干涉法测量微小量

干涉法测量微小量
干涉法测量微小量

实验报告 5-

25系05级 鄂雁祺 2006年4月22日 PB05025003 实验题目:干涉法测微小量

实验目的: 通过本次实验,学习、掌握利用光的干涉原理检验光学元件表面几

何特征的方法,同时加深对光的波动性的认识。

实验原理:

用牛顿环测平凸透镜的曲率半径

当曲率半径很大的平凸透镜的凸面放在一平面玻璃上时,在透镜的凸面与平面之间形成一个从中心O 向四周逐渐增厚的空气层。当单色光垂直照射下来时,从空气层上下两个表面反射的光束产生干涉。等厚干涉条纹也就是一组以O 点为中心的明暗相间的同心圆,称为牛顿环。两束光的光程差为 2

δ+

=? (1)

式中λ为入射光的波长,δ就是空气层厚度,空气折射率1≈n 。

当光程差Δ为半波长的奇数倍时为暗环,若第m 个暗环处的空气层厚度为m δ,则有

2

λ

δ?

=m m (2)

R m <<δ,可得 R

r m

m 22=δ (3)

式中r m 就是第m 个暗环的半径。由式(2)与式(3)可得

λmR r m

=2

(4) 我们将式(4)作一变换,将式中半径r m 换成直径D m , 展开整理后有

λ

n D D R m

n m 422-=+ (5)

可见,如果我们测得第m 个暗环及第(m+n)个暗环的直径D m 、D m+n ,就可由式(5)计算透镜的曲率半径R 。

实验器材:钠灯,牛顿环仪,读数显微镜。 实验内容:

1.

测平凸透镜的曲率半径 (1) 观察牛顿环 1)

将牛顿环仪放置在读数显微镜镜筒与入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。 2)

调节目镜,瞧清目镜视场的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。 (2) 测牛顿环直径 1)

使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。 2)

转动显微镜测微鼓轮,使显微镜筒沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第65环相切为止。 3)

反向转动鼓轮,当竖丝与第60环相切时,记录读数显微镜上的位置读数d 30,然后继续转动鼓轮,使竖丝依次与第50、40、30、20、10环相切,顺次记下读数d 50,d 40,d 30,d 20,d 10。 4)

继续转动鼓轮,越过干涉圆环中心,记下竖丝依次与另一边的10、20、30、

40、50、60环相切时的读数10'd 、20'd 、30'd 、40'd 、50'd 、60'd 。 重复测量3次,共测3组数据。

数据记录与处理:

单位/mm 第一次 第二次 第三次 六十环处60d 42、450 42、469 42、450 五十环处50d 42、021 42、040 42、023 四十环处40d 41、457 41、480 41、456 三十环处30d 40、872 40、893 40、871 二十环处20d 40、179 40、204 40、181 十环处10d

39、296 39、318 39、295 反十环处10d ' 34、288 34、290 34、281 反二十环处20d ' 33、384 33、371 33、381 反三十环处30d ' 32、712 32、691 32、713 反四十环处40d ' 32、095 32、086 32、099 反五十环处50d ' 31、604 31、576 31、602 反六十环处60

d ' 31、110

31、095

31、111

由i i i d d D '-=,得各环直径如下:

单位/mm 第一次 第二次 第三次 平均值 标准差 第六十环的直径60D

11、340

11、374 11、339 11、351 0、020 第五十环的直径50D 10、417 10、464 10、421 10、434 0、026 第四十环的直径40D 9、362 9、394 9、357 9、371 0、020 第三十环的直径30D 8、160 8、202 8、158 8、173 0、025 第二十环的直径20D

6、795

6、833

6、800

6、809

0、021

平晶楔角的干涉测量法

第14卷第1期大 学 物 理 实 验 Vol.14No.12001年3月出版 PHYSICAL EXPERIMENT OF COLLE GE Mar. 2001 收稿日期:2000-11-16 文章编号:1007-2934(2001)01-0009-02 平晶楔角的干涉测量法 许松江 熊燕玲 (哈尔滨理工大学,哈尔滨,150040) 摘 要:本文给出了两种利用干涉原理来测量平晶楔角的方法,并对其测量结果进行了比较。 关键词:干涉法;平晶楔角;泰曼干涉仪中图分类号:O436.1 文献标识码:A 图1 N120泰曼干涉仪光路 1 平面反射镜 2 聚光镜 3 小孔光阑 4 准直折转反射镜 5 准直物镜 6 分光镜 7 参考折转反射镜 8 参考反射镜 9 测试反射镜 10 照相物镜 11 照相反射镜 12 五角棱镜13、14 正负照相物镜 15 反射镜 16 摄像镜 17 观察窗口 1 引言 泰曼干涉仪是迈克尔逊干涉仪的一种变型。目前,在光学仪器制造工业中,靠用这种仪器产生的等厚干涉条纹,可对光学零件或光学系统作综合质量检查。我们利用泰曼干涉仪,采用两种方法对平晶的楔角进行检测,并对其检测结果进行分析。 2 实验原理及测量方法 干涉仪是由参考反射镜、准直系统、分光镜系统、测试反射镜系统、观察照相系统及透镜测试装置等部分组成。干涉仪的光路系统如图1所示。其光源波长为6328A 的He-Na 激光。 干涉仪测试法是以平面波通过 被测的光学零件(或光学系统),出射光波仍为平面波。它与来自参考光路的标准平面波 形成干涉条纹。当干涉仪中光程差发生变化时,干涉条纹也将随之改变。根据干涉条纹 9

实验十一迈克尔逊干涉法测量空气折射率

实验十一用迈克尔逊干涉光路测空气折射率光的干涉是重要的光学现象之一,是光的波动性的重要实验依据。两列频率相同、振动方向相同和位相差恒定的相干光在空间相交区域将会发生相互加强或减弱现象,即光的干涉现象。光的波长虽然很短(4×10-7~8×10-7m之间),但干涉条纹的间距和条纹数却很容易用光学仪器测得。根据干涉条纹数目和间距的变化与光程差、波长等的关系式,可以推出微小长度变化(光波波长数量级)和微小角度变化等,因此干涉现象在照相技术、测量技术、平面角检测技术、材料应力及形变研究等领域有着广泛地应用。 相干光源的获取除用激光外,在实验室中一般是将同一光源采用分波阵面或分振幅2种方法获得,并使其在空间经不同路径会合后产生干涉。 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。 一、实验目的 1、掌握迈克尔逊干涉光路的原理和调节方法。 2、学会调出非定域干涉条纹、等倾干涉条纹、等厚干涉条纹。 3、学习利用迈克尔逊干涉光路测量常温下空气的折射率。 二、实验仪器 He-Ne激光器及电源,扩束镜(短焦距凸透镜),全反镜,温度计,小孔光阑,密封玻璃管,气压计等。 三、实验原理 1、迈克尔逊干涉光路 图11.1是迈克尔逊干涉光路原理图,从光源S发出的一束光射到分束板1G上,1G的后表面镀有半反射膜(一般镀金属银),光在半反射膜上反射和透射,被分成光强接近相等

干涉法测量微小量

干涉法测微小量 (本文内容选自高等教育出版社《大学物理实验》) 光的干涉现象表明了光的波动性质,干涉现象在科学研究与计量技术中有着广泛的应用。在干涉现象中,不论是何种干涉,相邻干涉条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目却是可以计量的。因此,通过对干涉条纹数目或条纹移动数目的计量,可得到以光的波长为单位的光程差。 利用光的等厚干涉现象可以测量光的波长,检验表面的平面度、球面度、光洁度,精确的测量长度、角度,测量微小形变以及研究工作内应力的分布等。 通过本次实验,学习、掌握利用光的干涉原理检验光学元件表面几何特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。 实验原理 1. 用牛顿环测平凸透镜的曲率半径 当曲率半径很大的平凸透镜的凸面放在一平面玻璃上时,见图,在透镜的凸面与平面 之间形成一个从中心O 向四周逐渐增厚的空气层。当单色光垂直照射下来时,从空气层上下两个表面反射的光束1和光束2在上表面相遇时产生干涉。因为光程差相等的地方是以O 点为中心的同心圆,因此等厚干涉条纹也是一组以O 点为中心的明暗相间的同心圆,称为牛顿环。由于从下表面反射的光多走了二倍空气层厚度的距离,以及从下表面反射时,是从光疏介质到光密介质而存在半波损失,故1、2两束光的光程差为 2 2λ δ+ =? (1)

式中λ为入射光的波长,δ是空气层厚度,空气折射率1≈n 。 当程差Δ为半波长的奇数倍时为暗环,若第m 个暗环处的空气层厚度为m δ,则有 ...3,2,1,0,2 ) 12(2 2=+=+ =?m m m λ λ δ 2 λ δ? =m m (2) 由图中的几何关系22 2)(m m R r R δ-+=,以及一般空气层厚度远小于所使用的平凸透镜的曲率 半径R ,即R m <<δ,可得 R r m m 22 =δ (3) 式中r m 是第m 个暗环的半径。由式(2)和式(3)可得 λmR r m =2 (4) 可见,我们若测得第m 个暗环的半径r m 便可由已知λ求R ,或者由已知R 求λ了。但是,由于玻璃接触处受压,引起局部的弹性形变,使透镜凸面与平面玻璃不可能很理想的只以一个点相接触,所以圆心位置很难确定,环的半径r m 也就不易测准。同时因玻璃表面的不洁净所引入的附加程差,使实验中看到的干涉级数并不代表真正的干涉级数m 。为此,我们将式(4)作一变换,将式中半径r m 换成直径D m ,则有 λmR D m 42 = (5)

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

干涉法测量微小量

7、2、1 干涉法测微小量 (本文内容选自高等教育出版社《大学物理实验》) 光的干涉现象表明了光的波动性质,干涉现象在科学研究与计量技术中有着广泛的应用。在干涉现象中,不论就是何种干涉,相邻干涉条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目却就是可以计量的。因此,通过对干涉条纹数目或条纹移动数目的计量,可得到以光的波长为单位的光程差。 利用光的等厚干涉现象可以测量光的波长,检验表面的平面度、球面度、光洁度,精确的测量长度、角度,测量微小形变以及研究工作内应力的分布等。 通过本次实验,学习、掌握利用光的干涉原理检验光学元件表面几何特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。 实验原理 1. 用牛顿环测平凸透镜的曲率半径 当曲率半径很大的平凸透镜的凸面放在一平面玻璃上时,见图7、2、1-1,在透镜的凸面与平面之间形成一个从中心O 向四周逐渐增厚的空气层。当单色光垂直照射下来时,从空气层上下两个表面反射的光束1与光束2在上表面相遇时产生干涉。因为光程差相等的地方就是以O 点为中心的同心圆,因此等厚干涉条纹也就是一组以O 点为中心的明暗相间的同心圆,称为牛顿环。由于从下表面反射的光多走了二倍空气层厚度的距离,以及从下表面反射时,就是从光疏介质到光密介质而存在半波损失,故1、2两束光的光程差为 22λ δ+=? (1) 式中λ为入射光的波长,δ就是空气层厚度,空气折射率1≈n 。

当程差Δ为半波长的奇数倍时为暗环,若第m 个暗环处的空气层厚度为m δ,则有 ...3,2,1,0,2)12(22=+=+=?m m m λ λδ 2λ δ?=m m (2) 由图7、2、1-1中的几何关系222)(m m R r R δ-+=,以及一般空气层厚度远小于所使用的平凸透镜的曲率半径R,即R m <<δ,可得 R r m m 22=δ (3) 式中r m 就是第m 个暗环的半径。由式(2)与式(3)可得 λmR r m =2 (4) 可见,我们若测得第m 个暗环的半径r m 便可由已知λ求R,或者由已知R 求λ了。但就是,由于玻璃接触处受压,引起局部的弹性形变,使透镜凸面与平面玻璃不可能很理想的只以一个点相接触,所以圆心位置很难确定,环的半径r m 也就不易测准。同时因玻璃表面的不洁净所引入的附加程差,使实验中瞧到的干涉级数并不代表真正的干涉级数m 。为此,我们将式(4)作一变换,将式中半径r m 换成直径D m ,则有 λmR D m 42= (5) 对第m+n 个暗环有 λR n m D n m )(42+=+ (6) 将(5)与(6)两式相减,再展开整理后有 λ n D D R m n m 422-=+ (7) 可见,如果我们测得第m 个暗环及第(m+n)个暗环的直径D m 、D m+n ,就可由式(7)计算透镜的曲率半径R 。 经过上述的公式变换,避开了难测的量r m 与m,从而提高了测量的精度,这就是物理实验中常采用的方法。 2. 劈尖的等厚干涉测细丝直径 见图7、2、1-2,两片叠在一起的玻璃片,在它们的一端夹一直径待测的细丝,于就是两玻璃片之间形成一空气劈尖。当用单色光垂直照射时,如前所述,会产生干涉现象。因为程差相等的地方就是平行于两玻璃片交线的直线,所以等厚干涉条纹就是一组明暗相间、平行于交线的直线。

干涉法测微小量

干涉法测微小量 段心蕊 PB05000826 (九号台) 一、实验目的: 学习、掌握利用光的干涉原理检验光学元件表面几何特征的方法。 二、实验原理: 用牛顿环测平凸透镜的曲率半径 如图所示,光束1、2干涉,全部光束在一起,产生牛顿环 1、2两束光的光程差为 2 2λδ+=? 第m 个暗环处 ...3,2,1,0,2 ) 12(2 2=+=+ =?m m m λ λ δ 2 λ δ?=?m m 又22 2)(m m R r R δ-+=, R m <<δ R r m m 22 =?δ λδλδmR r R r m m m m m =?? ??? ? ?? = ?=22 22 我们可由λ求R 或由R 求λ。

但由于r m 不易测准,且实验者无法看出暗环真正所处的级数,故测 直径D m , λmR D m 42= λR n m D n m )(42 +=+ λ n D D R m n m 42 2-=?+ 其中n 可以观察出来 从而可以计算透镜的曲率半径R 。 三、实验仪器: 显微镜、平凸透镜、显示器、玻璃片、钠光灯。 四、实验内容 1 观察牛顿环 (1)将牛顿环仪按图所示放置在读数显微镜镜筒和入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。 (2)调节目镜,看清目镜视场的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。 2 测牛顿环直径

(1)使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。 (2)转动显微镜测微鼓轮,使显微镜筒沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第65环相切为止。 (3)反向转动鼓轮,当竖丝与第60环相切时,记录读数显微镜上的位置读数d 60,然后继续转动鼓轮,使竖丝依次与第50、40、30、20、10环相切,顺次记下读数d 50,d 40,d 30,d 20,d 10。 (4)继续转动鼓轮,越过干涉圆环中心,记下竖丝依次与另一边的10、20、30、40、50、60环相切时的读数10'd 、20'd 、30'd 、40'd 、50'd 、60'd 。 重复测量两次,共测两组数据。 3 用逐差法处理数据 第60环的直径606060'd d D -=,同理,可求出D 50、D 40…D 10,取n=30,求出 2230m m D D -+,计算R 和R 的标准差。 五、实验数据与分析: 60 50 40 30 20 10 d 1 (mm) d 1’(mm) D 1 (mm) d 2 (mm) d 2’(mm) D 2 (mm) d 3 (mm) d 3’(mm) D 3 (mm)

干涉法测量杨氏模量

应用光的干涉现象测量金属丝的杨氏弹性模量 Application of optical interference phenomenon measuring the young's elasticity modulus of wire 青岛科技大学高分子科学与工程学院高材111 王冠男学号1103010103 【引言】:传统的杨氏模量测量仪使用复杂,同时不容易调节,测量误差较大,故改进。应用光的干涉现象可以对微小形变,微小角度等进行测量。使用劈尖干涉仪和杨氏模量测量仪的组合装置,用金属因拉力造成的微小形变代替头发丝的直径,进行测量,省略了对杨氏模量测量仪的水平调节过程,同时增加了实验的精确度。 Preface: The traditional young's modulus measuring instrument is complex to be used, and at the same time, not easy to control, and the measurement error is big, so I have improved it. Using the application of optical interference phenomenon , so that we can measure the small deformation, small Angle, etc. Use cleft tip interferometer and young's modulus measuring instrument combination device, with metal for tension caused by small deformation instead of the diameter of the hair, measurement, omitted the adjustment process of young's modulus measuring instrument,at the same time increased the accuracy of the experiment 关键词:光的干涉,杨氏模量,测量微小形变 Keywords: interference of light, young's modulus, measure the small deformation 【实验原理】 1、劈尖干涉原理 劈尖干涉现象在科学研究领域与计量技术中有广泛的应用,如测量光波波长,检验表面的平面度、球面度、粗糙度,精确测量长度、角度、微小形变,以及研究工件内的应力分布等。 如图1所示,平行光由折射率为的介质中垂直入射折射率为住的劈尖.在劈尖上表面处入射光线一部分会反射,一部分会折射进入劈尖内部.如果劈尖的夹角很小,可以认为反射光线原路返回,折射光线垂直于劈尖下表面,折射光线经劈尖下表面反射后进入劈尖上表面在入射点与反射光线发生干涉r7].干涉的光程差为: △=2d+(λ/2) (1) 其中, (λ/2)为附加光程差( n1

干涉法测微小量知识分享

干涉法测微小量

干涉法测微小量 段心蕊 PB05000826 (九号台) 一、实验目的: 学习、掌握利用光的干涉原理检验光学元件表面几何特征的方法。 二、实验原理: 用牛顿环测平凸透镜的曲率半径 如图所示,光束1、2干涉,全部光束在一起,产生牛顿环 1、2两束光的光程差为 2 2λδ+=? 第m 个暗环处 ...3,2,1,0,2 ) 12(2 2=+=+ =?m m m λ λ δ 2 λ δ?=?m m 又22 2)(m m R r R δ-+=, R m <<δ R r m m 22 =?δ λδλδmR r R r m m m m m =?? ??? ? ?? = ?=22 22 我们可由λ求R 或由R 求λ。

但由于r m 不易测准,且实验者无法看出暗环真正所处的级数,故 测直径D m , λmR D m 42= λR n m D n m )(42 +=+ λ n D D R m n m 42 2-=?+ 其中n 可以观察出来 从而可以计算透镜的曲率半径R 。 三、实验仪器: 显微镜、平凸透镜、显示器、玻璃片、钠光灯。 四、实验内容 1 观察牛顿环 (1)将牛顿环仪按图所示放置在读数显微镜镜筒和入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。 (2)调节目镜,看清目镜视场的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。 2 测牛顿环直径

(1)使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。 (2)转动显微镜测微鼓轮,使显微镜筒沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第65环相切为止。 (3)反向转动鼓轮,当竖丝与第60环相切时,记录读数显微镜上的位置读数d 60,然后继续转动鼓轮,使竖丝依次与第50、40、30、20、10环相切,顺次记下读数d 50,d 40,d 30,d 20,d 10。 (4)继续转动鼓轮,越过干涉圆环中心,记下竖丝依次与另一边的10、20、30、40、50、60环相切时的读数10'd 、20'd 、30'd 、40'd 、50'd 、60'd 。 重复测量两次,共测两组数据。 3 用逐差法处理数据 第60环的直径606060'd d D -=,同理,可求出D 50、D 40…D 10,取n=30, 求出2 230m m D D -+,计算R 和R 的标准差。 五、实验数据与分析: 60 50 40 30 20 10 d 1 (mm) 30.614 30.112 29.596 29.002 28.303 27.398 d 1’(mm) 19.383 19.841 20.372 20.94 21.63 22.524 D 1 (mm) 11.231 10.271 9.224 8.062 6.673 4.874 d 2 (mm) 19.446 19.932 20.437 21.038 21.71 22.594 d 2’(mm) 30.708 30.238 29.718 29.137 28.428 27.581 D 2 (mm) 11.262 10.306 9.281 8.099 6.718 4.987 d 3 (mm) 30.628 30.179 29.632 29.052 28.37 27.494 d 3’(mm) 19.384 19.842 20.366 20.943 21.628 22.509 D 3 (mm) 11.244 10.337 9.266 8.109 6.742 4.985 D (mm) 11.24567 10.30467 9.257 8.09 6.711 4.948667

干涉法测微小量(已批阅)教学文案

干涉法测微小量(已批 阅)

实验题目:干涉法测微小量 实验目的:学习、掌握利用光的干涉原理检验光学元件表面集合特征的方法,用劈尖的等厚 干涉测量细丝直径的方法,同时加深对光的波动性的认识。 实验原理:1、用牛顿环测平凸透镜的曲率半径 当曲率很大的平凸透镜的凸面放在一平面玻璃上时,会 产 生一组以O 为中心的明暗相间的同心圆环,称为牛顿环。 如图,1、2两束光的光程差为2 2λδ+=?,式中λ为入射 光 的波长,δ是空气层厚度,空气折射率1≈n 。如果第m 个暗环处空气厚度为δm ,则有 ...3,2,1,0,2 )12(22=+=+ =?m m m λ λ δ 故得到:2 λ δ? =m m 。 利用几何关系有2 2 2 )(m m R r R δ-+=,并根据R m <<δ,得到R r m m 22=δ,联系以上两式, 有 λmR r m =2 换成直径,并考虑第m+n 个环和第m 个环,有λR n m D n m )(42 +=+, λmR D m 42=,故λ n D D R m n m 42 2-= + 那么测量出D m+n 和D m 就可以根据这个表达式得到R 。 2、劈尖的等厚干涉测细丝直径

两片叠在一起的玻璃片,在它们的一端夹一直径待测的细丝, 于 是两玻璃片之间形成一空气劈尖。当用单色光垂直照射时,会产生干涉现象。因为程差相等的地方是平行于两玻璃片交线的直线,所以等厚干涉条纹是一组明暗相间、平行于交线的直线。 设入射光波为λ,则得第m 级暗纹处空气劈尖的厚度2 λm d =。 由此可知,m=0时,d=0,即在两玻璃片交线处,为零级暗条纹。 如果在细丝处呈现m=N 级条纹,则待测细丝直径2 λ?=N d 。 3、利用干涉条纹检验光学表面面形 实验内容: 1. 测平凸透镜的曲率半径 (1) 观察牛顿环 1) 将牛顿环仪按图7.2.1-5所示放置在读数显微镜镜筒和入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。 2) 调节目镜,看清目镜视场的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。 (2) 测牛顿环直径 1) 使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。

干涉法测量微小量

7.2.1 干涉法测微小量 (本文内容选自高等教育出版社《大学物理实验》) 光的干涉现象表明了光的波动性质,干涉现象在科学研究与计量技术中有着广泛的应用。在干涉现象中,不论是何种干涉,相邻干涉条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目却是可以计量的。因此,通过对干涉条纹数目或条纹移动数目的计量,可得到以光的波长为单位的光程差。 利用光的等厚干涉现象可以测量光的波长,检验表面的平面度、球面度、光洁度,精确的测量长度、角度,测量微小形变以及研究工作内应力的分布等。 通过本次实验,学习、掌握利用光的干涉原理检验光学元件表面几何特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。 实验原理 1. 用牛顿环测平凸透镜的曲率半径 当曲率半径很大的平凸透镜的凸面放在一平面玻璃上时,见图7.2.1-1,在透镜的凸面与平面之间形成一个从中心O 向四周逐渐增厚的空气层。当单色光垂直照射下来时,从空气层上下两个表面反射的光束1和光束2在上表面相遇时产生干涉。因为光程差相等的地方是以O 点为中心的同心圆,因此等厚干涉条纹也是一组以O 点为中心的明暗相间的同心圆,称为牛顿环。由于从下表面反射的光多走了二倍空气层厚度的距离,以及从下表面反射时,是从光疏介质到光密介质而存在半波损失,故1、2两束光的光程差为 22λ δ+=? (1)

式中λ为入射光的波长,δ是空气层厚度,空气折射率1≈n 。 当程差Δ为半波长的奇数倍时为暗环,若第m 个暗环处的空气层厚度为m δ,则有 ...3,2,1,0,2)12(22=+=+=?m m m λ λ δ 2λ δ?=m m (2) 由图7.2.1-1中的几何关系222)(m m R r R δ-+=,以及一般空气层厚度远小于所使用的平凸透镜的曲 率半径R ,即R m <<δ,可得 R r m m 22=δ (3) 式中r m 是第m 个暗环的半径。由式(2)和式(3)可得 λmR r m =2 (4) 可见,我们若测得第m 个暗环的半径r m 便可由已知λ求R ,或者由已知R 求λ了。但是,由于玻璃接触处受压,引起局部的弹性形变,使透镜凸面与平面玻璃不可能很理想的只以一个点相接触,所以圆心位置很难确定,环的半径r m 也就不易测准。同时因玻璃表面的不洁净所引入的附加程差,使实验中看到的干涉级数并不代表真正的干涉级数m 。为此,我们将式(4)作一变换,将式中半径r m 换成直径D m ,则有 λmR D m 42= (5) 对第m+n 个暗环有 λR n m D n m )(42+=+ (6) 将(5)和(6)两式相减,再展开整理后有 λ n D D R m n m 422-=+ (7) 可见,如果我们测得第m 个暗环及第(m+n )个暗环的直径D m 、D m+n ,就可由式(7)计算透镜的曲率半径R 。 经过上述的公式变换,避开了难测的量r m 和m ,从而提高了测量的精度,这是物理实验中常采用的方法。 2. 劈尖的等厚干涉测细丝直径 见图7.2.1-2,两片叠在一起的玻璃片,在它们的一端夹一直径待测的细丝,于是两玻璃片之间形成一空气劈尖。当用单色光垂直照射时,如前所述,会产生干涉现象。因为程差相等的地方是平行

干涉法测微小量实验报告

干涉法测微小量 【实验目的】 1.了解等厚干涉的应用 2.掌握移测显微镜的使用方法 【实验仪器】 实验仪器: 牛顿环法测曲率半径实验的主要仪器有: 读数显微镜、Na光源、牛顿环仪 用劈尖测细丝直径实验的主要仪器有: 读数显微镜、Na光源、劈尖 【实验原理】 实验原理: 实验内容一:牛顿环法测曲率半径 图1

如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差△’等于膜厚度e的两倍,即△’ =2e 此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差,与之对应的光程差为/2 ,所以相干的两条光线还具有/2的附加光程差,总的光程差为: (1) 当△满足条件: (2) 时,发生相长干涉,出现第K级亮纹。 而当: (3) 时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为r k ,对应的膜厚度为e k ,则: (4) 在实验中,R的大小为几米到十几米,而e k 的数量级为毫米,所以R >>e k , e k 2相对于2R k 是一个小量,可以忽略,所以上式可以简化为 (5) 如果r k 是第k级暗条纹的半径,由式(1)和(3)可得: (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k 是第k级明纹,则由式(1)和(2)得 (9)

干涉法测微小量-实验报告

干涉法测微小量 创建人:系统管理员总分:100 实验目的 学习掌握利用光的干涉原理检验光学元件表面集合特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。 实验仪器 低频信号发生器、示波器、超声声速测定仪、频率计等 实验原理 1、用牛顿环测平凸透镜的曲率半径 图1.牛顿环干涉条纹的形成 当曲率很大的平凸透镜的凸面放在一平面玻璃上时,会产生一组以O为中心的明暗相接的同心圆环,称为牛顿环。

如图,1、2两束光的光成差2 2λ δ+ =?,式中λ为入射光的波长,δ是空气层厚度,空气 折射率1n ≈。如果第m 个暗环处空气厚度为m δ,则有 故得到:2 m m λ δ? = 2、 劈尖的等厚干涉测细丝直径 图2.劈尖干涉条纹的形成 两片叠在一起的玻璃片,在它们的一端口夹一直径待测的细丝,于是两片玻璃之间便形成一空气劈尖。当用单色光垂直照射时,会产生干涉现象。因为光程差相等的地方是平行两玻璃片交线的直线,所以等厚干涉条纹是一组明暗相间的、平行于交线的直线。设入射光波长为

实验内容 1、 测平凸透镜的曲率半径 (1)观察牛顿环 1) 将牛顿环仪按图3所示放置在读数显微镜镜筒和入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。 图3.观测牛顿环实验装置图 2) 调节目镜,看清目镜视场内的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。 (2)测牛顿环直径 1) 使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。 2) 转动显微镜测微鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第35环相切为止。 3) 反向转动鼓轮,当竖丝与第35环相切时,记录读书显微镜上的位置读数 ,然后继 续转动鼓轮,使竖丝依次与第25、20、15、10、5环相切,顺次记下读数d 25,d 20,d 15,d 10,d 5。 4) 继续转动鼓轮,越过干涉圆环中心,记下竖丝依次与另一边的5、10、15、20、25、30环相切时的读数' 30' 25' 20' 15' 10' 5,,,,,d d d d d d 。 5) 重复测量两次,实验共测得三组数据。

干涉法测量微小量教程文件

干涉法测量微小量

7.2.1 干涉法测微小量 (本文内容选自高等教育出版社《大学物理实验》) 光的干涉现象表明了光的波动性质,干涉现象在科学研究与计量技术中有着广泛的应用。在干涉现象中,不论是何种干涉,相邻干涉条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目却是可以计量的。因此,通过对干涉条纹数目或条纹移动数目的计量,可得到以光的波长为单位的光程差。 利用光的等厚干涉现象可以测量光的波长,检验表面的平面度、球面度、光洁度,精确的测量长度、角度,测量微小形变以及研究工作内应力的分布等。 通过本次实验,学习、掌握利用光的干涉原理检验光学元件表面几何特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。 实验原理 1. 用牛顿环测平凸透镜的曲率半径 当曲率半径很大的平凸透镜的凸面放在一平面玻璃上时,见图7.2.1-1,在透镜的凸面与平面之间形成一个从中心O 向四周逐渐增厚的空气层。当单色光垂直照射下来时,从空气层上下两个表面反射的光束1和光束2在上表面相遇时产生干涉。因为光程差相等的地方是以O 点为中心的同心圆,因此等厚干涉条纹也是一组以O 点为中心的明暗相间的同心圆,称为牛顿环。由于从下表面反射的光多走了二倍空气层厚度的距离,以及从下表面反射时,是从光疏介质到光密介质而存在半波损失,故1、2两束光的光程差为 22λ δ+=? (1)

式中λ为入射光的波长,δ是空气层厚度,空气折射率1≈n 。 当程差Δ为半波长的奇数倍时为暗环,若第m 个暗环处的空气层厚度为m δ,则有 ...3,2,1,0,2)12(22=+=+=?m m m λ λ δ 2λ δ?=m m (2) 由图7.2.1-1中的几何关系222)(m m R r R δ-+=,以及一般空气层厚度远小于所使用的平凸透镜的曲率半径R ,即R m <<δ,可得 R r m m 22=δ (3) 式中r m 是第m 个暗环的半径。由式(2)和式(3)可得 λmR r m =2 (4) 可见,我们若测得第m 个暗环的半径r m 便可由已知λ求R ,或者由已知R 求λ了。但是,由于玻璃接触处受压,引起局部的弹性形变,使透镜凸面与平面玻璃不可能很理想的只以一个点相接触,所以圆心位置很难确定,环的半径r m 也就不易测准。同时因玻璃表面的不洁净所引入的附加程差,使实验中看到的干涉级数并不代表真正的干涉级数m 。为此,我们将式(4)作一变换,将式中半径r m 换成直径D m ,则有

干涉法测微小量实验报告

干涉法测微小量 创建人:系统管理员总分:100 实验目的 学习掌握利用光的干涉原理检验光学元件表面集合特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。 实验仪器 低频信号发生器、示波器、超声声速测定仪、频率计等 实验原理 1、用牛顿环测平凸透镜的曲率半径 图1、牛顿环干涉条纹的形成 当曲率很大的平凸透镜的凸面放在一平面玻璃上时,会产生一组以O为中心的明暗相接的同

心圆环,称为牛顿环。 如图,1、2两束光的光成差22λ δ+=?,式中λ为入射光的波长,δ就是空气层厚度,空气折 射率1n ≈。如果第m 个暗环处空气厚度为m δ,则有 故得到:2m m λ δ?= 2、 劈尖的等厚干涉测细丝直径 图2、劈尖干涉条纹的形成 两片叠在一起的玻璃片,在它们的一端口夹一直径待测的细丝,于就是两片玻璃之间便形成一空气劈尖。当用单色光垂直照射时,会产生干涉现象。因为光程差相等的地方就是平行两玻璃片交线的直线,所以等厚干涉条纹就是一组明暗相间的、平行于交线的直线。设入射光波长为λ,则得到第m 级暗纹处空气劈尖的的厚度2m λ ?=d 。由此可知,m=0时,d=0,即在两 玻璃片交线处,为零级暗条纹。如果在细丝处呈现m=N 级条纹,则待测细丝直径2λ ?=N d 。

实验内容 1、测平凸透镜的曲率半径 (1)观察牛顿环 1) 将牛顿环仪按图3所示放置在读数显微镜镜筒与入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。 图3、观测牛顿环实验装置图 2) 调节目镜,瞧清目镜视场内的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。 (2)测牛顿环直径 1) 使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。 2) 转动显微镜测微鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第35环相切为止。 3) 反向转动鼓轮,当竖丝与第35环相切时,记录读书显微镜上的位置读数,然后继续转动鼓轮,使竖丝依次与第25、20、15、10、5环相切,顺次记下读数d25,d20,d15,d10,d5。

干涉法测量微小量

实验报告 5- 25系05级 鄂雁祺 2006年4月22日 PB05025003 实验题目:干涉法测微小量 实验目的: 通过本次实验,学习、掌握利用光的干涉原理检验光学元件表面几 何特征的方法,同时加深对光的波动性的认识。 实验原理: 用牛顿环测平凸透镜的曲率半径 当曲率半径很大的平凸透镜的凸面放在一平面玻璃上时,在透镜的凸面与平面之间形成一个从中心O 向四周逐渐增厚的空气层。当单色光垂直照射下来时,从空气层上下两个表面反射的光束产生干涉。等厚干涉条纹也就是一组以O 点为中心的明暗相间的同心圆,称为牛顿环。两束光的光程差为 2 2λ δ+ =? (1) 式中λ为入射光的波长,δ就是空气层厚度,空气折射率1≈n 。 当光程差Δ为半波长的奇数倍时为暗环,若第m 个暗环处的空气层厚度为m δ,则有 2 λ δ? =m m (2)

R m <<δ,可得 R r m m 22=δ (3) 式中r m 就是第m 个暗环的半径。由式(2)与式(3)可得 λmR r m =2 (4) 我们将式(4)作一变换,将式中半径r m 换成直径D m , 展开整理后有 λ n D D R m n m 422-=+ (5) 可见,如果我们测得第m 个暗环及第(m+n)个暗环的直径D m 、D m+n ,就可由式(5)计算透镜的曲率半径R 。 实验器材:钠灯,牛顿环仪,读数显微镜。 实验内容: 1. 测平凸透镜的曲率半径 (1) 观察牛顿环 1) 将牛顿环仪放置在读数显微镜镜筒与入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。 2) 调节目镜,瞧清目镜视场的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。 (2) 测牛顿环直径 1) 使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。 2) 转动显微镜测微鼓轮,使显微镜筒沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第65环相切为止。 3) 反向转动鼓轮,当竖丝与第60环相切时,记录读数显微镜上的位置读数d 30,然后继续转动鼓轮,使竖丝依次与第50、40、30、20、10环相切,顺次记下读数d 50,d 40,d 30,d 20,d 10。 4) 继续转动鼓轮,越过干涉圆环中心,记下竖丝依次与另一边的10、20、30、

干涉法测微小量

实验题目:干涉法测微小量 实验目的:学习、掌握利用光的干涉原理检验光学元件表面集合特征的方法,用劈尖的等厚干涉测量细丝 直径的方法,同时加深对光的波动性的认识。 实验原理:1、用牛顿环测平凸透镜的曲率半径 当曲率很大的平凸透镜的凸面放在一平面玻璃上时,会产 生一组以O 为中心的明暗相间的同心圆环,称为牛顿环。 如图,1、2 两束光的光程差为2 2λδ+=?,式中 λ为入射光 的波长,δ是空气层厚度,空气折射率1≈n 。如果第m 个暗环处空气厚度为δm ,则有 ...3,2,1,0,2 )12(22=+=+ =?m m m λ λ δ 故得到:2 λ δ? =m m 。 利用几何关系有2 22 )(m m R r R δ-+=,并根据R m <<δ,得到R r m m 22=δ,联系以上两式,有 λmR r m =2 换成直径,并考虑第m+n 个环和第m 个环,有λR n m D n m )(42+=+,λmR D m 42 =,故 λ n D D R m n m 42 2-= + 那么测量出D m+n 和D m 就可以根据这个表达式得到R 。 2、劈尖的等厚干涉测细丝直径 两片叠在一起的玻璃片,在它们的一端夹一直径待测的细丝,于 是两玻璃片之间形成一空气劈尖。当用单色光垂直照射时,会产生干涉现象。因为程差相等的地方是平行于两玻璃片交线的直线,所以等厚干涉条纹是一组明暗相间、平行于交线的直线。 设入射光波为λ,则得第m 级暗纹处空气劈尖的厚度2 λm d =。 由此可知,m=0时,d=0,即在两玻璃片交线处,为零级暗条纹。 如果在细丝处呈现m=N 级条纹,则待测细丝直径2 λ?=N d 。 3、利用干涉条纹检验光学表面面形 实验内容: 1. 测平凸透镜的曲率半径 (1) 观察牛顿环 1) 将牛顿环仪按图7.2.1-5所示放置在读数显微镜镜筒和入射光调节木架的玻璃片的下方,木架上 的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。 2) 调节目镜,看清目镜视场的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观 察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。

用干涉法测量传递函数

Copyright 2005 Society of Photo-Optical Instrumentation Engineers. This paper will be published in Proceedings of SPIE and is made available as an electronic preprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. Interpreting interferometric height measurements using the instrument transfer function Peter de Groot and Xavier Colonna de Lega Zygo Corporation Laurel Brook Rd, Middlefield, CT 06455, USA 1 Introduction Of the various ways of characterizing a system, one of the most appeal- ing is the instrument transfer function or ITF. The ITF describes system response in terms of an input signal’s frequency content. An every-day example is the graph of the response of an audio amplifier or media player to a range of sound frequencies. It is natural therefore to characterize surface profiling interferometers according to their ITF. This is driven in part by developments in precision optics manufacturing, which increasingly tolerance components as a func- tion of spatial frequency [1]. Metrology tools must faithfully detect pol- ishing errors over a specified frequency range, and so we need to know how such tools respond as a function of lateral feature size. Here we review the meaning, applicability, and calculation of the ITF for surface profiling interferometers. This review leads to useful rules of thumb as well as some cautions about what can happen when we apply the concept of a linear ITF to what is, fundamentally, a nonlinear system. Ex- perimental techniques and example results complete the picture. Our approach is informal, as is appropriate for a conference paper. The foundation for a rigorous understanding of the ITF is well documented in the literature, including the well-known books by Goodman [2]. 2 Linear systems ITF is most commonly understood to apply to linear systems, which share certain basic properties that lend themselves naturally to frequency analysis. Principally, the response of a linear system is the sum of the re- sponses that each of the component signals would produce individually.

相关文档
最新文档