太阳能电池基本知识

第三章太阳能电池的基本原理

本章以单晶硅pn结太阳能电池为例,介绍半导体太阳能电池的基本工作原理、

一、太阳能电池的结构和基本工作原理

产生了电动势。因而光伏效应是半导体电池实现光电转换的理论基础,也是某些光电器

们将来仔细分析一下pn结的光伏效应。

部。能量大于禁带宽度的光子,由本征吸收在结的两边产生电子-空穴对。在光激发下多

无光照光照激发

1、半导体材料对一定波长的入射光有足够大的光吸收系数α,即要求入射光子的能量hν大

所以这两种电池都可以而硅太阳能电池,对太

产生了一个与平衡pn结内建电场相反的光生电场,于是在p区

的界面或表面产生光生载流子,在势垒区电场的作用下,光生产生光生电压。

汽,推动发电机发电;原子能发电则是以核裂变放出的能量代替燃烧石油或煤,而水力发电

太阳能电池的结构

单晶硅太

扩散n型杂质,形

构。为取出

玻璃衬底非

先在玻璃衬底上淀

然后依次用等离子

型和n 型三层a-Si

衬底上沉积pin非晶

后与单晶硅电池一

二、太阳能电池的输出特性

1、光电池的电流电压特性

压V作用下的pn结正向电流I,流经外电路的电流I。I和I都

p n

L

结正向电流I

I

根据p-n结整流方

程,在正向偏压下,通过

结的正向电流为:

I F=I s[exp(qV/kT)-1]

其中:V是光生电压,I

s

反向饱和电流。

随光照深入而减少,即产生率Q是x函数。为了简便起见,散到p-n结面而进入另一边,这样光生电流I应该是:

这就是负载电阻上电流与电压的关系,也就是光电池的伏安特性方程。

左图分别

太阳能电池基本特性测定试验

太阳能电池基本特性测定实验 太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为23%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。 太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。我们开设此太阳能电池的特性研究实验,通过实验了解太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的物理实验,联系科技开发实际,有一定的新颖性和实用价值。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线; UI U I曲线图;并测量太阳能变化关系,画出2. 有光照时,测量电池在不同负载电阻下,对IUP FF;及填充因子电池的短路电流、开路电压、最大输出功率SCaxOCm IU L的关系,求出它们的近似函数关系。与光照度 3. 测量太阳能电池的短路电流、开路电压SCOC 【实验仪器】 白炽灯源、太阳能电池板、光照度计、电压表、电流表、滑线变阻器、稳压电源、单刀开关 连接导线若干 供参考. 】【实验原理 区,pn区流向结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由太阳光照在半导体

薄膜太阳能电池基础知识整理

非晶硅薄膜太阳能电池基础知识 一、优点: 1.光谱特性好(弱光性好、光谱吸收范围宽) 2.温度特性好(温度上升时电池效率下降很小) 3.成本能耗低(硅用量少:2um、生产温度底:200度) 4.生产效率高(连续,大面积,自动化生产) 5.使用方便(重量轻,厚度薄.可弯曲,易携带) 6.无毒无污染、美观大方 缺点: 二、非晶硅薄膜太阳能电池的四个效应: 1.光电效应 2.光致衰退效应(薄膜经较长时间的强光照射或电流通过,在其内部将产生缺陷而 使薄膜的使用性能下降,简称为S-W效应) 3.边缘效应(边缘效率比中心效率低) 4.面积效应(面积越大,效率越低) 三、结构 1.一般结构 2.非晶\微晶硅叠层结构

衬底:玻璃、不锈钢、特种塑料 TOC :透明导电氧化膜(要求:透光性>80%、表面绒面度12~15% 面电阻R 9~13 Ω ) 四、原理 非晶硅太阳电池的工作原理是基于半导体的光伏效应。当太阳光照射到电池上时,电池吸收光层(i 层)能产生光生电子—空穴对,在电池内建电场Vb 的作用下,光生电子和空穴被分离,空穴漂移到P 边,电子漂移到N 边,形成光生电动势VL, VL 与内建电势Vb 相反,当VL = Vb 时,达到平衡; IL = 0, VL 达到最大值,称之为开路电压Voc ; 当外电路接通时,则形成最大光电流,称之为短路电流Isc ,此时VL= 0;当外电路加入负载时,则维持某一光电压VL 和光电流IL 。其I--V 特性曲线见图 3 SiO2(20~40nm) TCO(700~1000nm) a-si(~300nm) SiO2(100nm) μc-Si (~1.7μm ) AZO (~100nm) Ag (130~200nm)

《太阳能电池基础与应用》太阳能电池-第四章-4

第四章
4.1 3 4.2 4.3 3 4.4 4.5 4.6
太阳电池基础
光生伏特效应 光生载流子的浓度和电流 太阳电池的伏安特性 太阳电池的性能表征 太阳电池的测试技术 太阳电池的效率分析

4.6 太阳电池效率分析-极限效率
太阳电池的理论效率
VOC I SC ? FF ?? ?100% Pin
当入射太阳光谱AM0或AM1.5确定后, 为获得较高的转换效率, 需要增加Voc、Isc和FF
填充因子FF
在理想情况下(当voc>10),填充因子FF仅是开路电压Voc的函数
Voc的函 数
voc ? ln(voc ? 0.72) q FF ? voc ? Voc , voc ? 1 kT

4.6 太阳电池效率分析-极限效率
短路电流Isc
I sc ? ? I L I L ? qAG ? Le ? W ? Lh ? ,
假设到达电池表面的每一个能量大于材料禁 带宽度Eg的光子,会产生一个电子-空穴对。 将光通量对波长进行积分,可以得到产生率G。
开路电压Voc
Voc ?
2
? kT ? I L ln ? ? 1? q ? I0 ?
? Eg ? I 0 =1.5 ? 10 exp ? ? ? kT ? ?
5
Eg ) I0∝ ni ? N C N V exp(? kT
禁带宽度Eg减小,I0增加,Voc减小

4.6 太阳电池效率分析-极限效率
最佳带隙宽度
禁带宽度Eg减小
Isc增加
Voc减小

太阳能电池片的相关参数

硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~ 0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为 0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。

⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw/㎡=100mw/cm2。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

太阳能电池基本特性的测量(讲义)

太阳能电池基本特性的测量 太阳能的利用和太阳能电池特性研究是21世纪新型能源开发的重点课题。目前硅太阳能电池应用领域除人造卫星和宇宙飞船外,已大量用于民用领域:如太阳能汽车、太阳能游艇、太阳能收音机、太阳能计算机、太阳能乡村电站等。太阳能是一种清洁、“绿色”能源,因此,世界各国十分重视对太阳能电池的研究和利用。本实验的目的主要是探讨太阳能电池的基本特性,太阳能电池能够吸收光的能量,并将所吸收的光子能量转换为电能。 【实验目的】 1. 在没有光照时,太阳能电池主要结构为一个二极管,测量该二极管在正向偏压时的伏安 特性曲线,并求得电压和电流关系的经验公式。 2. 测量太阳能电池在光照时的输出伏安特性,作出伏安特性曲线图,从图中求得它的短路 电流(SC I )、开路电压(OC U )、最大输出功率m P 及填充因子FF , )]U I /(P FF [OC SC m ?=。填充因子是代表太阳能电池性能优劣的一个重要参数。 3. 测量太阳能电池的光照特性:测量短路电流SC I 和相对光强度0J /J 之间关系,画出SC I 与相对光强0J /J 之间的关系图;测量开路电压OC U 和相对光强度0J /J 之间的关系,画出OC U 与相对光强0J /J 之间的关系图。 【实验原理】 太阳能电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I 的关系式为: )1e (I I U o -?=β (1) (1)式中,o I 和β是常数。

由半导体理论,二极管主要是由能隙为V C E E -的半导体构成,如图1所示。C E 为半导体导电带,V E 为半导体价电带。当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。电子和空穴对会分别受到二极管之内电场的影响而产生光电流。 假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个理想二极管、一个并联电阻sh R 与一个电阻s R 所组成,如图2所示。 图2中,ph I 为太阳能电池在光照时的等效电源输出电流,d I 为光照时通过太阳能电池内部二极管的电流。由基尔霍夫定律得: 0R )I I I (U IR sh d ph s =---+ (2) (2)式中,I 为太阳能电池的输出电流,U 为输出电压。由(1)式可得, d sh ph sh s I R U I )R R 1(I --=+ (3) 假定∞=sh R 和0R s =,太阳能电池可简化为图3所示电路。 这里,)1e (I I I I I U 0ph d ph --=-=β。 在短路时,0U =,sc ph I I =; 而在开路时,0I =,0)1e (I I oc U 0sc =--β; ∴]1I I ln[1U 0 sc OC +β = (4)

太阳能电池工作原理和应用

太阳能电池的分类简介 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降 低其成本很困难,为了节省硅材料,发展了多晶硅 薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代 产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10%(截 止2011,为17%)。因此,多晶硅薄膜电池不久 将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

2)多晶体薄膜电池 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产 品。 砷化镓(GaAs)III-V化合物电池的转换效率 可达28%,GaAs化合物材料具有十分理想的光学 带隙以及较高的吸收效率,抗辐照能力强,对热 不敏感,适合于制造高效单结电池。但是GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs电池的普及。 (3)有机聚合物电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (5)有机薄膜电池 有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的 6)染料敏化电池 染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。 (7)塑料电池 塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。 太阳能工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。太阳能电池是一种大有前途的新型

太阳能电池性能参数

太阳能电池性能参数 1、开路电压 开路电压UOC:即将太阳能电池置于AM1.5光谱条件、100 mW/cm2的光源强度照射下,在两端开路时,太阳能电池的输出电压值。 2、短路电流 短路电流ISC:就是将太阳能电池置于AM1.5光谱条件、100 mW/cm2的光源强度照射下,在输出端短路时,流过太阳能电池两端的电流值。 3、最大输出功率 太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最大输出功率,用符号Pm表示。此时的工作电压和工作电流称为最佳工作电压和最佳工作电流,分别用符号Um和Im表示。 4、填充因子 太阳能电池的另一个重要参数是填充因子FF(fill factor),它是最大输出功率与开路电压和短路电流乘积之比。 FF:是衡量太阳能电池输出特性的重要指标,是代表太阳能电池在带最佳负载时,能输出的最大功率的特性,其值越大表示太阳能电池的输出功率越大。FF 的值始终小于1。串、并联电阻对填充因子有较大影响。串联电阻越大,短路电流下降越多,填充因子也随之减少的越多;并联电阻越小,其分电流就越大,导致开路电压就下降的越多,填充因子随之也下降的越多。 5、转换效率 太阳能电池的转换效率指在外部回路上连接最佳负载电阻时的最大能量转换效率,等于太阳能电池的输出功率与入射到太阳能电池表面的能量之比。太阳能电池的光电转换效率是衡量电池质量和技术水平的重要参数,它与电池的结构、结特性、材料性质、工作温度、放射性粒子辐射损伤和环境变化等有关。

图2.4.1 太阳能电池输出特性曲线

《太阳能电池基础与应用》太阳能电池-第四章-1

第四章 太阳电池基础 光生载流子的浓度和电流4.2太阳电池的测试技术4.4光生伏特效应34.1太阳电池的伏安特性34.34.5太阳电池的效率分析 太阳电池的性能表征4.6

太阳电池基本结构 以晶体硅太阳电池为例。 (1)以p型晶体硅半导体材料为衬底; (2)为了减少光的反射损失,常制作绒面减反结构(3)采用扩散法在硅衬底上制作重掺杂的n型层(4)PECVD生长SiO 减反层 2 (5)在n型层上面制作金属栅线,作为正面接触电极(6)在衬底背面制作金属膜,作为背面欧姆接触电极

半导体 吸收光子产生电子空穴对,电子空穴对在p-n结内建电场作用下分离,从而在p-n结两端产生电动势。 p-n结是太阳电池的核心 光生载流子形成一个与热平衡结电场方向相反的电场,使得势垒降低;光生电流与正向结电流相等时,pn结建立稳定的电势差,即光生电压 Electric Field

载流子运动的角度 太阳电池工作原理:当太阳光照射到太阳电池上并被吸收时,其中 的光子能把价带中电子激发到导带上去,形成 能量大于禁带宽度E g 自由电子,价带中留下带正电的自由空穴,即电子—空穴对,通常 称它们为光生载流子。自由电子和空穴在不停的运动中扩散到p-n结的空间电荷区,被该区的内建电场分离,电子被扫到电池的n型一例,空穴被扫到电池的p型一侧,从而在电池上下两面(两极)分别形成了正负电荷积累,产生“光生电压”,即“光伏效应”。如果在电 池的两端接上负载,在持续的太阳光照下,就会不断有电流经过负载。这就是太阳电池的基本工作原理。

能带的角度 持续光照条件下,大量的光生载流子产生,光生电子和空穴被源源不断地分别扫到n型和p型一两侧,致使n区和p区费米能级的分裂,若太阳电池断路,光生电压V即为开路电压V 。若外电路短路,pn结正向电流为 oc 零,外电路电流为短路电流,理想情况下也就是光电流。

太阳能光伏发电必须掌握的基础知识

太阳能光伏发电必须掌握的基础知识 1、太阳能光伏系统的组成和原理 太阳能光伏系统由以下三部分组成: 太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。 太阳能光伏系统具有以下的特点: -没有转动部件,不产生噪音; -没有空气污染、不排放废水; -没有燃烧过程,不需要燃料; -xx 简单,维护费用低; -运行可靠性、稳定性好; -作为关键部件的太阳电池使用寿命长,晶体硅太阳电池寿命可达到25 年以上;根据需要很容易扩大发电规模。 光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类: 独立发电系统和并网发电系统。应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。随着技术发展和世界经济可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW 级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~ 2W的 太阳能庭院灯,大到MW 级的太阳能光伏电站,如 3.75kWp 家用型屋顶发电设 备、敦煌10MW 项目。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结 构和工作原理基本相同。图4-1 是一个典型的供应直流负载的光伏系统示意图。其中包含了光伏系统中的几个主要部件:

光伏组件方阵: 由太阳电池组件(也称光伏电池组件)按照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。 蓄电池: 将太阳电池组件产生的电能储存起来,当光照不足或晚上、或者负载需求大于太阳电池组件所发的电量时,将储存的电能释放以满足负载的能量需求,它是太阳能光伏系统的储能部件。目前太阳能光伏系统常用的是铅酸蓄电池,对于较高要求的系统,通常采用深放电阀控式密封铅酸蓄电池、深放电吸液式铅酸蓄电池等。 控制器: 它对蓄电池的充、放电条件加以规定和控制,并按照负载的电源需求控制太阳电池组件和蓄电池对负载的电能输出,是整个系统的核心控制部分。随着太阳能光伏产业的发展,控制器的功能越来越强大,有将传统的控制部分、逆变器以及监测系统集成的趋势,如AES公司的SPP和SMD系列的控制器就集成了上述三种功能。 逆变器: 在太阳能光伏供电系统中,如果含有交流负载,那么就要使用逆变器设备,将太阳电池组件产生的直流电或者蓄电池释放的直流电转化为负载需要的交流电。 太阳能光伏供电系统的基本工作原理就是在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。光伏系统的应用具有多种形式,但是其基本原理大同小异。对 于其他类型的光伏系统只是在控制机理和系统部件上根据实际的需要有所不同,下面将对不同类型的光伏系统进行详细地描述。 直流负载的光伏系统 2、光伏系统的分类与介绍 小型太阳能供电系统(Small DC ;简单直流系统(Simple DC ;大型太阳能供

太阳能电池基础知识

一,基础知识 (1)太阳能电池的发电原理 太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置. ?半导体的光电效应所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电子组成.半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和电子的结合力降低,电子摆脱原子核的束搏,成为自由电子. 光激励 核核 电子 空穴电子 电子对?PN 结合型太阳能电池 太阳能电池是由 P 型半导体和 N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子 ,当 P 型和 N 型半导体结合时在结合处会形成电势当芯 片在受光过程中,带正电的空穴往 P 型区移动,带负电子的电子往 N 型区移动,在接上连线和负载后,就形成电流.. (2)太阳能电池种类 - ++- - +P 型

铸 造 2 工 PN 结合(正面 N 极,反 面 P 极 ) 减 反膜形成 通过电极,汇集电 ※在现在的太阳能电池产品中,以硅半导体材料为主,其中又以单晶硅和多晶硅为代表.由于 其原材料的广泛性,较高的转换效率和可靠性,被市场广泛接受.非晶硅在民用产品上也有 广泛的应用(如电子手表,计算器等),但是它的稳定性和转换效率劣于结晶类半导体材料. 化合物太阳能电池由于其材料的稀有性和部分材料具有公害,现阶段未被市场广泛采用. ※现在太阳能电池的主流产品的材料是半导体硅,是现代电子工业的必不可少的材料,同时 以氧化状态的硅原料是世界上第二大的储藏物质. ※京瓷公司早在上世纪的八十年代就认识到多晶硅太阳能电池的光阔前景和美好未来,率先 开启多晶硅太阳能电池的工业化生产大门.现在已经是行业的龙头,同时多晶硅太阳能电 池也结晶类太阳能电池的主流产品(太阳能电池的 70%以上). (3)多晶硅太阳能电池的制造方法 空间用 民用 转换效率:24% 转换效率:10% 转换效率:8% (1400 度以上) 破锭(150mm *155mm ) N 极烧结 电极 印刷 ( 正 反

硅太阳能电池的主要性能参数

硅太阳能电池的主要性能参数 本信息来源于太阳能人才网|https://www.360docs.net/doc/779999877.html, 原文链接: 硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im ×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。 ⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。 串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw /㎡=100mw/cm2。 电池组件的板型设计 在生产电池组件之前,就要对电池组件的外型尺寸、输出功率以及电池片的排列布局等进行设计,这种设计在业内就叫太阳能电池组件的板型设计。电池组件板型设计的过程是一个对电池组件的外型尺寸、输出功率、电池片排列布局等因素综合考虑的过程。设计者既要了解电池片的性能参数,还要了解电池组件的生产工艺过程和用户的使用需求,做到电池组件尺寸合理,电池片排布紧凑美观。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

太阳能电池的基本特性与性能参数

1、太阳能电池的基本特性 太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电池的伏安特性三个基本特性。具体解释如下 1、太阳能电池的极性 硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。 2、太阳电池的性能参数 太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。 3 太阳能电池的伏安特性 P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,大于Eg的能量则会以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。 2、有关太阳电池的性能参数 1、开路电压 开路电压UOC:即将太阳能电池置于100 mW/cm2的光源照射下,在两端开路时,太阳能电池的输出电压值。 2、短路电流 短路电流ISC:就是将太阳能电池置于标准光源的照射下,在输出端短路时,流过太阳能电池两端的电流。 3、大输出功率

太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最

(整理)太阳能电池各电性能参数-草稿.

太阳能电池各电性能参数的本质及工艺意义 ?武宇涛 ? 电性能参数主要有:V oc,Isc,Rs,Rsh,FF,Eff,Irev1,… 电性能参数在生产过程中尤其是在实时的生产控制现场,非常及时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要的参考作用。 从可控性难易角度来说,V oc,Rs,Rsh,主要和原材料及生产工艺的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称之为长程可控参数。而Isc,FF, Irev1与工艺现场的调控联系紧密,对各调控参数比较敏感,可称之为短程可控参数。 当然我们最关心的是效率Eff。而Eff则是以上所有参数的综合表现。 太阳能电池的理论基础建立在以下几个经典公式之上: Voc=(KT/q)×ln(Isc/Io+1) Voc=(KT/q)×ln(N aNd/ni2) 1 2 FF=Pm/(Voc×Isc)=Vm×Im/ (Voc×Isc) 3 4

Eff=Pm/(APin)=FF×Voc×Isc/APin=FF×Voc×Jsc/Pin 5 图-1太阳能电池的I-V曲线 图-2太阳能电池等效电路 从上面5式我们可以看到,与效率直接相关的电性能参数主要有:FF,Voc, Isc。在生产中我们还比较关心暗电流情况:Irev1,由1式可以看出,它与Voc有比较紧密地联系(实际也是这样的)。 为了更好地说明各参数间的联系,这里先录用几组数据如下:

表-1 线别Uoc Isc FF Rs Rsh EFF Irev>6>16%Isc>8.2Voc>620FF>78 P156(71)0.6188.2177.20.00381816.11%0.17%78.73%56.2%33.1% 1.3% P156(62)0.6168.2176.60.00413315.92%0.53%56.06%55.2%18.1%0.4% E-CELL(LY)0.6277.2978.10.00312914.68% 1.23%40.03%20.3%69.8%65.8% 以上P156均系LDK片源。 1,Voc 由于光生电子-空穴对在内建场的作用下分别被收集到耗尽层的两端,从而形成电势。所以我们认为Voc是内建电场即PN 结扫集电流的能力的直观表现。 由上面公式1所反映,Voc主要与电池片的参杂浓度(Nd)相关。对于宽△Eg的电池材料,相对会有比较高的Voc;但△Eg过高,又会导致光吸收效率的迅速下降(主要是长波段响应降低),使Isc是降低,所以需要找到一个最佳掺杂深度值。另一方面,高参杂又会引入更多的复合中心,使复合电流增加,同样也降低了Voc。所以在没有引起复合电流增加或者其增量比较小的前提下,参杂浓度的提高对Voc总是有益的。 在上表所示的三种成品电池片中,P156的片子与E-CELL 片子Voc有着显著的不同,这显然是由于冶金级硅的杂质浓度过大导致的。而对于62栅线和71栅线的电池片,由于其总体参杂浓度并没有显著的改变,所以其开压并没有显著差别。从上表还可以看出,E-CELL电池的Isc已经比比另两者有显著降低,我们可以认为对于P156的正常多晶硅电池片其Voc在620mv左右达

太阳能电池板基础知识详解

太阳能电池板基础知识详解 2010年07月29日 15:21 一基础知识 (1)太阳能电池板的发电原理 太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置. ●半导体的光电效应 所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电子组成.半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和电子的结合力降低,电子摆脱原子核的束搏,成为自由电子. ●PN 结合型太阳能电池 太阳能电池是由P 型半导体和N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子,当P 型和N 型半导体结合时在结合处会形成电势当芯片在受光过程中,带正电的空穴往P 型区移动,带负电子的电子往N 型区移动,在接上连线和负载后,就形成电流. (2)太阳能电池种类 ※在现在的太阳能电池产品中,以硅半导体材料为主,其中又以单晶硅和多晶硅为代表.由于其原材料的广泛性,较高的转换效率和可靠性,被市场广泛接受.非晶硅在民用产品上也有广泛的应用(如电子手表,计算器等),但是它的稳定性和转换效率劣于结晶类半导体材料.化合物太阳能电池由于其材料的稀有性和部分材料具有公害,现阶段未被市场广泛采用. ※现在太阳能电池的主流产品的材料是半导体硅,是现代电子工业的必不可少的材料,同时以氧化状态的硅原料是世界上第二大的储藏物质. (3)多晶硅太阳能电池的制造方法 (4)太阳能电池关连的名称和含义 ●转换效率 太阳能电池的转换效率是指电池将接收到的光能转换成电能的比率 ※标准测试状态 由于太阳能电池的输出受太阳能的辐射强度,温度等自然条件的影响,为了表述太阳能电池的输出和评价其性能,设定在太阳能电池板的表面温度为25 度,太阳能辐射强度为1000 w/㎡、分光分布AM1.5 的模拟光源条件下的测试为标准测试状态. 小知识 晶硅类理论转换效率极限为29%,而现在的太阳能电池的转换效率为17%~19%,因此,太阳能电池的技术上还有很大的发展空间 ●太阳能电池输出特性 【太阳能电池电流---电压特性(I-V 曲线)】 ●太阳能电池对环境的贡献 ①对防止地球温暖化,减轻对地球环境的贡献 从太阳能发电系统排放的二氧化碳,即使是考虑其生产过程的排放量,也绝对少于传统的燃料发电设备,是防止地球温暖化的环保设备.同时在发电时,不排放氧化硫,氧化氮等污染物,减轻了对环境的压力. 例:3kW 太阳能发电系统对环境污染物的削减量

《太阳能电池基础与应用》期中

第 1 页 绝密★启用前 江西冶金职业技术学院 2013-2014学年第一学期《太阳能电池基础与应用》期中考试试卷 一、选择题(请在备选答案中选出最恰当的一项,每小题2分,共20分) 1、在衡量太阳电池输出特性参数中,表征最大输出功率与太阳电池短路电流和开路电压乘积比值的是( )。 A 、转换效率 B 、填充因子 C 、光谱响应 D 、方块电阻 2、下列表征太阳电池的参数中,哪个不属于太阳电池电学性能的主要参数( )。 A .开路电压 B.短路电流 C. 填充因子 D 、掺杂浓渡 3、某单片太阳电池测得其填充因子为77.3%,其开路电压为0.62V ,短路电流为5.24A,其测试输入功率为15.625W,则此太阳电池的光电转换效率为( )。 A 、16.07% B 、15.31% C 、16.92% D 、14.83% 4、太阳能光伏发电系统的最核心的器件是( )。 A 、控制器 B 、逆变器 C 、太阳电池 D 、蓄电池 5、下列选项中,不属于减反射膜材料的是( )。 A 、TiO2 B 、SiF4 C 、SiNx D 、SiO2 6、目前已被实用化的太阳能电池中98%使用的是( )材料。 A 、硅 B 、锗 C 、镓 D 、铟 7、下列仪器中,用来测量方块电阻的是( ) A 、少子寿命测量仪 B 、辉光放电质谱仪 C 、金相电子显微镜 D 、四探针测试仪 8、硅在常温下很稳定,只能与 发生反应生成 。( ) A 、HCL 和SiCl 4 B 、HNO 3和SiNx C 、F 2和SiF 4 D 、HF 和SiF 4 9、磷硅玻璃由( )组成。 A CF 4 B SiO 2 C 磷 D SiF 4 10、单晶硅绒面呈( )形。 A 、三角形 B 、金字塔形 C 、圆形 D 、正方形 二、填空题(每空 1分,共 20分) 11、晶体硅太阳电池制造设备主要由 、 、RENA 后清洗机、 、丝网印刷机、 等。 12、丝网印刷工艺流程主要分为三步,分别是 , 和 。 13、去PSG 中用到的化学试剂是HF ,它的反应方程式是 。 14、刻蚀分为干法刻蚀和 刻蚀;其中,等离子体刻蚀属 刻蚀。 15、三氯氢硅氢还原法制多晶硅的化学反应式是: 。 16、丝网印刷的目的是 17、PECVD 的中文是 ,它的目的是 。 18、直拉法生产单晶硅的设备是 。 19、Isc 的中文意思是 ,Uoc 的中文意思是 20、125Χ125mm 规格的单晶硅太阳能电池,它的输出电压是 V ,输出功率是 W 左右 21、粗硅制备的化学原理 三、判断题(每小题2分,共20分) 22、太阳能电池片的正面电极为正极 ( ) 23、光伏组件参数的测试中,不需要冰雹测试。 ( ) 24、人体吸入高浓度氧气会引起“氧中毒”。 ( ) 25、光伏企业一般采用氢氧化钠溶液在80~90度腐蚀数分钟来出去晶体硅表面的机械损伤层。 ( ) 26、各向异性腐蚀主要用于单晶硅绒面制备。 ( ) 27、SiNx 减反射膜既有减少光的反射作用,又能对表面进行钝化。 ( ) 28、TPT 的作用是为了防水和绝缘。( ) 29、硅烷法是目前国际上多晶硅制造的主流工艺。 ( ) 30、实现多晶硅定向凝固生长的方法有四种,常用的是布里奇曼法。 ( ) 31、POCl 3在有O 2的情况下分解为P 2O 5和Cl 2。( ) 四、简答题( 每小题6 分,共30分) 32、为什么要对太阳能电池片进行组合和封装? 33、写出太阳能电池片的生产流程。 34、丝网印刷的工作原理? 适用班级:12光伏班 姓名: 系部:机电工程系 出卷人:聂行 密 封 线

太阳能电池片各参数异常的原因总结

电池片各参数异常的原因 Isc 1234????????????偏低的原因: 、绒面较差光反射率较大;、扩散方块电阻偏低磷掺杂过多;、丝网印刷第三道出现虚印、断线或者副栅线宽度过宽 等现象电流不能被有效地收集;、烧结炉温度出现较大波动; 1. 容易理解。 2. 重掺杂会加大表面复合 3. 容易理解 4. 烧结不好引起欧姆接触不好,致使串联电阻增大 Voc 1pn 234??????????????????偏低的原因: 、绒面较差扩散结不均匀;、扩散方块电阻偏高无法形成有效的电势差; 铝浆型号用错;、丝网印刷第二道铝浆搅拌不均匀;印刷重量偏低;、烧结温度出现波动; 1. 方块电阻不均匀,结深高低不一致,烧结Ag 电极渗透中,有的地方接触不好,有的地方可能过烧 2. 即掺杂太少 3. Rs 1234?????????? 偏高的原因: 、绒面较差电极接触不均匀;、扩散方块电阻偏高接触电阻增大;、丝网印刷第三道出现虚印、断线接触电阻增大; 、烧结炉温度出现较大波动; Rsh 1pn 2pn 3pn pn 45pn ????????????????????????????偏低的原因: 、绒面较差扩散结不均匀; 、扩散方块电阻偏高结过浅;未完全刻蚀边缘漏电;、刻蚀过度刻蚀结被破坏;硅片表面被浆料污染(尤其是铝浆污染)结被破坏;、丝网印刷漏浆上下电极发生短路,产生漏电;、烧结温度过高结被破坏;

1. 2.扩散方块电阻偏高,即扩散掺杂浓度低,导致内建电场偏低,耗尽区电阻变小 3. 未完全刻蚀必然导致边缘漏电,容易理解;过度刻蚀导致并联电阻降低,是因为PN 结所占的横截面积变小,所以耗尽层总电阻变小。 4. 铝浆在N 区的扩散会破环PN 结,因为它是受主杂质。正面滴落的铝浆,有可能在烧结过程中扩散穿过PN 结,导致PN 结被破环发生短路。如果硅片边缘附有漏浆,可直接引起边缘漏电。 5. 烧结温度太高,可导致Ag 的扩散太大,以致穿过PN 结,直接导致短路 FF 1Rs Rs 2Rsh Rsh ???偏低的原因: 、偏高(参考偏高的产生原因);、偏低(参考偏低的产生原因);

太阳能电池及其应用

太阳能光电工程学院 《太阳能电池及其应用》 课程设计报告书 题目:非晶硅及微晶硅薄膜太阳能电池的研究现状与未来展望姓名:陈易昭 专业:光伏材料应用技术 班级: 准考证号:014411304221 设计成绩: 指导教师:

摘要 本设计主要阐述了非晶硅薄膜电池、多晶硅薄膜电池原理、制备方法,从材料、工艺与转换效率等方面讨论了它们的优势和不足之处,并提出改进方法。但是,当前大规模产业化的非晶硅薄膜电池效率偏低,为了实现光伏发电平价上网,必须对薄膜硅太阳能电池进行持续的研究。本设计也总结了提高薄膜硅太阳能电池效率的主要技术与进展,如TCO技术、窗口层技术、叠层电池技术和中间层技术等,这些技术用在产业化中将会进一步提高薄膜硅太阳能电池的转换效率,进而降低薄膜硅电池的生产成本。硅薄膜电池技术是光伏领域中最具低成本优势的光伏技术,目前已成为各国光伏计划支持的重点,相比非晶硅相变区的微晶硅薄膜太阳能电池几乎没有光致衰退,具有良好的长波段光谱响应特性,可以与非晶硅薄膜电池相结合制备成叠层电池。本设计也重点关注于微晶硅薄膜电池的研究进展以及制备的柔性衬底上电池的特殊性相对于单晶硅和非晶硅来说,微晶硅薄膜太阳电池具有更多的优势.高速沉积高效微晶硅太阳电池已经成为当前研究的热点.综合介绍了微晶硅p-i-n太阳电池的结构以及基本原理、研究现状和存在的问题,并对其发展前景进行了展望。最后让我们展望一下薄膜太阳能电池的发展前景。 关键词:太阳能电池;薄膜电池;非晶硅;多晶硅;微晶硅;光伏建筑;最新进展

目录 绪言 (3) 1.非晶硅(a-Si)薄膜太阳能电池 (4) 1.1 原理及及结构 (4) 1.2 制备方法 (4) 1.3 基础物性.................................. 错误!未定义书签。 2.微晶硅薄膜太阳能电池 (5) 2.1 原理及结构 (5) 2.2 实验及制备方法............................ 错误!未定义书签。 3.非晶硅薄膜电池和微晶硅电池的优势及不足 (6) 3.1 非晶硅和 (6) 3.2 (7) 3.3 (7) 4.改进方法 (8) 4.1 (8) 4.2 (9) 4.3............................................ 错误!未定义书签。 4.4 (10) 4.5 (12) 5.研究进展和研究前景 (13) 6.结论 (13) 参考文献14

相关文档
最新文档