基因工程技术-笔记整理

基因工程技术-笔记整理
基因工程技术-笔记整理

基因工程技术■笔记整理

基因工程技术:按照人们的愿望,进行严密

的设计,通过体外DNA重组和转移等技术,有目的地改造生物种性,使现有物种在较短的时间内趋于完善,创造出新的生物类型。

质粒是一种染色体外的稳定遗传因子,大小

从1-2O0kb不等,为双链、共价闭合环状DNA 分子cccDNA,并以超螺旋状态存在于宿主细胞中,它具有自主的复制和转录系统。质粒在细胞内的复制一般有二种:紧密控制型( stringent controI)和松弛控制型(relaxed contro)。前者只在细胞周期的一定阶段进行复制,通常每个细胞内只含有一个或几个质粒分子;后者在整个细胞周期中随时可以复制,在每个细胞中有许多拷贝。

质粒的不相容性:利用共同复制系统的不同

质粒不能在同一宿主细胞中共存。

从细胞中分离质粒DNA的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细胞;分离和纯化质粒DNA。

溶菌酶:破坏菌体细胞壁;SDS和Triton X-100 :使细胞膜裂解。

染色体DNA通常用于构建基因组文库和Southern杂交等。

基因组DNA的提取

植物基因组DNA提取:提取缓冲液(Tris.CI —保持pH,EDTA,NaCI,SDS ),氯仿/ 戊醇/乙醇溶液一沉淀和抽提DNA,异丙醇一沉淀DNA (提染色体),TE(Tris.Cl,EDTA)--溶解DNA,RNase-保存液,降解RNA,NaAC —加盐,70%乙醇一漂洗。

细菌基因组DNA提取:SDS,蛋白酶K,氯仿:异戊醇(24: 1)--沉淀DNA,苯酚:氯仿:异戊醇(25:24:1)--抽提,70%乙醇一漂洗,TE,NaCl —调节离子强度,RNase A,CTAB/NaCl 溶液一CTAB-- 一种阳离子去污剂,具有从低离子强度溶液中沉淀核酸和酸性多聚糖的特性,异丙醇/无水乙醇一沉淀上清液。

总RNA制备

mRNA的分子结构容易受到RNA酶的攻击反应而降解,加上RNA酶极为稳定而且广泛存在,因此,在提取过程中应严格防止RNA酶的污染并设

法抑制其活性,这是实验成败的关键。仪器一玻璃器皿:200C烘2h,塑料器皿:DEPC 水液处理一所有器皿最后硅烷化处理。

RNA酶抑制剂:DEPC--强烈但不彻底,与氨水溶液混合会产生致癌物;异硫氰酸胍--最有效,使RNA酶失活;其他--RNA酶蛋白抑制剂

(RNasin)SDS,尿素等。

细胞内总RNA制备方法:异硫氰酸胍热苯酚法、酚/SDS法、Trizol法。(均先将组织在液氮

中研磨成粉末)

异硫氰酸胍热苯酚法:异硫氰酸胍(GIT)与 3 —巯基乙醇共同作用抑制RNase的活性,GIT 与十二烷基肌氨酸钠(Sarcosyl作用使蛋白质变性。

酚/SDS法:用酚和SDS破碎细胞和去除蛋白质,用LiCl选择沉淀RNA以去除DNA和其它不纯物。

Trizol法:Trizol试剂(含酚、异硫氰酸胍

和溶解剂等)。

mRNA提取

制备mRNA原理:分离的总RNA可利用mRNA3 '端含有poly(A)的特点,用oligo(dT)纤维素柱分离,当RNA流经oligo(dT)纤维素柱时,在高盐缓冲液作用下,mRNA被特异的吸附在oligo (dT)纤维素上,然后逐渐降低盐浓度洗

脱,在低盐溶液或蒸馏水中,mRNA被洗下。

然后经过两次oligo (dT)纤维素柱,可得到较纯的mRNA。纯化的mRNA在70%乙醇中-70C 可保存一年以上。(上样buffer和洗脱buffer)。溶液中无盐时要沉淀RNA,必须加盐NaAC。琼脂糖凝胶电泳

DNA凝胶电泳:琼脂糖--分离DNA片段大小范围广;聚丙烯酰胺--小片段,分辨力高。

琼脂糖凝胶电泳特性:1.DNA分子大小:DNA 分子在一定琼脂糖浓度下的迁移率;2.琼脂糖浓度:1.0-1.2%; 3.DNA分子构象:超螺旋DNA 最快,线状双链最慢;4.电源电压:不大于5V/cm,负一正;5.染料:溴化乙锭(EB)--强诱变剂;

6.离子强度:0.5*TBE (不能过高,避免buffer 发烫)。

RNA凝胶电泳:RNA分子有很多二级结构,需

经变性剂处理,可以破坏RNA中的二级结构。然后,用琼脂糖凝胶电泳可分级分离不同大小的mRNA 分子。

RNA琼脂糖凝胶电泳方法有三种:乙二醛变性电泳、甲醛变性电泳和羟甲基汞(剧毒)琼脂变性电泳。

DNA限制性内切酶

限制性内切酶:限制性内切酶是指能特异性结

合于一段被称为限制性识别序列的DNA序列之内或其附近的特异性位点上,并切割双链DNA。

I类酶:结合于识别位点并随机切割识别位点不远处的DNA ;II类酶:由二种酶分子组成的二元系统(核酸酶一切割、甲基化酶一修饰),其识别位点和切割位点是同一位置;III类酶:在识别位点之外切割DNA分子,然后从底物上解离。甲基化:保护DNA分子,越活跃的地方,甲基化程度越低。

切割性能:回文对称特异核苷酸序列、平末端DNA片段、粘性末端。

酶单位:在合适缓冲液和反应温度下,在20ul 反应体积中一小时内完全降解1mg DNA所需要的量。

载体:把一个有用的目的DNA片段通过重组DNA技术,送进受体细胞中去进行繁殖和表达的工具。常见载体:质粒、入噬菌体、粘粒、BAC、YAC 等。

质粒载体的特性:分子量小、多拷贝、松弛

控制型;具有多种常用的限制性内切酶的单切

点;能插入较大的外源DNA片段;具有容易

操作的检测表型。

pBR322、pUC18/19 (分子量更小、a -互补原理一蓝白筛选、多克隆位点区MCS )、pBluescript SK(+/-)(MCS)。

乳糖操纵子:

a -互补原理:lacZ ( 3 -半乳糖苷酶基因)基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的3 -半乳糖苷酶阴性突变体之间可以实现互补的现象。

蓝白斑筛选:X-gal-----IPTG (乳糖类似物—诱导剂) ----- 蓝色吲哚产物

(当外源片段插入后,失去a-互补能力,因而不产生3-半乳糖苷酶,无法分解培养基中的乳糖,

菌落呈白色)。

入噬菌体:侵染细菌的病毒(裂解性侵染、

溶源性侵染)。

【碱性磷酸酶--活性好,但较抗热和去污剂,在去磷酸化反应后很难去除】

细胞转化(transformation)是将外源DNA 分子引入受体细胞,使之获得新的遗传性状的一

种手段(E.coli)。

【如需将质粒载体转移进受体细胞,需诱导受体细胞产生一种短暂的感受态以摄取外源DNA.】感受态细胞:受体细胞经一些特殊方法(如CaCl2、RbCl(KCl)等化学试剂)处理后,细胞膜的通透性发生了暂时性改变,成为能允许外源DNA分子进入的细胞状态。

【LB培养基不含Amp,设2个对照(防污染)】提高转化效率的因素:细胞生长状态和密度(刚进入对数生长期)、质粒的质量和浓度

(DNA溶液体积不超过感受态细胞体积的5% )、试剂质量(最高纯度)、防止杂菌和杂DNA 污染(无菌器皿)。

PCR技术的3个步骤:变性:目的双链DNA 在94C下解链;退火:两种寡核苷酸引物在适当温度(50C左右)下雨模板上的目的序列通过氢键配

对;延伸:TaqDNA聚合酶合成DNA的最适温度下,以目的DNA为模板进行合成。

PCR反应5要素:引物、模板、酶、dNTPs 和Mg2+

引物设计原则:1.引物长度:(20bp) ; 2.引

物扩增跨度:2kb左右最有效;3.引物碱基:

G+C 含量40-60%为宜,ATGC分布均匀,不要集

中;4、避免引物内部出现二级结构,避免两

条引物间互补;5.引物3'端的碱基:严格要

求配对;6. 引物中有或能加上合适的酶切位

点;7.引物的特异性:与其他序列无明显同源性;8.扩增产物本身无稳定二级结构(以免产生非特异性);9.引物量:浓度要控制。

模板:可以是DNA或RNA,可以是线状或环状。

TaqDNA聚合酶:活性半衰期为92.5C (最后加入)。

dNTPs:质量、浓度与PCR扩增效率有关,应保存得当,不好冻融,最好分装。

Mg2+:对PCR扩增的特异性和产量有显著影响,浓度过高,特异性降低,出现非特异性;过低,降低TaqDNA聚合酶活性,使反应产物减少。

反应缓冲液:Tris.Cl,KCI,和适当浓度的Mg2+。(BSA、DDT )

PCR反应条件:温度、时间和循环次数。

温度:变性:94C,退火:Tm= 4(G+C)+ 2

(A+T),值约低5C,延伸:72C。

循环次数:25-30循环。【PCR常见问题:无扩增产物、非特异性扩增、拖尾、假阳性】

实时荧光定量PCR技术:技术是一种在PCR反应体系中加入荧光基团,利用荧光信号积累通过对PCR扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。

检测模式有:Tagman探针和SYBR Green I检测模式。

SYBR Green I染料方法:是一种结合于小沟中的双链DNA结合染料,与双链DNA结合后,其荧光大大增强。荧光阈值:在荧光扩增曲线上人为设定的一个值。CT值:每个反应管内的荧光信号到达设定的域值时所经历的循环数。

Tagman探针:是一种寡核苷酸探针,它的荧光与目的序列的扩增相关。

RAPD (随机扩增的多态性DNA):运用随机引物扩增寻找多态性DNA片段可作为分子标记。

原理:利用一系列(通常数百个)不同的随

机排列碱基顺序的寡聚核苷酸单链(通常为10 聚体)为引物,对所研究基因组DNA进行PCR 扩增,聚丙烯酰胺或琼脂糖电泳分离,经EB染色或放射性自显影来检测扩增产物DNA片段的多态性,这些扩增产物DNA片段的多态性反映了基因组相应区域的DNA多态性。【DNA提取+ 选择随机引物一PCR反应一凝胶电泳一图谱分析】缺点:图谱中某些弱带重复性较差,信息量小,有假阳性结果等等。

差别表达基因分析技术:l.mRNA差异显示技术(DD) 2.代表性差示分析技术(RDA)3.

抑制性差减杂交技术(SSH)----提取目标样和参照样;将目标样与残照样杂交得到产物;合并杂交产物;特异性片段扩增----该方法能使假阳性率降低到6% 4.交互差减RNA差别显示

技术(RSDD )。

分子杂交相关技术:互补的核苷酸序列通过Watson-Crick碱基配对形成稳定的杂合双链DNA分子的过程称为杂交。杂交的双方是所使用的探针和

要检测的核酸。

根据核酸的性质:DNA和RNA探针;根据是否

使用放射性标记物:放射性和非放射性标记

探针;根据是否存在互补链:单链和双链;根

据放射性标记物掺入情况:均匀标记和末端

标记。

1)双链DNA探针:其合成方法有--切口平移法和随机引物合成法。

切口平移法:当双链DNA分子的一条链上产生切口时,E.coli DNA聚合酶I就可将核苷酸连接到切口的3'羟基末端。通常使用--[a -32P]dNTP。

随机引物合成法:利用E.coli DNA聚合酶I 的Klenow片段,合成含有标记核苷酸的DNA 链。具有聚合活性,没有5'至3'外切酶活性,称为Klenow片段。

2)末端标记DNA探针:3'末端标记(利用Klenow片段及T4DNA聚合酶)和DNA 5' 末端标记(利用T4多核苷酸激酶PNK )。

3)单链DNA探针:以M13载体衍生序列为模板,用Klenow片段合成;以RNA为模板,用反转

录酶合成。

4)D ig标记的核苷酸

分子杂交:分子杂交是通过各种方法将核酸

分子固定在固相支持物上,然后用标记的探针和被固定的分子杂交,经显影后显示出目的DNA

或RNA 分子所处的位置。Southern杂交和Northern 杂交。

Southern杂交:DNA片段经电泳分离后,从凝胶中转移到硝酸纤维素滤膜或尼龙膜上,然后与探针杂交。被检对象为DNA,探针为DNA 或RNA。步骤:酶切、DNA片段转移、预杂交、杂交、显色反应。

硝酸纤维素滤膜所得的结果背景较低,但易

破裂;尼龙膜较耐用,但所得的结果背景较高。硝酸纤维素膜结合DNA依赖高盐溶液。

DNA转移方法:毛细管转移、真空转移、电泳转移。

Northern杂交:RNA片段经电泳后,从凝胶中转移到硝酸纤维素滤膜上,然后用探针杂交,被检对象为RNA,探针为DNA或RNA。

影响杂交的因素:核酸分子的浓度和长度、

温度、封闭试剂、离子强度。

变性,酸处理的目的?

基因的原核表达:原核表达系统由原核表达寄主菌及原核表达质粒组成,优点:操作简单、方便、快速、成本低、产量高、纯化容易;缺点: 产物多以包涵体形式存在;不含内含子,没有转录及翻译后加工过程,表达产物不能正常修饰;有些表达的蛋白没有活性。

基因表达方式:组成型表达(不停的表达目的蛋白)、诱导表达(只有在诱导剂作用下才表达)、融合表达(融合表达标签)、分泌表达(信号肽)、可溶性表达(E.coli)。

启动子:RNA聚合酶以很高的亲和性结合在基因调控区域的特定位子,起始RNA合成的序列。(-10区和-35区)。

细菌RNA聚合酶不能识别真核基因的启动子,因此原核表达载体所用的启动子必须是原核启动子。

原核表达系统中常见启动子及其特点:Lac (乳糖启动子)一来自E.coli,一段有方向的核苷酸序列,阻止RNA聚合酶的结合而抑制转录;Trp (色氨酸启动子)----阻遏蛋白必须与色氨酸结合才有活性,阻止转录;Tac(乳糖和色氨酸的杂合

启动子卜---由Lac和Trp人工构建的杂合启动子,受Lac阻遏蛋白的负调节;P L (噬菌体的左向启动子)----左向转录启动子,受温度诱导

(45C)、T7噬菌体启动子----来自T7噬菌体,具有高度特异性,只有T7RNA聚合酶才能使其启动转录,从而得到表达。T7启动子完全专一受控于T7 RNA聚合酶。

特点:启动子的作用要强;需表现低水平的

基础表达活性;具有简便和廉价的可诱导性。

终止子:真核基因或操纵子的3'端往往有特定的具有终止转录功能的核苷酸序列。

诱导剂:当有诱导物存在时,诱导物与阻遏

蛋白结合,使其构象发生变化,从而阻遏蛋白从DNA分子上脱落下来,RNA聚合酶进入启动子区,可诱导基因的转录。

T7 表达系统质粒:pET-3—52、His-Tag(6 x His Tag), pET⑷、42、49还含有GST-Tag,kam+ or Amp+ 抗性、His-Tag(6 x His Tag)。

pET质粒:不移码,不改变基因的阅读框架。多克隆位点BamHI。

pGEX系:GST (谷胱甘肽S转移酶)基因融合表达质粒。Amp+, N-端GST ,Thrombin(凝血酶)or

Factor Xa蛋白酶切位点。

GST融合表达蛋白的纯化原理:选择能识别并特异性结合GST的特定配体,其中GST的底物--谷胱甘肽是较佳的候选对象,两者结合后用还原型谷光苷肽的洗脱缓冲液竞争洗脱表达蛋白。。

pBAD 系列:His-Tag(6 xHis), Amp+。

pDH2 : 6X His tag,Amp+, ColEI 复制起点,IPTG 诱导表达。

稀有密码子:有些在真核细胞中常使用的而

在原核细胞中很少使用的密码子。

原核表达中可能遇到的问题及影响因素:基因特性。

基因含稀有密码子(无蛋白表达)、基因GC 含量(超过70%会降低蛋白表达水平)、基因或蛋白大小(介于5KD和100KD之间)、蛋白亲疏水性(亲一表达量高,疏一难表达)、基因二级结构(抑制翻译的起始)、信号肽(疏水性或毒性,应清除)、表达蛋白比预计的小或用其他小的条带(提前终止,可低温诱导、基因改造)、基因毒性(细胞生长困难,应低温低浓度诱导)、质粒不稳定性(用低温高浓度抗生素)、目的mRNA和蛋白不稳定而表达量低(低温长时表达)、

包涵体(为变性的表达蛋白)、培养基pH。表达不出来时首先想到换菌株。

构建原核表达系统,考虑3大因素:表达载体、宿主菌株、表达诱导条件。

His tag融合蛋白纯化的原理:利用蛋白质表面的一些氨基酸,如组氨酸能与多种过渡金属离子

Ni2+,Zn2+, Cu2+,Co2+,Fe3+发生特殊的相互作用,从而把富含这类氨基酸的蛋白质吸附,达到分离的目的。

洗脱目的蛋白有几种方式:咪唑(条件最温和)、pH 以及EDTA。

TCA (三氯乙酸)除去盐酸胍:沉淀盐酸胍、离心、乙醇溶解、离心,得到沉淀为洗脱蛋白,用尿素溶解、透析后保存。

基因的真核表达系统:

穿梭载体:既能在原核细胞中复制,也能在真核细胞中复制的载体。

Western blot(免疫印迹):将蛋白质凝胶电泳、印迹、免疫测定融为一体的特异性蛋白质检测技术。

原理:蛋白质混合样品经SDS-聚丙烯酰胺凝胶(SDS-PAGE)电泳使蛋白质按分子大小分离,将分离的各蛋白质条带原位转移到固相载体膜(NC、PVDF膜)上用无关蛋白质封闭液封闭膜的非特异性位点,加入特异性抗体后膜上的目的蛋白与一抗发生特异性的免疫结合反应,洗涤后再加入能与一抗发生免疫结合反应的酶标二抗,最后通过二抗上标记酶的性质进行检测,即根据底物显色的颜色及深浅来探测膜上印迹蛋白抗原的存在与否及含量多少。

辣根过氧化合酶(HRP):来源于植物,用于动物性样品的检测(目的是消除样品中内源性酶的干扰,降低背景)。

碱性磷酸酶(AP):来源于动物牛小肠,用于植物性样品的检测,(目的是消除样品中内源性酶的干扰,降低背景)。

硝酸纤维素(NC)膜:其结合能力主要与膜的硝酸纤维素的纯度有关,很脆、易破,但是结合蛋白效率比PDVF高。

聚偏二氟乙烯(PVDF )膜:疏水性,不易破,结合蛋白较牢固,可结合小片段蛋白。

SDS-PAGE中SDS的作用:强阴离子去污剂使

蛋白质变性、亚基解离,破坏蛋白质的四级

结构。【蛋白质在电泳分离时,其迁移率主要

取决于蛋白质本身所带的电荷多少、分子量

大小和形态】。

酶标二抗:根据使用的第一抗体选择,如第

一抗体为兔抗体,则可使用羊抗兔IgG抗体,若为鼠源抗体,则可使用羊抗鼠IgG抗体或兔抗鼠IgG 抗体。

Western blot 实验步骤:1.SDS-PAGE 电泳

2.电转移一湿转法:将膜、胶、滤纸整个组合完全浸入有铂丝电极的转移缓冲液中的蛋白原位电转移体系。胶正膜负,(-)--> (+ )。

一小部分胸腺嘧啶(T)残基与膜表面带正电荷的氨基基团之间形成共价交联。

免疫球蛋白(Ig):是指存在于人和动物血液(血清)、组织液及其它外分泌液中的一类具有相似结构的球蛋白。

抗体(Ab):动物机体受到抗原物质的刺激后,由B淋巴细胞转化成的浆细胞产生的,能与相

应抗原发生特异性免疫结合反应的免疫球蛋白。

抗原(Ag):能刺激机体产生抗体和致敏淋巴细胞(免疫原性)并能与之发生特异性免疫反应(反应原性)的物质。

抗原决定簇:存在于抗原分子表面的能够决

定抗原特异性的特殊化学基团,是与抗体结合的位点。决定着抗原与抗体发生特异结合的能力。

ELISA :把抗原、抗体的免疫反应和酶的高效催化反应有机地结合在一起一种免疫学技术。

包被:抗原或抗体结合到固相载体表面的过程。

常用的标记基因和选择基因:生化标记基

因、抗性标记基因、营养标记基因。

生化标记基因:其表达产物可催化某些易检测的生化反应,导入植物24-48小时内就可以检测结果,迅速对转基因程序的有关因素进行评价和优化,获得基因表达水平、载体等信息。

常用基因:B -半乳苷酶基因(lacZ)、葡萄糖苷酸酶基因(GUS)、氯霉素乙酰转移酶基因(CAT )、荧光素酶基因(Luc)、花青素基因

(Ant)、绿色荧光蛋白基因(GFP)。

氯霉素乙酰转移酶(CAT )基因:抑制蛋白质生物合成。

应用原理:真核生物没有Cat,Cat转化的植物细胞具有对氯霉素的抗性,通过Cat的活性检测分析外源基因的表达。活性检测:反应底物乙酰CoA.方法:硅胶G薄层层析法、DTNB分光光度法。

葡萄糖苷酸酶基因(GUS):染色原理--Gus 可以水解葡糖苷酸,形成葡糖醛酸(兰色)。

荧光素酶(Luc)基因:在ATP存在下催化D-荧光素的氧化反应生成氧化荧光素和黄-绿色光。这是一种对植物组织没有伤害的检测方法。

花青素(Ant)基因:转入这些基因后,可以在植物组织上生成红色的花青素斑点。此基因不需任何底物就可以检测,但使用局限性大。

绿色荧光蛋白(GFP)基因:是海洋生物水母体内的一种发光蛋白,经过改造后用于做植物的标记基因,基因产物在兰色光或紫色光下可见绿色荧光。

抗性标记基因:抗生素抗性基因、重金属抗性基因、代谢抗性基因。

扬州大学基因工程期末试题复习要点整理

基因工程期末试题复习要点整理 基因工程是70年代出现的一门科学,是生物学最具生命力和最引人注目的前沿科学之一,是现代生物技术的代表,是生命科学类专业中的一门重要的专业课。本课程主要介绍基因工程概述、重组DNA基本技术及原理、基因克隆、基因的分离及鉴定、基因工程的表达系统、基因工程的应用等。通过本课程的学习,使学生掌握基因工程技术的基本原理和了解该技术在动物、植物和微生物等方面的应用,为今后从事生物学教学、生物技术研究和产品开发,或进一步的研究生学习科研打下坚实的理论及专业基础。扬州大学试题纸 一、名词解释:共10题,每题2分,共20分。 1. 基因: 是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。 2. 定位克隆: 获取基因在染色体上的位置信息,然后采用各种方法对该基因进行定位和克隆 3. 融合基因: 是指应用DNA体外重组技术构建的一类具有来自两个或两个以上的不同基因核苷酸序列的新型基因。 4. 转化子: 导入外源DNA后获得了新遗传标志的细菌细胞或其他受体细胞,又称重组体。 5. 人工接头:是人工合成的具有一个或数个特定限制性内切酶识别和切割序列的双股平端DNA短序列。 6. RT-PCR: 是指以mRNA在反转录酶作用下合成cDNA第一链为模板进行的PCR。 7. ORF : 起始于AUG、止于UAA、UGA、UAG的连续的密码子区域,是潜在的编码区。 8. MCS: 指载体上人工合成的含有紧密排列的多种限制核酸内切酶的酶切位点的DNA片段。 9. gene targeting : 基因工程中利用活细胞染色体DNA可与外源DNA的同源性DNA序列发生重组的性质,来进行定点修饰改造染色体上某一目的基因的技术 10. 5’RACE: 是一种通过PCR进行cDNA末端快速克隆的技术,是以mRNA为模板反转录成cDNA第一链后用PCR技术扩增出某个特异位点到5’端之间未知序列的方法。 四、简答题:共4题,共20分。 1.简述获得目的基因常用的几种方法。(5分)

最新基因工程笔记总结

第二章Enzymes 第四节DNA连接酶Ligase 一、DNA连接酶的发现 二. 连接条件 必须是两条双链DNA。 DNA3’端有游离的-OH,5’端有一个磷酸基团(P)。需要能量。 三、连接反应的机理 1、A TP(NAD+)提供激活的AMP。 2、A TP与连接酶形成共价“连接酶-AMP”复合物,并释放出焦磷酸PPi。 3、AMP 与连接酶的赖氨酸-氨基相连。 4、AMP 随后从连接酶的赖氨酸-氨基转移到DNA 一条链的5’端P上,形成“DNA-腺苷酸”复合物。 5、3’-OH对磷原子作亲核攻击,形成磷酸二脂键,释放出AMP。 Ligase:只连“Nick切口”,不连“Gap缺口” 四. 两种DNA连接酶 1. E. Coli DNA ligase 来源:E.coli 适用:粘性末端(PEG与高浓度一价阳离子存在可连平末端) 2. T4 ligase 来源:T4 phage 适用:粘性末端及平末端 T4 vs. E.coli T4 DNA ligase制备容易,价格便宜,能进行各种类型连接反应,应用更广泛! 五.Ligase的反应温度 最佳温度: 界于酶作用速率和末端结合速率之间,一般认为是4-15℃比较合适。 六. DNA分子连接的四种形式 1. 粘性末端; 2. 平末端; 3. 平末端加尾; 4. 平末端加衔接物(linker)或接头(adaptor) (1)Digestion and Ligation 1.粘性末端连接 Problem: (自我环化作用) 解决方法:a、双酶切(两种内切酶)b、去磷酸 2.平末端连接 粘性末端连接效率高于平末端约100倍! 解决方法:化平末端为粘性末端 3. 平末端连接---同聚物加尾法(1)末端脱氧核苷酸转移酶 功能:5’至3’单链聚合 作用特点:单链;无模版 作用机理: a: 用5’-特异的核酸外切酶处理DNA分子,以便移去少数几个末端核苷酸, 获得3’-OH的单链延伸末端。 b: 加入dA TP/dTTP和末端脱氧核苷酸转移酶组成的反应混合物中,DNA分子的3-OH末端将会出现单纯由poly(dA)和poly(dT)组成的DNA单链延伸。 c: 获得poly(dA)和poly(dT)尾巴,就会彼此连接起来。缺点: 当poly(dA),Poly(dT)不严格等长时,重组DNA分子会有缺口。 需要用DNA聚合酶I填补,然后用DNA连接酶连接最后的缺口。 4. 平末端连接 ---衔接物连接法与接头连接法 (1) 平末端的衔接物连接法 衔接物的5’末端和待克隆的DNA片段的5’-末端,用多核苷酸激酶处理使之磷酸化。通过T4 DNA连接酶的作用使两者连接起来。用适当的限制酶消化具衔接物的DNA分子和克隆载体分子。 (2) 平末端的接头连接法 将具有某种限制性酶(BamHI)粘性末端的典型DNA 接头分子与平末端的DNA片段连接后,后者变成具有粘性末端的DNA分子。 七.热稳定的DNA连接酶——来自嗜热高温放线菌 热稳定的DNA连接酶的应用: 寡核苷酸连接测定法(oligonucleotide ligation assay, OLA) 连接酶链式反应(ligation chain reaction, LCR) 寡核苷酸连接测定法的作用 检测突变 寡核苷酸连接测定法的作用:检测突变。 1. 寡核苷酸连接测定法 (1)原理: 两条寡聚核苷酸探针分子,同一种与之互补变性的靶DNA之间的杂交作用,这两条寡聚核苷酸探针分子在靶DNA分子上的位置是彼此相邻的。 当他们同靶DNA链是完全碱基配对时,便可以被连接酶连接起来。 结合点或靠近结合点处存在和靶DNA错配的碱基两个探针之间不能形成磷酸二脂键。 精品文档

基因工程知识点梳理

生物选修3知识点 专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过,赋予生物以,创造出。基因工程是在 上进行设计和施工的,又叫做。 (一)基因工程的基本工具 1.“分子手术刀”—— (1)来源:主要是从中分离纯化出来的。 (2)功能:能够识别的核苷酸序列,并且使每一条链中的两个核苷酸之间的断开,因此具有。(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式: 和。 2.“分子缝合针”—— (1)两种DNA连接酶()的比较: ①相同点:都缝合键。 ②区别:来源于大肠杆菌,来源于T4噬菌体, 只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来; 而能缝合两种末端,但连接的之间的效率较低。 (2)与DNA聚合酶作用的异同: DNA聚合酶只能将加到已有的核苷酸片段的末端,形成磷酸二酯键。 DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 必须需要模板 3.“分子运输车”—— (1)载体具备的条件:①。 ②,供外源DNA片段插入。 ③,供重组DNA的鉴定和选择。 (2)最常用的载体是 ,它是一 种 。

(3)其它载体: (二)基因工程的基本操作程序 第一步: 1.目的基因是指:基因。 2.原核基因采取获得,真核基因是。人工合成目的基因的 常用方_ 和_。 3. 从基因文库中获取 基因文库(1)概念:将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。 (2)类型:基因组文库和部分基因文库(如cDNA文库) (1)原理: (2)过程:第一步:加热至90~95℃; 第二步:冷却到55~60℃,; 第三步:加热至70~75℃,。 第二步:(核心步骤)

基因工程简答题总结

基因工程原理复习题思考题 5、简单叙述同尾酶和同裂酶的差别。 同尾酶:来源不同,识别的序列不同,但能切出相同的粘性末端,连接后不能被相关的酶同时切割。 同裂酶:识别序列相同,切割位点有些相同,有些不同。分完全同裂酶和不完全同裂酶(PS:完全同裂酶:识别位点和切点完全相同。 不完全同裂酶:识别位点相同,但切点不同。) 6、连接酶主要有哪些类型?有何异同点?影响连接酶连接效果的因素主要有哪些? 类型:DNA连接酶和RNA连接酶 异同点: 相同点:都能以DNA为模板,从5'向3'进行核苷酸或脱氧核苷酸的聚合反应。 不同点:DNA聚合酶识别脱氧核糖核苷酸,在DNA复制中起作用;而RNA聚合酶聚合的是核糖核苷酸,在转录中起作用。 7、试分析提高平端DNA连接效率的可能方法。(传说中的网上答案) 1、低温下长时间的连接效率比室温下短时间连接的好。 2、在体系中加一点切载体的酶,只要连接后原来的酶切位点消失。这样可避免载体自连,应该可以大大提高平端连接的效率。 3、足够多的载体和插入片段是最重要的。 4、平端的连接对于离子浓度很敏感 5、尽可能缩小连接反应的体积 6、建议放在四度冰箱连接两天效率更高比14度好 8、基因工程中常用的DNA聚合酶主要有哪些? 1)大肠杆菌DNA聚合酶 2)Klenow fragment 3)T7 DNA聚合酶 4)T4 DNA聚合酶 5)修饰过的T7 DNA聚合酶 6)逆转录酶 7)Taq DNA聚合酶 第四章基因克隆的载体系统 1、作为基因工程载体,其应具备哪些条件? 具有针对受体细胞的亲缘性或亲和性(可转移性); 具有合适的筛选标记; 具有较高的外源DNA的载装能力; 具有多克隆位点(MCS); 具有与特定受体细胞相适应的复制位点或整合位点。 3、载体的类型主要有哪些?在基因工程操作中如何选择载体? 基因工程中常用的载体(vector)主要包括质粒(plasmid)、噬菌体(phage)和病毒(virus)三大类。这些载体均需经人工构建,除去致病基因,并赋予一些新的功能,如有利于进行筛选的标志基因、单一的限制酶切点等。 4、质粒转化原理,影响转化率的因素有哪些?

生物选修3专题1 基因工程知识点复习学案

专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过________________________,赋予生物以 _____________________,创造出______________________________________。基因工程是在____________上进行设计和施工的,又叫做__________________。 1. (1 (2 (3 2. (1)两种DNA ②区别:E· (2)与DNA 酸二酯键。 3. (1 (2 _____________________的双链___________DNA (3)其它载体: _________________________________ (二)基因工程的基本操作程序 第一步:__________________________ 1.目的基因是指: ______________________________________________________ 。 2.目的基因可采取_______________-获得,也可以用_____________________。人工合成目的基因的常用方 法有________________和_________________。 3.PCR技术扩增目的基因 (1)原理:_____________________ 将目的基因导入植物细胞:采用最多的方法是________________,其次还有基因枪法和花粉管通道法等。将目的基因导入动物细胞:最常用的方法是 _______________。此方法的受体细胞多是 ____________。将目的基因导入微生物细胞:★原核生物作为受体细胞的原因是繁殖快、多为单细胞、遗传物质相对较少, 最常用的原核细胞是 ____________,其转化方法是:先用 ________处理细

基因工程知识点总结归纳(更新版)

基因工程 绪论 1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。作动词:基因的分离和重组的过程。 2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。供体、受体和载体是基因工程的三大要素。 3、基因工程诞生的基础 三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。 三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现 3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶 1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。 2、限制酶的命名:属名(斜体)+种名+株系+序数 3、II型限制性内切酶识别特定序列并在特定位点切割 4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。 5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。 6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。 7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。 8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。 9、S1核酸酶:特异性降解单链DNA或RNA。

基因工程技术 笔记整理

基因工程技术:按照人们的愿望,进行严密的设计,通过体外DNA重组和转移等技术,有目的地改造生物种性,使现有物种在较短的时间内趋于完善,创造出新的生物类型。 质粒是一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、共价闭合环状DNA分子cccDNA,并以超螺旋状态存在于宿主细胞中,它具有自主的复制和转录系统。质粒在细胞内的复制一般有二种:紧密控制型(stringent control)和松弛控制型(relaxed control)。前者只在细胞周期的一定阶段进行复制,通常每个细胞内只含有一个或几个质粒分子;后者在整个细胞周期中随时可以复制,在每个细胞中有许多拷贝。 质粒的不相容性:利用共同复制系统的不同质粒不能在同一宿主细胞中共存。 从细胞中分离质粒DNA 的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细胞;分离和纯化质粒DNA。 溶菌酶:破坏菌体细胞壁;SDS和Triton X-100:使细胞膜裂解。 染色体DNA通常用于构建基因组文库和Southern杂交等。 基因组DNA的提取 植物基因组DNA提取:提取缓冲液(Tris.Cl—保持pH,EDTA,NaCl,SDS),氯仿/戊醇/乙醇溶液—沉淀和抽提DNA,异丙醇—沉淀DNA(提染色体),TE(Tris.Cl,EDTA)--溶解DNA,RNase—保存液,降解RNA,NaAC—加盐,70%乙醇—漂洗。 细菌基因组DNA提取:SDS,蛋白酶K,氯仿:异戊醇(24:1)-- 沉淀DNA,苯酚:氯仿:异戊醇(25:24:1)-- 抽提,70%乙醇—漂洗,TE,NaCl—调节离子强度,RNase A,CTAB/NaCl 溶液—CTAB--一种阳离子去污剂,具有从低离子强度溶液中沉淀核酸和酸性多聚糖的特性,异丙醇/无水乙醇—沉淀上清液。 总RNA制备 mRNA的分子结构容易受到RNA酶的攻击反应而降解,加上RNA 酶极为稳定而且广泛存在,因此,在提取过程中应严格防止RNA 酶的污染并设法抑制其活性,这是实验成败的关键。仪器—玻璃器皿:200℃烘2h,塑料器皿:DEPC水液处理—所有器皿最后硅烷化处理。 RNA酶抑制剂:DEPC--强烈但不彻底,与氨水溶液混合会产生致癌物;异硫氰酸胍--最有效,使RNA酶失活;其他--RNA酶蛋白抑制剂(RNasin)SDS, 尿素等。 细胞内总RNA制备方法:异硫氰酸胍热苯酚法、酚/SDS法、Trizol法。(均先将组织在液氮中研磨成粉末) 异硫氰酸胍热苯酚法:异硫氰酸胍(GIT)与β-巯基乙醇共同作用抑制RNase的活性,GIT与十二烷基肌氨酸钠(Sarcosyl)作用使蛋白质变性。 酚/SDS法:用酚和SDS破碎细胞和去除蛋白质,用LiCl选择沉淀RNA以去除DNA 和其它不纯物。 Trizol法:Trizol试剂(含酚、异硫氰酸胍和溶解剂等)。 mRNA提取 制备mRNA原理:分离的总RNA 可利用mRNA3’端含有poly(A)的特点,用oligo(dT)纤维素柱分离,当RNA流经oligo(dT)纤维素柱时,在高盐缓冲液作用下,mRNA被特异的吸附在oligo(dT)纤维素上,然后逐渐降低盐浓度洗脱,在低盐溶液或蒸馏水中,mRNA被洗下。然后经过两次oligo(dT)纤维素柱,可得到较纯的mRNA。纯化的mRNA在70%乙醇中-70℃可保存一年以上。(上样buffer和洗脱buffer)。溶液中无盐时要沉淀RNA,必须加盐NaAC。 琼脂糖凝胶电泳 DNA凝胶电泳:琼脂糖-- 分离DNA片段大小范围广;聚丙烯酰胺-- 小片段,分辨力高。

精编高一下册《基因工程及其应用》知识点梳理:生物篇

精编高一下册《基因工程及其应用》知识点 梳理:生物篇 1.概念:按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。 2.原理基因重组 3.工具: A.基因的剪刀:限制性内切酶 ①分布:主要在微生物中。 ②作用特点:特异性,即识别特定核苷酸序列,切割特定切点。 ③结果:产生黏性未端(碱基互补配对)。 B.基因的针线:DNA连接酶 ①连接的部位:磷酸二酯键,不是氢键。 ②结果:两个相同的黏性未端的连接。 C.基因的运载工具:运载体 ①作用:将外源基因送入受体细胞。 ②具备的条件:a、能在宿主细胞内复制并稳定地保存。b、具有多个限制酶切点。

c、有某些标记基因。 ③种类:质粒、噬菌体和动植物病毒。 ④质粒的特点:质粒是基因工程中最常用的运载体。 4.基因操作的基本步骤: ①提取目的基因:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等 ②目的基因与运载体结合(以质粒为运载体):用同一种限制酶分别切割目的基因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒) ③将目的基因导入受体细胞常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞 ④目的基因检测与表达 检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒。 表达:受体细胞表现出特定性状,说明目的基因完成了表达过程。如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等。 5.转基因生物和转基因食品的安全性

基因工程期末考试重点知识整理教学文案

基因工程期末考试重点知识整理

基因工程 第一章基因工程概述 1、基因工程的概念(基因工程基本技术路线PPT) 基因工程(Gene Engineering),是指在基因水平上的遗传工程,它是用人为方法将大分子(DNA)提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新的育种技术. 2、基因工程的历史 基因工程准备阶段:1972,第一个重组DNA分子的构建,构建人:Paul Berg 及其同事PPT 基因工程诞生:1973,Cohen & Boyer首次完成重组质粒DNA对大肠杆菌的转化 基因工程发展阶段的几个重要事件: 一系列新的基因工程操作技术的出现; 各种表达克隆载体的成功构建; 一系列转基因菌株、转基因植物、转基因动物等的出现 3、基因工程的内容(P9) 4、基因克隆的通用策略(P12)(基因组文库(鸟枪法)+分子杂交筛选)

第二章分子克隆工具酶 5、限制性核酸内切酶的概念、特点、命名、分类(问答) 概念:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶,主要存在于细菌体内 特点(参加PPT) 命名:依次取宿主属名第一字母,种名头两个字母,菌株号,然后加上序号。如:从Haemophilus influenze Rd中提取到的第三种限制型核酸内切酶被命名为Hind Ⅲ,Hin指来源于流感嗜血杆菌,d表示来菌株Rd,Ⅲ表示序号。 分类:依据酶的亚单位组成、识别序列的种类以及是否需要辅助因子可分为:Ⅰ型酶、Ⅱ型(Ⅱs型)酶和Ⅲ型酶。 真核细胞中有4中DNA聚合酶:α,β,γ,线粒体DNA聚合酶 原核生物中3中DNA聚合酶:Ⅰ,Ⅱ,Ⅲ

基因工程复习笔记

第一章 一、电泳 电泳(eletrophorosis) :带电荷的分子在电场中以一定的速率向与其电荷性质相反的电极移动.移动速度称为电泳迁移率。 影响因素:1 电泳迁移率同电场的强度和分子本身所带的净电荷数目成正比。 2. 电泳迁移率同分子与介质的摩擦系数成反比。 3当电场强度一定,电泳介质相同,电荷相同的分子在电场中迁移的速度主要取决于分子本身的大小和形状(构型)。 4分子形状相似的分子的迁移速度主要与分子量相关: 分子量越大,移动越慢。 指示剂:溴酚蓝(Bb):常用指示剂。分子量670,分子筛效应小,近似于自由电泳,呈蓝紫色。二甲苯青(Xc):分子量554.6,呈蓝色,迁移速度比Bb慢。 染料:溴化乙锭(EB) 1、聚丙烯酰胺凝胶电泳优点:比琼脂糖凝胶的分辨率高的多;回收DNA样品纯度高,无色透明,韧性好,银染的凝胶干燥后可长期保存;能装载的DNA量大,达每孔10μgDNA。 2 、SDS-PAGE 原理:SDS是蛋白质的变性剂,使煮沸变性的蛋白质维持线性状态,并与蛋白质结合,使蛋白质带上相同密度负电荷。SDS与蛋白质结合使蛋白质构象改变,成为形状近似雪茄状的长椭圆棒,SDS-蛋白质复合物短轴相同,而长轴与蛋白质的分子量成正比。

蛋白质-SDS复合物电泳的迁移率不受蛋白质原有电荷和形状的影响,只与椭圆棒的长度,即蛋白质分子量有关。 二、PCR技术 定义:聚合酶链式反应(Polymerase Chain Reaction,PCR)技术,以DNA为模板,在引物、dNTPs、Taq酶的作用下,经变性-退货-延伸反复循环,使某个基因在体外特异性地扩增。 PCR法的原理也是利用人工合成带突变位点的诱变引物,通过PCR 扩增而获得定点突变的基因或DNA片段。 影响因素:(1)Taq DNA聚合酶(具有5’→3’聚合酶活性和5’→3’外切酶活性,但没有3’→5’外切酶活性因此不能修复错误的碱基配对)。 (2)引物(primer)一般引物设计为长15—30bp;位置与待扩增的模板DNA区段的两3’端序列互补(5‘端相同)的短DNA;引物的碱基组成:尽可能提高G+C含量,避免连续相同碱基排列或内部回文序列,避免形成引物二聚体。 (3)引物的Tm值:实际复性温度选择低于Tm值5 oC。 (4)dNTPs 含量适中 (5)Mg 2+ 的浓度 (6)对照实验 三、PCR技术的扩展:反向PCR:不对称PCR:差异显示PCR。反向PCR 原理:扩增两个引物外侧的未知序列,使引物的外侧序列“转变” 成内侧序列。扩增前先用限制性内切酶酶切样品DNA,

专题一、基因工程知识点归纳

专题一基因工程 一【高考目标定位】 1、专题重点:DNA重组技术所需的三种基本工具;基因工程的基本操作 程序四个步骤;基因工程在农业和医疗等面的应用;蛋白质工程的原理。 2、专题难点:基因工程载体需要具备的条件;从基因文库中获取目的基 因;利用PCR技术扩增目的基因;基因治疗;蛋白质工程的原理。 二【课时安排】2课时 三【考纲知识梳理】 第1节DNA重组技术的基本工具 教材梳理: 知识点一基因工程的概念:基因工程是指按照人们的愿望,进行格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在DNA分子水平上进行设计和施工的,因此又叫做DNA重组技术。 注意:对本概念应从以下几个面理解: 知识点二基因工程的基本工具 1.限制性核酸切酶——“分子手术刀” (1)限制性切酶的来源:主要是从原核生物中分离纯化来的。 (2)限制性切酶的作用:能够识别双链DNA分子的某种特定的核苷酸序列,并能将每一条链上特定部位的两个核苷酸之间的磷酸二酯键切开。(3)限制性切酶的切割式及结果:①在中心轴线两侧将DNA切开,切口是黏性末端。②沿着中心轴线切开DNA,切口是平末端。 2.DNA连接酶——“分子缝合针” (1)来源:大肠杆菌、T4噬菌体 (2)DNA连接酶的种类:E.coliDNA连接酶和T4DNA连接酶。 (3)作用及作用部位:E.coliDNA连接酶作用于黏性末端被切开的磷酸

二酯键,T4DNA连接酶作用于黏性末端和平末端被切开的磷酸二酯键。注意:比较有关的DNA酶 (1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基 (2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用的部位是碱基和碱基之间的氢键。注意:使DNA解成两条长链的法除用解旋酶以外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA 解旋。 (3)DNA聚合酶:能将单个的核苷酸通过磷酸二酯键连接成DNA长链。(4)DNA连接酶:是通过磷酸二酯键连接双链DNA的缺口。注意比较DNA聚合酶和DNA连接酶的异同点。 3.基因进入受体细胞的载体——“分子运输车” (1)分子运载车的种类:①质粒:常存在于原核细胞和酵母菌中,是一种分子质量较小的环状的裸露的DNA分子,独立于拟核之外。②病毒:常用的病毒有噬菌体、动植物病毒等。 (2)运载体作用:①是用它做运载工具,将目的基因转运到宿主细胞中去。②是利用它在受体细胞对目的基因进行大量复制。 (3)作为运载体必须具备的条件:①在宿主细胞中保存下来并大量复制②有多个限制性切酶切点③有一定的标记基因,便于筛选。 思维探究:知识点3、4、5主要是介绍DNA重组技术的三种基本工具及其作用。限制酶──“分子手术刀”,主要是介绍限制酶的作用,切割后产生的结果。在这部分容学习时,应关心的问题之一是:限制酶从哪里寻找?我们可以联想从前学过的容──噬菌体侵染细菌的实验,进而认识细菌等单细胞生物容易受到自然界外源DNA的入侵。那么这类原核生物之所以长期进化而不绝灭,有保护机制?进而联想到可能是有什么酶来切割外源DNA,而使之失效,达到保护自身的目的”。这样就对“限制酶主要是从原核生物中分离纯化出来”的认识提高了一个层次。 基因进入受体细胞的载体──“分子运 输车”的学习容,不能仅仅着眼于记住这几个 条件,而应该深入思考每一个条件的涵,通过 深思熟虑,才能真正明确为什么要有这些条件 才能充当载体。 教材拓展: 拓展点一限制酶所识别序列的特点 限制酶所识别的序列的特点是:呈现碱基互补对称,无论是奇数个碱

高三生物知识点归纳:基因工程及其应用

高三生物知识点归纳:基因工程及其应用 1.概念:按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。 高考生物知识点归纳 2.原理基因重组 3.工具: A.基因的”剪刀”:限制性内切酶 ①分布:主要在微生物中。 ②作用特点:特异性,即识别特定核苷酸序列,切割特定切点。 ③结果:产生黏性未端(碱基互补配对)。 B.基因的”针线”:DNA连接酶 ①连接的部位:磷酸二酯键,不是氢键。 ②结果:两个相同的黏性未端的连接。 C.基因的”运载工具”:运载体 ①作用:将外源基因送入受体细胞。 ②具备的条件:a、能在宿主细胞内复制并稳定地保存。b、具有多个限制酶切点。 c、有某些标记基因。 ③种类:质粒、噬菌体和动植物病毒。 ④质粒的特点:质粒是基因工程中最常用的运载体。 4.基因操作的基本步骤: ①提取目的基因:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等 ②目的基因与运载体结合(以质粒为运载体):用同一种限制酶分别切割目的基

因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒) ③将目的基因导入受体细胞常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞 ④目的基因检测与表达 检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒。 表达:受体细胞表现出特定性状,说明目的基因完成了表达过程。如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等。

基因工程期末考试重点知识整理

基因工程 第一章基因工程概述 1、基因工程的概念(基因工程基本技术路线PPT) 基因工程(Gene Engineering),是指在基因水平上的遗传工程,它是用人为方法将大分子(DNA)提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新的育种技术. 2、基因工程的历史 基因工程准备阶段:1972,第一个重组DNA分子的构建,构建人:Paul Berg及其同事PPT 基因工程诞生:1973,Cohen & Boyer首次完成重组质粒DNA对大肠杆菌的转化 基因工程发展阶段的几个重要事件: 一系列新的基因工程操作技术的出现; 各种表达克隆载体的成功构建; 一系列转基因菌株、转基因植物、转基因动物等的出现 3、基因工程的内容(P9) 4、基因克隆的通用策略(P12)(基因组文库(鸟枪法)+分子杂交筛选) 第二章分子克隆工具酶 5、限制性核酸内切酶的概念、特点、命名、分类(问答) 概念:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶,主要存在于细菌体内 特点(参加PPT) 命名:依次取宿主属名第一字母,种名头两个字母,菌株号,然后加上序号。

如:从Haemophilus influenze Rd中提取到的第三种限制型核酸内切酶被命名为Hind Ⅲ,Hin指来源于流感嗜血杆菌,d表示来菌株Rd,Ⅲ表示序号。 分类:依据酶的亚单位组成、识别序列的种类以及是否需要辅助因子可分为:Ⅰ型酶、Ⅱ型(Ⅱs型)酶和Ⅲ型酶。 真核细胞中有4中DNA聚合酶:α,β,γ,线粒体DNA聚合酶 原核生物中3中DNA聚合酶:Ⅰ,Ⅱ,Ⅲ 6、几个基本概念 粘性末端:两条多聚核苷酸链上磷酸二酯键断开的位置是交错的,对称地分布在识别序列中心位置两侧,这样形成的DNA片段末端称为~。 平末端:两条多聚核苷酸链上磷酸二酯键断开的位置处在识别序列的对称结构中心,这样切割的结果产生的DNA片段末端是平齐的,称之为~。 同裂酶:一些来源不同的限制性核酸内切酶具有相同的识别序列。如:BamHI和BstI均可识别GGATCC。 同尾酶:有些限制性内切酶虽然识别序列不同,但是切割DNA分子产生相同的DNA末端。如:TaqI:TCGA;ClaI:A TCGA T;AccI:GTCGAC 星星活性:某些限制性核酸内切酶在特定条件下,可以在不是原来的识别序列处切割DNA,这种现象称为Star活性。 DNA物理图谱:(多为质粒图谱)

《基因工程》专题复习总结

专题1 基因工程 知识体系构建 专题整合 一、基因工程的基本工具 A.重组DNA技术所用的工具酶是限制酶、连接酶、载体 B.为育成抗除草剂的作物新品种,导入抗除草剂基因时只能以受精卵为受体细胞 C.选用细菌作为重组质粒的受体细胞是因为细菌繁殖快

D.只要目的基因进入了受体细胞就能成功表达 二、基因工程的操作程序 1.目的基因的获取 (1)目的基因:指编码蛋白质的结构基因。 (2)获取方法:从基因文库获取,原核基因也可直接分离获得;真核基因主要是人工合成,人工合成目的基因的常用方法有反转录法和化学合成法。 2.基因表达载体的构建 (1)目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。 (2)组成:启动子+目的基因+标记基因+终止子。 ①启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需要的蛋白质。 ②终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。 ③标记基因的作用:鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素抗性基因。 3.将目的基因导入受体细胞

A.提取目的基因→目的基因导入受体细胞→目的基因与载体结合→目的基因的检测与鉴定 B.目的基因的检测与鉴定→提取目的基因→目的基因与载体结合→目的基因导入受体细胞 C.提取目的基因→目的基因与载体结合→目的基因导入受体细胞→目的基因的检测与鉴定 D.目的基因与载体结合→提取目的基因→目的基因导入受体细胞→目的基因的检测与鉴定 三、蛋白质工程 1.蛋白质工程流程 2.蛋白质工程与基因工程的区别:蛋白质工程的本质是通过改造基因进而形成自然界不存在的蛋白质,所以被形象地称为第二代基因工程;基因工程在原则上只能生产自然界已存在的蛋白质。 训练3 利用蛋白质工程改造天然蛋白质,进而改变其功能,可获得毒副作用减小,专一性、药效和稳定性都增强的理想的药物。如胰岛素是治疗依赖型糖尿病的特效药物,但是天然胰岛素在人体内寿命只有几小时,重症病人每天得注射好几次药物,给病人增加了不便和痛苦。通过蛋白质工程改变胰岛素的空间结构,以延长胰岛素的半衰期,得到长效胰岛素;还可以在不改变胰岛素活性部位结构的前提下,增强其他部位结合强度,使之难以被酶破坏,从而增强其稳定性。 (1)若要批量生产以上提到的长效胰岛素,根据所学知识,需要用到哪些生物工程( )

基因工程及其应用完整版

基因工程及其应用集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

第2节基因工程及其应用(第1课时) 知识链接及考试地位 本知识与“DNA分子的结构与复制”、“基因突变和基因重组”、“DNA重组技术的基本工具”、“基因工程的基本操作程序”等内容相联系,考试过程中常设计基因工程的原理、基本工具等基础知识,多以个别填空或选择题的形式呈现。 知识回顾 1、DNA分子的结构特点是什么? 2、什么是基因重组? 学习目标 1、简述基因工程的诞生。 2、简述基因工程的原理及技术。要明确基因工程操作的基本步骤和最基本的工具。 重难点 1.教学重点 基因工程的基本原理。 2.教学难点 基因工程的基本原理 新知探究 传统育种的方法一般只能在生物中进行,很难将一种生物的优良性状移植到生物身上。基因工程的出现使人类有可能按照自己的意愿地改变生物,培育出。 一、基因工程的原理 基因工程又叫做或。通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以,然后放到另一种生物细胞里,地改造生物的遗传性状。基因工程是在DNA上进行的水平的设计施工,基因的剪刀是指,简称限制酶。其作用特点是一种限制酶只能识别一种序列。基因的针线是指。目前常用的运载体有、和等。质粒存在于许多以及等生物中,是细胞染色体外能够自主复制的小型分子。 基因工程的操作步骤是:、目的基因与运载体结合,目的基因导入受体细胞、目的基因的和。 二、基因工程的原理、操作对象各是什么? 三、限制性内切酶的分布、特点、作用部位和作用结果如何? 四、作为基因的运载体,需具备哪些条件? 五、DNA连接酶的作用对象、位置和结果如何? 六、基因工程的优点是什么?

基因工程总结

简述Southern blot,northern blot,western blot的原理,比较它们的不同. 答:Southern Blot 原理:将待检测的DNA分子用/不用限制性内切酶消化后,通过琼脂糖凝胶电泳进行分离,继而将其变性并按其在凝胶中的位置转移到硝酸纤维素薄膜或尼龙膜上,固定后再与同位素或其它标记物标记的DNA或RNA探针进行反应。如果待检物中含有与探针互补的序列,则二者通过碱基互补的原理进行结合,游离探针洗涤后用自显影或其它合适的技术进行检测,从而显示出待检的片段及其相对大小。用途:检测样品中的DNA及其含量,了解基因的状态, 如是否有点突变、扩增重排等。DNA => 琼脂糖电泳=> 印迹转移=> 预杂交=> 杂交(变性探针)=> 洗膜=> 放射自显影或显色Northern Blot 原理:在变性条件下将待检的RNA样品进行琼脂糖凝胶电泳,继而按照同Southern Blot相同的原理进行转膜和用探针进行杂交检测。用途:检测样品中是否含有基因的转录产物(mRNA)及其含量。 mRNA提取=> 甲醛变性电泳=> 印迹转移=> 预杂交=> 杂交(变性探针)=> 洗膜=> 放射自显影或化学发光 Western Blot 与 Southern Blot或 Northern Blot杂交方法类似,但Western Blot采用的是聚丙烯酰胺凝胶电泳,被检测物是蛋白质,“探针”是抗体,“显色”用标记的二抗。经过PAGE分离的蛋白质样品,转移到固相载体(例如硝酸纤维素薄膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异性目的基因表达的蛋白成分。该技术也广泛应用于检测蛋白水平的表达。 不同:所用于分析的对象不同。 Northern杂交用于分析RNA; Southern杂交用于分析DNA; Western杂交用于分析蛋白质。 转基因动物与转基因植物的产生有什么不同? 答:技术原理相同,用转基因技术将具体特殊经济价格的外源基因导入动植物体内,不但表达出人类所需要的优良性状(如抗虫,抗病,抗除草剂,抗倒伏,产肉,产蛋量高),还可以通过蛋白质重新组合得到新的品种。但是,对动物和植物进行目的基因导入的方法不同。动物一般采用显微注射法将带有目的基因的病毒注入细胞;而植物一般采用农杆菌转化法或基因枪法将目的基因导入受体细胞。

专题1基因工程知识点梳理(含教材答案)

专题1 基因工程 ※基因工程的概念: 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 ﹡原理:基因重组 ﹡目的:创造出更符合人们需要的新的生物类型和生物产品。 ﹡意义:能够打破生物种属的界限(即打破生殖隔离,克服远源杂交不亲和的障碍),在分子水平上定向改变生物的遗传特性。 ﹡操作水平:DNA分子水平 【思考】: (1)基因工程的物质基础是:所有生物的DNA均由四种脱氧核苷酸组成。 (2)基因工程的结构基础是:所有生物的DNA均为双螺旋结构。 (3)一种生物的DNA上的基因之所以能在其他生物体内得以进行相同的表达,是因为它们共用一套遗传密码子。 一、基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端(回文结构特点)。 ①在中心轴线两侧将DNA切开,切口是黏性末端。 ②沿着中心轴线切开DNA,切口是平末端。 2.“分子缝合针”——DNA连接酶

(1)分类:根据酶的来源不同,可分为E·coliDNA连接酶和T4DNA连接酶两类 (2)功能:恢复被限制酶切开了的两个核苷酸之间的磷酸二酯键。 ★两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键 ②区别:E.coIiDNA连接酶来源于大肠杆菌,只能使黏性末端之间连接; T4DNA连接酶能缝合两种末端,但连接平末端之间的效率较低。 (3)与DNA聚合酶作用的异同: DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 (4)与DNA分子相关的酶

基因工程复习总结.docx

思考题 第二章分子克隆工具酶 1简述基因工程研究用的工具酶的类型和作用特点。 常用的工具酶 硝基序列内部进庁切割 DrU逵接癖 DT?A 1 i HaSe 将两条以上的纯性HA方子咸序喪傕化昭成磷酸二酣键逢接战一6盘傢 DNAJSt 合BBl DNA PDIytoeraSe 1通?u≡ιg'掰遥一蝎如械昔≡κ???板. 从3'方向令咸新生的互补谜 专一懺降解RMA 内切械肢晦.4?M4tl?或双1?DNA 2?说明限制性内切核酸酶命名原则(举例)

重点高中生物选修三知识点总结

重点高中生物选修三知识点总结

————————————————————————————————作者:————————————————————————————————日期:

高中生物选修三知识点总结 一、基因工程 1. 基因工程的诞生 (1)基因工程:按照人们的意愿,进行严格的设计,并通过体外DNA 重组和转基因等技术,从而创造出更符合人们需要的新的生物类型和生物产品。 (2)基因工程诞生的理论基础是在生物化学、分子生物学和微生物学科的基础上发展起来,技术支持有基因转移载体的发现、工具酶的发现,DNA 合成和测序仪技术的发明等。 2. 基因工程的原理及技术 (3)基因工程操作中用到了限制酶、DNA 连接酶、运载体 考点限制酶细化: 限制酶主要从原核生物生物中分离纯化出来,这种酶在原核生物中的作用是识别DNA 分子的特定核苷酸序列,并且使每条链中特定部位的两个核苷酸之间的磷酸二酯键断开。 ①限制酶的特性是识别特定核苷酸序列,切割特定切点。限制酶产生的末端有两种:粘性末端和平末端。 ②DNA 连接酶与DNA 聚合酶的作用部位是磷酸二酯键,二者在作用上的区别为前者是恢复被限制性内切酶切开的两个核苷酸之间的磷酸二酯键,后者单个的核苷酸连接到DNA分子上。 ③作为基因工程的载体应该具备标记基因、多个限制性内切酶切点、能够在宿主细胞内复制和稳定存等特点。 ⑤常见的载体种类有质粒、动植物病毒、噬菌体 (4)基因工程四步骤:目的基因的获取、基因表达载体的构建、将目的基因导入受体细胞、目的基因的检测和表达。 考点细化: ①目的基因的获取方法为根据基因的核苷酸序列、基因的功能、基因在载体上的位置、基因的转录产物、以及基因的表达产物蛋白质等特性来获取目的基因。 ②基因文库、基因组文库、cDNA 文库的区别:含有某种生物不同基因的许多DNA 片段,导入受体菌的群体中储存,各个受体菌体分别含有这种生物的不同基因,称之为基因文库。如果含有一种生物所有基因,叫做基因组文库。只包含一种生物的一部分基因,这种基因文库叫做部分基因文库,如cDNA 文库。 ③基因重组操作中构建基因表达载体的目的是将目的基因在受体细胞中稳定存在,并且遗传给下一代,同时目的基因能够表达和发挥作用。 ④一个完整的基因表达载体包括:目的基因、启动子、终止子、标记基因。 ⑤将目的基因导入植物细胞、动物细胞和微生物细胞的常用方法分别是脓杆菌转化法、显微注射法、Ca2+处理法。 ⑥基因工程的受体细胞选择,植物可以采用体细胞,动物不能用体细胞,一般采用受精卵细胞。因为受精卵具有全能性。 ⑦当受体细胞是大肠杆菌时常用Ca2+处理细胞,这样做的目的是使细胞处于一种能够吸收周围环境中的DNA 分子的感受态细胞。 ⑧目的基因的检测:转基因生物的DNA 是否插入了目的基因(DNA分子杂交技术); 目的基因是否转录出了mRNA(分子杂交技术); 目的基因是否翻译成蛋白质(抗原-抗体杂交); 个体生物学水平鉴定(直接观察和检测性状)。 ⑨目的基因的获取、基因表达载体的构建、目的基因的检测和表达一般需要碱基互补配对。将目的基因导入受体细胞不需要碱基互补配对

相关文档
最新文档