【CN109867736A】一种可逆加成断裂链转移试剂及其制备方法和应用【专利】

【CN109867736A】一种可逆加成断裂链转移试剂及其制备方法和应用【专利】
【CN109867736A】一种可逆加成断裂链转移试剂及其制备方法和应用【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910195824.1

(22)申请日 2019.03.15

(71)申请人 重庆科技学院

地址 401331 重庆市沙坪坝区大学城东路

20号

(72)发明人 张鹏 杨子腾 邓博 廖文平 

王文哲 梅先伦 李婷 周成裕 

贾振福 陈世兰 

(74)专利代理机构 重庆蕴博君晟知识产权代理

事务所(普通合伙) 50223

代理人 郑勇

(51)Int.Cl.

C08F 2/38(2006.01)

C08F 220/56(2006.01)

C08F 222/38(2006.01)

C07C 329/00(2006.01)C09K 8/512(2006.01)

(54)发明名称

一种可逆加成断裂链转移试剂及其制备方

法和应用

(57)摘要

本发明公开了一种可逆加成断裂链转移试

剂,所述可逆加成断裂链转移试剂为2-(苯甲基

三硫代碳酸酯基)丙酸,本发明还公开了所述可

逆加成断裂链转移试剂的制备方法以及在制备

聚丙烯酰胺凝胶分散体中的应用。采用本发明制

备的链转移剂,可实现在相同条件下,本发明制

备的链转移剂比市售的2-(十二烷基三硫代碳酸

酯基)-2-甲基丙酸制备的凝胶分散体的粒径更

小。并且本发明所涉及的制备工艺流程简单,不

涉及特殊设备,后处理容易,容易实现工业化生

产。权利要求书1页 说明书4页 附图1页CN 109867736 A 2019.06.11

C N 109867736

A

1.一种可逆加成断裂链转移试剂,其特征在于,所述可逆加成断裂链转移试剂为2-(苯甲基三硫代碳酸酯基)丙酸,

其结构式为

2.一种可逆加成断裂链转移剂的制备方法,其特征在于,包括如下工艺步骤:

1)取氢氧化钾溶于水中,20分钟之内缓慢加入2-巯基丙酸;然后再逐滴加入二硫化碳得橙黄色溶液,搅拌反应3-7小时;

2)向步骤1)所得溶液中加入溴化苄,然后将反应物加热回流10-14小时,待冷却至室温后,将粗产物与二氯甲烷混合并加入浓盐酸进行分液,有机层呈黄色,收集有机相;

3)将有机相分别用饱和食盐水和纯净水清洗,用无水硫酸镁进行干燥,得2-(苯甲基三硫代碳酸酯基)丙酸,即可逆加成断裂链转移剂。

3.根据权利要求2所述一种可逆加成断裂链转移剂的制备方法,其特征在于,所述工艺步骤如下:取13.0g氢氧化钾溶于125g水中,20分钟之内缓慢加入10mL2-巯基丙酸,逐滴加入15mL二硫化碳后得到橙黄色溶液,搅拌5h后加入19.8g溴化苄,用三颈烧瓶加热回流12h 后冷却至室温,待反应物冷却后,将粗产物倒入500mL分液漏斗中与150mL二氯甲烷混合并加入25mL浓盐酸酸化直到有机层呈黄色,水层用氯仿洗两次后将有机相合并,有机相先后用100mL饱和食盐水和100mL纯净水分别洗一次和两次,再用无水硫酸镁干燥即得2-(苯甲基三硫代碳酸酯基)丙酸。

4.一种可逆加成断裂链转移剂在制备聚丙烯酰胺凝胶分散体中的应用。

5.根据权利要求4所述一种可逆加成断裂链转移剂在制备聚丙烯酰胺凝胶分散体中的应用,其特征在于,包括如下工艺:

1)向反应器中加入二甲亚砜作为溶剂,再加入丙烯酰胺作为单体,加入N ,N ’-亚甲基双丙烯酰胺作为交联剂,加入2-(苯甲基三硫代碳酸酯基)丙酸作为链转移剂,加入过硫酸铵作为引发剂;待反应物完全溶解;

2)将反应器中冲入氮气除氧并密封,然后将反应器在40-80℃温度条件下反应,反应完成后,立即取出浸入冰水浴冷却至室温,得聚丙烯酰胺凝胶分散体。

6.根据权利要求5所述一种可逆加成断裂链转移剂在制备聚丙烯酰胺凝胶分散体中的应用,其特征在于,步骤1)所述单体、交联剂、链转移剂加入的摩尔比为74-91:5-20:4-6。

7.根据权利要求5所述一种可逆加成断裂链转移剂在制备聚丙烯酰胺凝胶分散体中的应用,其特征在于,步骤2)所述温度条件为50-70℃。

8.根据权利要求5所述一种可逆加成断裂链转移剂在制备聚丙烯酰胺凝胶分散体中的应用,其特征在于,控制步骤1)所述反应物的固含量为6%-9%。

权 利 要 求 书1/1页2CN 109867736 A

格氏试剂

中学化学竞赛试题资源库——格氏试剂 A 组 1.卤代烃(RX )与镁于室温下在干燥乙醚中反应,生成卤化烃基镁(RMgX ): RX +Mg RMgX 这种产物叫“Grignard Reagent ”(格氏试剂)。 格氏试剂很活泼,能与许多物质发生反应。与具有活性氢的化合物(HY )作用,生成相应的烃: RMgX +HY →RH + (Y =-OH 、-OR 、-X 、-NH 2、NHR 、-C ≡CH 等) 它还能与具有羰基结构的化合物(醛、酮等)发生加成反应,产物水解成醇: 基于V.Grignard 的这一巨大贡献,他曾获1912年诺贝尔化学奖。 2,3-二溴-3-乙基戊烷( )是一个孪二卤代烷。试以3-戊醇 和乙醛为原料,通过利用格氏试剂合成之。 2.已知RX +Mg ???→?无水乙醚RMgX 2RMgX +R ’COOR ’’???→?无水乙醚???→?+H O H 、2 请用乙炔为基本原料合成3-甲基-3-戊醇。所用到的有机原料均由乙炔合成,无机原料自选。 B 组 3.写出下列反应的方程式,并画出产物A ~H 的结构式。 4.卤代烃和金属镁在乙醚中反应生成烷基卤代镁(RMgX ),称为格林试剂,它是重要的有机合成试剂,可与羰基化合物反应制醇。

氧化 卤代烃(RX )与镁于室温下在干燥乙醚中反应,生成卤化烃基镁(RMgX ): RX +Mg RMgX 这种产物叫“Grignard Reagent ”(格氏试剂)。 格氏试剂很活泼,能与许多物质发生反应。与具有活性氢的化合物(HY )作用,生成相应的烃: RMgX +HY →RH + (Y =-OH 、-OR 、-X 、-NH 2、NHR 、-C ≡CH 等) 它还能与具有羰基结构的化合物(醛、酮等)发生加成反应,产物水解成醇: 基于V.Grignard 的这一巨大贡献,他曾获1912年诺贝尔化学奖。 现有乙烯和必要的无机原料合成3-甲基-3-戊醇,合成路线如下: 请写出A ~H 物质的结构简式: 5.已知①卤代烃RX (或-Br )可以和金属反应生成烃基金属有机化合物。后者又能与含羰基化合物反应生成醇: RBr +Mg ???→?O H C 252 )(RMgBr ??→?O CH 2RCH 2OMgBr ???→?+H O H /2RCH 2OH ②有机酸和PCl 3反应可以得到羧酸的衍生物酰卤:R --OH ??→?3PCl R --Cl ③苯在AlCl 3催化下能与卤代烃作用生成烃基苯:+RCl ??→?3AlCl -R 有机物A 、B 分子式均为C 10H 14O ,与钠反应放出氢气并均可经上述反应合成,但却 又不能从羰基化合物直接加氢还原得到。A 与硫酸共热可得到C 和C ’,而B 得到D 和D ’。 C 、 D 分子中所有碳原子均可共处于同一平面上,而C ’和D ’却不行。请以最基础的石油产

实验室常用的几个反应机理必需掌握

Negishi偶联反应 偶联反应,也写作偶合反应或耦联反应,是两个化学实体(或单位)结合生成一个分子的有机化学反应。狭义的偶联反应是涉及有机金属催化剂的碳-碳键形成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。在偶联反应中有一类重要的反应,RM(R = 有机片段, M = 主基团中心)与R'X的有机卤素化合物反应,形成具有新碳-碳键的产物R-R'。[1]由于在偶联反应的突出贡献,根岸英一、铃木章与理查德·赫克共同被授予了2010年度诺贝尔化学奖。[2] 偶联反应大体可分为两种类型: ?交叉偶联反应:两种不同的片段连接成一个分子,如:溴苯 (PhBr)与氯 )。 乙烯形成苯乙烯(PhCH=CH 2 ?自身偶联反应:相同的两个片段形成一个分子,如:碘苯 (PhI)自身形成联苯 (Ph-Ph)。 反应机理 偶联反应的反应机理通常起始于有机卤代烃和催化剂的氧化加成。第二步则是另一分子与其发生金属交换,即将两个待偶联的分子接于同一金属中心上。最后一步是还原消除,即两个待偶联的分子结合在一起形成新分子并再生催化剂。不饱和的有机基团通常易于发生偶联,这是由于它们在加合一步速度更快。中间体通常不倾向发生β-氢消除反应。[3] 在一项计算化学研究中表明,不饱和有机基团更易于在金属中心上发生偶联反应。[4]还原消除的速率高低如下: 乙烯基-乙烯基 > 苯基-苯基 > 炔基-炔基 > 烷基-烷基 不对称的R-R′形式偶联反应,其活化能垒与反应能量与相应的对称偶联反应 R-R与R′-R′的平均值相近,如:乙烯基-乙烯基 > 乙烯基-烷基 > 烷基-烷基。 另一种假说认为,在水溶液当中的偶联反应其实是通过自由基机理进行,而不是金属-参与机理。 催化剂 偶联反应中最常用的金属催化剂是钯催化剂,有时也使用镍与铜催化剂。钯催化剂当中常用的如:四(三苯基膦)钯等。钯催化的有机反应有许多优点,如:官能团的耐受性强,有机钯化合物对于水和空气的低敏感性。

自由基聚合

2.自由基聚合 2.1引言 连锁聚合 根据聚合反应机理分类,聚合反应可以分为 逐步聚合 连锁聚合反应需要活性中心,单体在活性中心上反应形成大分子。活性中心可以是自由基,也可以是阴、阳离子。活性中心的性质与化合物共价键断裂的方式有关。 共价键有两种断裂方式:均裂和异裂 均裂: 共价键上一对电子分属于两个基团,这种带独电子的基团呈电中性,称作自由基或游离基。 异裂: 共价键上一对电子全部归属于某一基团,形成阴离子或负离子,则另一缺电子基团称作阳离子或正离子。 自由基、阴离子、阳离子都有可能成为活性中心,可打开烯类单体或羰基单体中的π键,或使环状单体的σ键断裂开环,使之链引发和链增长,分别成为自由基聚合,阴离子聚合,阳离子聚合,和配位聚合,实际上配位聚合也属于离子聚合的范畴。 Eg: 自由基聚合: 2.2连锁聚合的单体 单体能否聚合,须从热力学和动力学两方面考虑,热力学上能聚合的单体还要求有适当的引发剂、温度等动力学条件,才能保证一定的聚合速度。从热力学考虑可以进行连锁聚合的单体有: 2.2.1适合连锁聚合的单体 大致可以分为三类: 1.含有碳碳双键的烯类单体:包括单烯类、共轭二烯类,甚至炔烃。其中:

单烯类:乙烯基单体中的碳碳双键中π键可以均裂也可以异裂,因此可以进行自由基聚合或离子聚合。具体选择哪种聚合方式,由取代基的性质决定。 共轭二烯类:如苯乙烯,丁二烯,异戊二烯等单体处于共轭体系,在外界的影响下,双键的电子云易流动,诱导极化。因此单体既可以进行自由基聚合,也可以进行离子聚合。 2.羰基化合物如HCHO,CH3CHO,甚至酮类。 Eg: HCHO 羰基的双键有极性,使氧原子带有部分负电荷,而碳原子则带有部分正电荷。 3.杂环化合物 羰基化合物和杂环化合物的极性较强,一般不能自由基聚合,只适合于离子聚合。因此实际上只有碳碳双键的烯类单体可以进行自由基聚合,但也不是所有的都行,其取代基的性质有很大影响。 2.2.2取代基对于乙烯类单体聚合能力的影响。 除了取代基的种类和性质外,取代基的数量和体积也颇有影响,概括起来,分电子效应和位阻效应两个方面。电子效应又有诱导(极性)效应和共轭效应之分。乙烯基单体取代基的诱导效应和共轭效应能改变双键的电子云密度,并且对所形成的活性种的稳定性也有影响,因此决定着对自由基,阴、阳离子聚合的选择性。 1.无取代基时 乙烯结构对称,偶极矩为零,对进攻试剂选择性差。(目前只有两种聚合途径,在高温高压下可进行自由基聚合;在低压下可进行配位聚合。) 2.一取代乙烯 1)取代基为供电基团 供电基团有:烷氧基,烷基、苯基、乙烯基等 它可以(1)使碳碳双键电子云密度增加,有利于阳离子进攻,生成碳阳离子。 (2)使生成的阳离子增长种共振稳定。(碳阳离子生成后,由于供电子基团的存在,使电子云密度缺少的情况有所改善,体系的能量有所降低,碳阳离子的稳定性有所增加。)例如: 从诱导效应来看:烷氧基使双键电子云密度下降,理应进行阴离子或自由基聚合。 从共轭效应看:氧上未共用电子对能和双键形成P-π共轭,使双键电子云密度增加。 一般情况下,共轭效应占主动,所以是碳碳双键上电子云密度增加。同时又因为烷氧基的共轭,使正电荷不单单集中在碳阳离子上,而分散在碳氧两个原子上,使形成的

自由基聚合

自由基聚合及实施方法 一、解释概念: 1、引发剂效率和引发剂半衰期 2、动力学链长及其表达式 3、链自由基的等活性理论 4、自动加速现象/ 自动加速效应 / 自由基聚合的凝胶效应 5、配位聚合、阴离子聚合、阳离子聚合 6、自由基聚合的双基终止,歧化终止、偶合终止 7、阻聚、缓聚、阻聚剂、分子量调节剂 8、链转移常数的定义及表达式 二、回答下列问题: 1、自由基聚合是由哪些基元反应组成的,其中决定聚合反应的速率的基元反应是什么?决定大分子链结构的基元反应是什么?决定聚合物分子量的两对竞争反应是什么与什么的竞争? 2、试总结自由基聚合反应特征。引发剂分解、链增长反应是放热反应还是吸热反应? 3、引发剂有哪些种类?在无引发剂的情况下是否能发生自由基聚合?如何引发? 4、试总结自由基聚合有哪些链转移反应,这些反应对聚合度有何影响?写出自由基聚合产物聚合度的表达式。 5、推导自由基聚合速率方程时作了哪四条基本假设?试写出链引发、链增长、链终止反应的速率方程式。并推导自由基聚合速率方程式。 6、试回答动力学链长与聚合度之间的关系,在无链转移反应时,写出其关系式。 7、试从动力学的角度解释自由基聚合的凝胶效应。对聚合速率及分子量的影响。 8、使引发剂引发效率降低的原因主要什么? 9、在自由基聚合反应中,影响反应速度因素有哪些?如何影响?这些因素对最终产物的分子量有何影响? 10、在自由基聚合反应中和,逐步聚合反应中,单体转化率与时间、产物聚合度与时间的关系是什么?各自延长反应时间的目的是什么? 11、典型乳液聚合的基本组份有哪些?其中乳化剂用量和聚合反应速度、产物分子量有何关系?简述乳液聚合的机理,为什么乳液聚合时,在恒定的引发速率下可同时提高聚合速率和分子量? 12、写出下列物质在高分子合成中的用途:偶氮二异丁腈(AIBN),过硫酸钾,十二烷基硫酸钠,BPO,丁基锂,Lewis酸、正丁硫醇、苯醌。 13、在引发剂引发的自由基聚合、阳离子聚合、阴离子聚合中,其聚合机理的特征是什么?(引发、增

可逆加成-断裂链转移(RAFT)聚合概述与最新研究进展

可逆加成-断裂链转移(RAFT)聚合概述与最新研究进展 摘要可逆加成-断裂链转移(RAFT)聚合是一种十分重要的“活性”自由 基聚合方法。这种聚合方式被人们发现以来,RAFT聚合被化学和材料界广泛应用于聚合物的设计和合成上。本文对RAFT聚合的产生、反应机理等做了简要描述,并综述了其最新研究进展。 关键词RAFT聚合“活性”自由基聚合链转移剂 前言 活性聚合最早由美国科学家Szwarc于1956年提出。所谓活性聚合是指那些不存在任何使聚合链增长反应停止或不可逆转副反应的聚合反应。经历了60年的发展,活性聚合已从最早的阴离子聚合扩展到其它典型的链式聚合:如阳离子(1986年),自由基(1993年)等,并在人们的生产和生活中产生了巨大影响。活性聚合是高分子发展史上最伟大的发现之一。 活性聚合中依引发机理的不同,分为阴离子活性聚合、阳离子活性聚合、活性自由基聚合、配位活性聚合等。活性自由基聚合较其它几种聚合方式可聚合的单体多,反应温度范围较宽,能采用的溶剂种类和聚合方法多[1],因而引起了化学和材料界的极大重视。 活性自由基聚合依据其方法可分为引发转移终止(Iniferter)法,稳定自由基聚合(SFRP,NMP)法,原子转移自由基聚合(ATRP)法[2]和可逆加成-断裂链转移聚合(RAFT)法[3]。其中Iniferter法的缺点是聚合过程难以控制,所得聚合物的相对分子质量与理论值偏差较大,相对分子质量分布较宽;NMP的主要缺点表现在需要使用价格昂贵氮氧自由基,而且氮氧自由基的合成较为困难;ATRP 的劣势则表现在当聚合一些能与过渡金属催化剂形成配位键的单体(如丙烯酸)时的控制力不强,而且较难除去金属离子和催化剂,此外还需要较为苛刻的反应条件(对除氧的要求较高)[4]。相比而言,可逆加成-断裂链转移聚合(RAFT)法有着其它几种无法比拟的优点(如反应条件温和、适用单体范围广等),使得“活性”自由基聚合技术的发展又向前迈进了一步[5]。 1RAFT聚合概述 1.1RAFT聚合的提出 1998年,Rizzardo E.等人在第37届国际高分子学术讨论会上提出了一种新的CRP方法即可逆加成-断裂链转移自由基聚合(RAFT)[6]。他们以二硫代酯类化合物为链转移剂,通过增长自由基与二硫代酯类化合物的可逆链转移反应,实现控制聚合体系中增长自由基浓度,达到“活性”/可控的目的。 RAFT技术几乎是在同时被澳大利亚联邦科学与工业研究组织(CSIRO)的Rizzardo课题组和法国的Charmot等人发现和申请专利的。Charmot等人将他们的发现命名为通过磺酸盐交换的大分子设计(MADLX),他们的专利仅仅限制在磺

活性自由基聚合的新进展_原子转移自由基聚合

第24卷第1期山 西 化 工V o l.24 N o.1 2004年2月SHAN X I CH E M I CAL I NDU STR Y Feb.2004 活性自由基聚合的新进展 ——原子转移自由基聚合 谭英杰, 梁玉蓉 (华北工学院分院材料工程系,山西 太原 030008) 摘要:活性自由基聚合是目前高分子科学中最为活跃的研究领域之一,原子转移自由基聚合(A TR P)反应 是实现活性聚合的一种颇为有效的途径,也是高分子化学领域的最新研究进展之一。A TR P的独 特之处在于使用了卤代烷作引发剂,并用过渡金属催化剂或退化转移的方式,有效地抑制了自由基 双基终止的反应。A TR P可以同时适用于非极性和极性单体,可以制备多种结构形式的、结构清晰的高 分子化合物。可实现众多单体的活性 可控自由基聚合。介绍了A TR P的研究进展,包括A TR P反应的 特点、聚合反应机理、应用、研究现状及前景展望。 关键词:活性聚合反应;原子转移聚合反应;自由基双基终止;进展;特点;机理;应用;前景 中图分类号:TQ316 文献标识码:A 文章编号:100427050(2004)0120011205 引 言 聚合物合成的控制主要是指聚合物结构的控制和聚合物分子量的控制。活性聚合可以得到分子量分布极窄的聚合物,是控制聚合物分子量最理想的方法。通过活性聚合还能容易地获得预定结构和序列的嵌段共聚物和接枝共聚物。因此,活性聚合的研究受到高度的重视。 活性聚合的概念是1956年Sz w are提出的,即无终止、无转移、引发速率远大于增长速率的聚合反应。 活性聚合中依引发机理的不同,分为阳离子活性聚合、阴离子活性聚合、配位活性聚合、自由基活性聚合等。至今为止发展最完善的是阴离子活性聚合,由此成功地获得了单分散聚合物、预定结构和序列的嵌段共聚物、接枝共聚物。然而,阴离子活性聚合对反应条件要求苛刻,可聚合的单体也比较少,应用范围很有限。 与其他类型聚合反应相比,自由基聚合可聚合 收稿日期:2003210221 作者简介:谭英杰,男,1971年出生,学士学位,讲师,主要从事高分子材料共混改性研究。 的单体多、反应条件温和、易控制,实现工业化生产容易。当今市场上60%以上的合成聚合物产品是由自由基聚合工艺制备的。所以,活性自由基聚合具有极高的实用价值。 但是,自由基不稳定,极易发生双自由基终止反应,难以实现自由基活性聚合。从20世纪70年代开始,人们就努力寻找获得自由基活性聚合的途径[1]。 1 原子转移自由基聚合(A TR P)的特点 新材料的合成技术是21世纪优先发展的三大产业之一。高分子合成化学技术的发展促进了能满足各种要求的新材料不断问世,成为合成材料技术取得日新月异进展的重要基础之一。20世纪50年代配位聚合技术的出现,开辟了立构规整聚合的新纪元;而各种活性聚合技术的发展为合成出结构和组成可控的聚合物材料提供了可能性。自由基聚合产品占了所有聚合物产品的一半以上,因此,发展“可控、活性自由基聚合”成为人们梦寐以求的目标。自1995年中国旅美学者王绵山等首先发明原子转移自由基聚合(A TR P)技术后,立即引起世界各国高分子界专家学者和工业界的极大兴趣。 原子转移自由基聚合技术是近几年迅速发展并有着重要应用价值的一种活性聚合技术,可有效地

有关格式试剂(Grignard-reagent)的总结

有关格式试剂(Grignard-reagent)的总结

由有机卤素化合物(卤代烷、活泼卤代芳烃)与金属镁在绝对无水乙醚中 反应形成有机镁试剂,称为“格林尼亚试剂”,简称“格氏试剂”。后法 国化学家诺尔芒于1953年以四氢化呋喃(THF)作为溶剂得到了格氏试剂。该项改进称为“格林尼亚-诺尔芒反应”。现常用卤代烃与镁粉在无水乙醚或四氢呋喃(THF)中反应制得,制备过程必须在绝对无水无二氧化碳无乙醇等具有活泼氢的物质(如:水、醇、氨NH3、卤化氢、末端炔等)条件下进行。通常以通式RMgX表示。格式试剂是一种活泼的有机合成试剂,能进行多种反应,主要包括:烷基化反应,羰基加成,共轭加成,及卤代烃还 原等。 格式试剂一般有两种,1:氯苯类(氯化苄)在乙醚(四氢呋喃)下和镁反应,2:溴代环戊烷在乙醚(四氢呋喃)下和镁(锌)反应。 1 格式试剂的溴代苯,格式的操作分为几类: 第一类:高温引发,回流滴加,保持回流1h 以使反应完全,这适合活性中等的溴代苯,如对甲基溴苯; 第二类:高温不好引发,需加引发剂,如碘、1,2-二溴乙烷、其他的溴代烃或DIBALH等,引发后,回流滴加,保持回流1h以使反应完全,这适合活性比较低的溴代烃,如对甲氧基溴苯; 第三类:常温即可引发,常温滴加,保持常温12h以上以使反应完全,这适合活性比较高的溴代烃,如多氟代溴苯(氟非邻位); 2 做格式时溴苯的活性:

1,有供电子基则活性低比较难以引发,有吸电子基则活性高比较好引发; 2,有供电子基则形成的格式试剂稳定,偶联等副反应较少,有吸电子基则形成的格式试剂比较不稳定,偶联等副反应较多; 3,溴的邻位有其他卤素时形成的格式试剂最不稳定,易发生消除生成经由苯炔中间体的其他副产物; 4,苄位和烯丙位的格式也比较不稳定,自身偶联较多; 3 关于做苄基和烯丙基格式试剂: 溶剂最好用甲基四氢呋喃,副产物少,用TH F做溶剂通常得到的是副产物联苄,也有提出用甲叔醚代替THF以减少偶联副反应。 THF一般好引发,换用其他溶剂不见得好引发,可以考虑先用THF引发后再补加主要溶剂如MeTHF。 4 格氏试剂大生产的13条总结 1.反应的原料,溶剂水份必须控制的,做了个预处理装置,将一批投料量的溶剂投入一锅中,锅底阀接一泵(防暴)打入4A分子筛填满

苯基溴化美格氏试剂与甲基丙烯酸乙烯酯的反应.

湖南科技大学 毕业设计(论文) 题目苯基溴化镁格氏试剂与甲基丙烯酸乙烯酯的反应 作者 学院化学化工学院专业化学 学号 指导教师 二〇一五年五月二十八日

湖南科技大学 毕业设计(论文)任务书 化学化工学院化学系(教研室) 系(教研室)主任:(签名)年月日 学生姓名: 学号: 专业: 1 设计(论文)题目及专题:苯基溴化镁格氏试剂与甲基丙烯酸乙烯酯的反应 2 学生设计(论文)时间:自2015年 3 月1日开始至2015 年5月20日止 3 设计(论文)所用资源和参考资料: (1)化学楼有机研究室仪器;(2)化学专业的教学教材; (3)中国期刊全文数据库;(4)https://www.360docs.net/doc/7b7194656.html,/bbs/ 小木虫论坛; (5)http://www.science-and-fun.de/tools/ 各类谱图数据解析网站 4 设计(论文)应完成的主要内容: (1)查阅文献;(2)在隔绝空气条件下, 以四氢呋喃做溶剂,用苯基溴化镁格氏试剂,与甲基丙烯酸乙烯酯反应,得到产物(1),产物(1)结构经熔点、1H NMR、13C NMR 确证,根据芳基格氏试剂与醋酸异丙烯酯的反应研究成果,推测了可能的产物(2-5)讨论了其反应的可能机理。 5 提交设计(论文)形式(设计说明与图纸或论文等)及要求: (1)提交论文一份;( 2 )要求严格按照湖南科技大学论文格式;(3)实验结果图与实验结果数据;(4)实验数据精确,文章创新;(5)装订顺序:①封面②扉页③任务书④指导人评语⑤评阅人评语⑥答辩记录⑦中文摘要⑧英文摘要⑨目录⑩正文(包括前言、主体、结论)参考,文献,致谢,附录。 6 发题时间: 2015 年 1 月 20 日 指导教师:(签名) 学生:(签名)

格氏试剂(严选优质)

格氏试剂 目录 合成方法 发现历史 化学性质 格氏试剂 Grignard reagent 一种金属有机化合物,通式RMgX(R代表烃基,X代表卤素)。1901年由F.-A.V.格利雅首次使用卤代烃RX与镁在醚类溶液中反应制得。又称格利雅试剂。格氏试剂广泛用于有机合成中,从RMgX可以制得RH、R—COOH、R—CHO、R—CH2OH、R—OH、CROHRR′、CRR′O和RnM(n为金属的化合价,M为其他金属)。在合适的情况下,RMgX 还能与α、β-不饱和羰基化合物发生共轭的加成反应。格氏试剂在醚的稀溶液中以单体形式存在,并与两分子醚络合,浓溶液中以二聚体存在。 原理 由于镁原子直接和碳链相连,极化作用的结果是使邻近镁原子的那个碳原子呈负电性,使得这根C-Mg键极具反应活性。为了保证格氏试剂不发生其他反应,反应一般在醚类溶剂里进行,常用的有乙醚或四氢呋喃。在逆合成方法中,格林尼亚试剂是一种亲核烃基d1合成子。 合成方法 格氏试剂的制法是将卤代烃(常用氯代烷或溴代烷)乙醚溶液缓缓加入被乙醚浸泡着的镁屑中,加料速度应能维持乙醚微沸,直至镁屑消失,即得格氏试剂。反应是放热的,如果反应起动迟钝,可加一小粒碘来启动,一旦反应开始,乙醚发生沸腾后,乙醚的蒸气足以排除系统内空气的氧化作用,但不允许有水。格氏试剂易与空气或水反应,故制得后应就近在容器中反应。氯乙烯和结合在烯碳上的氯不能在乙醚中与镁反应,如用四氢呋喃代替乙醚,可制得氯化乙烯基镁试剂。这种试剂有人称为诺曼试剂。 由于反应开始时很慢,为了更好地启动镁与卤代烃的反应,常用少量碘、碘甲烷或1,2-二溴乙烷加快反应的开始。1,2-二溴乙烷应当是启动反应的首选试剂,特别是乙醚中如有少量水时,二溴乙烷与镁很快反应,生成溴化镁和乙烯,溴化镁有去水干燥作用,还可以通过观察乙烯的气泡判断反应速率。另外,生成的溴化镁和乙烯都是无毒的。这三种启动时加入的试剂都是通过去除镁表面的钝化层来加快反应的。 发现历史 1912年,诺贝尔化学奖授予法国化学家维克多·格林尼亚。他发现了金属镁与许多卤代烃的醚溶液反应,生成了一类有机合成的中间体——有机金属镁化合物,即格氏试剂。 维克多·格林尼亚的家庭很富有,但他不爱读书,成为“没出息的花花公子”。1892年,在一次宴会上,他邀请一位女伯爵跳舞。女伯爵拒绝,并说她最讨厌他这

有关格式试剂(Grignard-reagent)的总结

由有机卤素化合物(卤代烷、活泼卤代芳烃)与金属镁在绝对无水乙醚中反应形成有机镁试剂,称为“格林尼亚试剂”,简称“格氏试剂”。后法国化学家诺尔芒于1953年以四氢化呋喃(THF)作为溶剂得到了格氏试剂。该项改进称为“格林尼亚-诺尔芒反应”。现常用卤代烃与镁粉在无水乙醚或四氢呋喃(THF)中反应制得,制备过程必须在绝对无水无二氧化碳无乙醇等具有活泼氢的物质(如:水、醇、氨NH3、卤化氢、末端炔等)条件下进行。通常以通式RMgX表示。格式试剂是一种活泼的有机合成试剂,能进行多种反应,主要包括:烷基化反应,羰基加成,共轭加成,及卤代烃还原等。 格式试剂一般有两种,1:氯苯类(氯化苄)在乙醚(四氢呋喃)下和镁反应,2:溴代环戊烷在乙醚(四氢呋喃)下和镁(锌)反应。 1 格式试剂的溴代苯,格式的操作分为几类: 第一类:高温引发,回流滴加,保持回流1h以使反应完全,这适合活性中等的溴代苯,如对甲基溴苯; 第二类:高温不好引发,需加引发剂,如碘、1,2-二溴乙烷、其他的溴代烃或DIBALH 等,引发后,回流滴加,保持回流1h以使反应完全,这适合活性比较低的溴代烃,如对甲氧基溴苯; 第三类:常温即可引发,常温滴加,保持常温12h以上以使反应完全,这适合活性比较高的溴代烃,如多氟代溴苯(氟非邻位); 2 做格式时溴苯的活性: 1,有供电子基则活性低比较难以引发,有吸电子基则活性高比较好引发; 2,有供电子基则形成的格式试剂稳定,偶联等副反应较少,有吸电子基则形成的格式试剂比较不稳定,偶联等副反应较多; 3,溴的邻位有其他卤素时形成的格式试剂最不稳定,易发生消除生成经由苯炔中间体的其他副产物; 4,苄位和烯丙位的格式也比较不稳定,自身偶联较多; 3 关于做苄基和烯丙基格式试剂: 溶剂最好用甲基四氢呋喃,副产物少,用THF做溶剂通常得到的是副产物联苄,也有提出用甲叔醚代替THF以减少偶联副反应。 THF一般好引发,换用其他溶剂不见得好引发,可以考虑先用THF引发后再补加主要溶剂如MeTHF。 4 格氏试剂大生产的13条总结

自由基聚合机理以及四种常见共聚物

自由基聚合机理 烯类单体的加聚反应多属连锁聚合,连锁聚合反应由链引发、链增长、链终止等基元反应组成,各步的反应速率和活化能相差很大。连锁聚合链引发形成活性中心(或称活性种),活性中心不断与单体加成而使链增长(单体之间并不反应),活性中心的破坏就是链终止。自由基、阳离子、阴离子都可能成为活性中心引发聚合,故连锁聚合又可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等,其中自由基聚合产物约占聚合物总产量的60%。 热力学上能够聚合的单体对聚合机理的选择是有差异的,如氯乙烯只能自由基聚合、异丁烯只能阳离子聚合、MMA可以进行自由基聚合和阴离子聚合、苯乙烯则可按各种连锁机理聚合。 自由基聚合产物约占聚合物总产量60%以上,其重要性可想而知。高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚丙烯酸酯类、聚丙烯腈、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS树脂等聚合物都通过自由基聚合来生产。本节将对自由基链式聚合反应作较详细的讨论。 自由基聚合的基元反应 烯类单体的自由基聚合反应一般由链引发、链增长、链终止等基元反应组成。此外,还可能伴有链转移反应。现将各基元反应及其主要特征分述如下。 1 链引发 链引发反应是形成单体自由基活性种的反应。用引发剂引发时,将由下列两步组成:(1)引发剂I分解,形成初级自由基R?; (2)初级自由基与单体加成,形成单体自由基。 单体自由基形成以后,继续与其他单体加聚,而使链增长。 比较上述两步反应,引发剂分解是吸热反应,活化能高,约105~150kJ/mo1,反应速

率小,分解速率常数约10-4~10-6s-1。初级自由基与单体结合成单体自由基这一步是放热反应,活化能低,约20~34kJ/mo1,反应速率大,与后继的链增长反应相似。但链引发必须包括这一步,因为一些副反应可以使初级自由基不参与单体自由基的形成,也就无法继续链增长。 有些单体可以用热、光、辐射等能源来直接引发聚合。这方面的研究工作不少,苯乙烯热聚合已工业化;紫外光固化涂料也已大规模使用。 2 链增长 在链引发阶段形成的单体自由基,仍具有活性,能打开第二个烯类分子的π键,形成新的自由基。新自由基活性并不衰减,继续和其他单体分子结合成单元更多的链自由基。这个过程称做链增长反应,实际上是加成反应。 为了书写方便,上述链自由基可以简写成,其中锯齿形代表由许多单元组成的碳链骨架,基团所带的独电子系处在碳原子上。 链增长反应有两个特征:一是放热反应,烯类单体聚合热约55~95kJ/mol;二是增长活化能低,约20~34KJ/mol,增长速率极高,在0.01~几秒钟内,就可以便聚合度达到数千,甚至上万。这样高的速率是难以控制的,单体自由基一经形成以后,立刻与其他单体分子加成,增长成活性链,而后终止成大分子。因此,聚合体系内往往由单体和聚合物两部分组成,不存在聚合度递增的一系列中间产物。 对于链增长反应,除了应注意速率问题以外,还须研究对大分子微观结构的影响。在链增长反应中,结构单元间的结合可能存在“头-尾”和“头-头”或“尾-尾”两种形式。经实验证明,主要以头-尾形式连接。这一结果可由电子效应和空间位阻效应得到解释。对一些取代基共轭效应和空间位阻都较小的单体聚合时头-头结构会稍高,如醋酸乙烯酯、偏二氟乙烯等。聚合温度升高时,头-头形式结构将增多。

【CN109867736A】一种可逆加成断裂链转移试剂及其制备方法和应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910195824.1 (22)申请日 2019.03.15 (71)申请人 重庆科技学院 地址 401331 重庆市沙坪坝区大学城东路 20号 (72)发明人 张鹏 杨子腾 邓博 廖文平  王文哲 梅先伦 李婷 周成裕  贾振福 陈世兰  (74)专利代理机构 重庆蕴博君晟知识产权代理 事务所(普通合伙) 50223 代理人 郑勇 (51)Int.Cl. C08F 2/38(2006.01) C08F 220/56(2006.01) C08F 222/38(2006.01) C07C 329/00(2006.01)C09K 8/512(2006.01) (54)发明名称 一种可逆加成断裂链转移试剂及其制备方 法和应用 (57)摘要 本发明公开了一种可逆加成断裂链转移试 剂,所述可逆加成断裂链转移试剂为2-(苯甲基 三硫代碳酸酯基)丙酸,本发明还公开了所述可 逆加成断裂链转移试剂的制备方法以及在制备 聚丙烯酰胺凝胶分散体中的应用。采用本发明制 备的链转移剂,可实现在相同条件下,本发明制 备的链转移剂比市售的2-(十二烷基三硫代碳酸 酯基)-2-甲基丙酸制备的凝胶分散体的粒径更 小。并且本发明所涉及的制备工艺流程简单,不 涉及特殊设备,后处理容易,容易实现工业化生 产。权利要求书1页 说明书4页 附图1页CN 109867736 A 2019.06.11 C N 109867736 A

1.一种可逆加成断裂链转移试剂,其特征在于,所述可逆加成断裂链转移试剂为2-(苯甲基三硫代碳酸酯基)丙酸, 其结构式为 2.一种可逆加成断裂链转移剂的制备方法,其特征在于,包括如下工艺步骤: 1)取氢氧化钾溶于水中,20分钟之内缓慢加入2-巯基丙酸;然后再逐滴加入二硫化碳得橙黄色溶液,搅拌反应3-7小时; 2)向步骤1)所得溶液中加入溴化苄,然后将反应物加热回流10-14小时,待冷却至室温后,将粗产物与二氯甲烷混合并加入浓盐酸进行分液,有机层呈黄色,收集有机相; 3)将有机相分别用饱和食盐水和纯净水清洗,用无水硫酸镁进行干燥,得2-(苯甲基三硫代碳酸酯基)丙酸,即可逆加成断裂链转移剂。 3.根据权利要求2所述一种可逆加成断裂链转移剂的制备方法,其特征在于,所述工艺步骤如下:取13.0g氢氧化钾溶于125g水中,20分钟之内缓慢加入10mL2-巯基丙酸,逐滴加入15mL二硫化碳后得到橙黄色溶液,搅拌5h后加入19.8g溴化苄,用三颈烧瓶加热回流12h 后冷却至室温,待反应物冷却后,将粗产物倒入500mL分液漏斗中与150mL二氯甲烷混合并加入25mL浓盐酸酸化直到有机层呈黄色,水层用氯仿洗两次后将有机相合并,有机相先后用100mL饱和食盐水和100mL纯净水分别洗一次和两次,再用无水硫酸镁干燥即得2-(苯甲基三硫代碳酸酯基)丙酸。 4.一种可逆加成断裂链转移剂在制备聚丙烯酰胺凝胶分散体中的应用。 5.根据权利要求4所述一种可逆加成断裂链转移剂在制备聚丙烯酰胺凝胶分散体中的应用,其特征在于,包括如下工艺: 1)向反应器中加入二甲亚砜作为溶剂,再加入丙烯酰胺作为单体,加入N ,N ’-亚甲基双丙烯酰胺作为交联剂,加入2-(苯甲基三硫代碳酸酯基)丙酸作为链转移剂,加入过硫酸铵作为引发剂;待反应物完全溶解; 2)将反应器中冲入氮气除氧并密封,然后将反应器在40-80℃温度条件下反应,反应完成后,立即取出浸入冰水浴冷却至室温,得聚丙烯酰胺凝胶分散体。 6.根据权利要求5所述一种可逆加成断裂链转移剂在制备聚丙烯酰胺凝胶分散体中的应用,其特征在于,步骤1)所述单体、交联剂、链转移剂加入的摩尔比为74-91:5-20:4-6。 7.根据权利要求5所述一种可逆加成断裂链转移剂在制备聚丙烯酰胺凝胶分散体中的应用,其特征在于,步骤2)所述温度条件为50-70℃。 8.根据权利要求5所述一种可逆加成断裂链转移剂在制备聚丙烯酰胺凝胶分散体中的应用,其特征在于,控制步骤1)所述反应物的固含量为6%-9%。 权 利 要 求 书1/1页2CN 109867736 A

自由基聚合习题参考答案

第3章自由基聚合-习题参考答案 1、判断下列单体能否进行自由基聚合并说明理由 H2C CHCl H2C CH H2C CCl2H2C CH2H2C C H2C CHCN H2C C(CN)2H2C CHCH3F2C CF2ClHC CHCl H2C C CH3 COOCH3H2C C CN COOCH3 HC CH OC CO O 答: (1)可以。Cl原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只能自由基聚合。 (2)可以。为具有共轭体系的取代基。 (3)可以。结构不对称,极化程度高,能自由基聚合。 (4)可以。结构对称,无诱导效应共轭效应,较难自由基聚合。 (5)不能。1,1—二苯基乙烯,二个苯基具有很强的共轭稳定作用,形成的稳定自由基不能进一步反应。 (6)可以。吸电子单取代基。 (7)不可以。1,1双强吸电子能力取代基。 (8)不可以。甲基为弱供电子取代基。 (9)可以。氟原子半径较小,位阻效应可以忽略不计。 (10)不可以。由于位阻效应,及结构对称,极化程度低,难自由基聚合 (11)可以。1,1-双取代。 (12)可以。1,1-双取代吸电子基团。 (13) 不可以。1,2-双取代,空间位阻。但可进行自由基共聚。 2、试比较自由基聚合与缩聚反应的特点。

答: 自由基聚合:(1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。 (2)单体加到少量活性种上,使链迅速增长。单体-单体,单体-聚合物,聚合物-聚合物之间均不能反应。 (3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。聚合一开始就有高聚物产生。 (4)在聚合过程中,单体逐渐减少,转化率相应增加 (5)延长聚合时间,转化率提高,分子量变化较小。 (6)反应产物由单体,聚合物,微量活性种组成。 (7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。 缩聚反应:(1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。 (2)单体,低聚物,缩聚物中任何物种之间均能缩聚,使链增长,无所谓活性中心。 (3)任何物种之间都能反应,使分子量逐步增加,反应可以停留在中等聚合度阶段,只在聚合后期才能获得高分子产物。 (4)聚合初期,单体缩聚成低聚物,以后再由低聚物逐步缩聚成高聚物,转化率变化微小,反应程度逐步增加。 (5)延长缩聚时间分子量提高,而转化率变化较小。 (6)任何阶段都由聚合度不等的同系缩聚物组成。 (7)平衡和基团非等当量可使缩聚暂停,这些因素一旦消除,缩聚又可继续进行。 3、解释下列概念: 歧化终止,偶合终止,引发剂效率,笼蔽效应,诱导效应,自动加速现象,诱导期,聚合上限温度,悬浮聚合,乳液聚合,增溶作用,临界胶束浓度,胶束,种子乳液聚合, 答: 歧化终止:链自由基夺取另一自由基的氢原子或其他原子终止反应。 偶合终止:两链自由基的独电子相互结合成共价键的终止反应。 引发剂效率:引发剂在均裂过程中产生的自由基引发聚合的部份占引发剂分解总量的分率,

格氏试剂在有机合成中的应用

格氏试剂在有机合成中的应用 摘 要 格氏试剂是有机金属化合物中重要的一类化合物, 也是有机合成中非常重要的试剂之一, 应用广泛。格氏试剂与不同的物质反应, 可以合成烃类、醇类、酮类、醛类、羧酸类及金属有机化合物等。本文讨论了格氏试剂的制备、性质及其在有机合成中的应用。 关键词 格氏试剂 有机合成 应用 格氏试剂是1912年诺贝尔化学奖获得者法国化学家格里尼亚(V.Grignard )所发现并制得的,这个试剂是有机化学家所知的最有用和最多能的试剂之一。国内外现有机化学教科书都对这一试剂的制备、性质及其在有机合成中的应用进行了描述和讨论。为此, 本文就格氏试剂制备、性质及其在有机合成中的应用作一讨论。 1 格氏试剂的制备及结构 RMgX 是格氏试剂的通式。其实,真实的格氏试剂并不是单分子烃基卤化镁在醚中的简单溶液,而是R 2Mg 、MgX 2、(RMgX)n 等多种物质经过一个希兰克(Schlenk )转化形成的一种动态平衡混合体系[1],即: 。组成格氏试剂的各种 物质的相对数量取决于许多因素, 包括烃基和卤素的结构与性质、溶剂的种类、浓度的大小、温度的高低等。有的文献认为格氏试剂是把镁屑放在无水乙醚(或其它醚)中, 滴加卤代烷而制得[2], 即 。 烃基卤化镁称为Grignard 试剂,这类反应也叫做Grignard 反应[3]。 在格氏试剂中, 乙醚, 也可以是苯、四氢呋喃或其他醚类是起溶剂的作用,它能与格氏试剂络合生成稳定的溶剂化物[4]即: (C 2H 5)2O Mg X R O(C 2H 5)2 这些醚类溶剂是格氏试剂结构中的重要组成部分,在形成的络合物 中, 氧原子提供孤对电子与烃基卤化镁原子形成配位键:碳-镁和镁-卤键。它们的性质是不一样的,碳-镁键一般是共价键, 而镁-卤键通常是离子键, 即:碳-镁键上的两个成键原子, 它们的电负性不同, 碳为2.50, 镁的为1.23。碳的电负性大于镁,成键电子富集于碳原子的一方, 常可起到碳负离子的作用[5], 使得烃基带上负电荷,而镁带上部分正电荷,碳-镁键是强极性的,即R δ-Mg δ+X 。 在一般情况下进行反应时,格氏试剂异裂,是一个亲核试剂,格氏试剂比较稳定, 在无水的条件下, 可以保持一段时间, 但它对有些化合物表现出很大的活性,例如:R δ-—Mg δ+X+HOH →R—H+Mg(OH)X 格氏试剂遇水分解, 故在制备、保存、与其它试剂反应时都必须在无水的条件下进行。

自由基聚合题库

? 1. 目前,悬浮聚合发主要用于生产( )。
A. PVC、PVDC C. PE
正确答案:A.
B. PS D. PP
? 2. 下列单体中可进行自由基、阴离子、阳离子聚合反应的是( )。
A. 氯乙烯 B. 苯乙烯 C. 乙烯 D. 醋酸乙烯 正确答案:B.
? 3. 聚乙烯醇的单体是( )。
A. 乙烯醇 B. 乙醇
C. 乙醛
D. 醋酸乙烯酯
正确答案:D.
? 4. 典型乳液聚合中,主要引发地点是在 ( )。
A. 单体液滴 B. 胶束 C. 水相 D. 单体液滴和胶束 正确答案:B.
? 5. 过硫酸钾引发剂属于( )。
A. 氧化还原引发剂 B. 水溶性引发剂 C. 油溶性引发剂 D. 阴离子引发剂 正确答案:B.
? 6. 在自由基聚合中,若初级自由基与单体的引发速度较慢,则最终聚合速率与单体浓 度呈( )级关系。
A. 1 C. 2
正确答案:B.
B. 1.5 D. 不能确定
? 7. 苯醌是常用的分子型阻聚剂,一般用单体的( )就能达到阻聚效果。
A. 1.0%一 0.5% C. 2.0%一 5.0% 正确答案:D.
B. 1.0%一 2.0% D. 0.1%一 0.001%
? 8. ( )的自由基是引发聚合反应常见的自由基。

A. 高活性 B. 低活性 C. 中等活性 D. 无活性 正确答案:C.
? 9. 某工厂用 PVC 为原料制搪塑制品时,从经济效果和环境考虑,他们决定用( )聚合 方法。
A. 本体聚合法生产的 PVC C. 乳液聚合法生产的 PVC
正确答案:C.
B. 悬浮聚合法生产的 PVC D. 溶液聚合法生产的 PVC
? 10. 自由基链转移反应中,不可能包括活性链向( )的转移。
A. 高分子 B. 单体 C. 引发剂 D. 溶剂
? 1. 对于自由基聚合,在其他条件保持不变的前提下升高聚合温度,得到的聚合物的分 子量将( )。
A. 减小 B. 增大 C. 不变 D. 不一定 正确答案:B.
? 2. 在乙酸乙烯酯的自由基聚合反应中加入少量苯乙烯,会发生( )
A. 聚合反应加速 C. 相对分子量降低 正确答案:B.
B. 聚合反应停止 D. 相对分子量增加
? 3. 传统自由基聚合的机理特征是( )。
A. 慢引发,快增长,速终止 C. 快引发,快增长,难终止
正确答案:A.
B. 快引发,慢增长,不中止 D. 慢引发,慢增长,速终止
? 4. 合成丁基橡胶的主要单体是( )。
A. 异丁烯+丁二烯 C. 异丁烯
正确答案:B.
B. 异丁烯+异戊二烯 D. 丁二烯
? 5. 合成橡胶通常采用乳液聚合反应,主要是因为乳液聚合( )。
A. 产品较纯净
B. 易获得高分子量聚合物
C. 不易发生凝胶效应 D. 聚合反应容易控制

浅谈格氏试剂的相关性质及其应用

浅谈Grignard试剂的性质及其应用 xxx xxx 摘要:Grignard试剂是有机金属化合物中重要的一类化合物,也是有机合成上非常重要的试剂之一。Grignard试剂与不同的物质反应,可以合成烃类、醇类、酮类、醛类、酸类及金属有机化合物等。 关键词:Grignard试剂组成结构希兰克平衡化学性质 1Grignard试剂的发现 卤代烷和金属镁在无水乙醚中反应,生成的烷基卤化镁(RMgX)称为Grignard试剂。Grignard试剂的发现是20世纪初有机化学合成研究中的重大发现之一,它促进了有机化学合成的发展,发现者格林尼亚因此而获得1912年的诺贝尔化学奖。 1898年,法国化学家巴比埃(Phillip Barbier)在研究金属有机化合物及其有关反应时,试图用金属镁代替锌,以便得到性能更好的有机合成中间体。由于在实验中没有取得令人满意的结果,巴比埃未能将此项工作进行下去。巴比埃就让他的助手格林尼亚对这个课题继续进行研究。1900-1901年,在格林尼亚进行了一系列实验研究,最后发现,当把卤代烷和金属镁共同放进乙醚溶液中时,溶液先是变浑浊,然后开始沸腾,最后金属镁全部溶解,得到溶液。实验证明,这是烷基卤化镁的溶液。一种与烷基锌相比,室温下不自燃、无需从溶液中分离出来就可直接使用的、性能优良的有机合成中间体诞生了。 鉴于Grignard试剂在合成有机化合物中的重要作用,1912年,格林尼亚因发现这种试剂获得了诺贝尔化学奖。这种试剂也因它的发现者而得名[1]。 2Grignard试剂的制备及其组成结构 2.1Grignard试剂的制备 Grignard试剂是用卤代烃与镁直接接触制备的。 RX + Mg醚RMgX 为了防止生成的试剂与水、氧气、二氧化碳以及未反应的卤代烃偶联,反应需在惰性气体保护下低温进行。所用溶剂如乙醚、四氢呋喃均需严格处理,必须保证绝对无水,否则将影响产率,甚至将不能进行。

相关文档
最新文档