切换式醋酸乙酯技术生产醋酸乙酯和醋酸丁酯,工艺技术国内领先;2001年,江西南昌赣江溶剂厂将醋酸乙酯年产能力从2万吨扩至8万吨;2003年,江门谦信化工发展有限公司将产能从1.5万吨/年扩至3.5万吨/年。近2-3年内,国内新增醋酸乙酯年产能力达31万吨。 虽然我国醋酸乙酯市场仍有潜力,但由于扩能速度太快,近两年已出现开工率不足的现象。据了解,2002年国内装置平均开工率约77%,预计2003年平均开工率将为66%。目前市场已经饱和,产品价格呈走软趋势,利润已渐微薄。而在建和拟建醋酸乙酯项目尚有20万吨/年产能。如果这些项目到2005年如期投产,我国醋酸乙酯供应将平衡有余。随着国内新增能力陆续投产,近两年我国醋酸乙酯进口量有所下降。2001年进口5.35万吨,2002年进口4.8万吨,2003年上半年进口2.45万吨。 醋酸乙酯制备方法主要有醋酸酯化法、乙醛缩合法、乙醇脱氢法和乙烯加成法。 用醋酸和乙醇酯化制醋酸乙酯是开发较早,工艺成熟,且为目前主要采用的方法。反应在酸催化剂(如硫酸)存在下进行液相酯化,分为间歇法和连续法。间歇法使用釜式反

UASB反应器设计参考

UASB反应器设计参考对于中等浓度和高浓度的有机废水,一般情况下, 有机容积负荷率是限制因素,反应器的容积与废水量、废水浓度和允许的有机物容积负荷去除率有关。设计容积负荷为=15kgCOD/( d),COD 去除率为93%,则UASB反应器有效容为: 式中—设计流量,; —容积负荷,kg/( ); —进水COD浓度,mg/L; —出水COD浓度,mg/L; —容积负荷,kg/( )。 则= 2、UASB反应器的形状和尺寸 据资料,经济的反应器高度一般为4—6m之间,并且在大多数情况下这也是系统优化的运行范围。升流式厌氧污泥床的池形有矩形、方形和圆形。圆形反应器具有结构较稳定的特点,但是建造圆形反应器的三相分离器要比矩形和方形反应器复杂得多,因此本设计选用矩形池。从布水均匀性和经济性考虑,矩形池长宽比在2:1左右较为合适。 设计反应器的有效高度为h=6m,则横截面积S= ㎡ 设池长L约为池宽B的两倍,则可取池长L=25m,宽B=13m。 一般应用时反应器装夜量为70%—90%,本工程设计反应器总高度H=7.5m,其中超高0.5m 。 反应器的总容积V=BLH=25×13×(7.5-0.5)=2275 ,有效容积为1930.4 ,则体积有效系数为84.85%,符合有机负荷要求。 3、水力停留时间(HRT)和水力负荷率() 对于颗粒污泥,水力负荷=0.1—0.9 ,符合要求 3.6.2.2 进水分配系统的设计 1、布水点设置 进水方式的选择应根据进水浓度及进水流量而定,通常采用的是连续均匀进水方式。布水点的数量可选择一管一点或一管多点的布水方式,布水点数量与处理废水的流量、进水浓度、容积负荷等因素有关。 Lettinga等推荐的UASB反应器进料喷嘴数设置标准见表4.7 由于所取容积负荷为15kgCOD/( d),因此每个点的布水负荷面积大于2 。本次设计池中共设置84个布水点,则每点负荷面积为: ㎡ 表4.7 UASB反应器进料喷嘴数设置标准 污泥性质进水容积负荷/[kgCOD/(m3?d)] 每个进水点负荷面积/m2 密实的絮体污泥度>40kgTSS/m3 <1 1~2 >2 0.5~1

加氢反应器筒体制造工艺设计课程设计说明书

过程装备制造与检测课程设计说明书题目:加氢反应器筒体制造工艺设计 学生姓名: 学号: 院(系): 专业: 指导教师:

目录 1.设计题目 (1) 2.设计背景 (1) 3.设备介绍及其发展 (1) 4.设计相关内容 (1) 4.1引用的主要标准及规范 (1) 4.2主要技术参数 (2) 4.3产品特点及问题分析 (2) 5.加氢反应器筒体制造 (3) 5.1筒体制造过程简明流程图 (3) 5.2筒体制造工艺过程卡片 (4) 5.3工艺设计 (5) 5.3.1选材 (5) 5.3.2材检 (5) 5.3.3划线 (7) 5.4 下料 (8) 5.5筒节的成形 (8) 5.5.1筒节弯卷成形分析 (8) 5.5.2成形设备分析 (10) 5.5.3弯卷成形的设计及相关计算 (9) 5.6装焊纵缝 (11) 5.7筒体内壁堆焊 (11) 5.6.1堆焊原理 (11) 5.6.2工艺参数选择 (12) 5.6.3优缺点及应用范围 (13) 5.6.4堆焊工艺设计 (14) 6.心得体会 (15)

参考文献 (16) 一设计题目 氢反应器筒体制造工艺设计 二设计背景 工程科学是关于工程实践的科学基础,现代过程装备与控制工程是工程科学的一个分支,因此,生产实习是工科学习的重要环节。在兰州兰石集团实习期间,对化工设备的发展前景和各种化工容器如反应釜、换热器、储罐、分液器和塔器等的有所了解和学习。生产实习的主要任务是学习化工设备的制造工艺和生产流程,将理论知识与生产实践相结合,理论应用于实际。因此,过程装备与检测的课程设计的设置是十分必要的。 由于我们实习的加工车间正在进行加氢反应器的生产,而加氢反应器是石油化工行业的关键设备,其生产工艺和设计制造在化工设备中具有显著的代表性,为此,选择加氢反应器这一典型的化工设备作为课程设计的设计题目。 三设备介绍及其发展 石油工业中常用的加氢反应器有两类:一类用于高沸点液体或固体(固体需先溶于溶剂或加热熔融)原料的液相加氢过程,如油脂加氢、重质油品的加氢裂解等。另一类反应器用于气相连续加氢过程。反应器的类型可以是列管式或塔式。根据化工生产的实际情况,相应选择合理的结构形式。 加氢反应器是石油化工行业的关键设备,通常是在高温(350-480℃)、高压(0一 25MPa)、临氢、有硫化氢等腐蚀介质的恶劣工作条件下运行。早期由于冶金水平和制造工业水平有限,多采用冷壁结构形式的加氢反应器。所谓冷壁一般指设计金属壁温在300℃以下的加氢反应器,为保持温度,一般在反应器壳体内壁装焊保温钉增设一定厚度的隔热内衬层。20世纪70年代以来,随着冶金、轧制、锻造工艺技术的不断提高,已能够生产出既严格控制化学成分又能保证良好综合力学性能的优质、大厚度加氢用钢板或大型锻件,且先进的可保证特殊技术要求的不锈钢堆焊材料和堆焊技术、工艺技术也已经成熟,近30年来,加氢技术发展迅速,热壁加氢反应器的应用更加广泛。热壁加氢反应器与冷壁加氢反应器相比具有以下显著优点:(1)在相同外形尺寸条件下,增大了反应器内部的有效容积,提高了生产能力;(2) 由于无内衬隔热层,避免了内衬板易破坏造成壳体局部超温导致局部鼓泡破坏;(3) 避免了上述原因造成设备频繁停车修复所造成经济和产量上的损失。因此,热壁加氢反应器逐步取代了冷壁加氢反应器,且具有越来越大型化的趋势。 四设计相关内容

相关文档
最新文档